1
|
Smilowska K, van Wamelen DJ, Bloem BR. The multimodal effect of circadian interventions in Parkinson's disease: A narrative review. Parkinsonism Relat Disord 2023; 110:105309. [PMID: 36797197 DOI: 10.1016/j.parkreldis.2023.105309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND The circadian system and its dysfunction in persons with Parkinson's disease (PwP) has a clear impact on both motor and non-motor symptoms. Examples include circadian patterns in motor disability, with worsening of symptoms throughout the day, but also the existence of similar patterns in non-motor symptoms. OBJECTIVE In this narrative review, we discuss the role of the circadian system, we address the role of dopamine in this system, and we summarise the evidence that supports the use of circadian system treatments for motor and non-motor symptoms in PwP. METHODS A systematic search in PubMed and Web of Science database was performed and the final search was performed in November 2021. We included articles whose primary aim was to investigate the effect of melatonin, melatonin agonists, and light therapy in PwP. RESULTS In total 25 articles were retrieved. Of these, 12 were related to bright light therapy and 13 to melatonin or/and melatonin agonists. Most, but not all, studies showed that melatonin and melatonin agonists and light therapy induced improvements in measures of sleep, depression, motor function, and some also cognitive function and other non-motor symptoms. For some of these outcomes, including daytime sleepiness, depressive symptoms, and some motor symptoms, there is level 2 B evidence for the use of circadian treatments in PwP. CONCLUSIONS Treatment with bright light therapy, exogenous melatonin and melatonin agonists seems to have not only positive effects on sleep quality and depression but also on motor function in PwP. Drawbacks in earlier work include the relatively small number of participants and the heterogeneity of outcome measures. Further large and well-designed trials are needed to address these shortcomings and to confirm or refute the possible merits of the circadian system as a treatment target in PwP.
Collapse
Affiliation(s)
- Katarzyna Smilowska
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, the Netherlands; Department of Neurology, Regional Specialist Hospital in Sosnowiec, Poland.
| | - Daniel J van Wamelen
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, the Netherlands; King's College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Basic and Clinical Neuroscience, London, United Kingdom; King's College London, Institute of Psychiatry, Psychology & Neuroscience, Department of Neuroimaging, London, United Kingdom; Parkinson's Foundation Center of Excellence, King's College Hospital, Denmark Hill, London, United Kingdom
| | - Bastiaan R Bloem
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, the Netherlands.
| |
Collapse
|
2
|
Barbosa-Méndez S, Perez-Sánchez G, Salazar-Juárez A. Agomelatine decreases cocaine-induced locomotor sensitisation and dopamine release in rats. World J Biol Psychiatry 2022; 24:400-413. [PMID: 36097970 DOI: 10.1080/15622975.2022.2123954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
BACKGROUND Agomelatine is a melatoninergic antidepressant approved to treat the major depressive disorder. Agomelatine exerts its behavioural, pharmacological, and physiological effects through the activation of MT1 and MT2 melatonin receptors and the blockade of 5-HT2B and 5-HT2C serotonin receptors. Some studies have reported that the activation of the MT1 and MT2 melatonin receptors decreased cocaine-induced locomotor activity and cocaine self-administration. These findings from another study showed that agomelatine decreased alcohol consumption. This study aimed to evaluate the effects of agomelatine administration on cocaine-induced behavioural (cocaine-induced locomotor activity and cocaine-induced locomotor sensitisation) and neurochemical (dopamine levels) effects. METHODS Male Wistar rats (250-280 g) received cocaine (10 mg/kg) during the induction and expression of locomotor sensitisation. Agomelatine (10 mg/kg) was administered 30 minutes before cocaine. After each treatment, locomotor activity was recorded for 30 minutes. Dopamine levels were determined in the ventral striatum, the prefrontal cortex (PFC), and the ventral tegmental area (VTA) by high-performance liquid chromatographic (HPLC) in animals treated with agomelatine and cocaine. Luzindole (30 mg/kg) was administered to block the agomelatine effect. RESULTS In this study, we found that agomelatine decreased cocaine-induced locomotor activity and the induction and expression of locomotor sensitisation. In addition, agomelatine decreased cocaine-induced dopamine levels. Luzindole blocked the agomelatine-induced decrease in the expression of locomotor sensitisation in rats. CONCLUSION Our results suggest (1) that agomelatine showed efficacy in decreasing cocaine psychostimulant effects and (2) that agomelatine can be a useful therapeutic agent to reduce cocaine abuse.
Collapse
Affiliation(s)
- Susana Barbosa-Méndez
- Subdirección de Investigaciones Clínicas. Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Ciudad de Mexico, Mexico
| | - Gilberto Perez-Sánchez
- Dirección de Neurociencias, Laboratorio de Psicoinmunología. Instituto Nacional de Psiquiatría, Ciudad de México, México
| | - Alberto Salazar-Juárez
- Subdirección de Investigaciones Clínicas. Laboratorio de Neurofarmacología Conductual, Microcirugía y Terapéutica Experimental, Ciudad de Mexico, Mexico
| |
Collapse
|
3
|
Naveed M, Li LD, Sheng G, Du ZW, Zhou YP, Nan S, Zhu MY, Zhang J, Zhou QG. Agomelatine: An astounding sui-generis antidepressant? Curr Mol Pharmacol 2021; 15:943-961. [PMID: 34886787 DOI: 10.2174/1874467214666211209142546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/09/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
Major depressive disorder (MDD) is one of the foremost causes of disability and premature death worldwide. Although the available antidepressants are effective and well tolerated, they also have many limitations. Therapeutic advances in developing a new drug's ultimate relation between MDD and chronobiology, which targets the circadian rhythm, have led to a renewed focus on psychiatric disorders. In order to provide a critical analysis about antidepressant properties of agomelatine, a detailed PubMed (Medline), Scopus (Embase), Web of Science (Web of Knowledge), Cochrane Library, Google Scholar, and PsycInfo search was performed using the following keywords: melatonin analog, agomelatine, safety, efficacy, adverse effects, pharmacokinetics, pharmacodynamics, circadian rhythm, sleep disorders, neuroplasticity, MDD, bipolar disorder, anhedonia, anxiety, generalized anxiety disorder (GAD), and mood disorders. Agomelatine is a unique melatonin analog with antidepressant properties and a large therapeutic index that improves clinical safety. It is a melatonin receptor agonist (MT1 and MT2) and a 5-HT2C receptor antagonist. The effects on melatonin receptors enable the resynchronization of irregular circadian rhythms with beneficial effects on sleep architectures. In this way, agomelatine is accredited for its unique mode of action, which helps to exert antidepressant effects and resynchronize the sleep-wake cycle. To sum up, an agomelatine has not only antidepressant properties but also has anxiolytic effects.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Lian-Di Li
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Gang Sheng
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Zi-Wei Du
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Ya-Ping Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Sun Nan
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Ming-Yi Zhu
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Jing Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166. China
| |
Collapse
|
4
|
Aryl Hydrocarbon Receptors in Indole Derivative Treated Mice: Neuropharmacological Perspectives. ACTA MEDICA BULGARICA 2021. [DOI: 10.2478/amb-2021-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Abstract
Aim/objective. When applied in pharmacological doses, the indole derivative melatonin exhibits neuroactive and neuroprotective effects. Indoles and their metabolites, such as kynurenine, are ligands of aryl hydrocarbon receptors (AhR). This study aimed to evaluate the antiepileptic and analgesic activity of melatonin and two synthetic melatonin derivatives. The possible involvement of AhR and kynurenine in their neuropharmacological effects were also tested.
Methods. The tested substances were: melatonin, two melatonin derivatives bearing aryl hydrocarbon moiety with either furyl or thienyl substitute (3e and 3f), and alpha naphthoflavone (ANF), an antagonist of AhR. After intraperitoneal injection of 30, 100, or 300 mg/kg of the tested agents for seven days, male mice ICR (25-30 g) were subjected to a corneal kindling seizure model. Two tests for analgesia, i.e., the hot plate test and the formalin test, were also applied. AhR and kynurenine concentrations were evaluated in brain homogenates.
Results. Substances 3e and 3f demonstrated an antiepileptic activity comparable to that of melatonin. Some analgesic activity was also shown, albeit lower than that of melatonin in equivalent doses. For melatonin and 3f treated mice, dose-dependent increases in AhR and kynurenine levels in brain homogenates were recorded. The antagonist ANF neither blocks the antiseizure activity of the tested indoles, nor demonstrated analgesic activity.
Conclusion. Melatonin and the two tested melatonin-aroylhydrazone derivatives bearing either furyl or thienyl substitute exhibit antiepileptic and analgesic activity. Our results did not support the involvement of AhR in the demonstrated neurobiological activity. Further studies are needed to elucidate their exact molecular mechanisms.
Collapse
|
5
|
Surowka P, Noworyta K, Rygula R. Trait Sensitivity to Negative and Positive Feedback Does Not Interact With the Effects of Acute Antidepressant Treatment on Hedonic Status in Rats. Front Behav Neurosci 2020; 14:147. [PMID: 33061896 PMCID: PMC7481381 DOI: 10.3389/fnbeh.2020.00147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/28/2020] [Indexed: 11/23/2022] Open
Abstract
Aberrant cognition plays a pivotal role in the development and maintenance of depression. One of the most important cognitive distortions associated with depression is aberrant sensitivity to performance feedback. Under clinical conditions, this sensitivity can be measured using the probabilistic reversal learning (PRL) test, which has also been recently implemented in animal studies. Although the evidence for the coexistence of depression and altered feedback sensitivity is relatively coherent, it is unclear whether this sensitivity can influence the effectiveness of antidepressant treatment. In the present research, we investigated how trait sensitivity to negative and positive feedback interacts with the effects of acute antidepressant treatment on hedonic status in rats. We tested a cohort of rats with a series of 10 PRL tests, and based on this screening, we classified each animal as sensitive or insensitive to negative and positive feedback. Subsequently, in the Latin square design, we evaluated the effects of a single administration of two antidepressant drugs (each at three different doses: agomelatine: 5, 10, and 40 mg/kg; mirtazapine 0.5, 1, and 3 mg/kg) on the hedonic status of rats in the sucrose preference tests. There was no statistically significant interaction between trait sensitivity to feedback and the effects of acute antidepressant treatment on hedonic status in rats.
Collapse
Affiliation(s)
- Paulina Surowka
- Affective Cognitive Neuroscience Laboratory, Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Karolina Noworyta
- Affective Cognitive Neuroscience Laboratory, Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Rafal Rygula
- Affective Cognitive Neuroscience Laboratory, Department of Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
6
|
Konstantakopoulos G, Dimitrakopoulos S, Michalopoulou PG. The preclinical discovery and development of agomelatine for the treatment of depression. Expert Opin Drug Discov 2020; 15:1121-1132. [PMID: 32568567 DOI: 10.1080/17460441.2020.1781087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Under the treatment of commonly used antidepressants, many patients with major depressive disorder (MDD) do not achieve remission. All previous first-line treatments for depression have focused on the enhancement of monoaminergic activity. Agomelatine was the first antidepressant with a mechanism of action extending beyond monoaminergic neurotransmission. AREAS COVERED The aim of this case history is to describe the discovery strategy and development of agomelatine. The pharmacodynamic profile of the drug is briefly presented. The article summarizes (a) the preclinical behavioral data on agomelatine's effects on depressive-like behavior, anxiety, and circadian rhythmicity disruptions, and (b) the results of early preclinical studies on safety, efficacy in MDD, and the risk-benefit pharmacological profile. Furthermore, the article examines findings of post-marketing research on safety, efficacy, and cost-effectiveness of the drug. EXPERT OPINION There is now evidence supporting the clinical efficacy and safety profile of agomelatine in the acute-phase treatment of MDD. Agomelatine may be more effective in specific subgroups of MDD patients, those with severe anxiety symptoms or disturbed circadian profiles. Its antidepressant and anxiolytic activities are due to synergy between its melatonergic and 5-hydroxytryptaminergic effects. Since its discovery, novel compounds acting on the melatonergic system have been under investigation for the treatment of MDD.
Collapse
Affiliation(s)
- George Konstantakopoulos
- First Department of Psychiatry, University of Athens , Athens, Greece.,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London , London, UK
| | | | - Panayiota G Michalopoulou
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London , London, UK
| |
Collapse
|
7
|
Legros C, Dupré C, Brasseur C, Bonnaud A, Bruno O, Valour D, Shabajee P, Giganti A, Nosjean O, Kenakin TP, Boutin JA. Characterization of the various functional pathways elicited by synthetic agonists or antagonists at the melatonin MT 1 and MT 2 receptors. Pharmacol Res Perspect 2020; 8:e00539. [PMID: 31893123 PMCID: PMC6935685 DOI: 10.1002/prp2.539] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022] Open
Abstract
Melatonin is a neurohormone that translates the circadian rhythm to the peripheral organs through a series of binding sites identified as G protein-coupled receptors MT1 and MT2. Due to minute amounts of receptor proteins in target organs, the main tool of studies of the melatoninergic system is recombinant expression of the receptors in cellular hosts. Although a number of studies exist on these receptors, studies of several signaling pathways using a large number of melatoninergic compounds are rather limited. We chose to fill this gap to better describe a panel of compounds that have been only partially characterized in terms of functionality. First, we characterized HEK cells expressing MT1 or MT2, and several signaling routes with melatonin itself to validate the approach: GTPγS, cAMP production, internalization, β-arrestin recruitment, and cell morphology changes (CellKey ® ). Second, we chose 21 compounds from our large melatoninergic chemical library and characterized them using this panel of signaling pathways. Notably, antagonists were infrequent, and their functionality depended largely on the pathway studied. This will permit redefining the availability of molecular tools that can be used to better understand the in situ activity and roles of these receptors.
Collapse
Affiliation(s)
- Céline Legros
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Clémence Dupré
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Chantal Brasseur
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Anne Bonnaud
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Olivier Bruno
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Damien Valour
- Pôle d’Expetise Méthodologie et Valorisation des DonnéesInstitut de Recherches Internationales ServierSuresnesFrance
| | - Preety Shabajee
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Adeline Giganti
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
| | - Olivier Nosjean
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
- Present address:
Institut de Recherches Internationales SERVIERSuresnesFrance
| | - Terrence P. Kenakin
- Department of PharmacologyUniversity of North Carolina School of MedicineChapel HillNCUSA
| | - Jean A. Boutin
- Pôle d’Expertise BiotechnologieChimie & BiologieInstitut de Recherches ServierCroissy‐sur‐SeineFrance
- Present address:
Institut de Recherches Internationales SERVIERSuresnesFrance
| |
Collapse
|
8
|
Drozd R, Rychlik M, Fijalkowska A, Rygula R. Effects of cognitive judgement bias and acute antidepressant treatment on sensitivity to feedback and cognitive flexibility in the rat version of the probabilistic reversal-learning test. Behav Brain Res 2019; 359:619-629. [DOI: 10.1016/j.bbr.2018.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/14/2018] [Accepted: 10/01/2018] [Indexed: 01/03/2023]
|
9
|
Abstract
Despite considerable advances in the past few years, obesity and type 2 diabetes mellitus (T2DM) remain two major challenges for public health systems globally. In the past 9 years, genome-wide association studies (GWAS) have established a major role for genetic variation within the MTNR1B locus in regulating fasting plasma levels of glucose and in affecting the risk of T2DM. This discovery generated a major interest in the melatonergic system, in particular the melatonin MT2 receptor (which is encoded by MTNR1B). In this Review, we discuss the effect of melatonin and its receptors on glucose homeostasis, obesity and T2DM. Preclinical and clinical post-GWAS evidence of frequent and rare variants of the MTNR1B locus confirmed its importance in regulating glucose homeostasis and T2DM risk with minor effects on obesity. However, these studies did not solve the question of whether melatonin is beneficial or detrimental, an issue that will be discussed in the context of the peculiarities of the melatonergic system. Melatonin receptors might have therapeutic potential as they belong to the highly druggable G protein-coupled receptor superfamily. Clarifying the precise role of melatonin and its receptors on glucose homeostasis is urgent, as melatonin is widely used for other indications, either as a prescribed medication or as a supplement without medical prescription, in many countries in Europe and in the USA.
Collapse
Affiliation(s)
- Angeliki Karamitri
- Inserm, U1016, Institut Cochin, Paris, France
- CNRS UMR 8104, Paris, France
- Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Ralf Jockers
- Inserm, U1016, Institut Cochin, Paris, France.
- CNRS UMR 8104, Paris, France.
- Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
10
|
Can ÖD, Üçel Uİ, Demir Özkay Ü, Ulupınar E. The Effect of Agomelatine Treatment on Diabetes-Induced Cognitive Impairments in Rats: Concomitant Alterations in the Hippocampal Neuron Numbers. Int J Mol Sci 2018; 19:ijms19082461. [PMID: 30127276 PMCID: PMC6121488 DOI: 10.3390/ijms19082461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/05/2018] [Accepted: 08/17/2018] [Indexed: 12/30/2022] Open
Abstract
Researches that are related to the central nervous system complications of diabetes have indicated higher incidence of cognitive disorders in patients. Since the variety of nootropic drugs used in clinics is limited and none of them consistently improves the outcomes, new and effective drug alternatives are needed for the treatment of diabetes-induced cognitive disorders. Based on the nootropic potential of agomelatine, the promising efficacy of this drug on cognitive impairments of diabetic rats was investigated in the current study. Experimental diabetes model was induced by streptozotocin. After development of diabetes-related cognitive impairments in rats, agomelatine (40 and 80 mg/kg) was administrated orally for two weeks. Cognitive performance was assessed by Morris water-maze and passive avoidance tests. Then, the total numbers of neurons in both dentate gyrus and Cornu Ammonis (CA) 1–3 subfields of the hippocampus were estimated by the optical fractionator method. Agomelatine treatment induced notable enhancement in the learning and memory performance of diabetic rats. Moreover, it reversed the neuronal loss in the hippocampal subregions of diabetic animals. Obtained results suggest that agomelatine has a significant potential for the treatment of diabetes-induced cognitive impairments. However, therapeutic efficacy of this drug in diabetic patients suffering from cognitive dysfunctions needs to be confirmed by further clinical trials.
Collapse
Affiliation(s)
- Özgür Devrim Can
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Umut İrfan Üçel
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Ümide Demir Özkay
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Emel Ulupınar
- Department of Anatomy, Faculty of Medicine, Eskisehir Osmangazi University, 26480 Eskisehir, Turkey.
- Interdisciplinary Neuroscience Department, Health Science Institute of Eskişehir Osmangazi University, 26480 Eskisehir, Turkey.
| |
Collapse
|
11
|
Talih F, Gebara NY, Andary FS, Mondello S, Kobeissy F, Ferri R. Delayed sleep phase syndrome and bipolar disorder: Pathogenesis and available common biomarkers. Sleep Med Rev 2018. [PMID: 29534856 DOI: 10.1016/j.smrv.2018.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Circadian rhythm disturbances are common in bipolar affective disorder (BD). Delayed sleep-wake phase syndrome (DSWPD) is the most prevalent circadian rhythm sleep-wake disorder (CRSWDs) and is frequently observed in BD. It is unclear whether DSWPD in BD is an independent process or is a consequence of BD. In this hypothetical review, we discuss the overlap between BD and DSWPD and potential common biomarkers for DSWPD and BD. The review will include a discussion of the genetics of DSWPD and BD. Biomarkers elucidating the pathophysiological processes occurring in these two disorders may offer insight into the etiology and prognosis of both conditions.
Collapse
Affiliation(s)
- Farid Talih
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon; Department of Psychiatry, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Nour Y Gebara
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Farah S Andary
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy; Sleep Research Centre, Oasi Research Institute IRCCS, Troina, Italy
| | - Firas Kobeissy
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute IRCCS, Troina, Italy
| |
Collapse
|
12
|
Shagiakhmetov FS, Anokhin PK, Popova AO, Shamakina IY. [A profile of antidepressive effects of agomelatine and a current view on the mechanism of its action]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 117:124-131. [PMID: 29376995 DOI: 10.17116/jnevro2017117121124-131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Agomelatine is one of the latest antidepressants (melatoninergic agonists) with a new mechanism of action. From the positions of classical monoaminoergic theory, tts mechanism of action is difficult to understand, because the drug increases the levels of monoamines and neurotrophic factors, while not affecting their reuptake and negative feedback, which control neurotransmission level. Besides the effect on suprachiasmatic nucleus, a relevant role in the mechanism of action of agomelatine plays its special functionally selective (with regard to intracellular signaling pathways) interaction with heteromeric complexes of serotonin 5-НТ2С and melatonin MT2 receptors in the hippocampus and cerebral cortex. Agomelatine is competitive to other modern antidepressants in the efficacy assessed by the percentage of complete responders and superior in the total frequency of remissions. Compared to other SSRI antidepressants, agomelatine is more effective for anhedonia. In these cases, agomelatine increases the level of brain-derived neurotrophic factor (BDNF) in the blood of responders.
Collapse
Affiliation(s)
- F Sh Shagiakhmetov
- Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - P K Anokhin
- Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - A O Popova
- Russian University of People's Friendship, Moscow, Russia
| | - I Yu Shamakina
- Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| |
Collapse
|
13
|
Circadian Rhythm Disturbances in Mood Disorders: Insights into the Role of the Suprachiasmatic Nucleus. Neural Plast 2017; 2017:1504507. [PMID: 29230328 PMCID: PMC5694588 DOI: 10.1155/2017/1504507] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/28/2022] Open
Abstract
Circadian rhythm disturbances are a common symptom among individuals with mood disorders. The suprachiasmatic nucleus (SCN), in the ventral part of the anterior hypothalamus, orchestrates physiological and behavioral circadian rhythms. The SCN consists of self-sustaining oscillators and receives photic and nonphotic cues, which entrain the SCN to the external environment. In turn, through synaptic and hormonal mechanisms, the SCN can drive and synchronize circadian rhythms in extra-SCN brain regions and peripheral tissues. Thus, genetic or environmental perturbations of SCN rhythms could disrupt brain regions more closely related to mood regulation and cause mood disturbances. Here, we review clinical and preclinical studies that provide evidence both for and against a causal role for the SCN in mood disorders.
Collapse
|
14
|
Neuroprotection in Glaucoma: Old and New Promising Treatments. Adv Pharmacol Sci 2017; 2017:4320408. [PMID: 30723498 PMCID: PMC5664381 DOI: 10.1155/2017/4320408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/02/2017] [Accepted: 09/13/2017] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is a major global cause of blindness, but the molecular mechanisms responsible for the neurodegenerative damage are not clear. Undoubtedly, the high intraocular pressure (IOP) and the secondary ischemic and mechanical damage of the optic nerve have a crucial role in retinal ganglion cell (RGC) death. Several studies specifically analyzed the events that lead to nerve fiber layer thinning, showing the importance of both intra- and extracellular factors. In parallel, many neuroprotective substances have been tested for their efficacy and safety in hindering the negative effects that lead to RGC death. New formulations of these compounds, also suitable for chronic oral administration, are likely to be used in clinical practice in the future along with conventional therapies, in order to control the progression of the visual impairment due to primary open-angle glaucoma (POAG). This review illustrates some of these old and new promising agents for the adjuvant treatment of POAG, with particular emphasis on forskolin and melatonin.
Collapse
|
15
|
Effects of Melaxen and Valdoxan on Free-Radical Oxidation in Rat Heart with Experimental Hyperthyroidism. Pharm Chem J 2016. [DOI: 10.1007/s11094-016-1477-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Briaud SA, Zhang BL, Sannajust F. Continuous Light Exposure and Sympathectomy Suppress Circadian Rhythm of Blood Pressure in Rats. J Cardiovasc Pharmacol Ther 2016; 9:97-105. [PMID: 15309246 DOI: 10.1177/107424840400900205] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Although the 24-hour rhythm in blood pressure is well known, it is not clear how environmental light controls circadian cardiovascular and behavioral rhythms. Methods and Results: The prolonged exposure of Wistar rats to continuous light for 17 weeks, beginning at 5 weeks old, induced a complete suppression of their blood pressure, heart rate, spontaneous locomotor activity, and body temperature circadian rhythms. Daily subcutaneous melatonin injections at the theoretical onset of darkness for 21 days could not restore light-suppressed blood pressure circadian rhythm, whereas it partially synchronized heart rate and body temperature rhythms and it fully restored spontaneous locomotor activity rhythms, as measured by radiotelemetry. The transfer of these rats from constant light to a standard 12:12-hour light/dark photoperiod fully restored circadian rhythmicity within 2 to 5 days, although their 24-hour diastolic blood pressure remained elevated. Synchronized rats were then subjected to superior cervical ganglionectomy (SCGx) and 6-hydroxydopamine sympathectomy (SYMPx). SCGx plus SYMPx completely abolished the circadian rhythm in blood pressure and significantly reduced those in heart rate, spontaneous locomotor activity, and body temperature. Conclusions: We conclude that in Wistar rats exposed to continuous light, the light-induced increase in sympathetic outflow can suppress blood pressure circadian rhythm, and sustained cardiac wall stress can alter diastolic function at rest. Preserved inotropy in these conditions must result from an adaptative hypertrophic response of myocytes.
Collapse
Affiliation(s)
- S A Briaud
- Institut de Recherche Neurologique et Cardiovasculaire, Faculté de Pharmacie de Tours, France.
| | | | | |
Collapse
|
17
|
Yang J, Jin HJ, Mocaër E, Seguin L, Zhao H, Rusak B. Agomelatine affects rat suprachiasmatic nucleus neurons via melatonin and serotonin receptors. Life Sci 2016; 155:147-54. [DOI: 10.1016/j.lfs.2016.04.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/17/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
|
18
|
van Wamelen DJ, Roos RA, Aziz NA. Therapeutic strategies for circadian rhythm and sleep disturbances in Huntington disease. Neurodegener Dis Manag 2015; 5:549-59. [PMID: 26621387 DOI: 10.2217/nmt.15.45] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aside from the well-known motor, cognitive and psychiatric signs and symptoms, Huntington disease (HD) is also frequently complicated by circadian rhythm and sleep disturbances. Despite the observation that these disturbances often precede motor onset and have a high prevalence, no studies are available in HD patients which assess potential treatments. In this review, we will briefly outline the nature of circadian rhythm and sleep disturbances in HD and subsequently focus on potential treatments based on findings in other neurodegenerative diseases with similarities to HD, such as Parkinson and Alzheimer disease. The most promising treatment options to date for circadian rhythm and sleep disruption in HD include melatonin (agonists) and bright light therapy, although further corroboration in clinical trials is warranted.
Collapse
Affiliation(s)
- Daniel J van Wamelen
- Department of Neurology, Leiden University Medical Center, K5-Q 110, PO Box 9600, 2300RC Leiden, The Netherlands
| | - Raymund Ac Roos
- Department of Neurology, Leiden University Medical Center, K5-Q 110, PO Box 9600, 2300RC Leiden, The Netherlands
| | - Nasir A Aziz
- Department of Neurology, Leiden University Medical Center, K5-Q 110, PO Box 9600, 2300RC Leiden, The Netherlands
| |
Collapse
|
19
|
Liu J, Clough SJ, Hutchinson AJ, Adamah-Biassi EB, Popovska-Gorevski M, Dubocovich ML. MT1 and MT2 Melatonin Receptors: A Therapeutic Perspective. Annu Rev Pharmacol Toxicol 2015; 56:361-83. [PMID: 26514204 PMCID: PMC5091650 DOI: 10.1146/annurev-pharmtox-010814-124742] [Citation(s) in RCA: 397] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Melatonin, or 5-methoxy-N-acetyltryptamine, is synthesized and released by the pineal gland and locally in the retina following a circadian rhythm, with low levels during the day and elevated levels at night. Melatonin activates two high-affinity G protein-coupled receptors, termed MT1 and MT2, to exert beneficial actions in sleep and circadian abnormality, mood disorders, learning and memory, neuroprotection, drug abuse, and cancer. Progress in understanding the role of melatonin receptors in the modulation of sleep and circadian rhythms has led to the discovery of a novel class of melatonin agonists for treating insomnia, circadian rhythms, mood disorders, and cancer. This review describes the pharmacological properties of a slow-release melatonin preparation (i.e., Circadin®) and synthetic ligands (i.e., agomelatine, ramelteon, tasimelteon), with emphasis on identifying specific therapeutic effects mediated through MT1 and MT2 receptor activation. Discovery of selective ligands targeting the MT1 or the MT2 melatonin receptors may promote the development of novel and more efficacious therapeutic agents.
Collapse
Affiliation(s)
- Jiabei Liu
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214; , , , , ,
| | - Shannon J Clough
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214; , , , , ,
| | - Anthony J Hutchinson
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214; , , , , ,
| | - Ekue B Adamah-Biassi
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214; , , , , ,
| | - Marina Popovska-Gorevski
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214; , , , , ,
| | - Margarita L Dubocovich
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214; , , , , ,
| |
Collapse
|
20
|
Effects of long-term agomelatine treatment on the cognitive performance and hippocampal plasticity of adult rats. Behav Pharmacol 2015; 26:469-80. [DOI: 10.1097/fbp.0000000000000153] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Kamal M, Gbahou F, Guillaume JL, Daulat AM, Benleulmi-Chaachoua A, Luka M, Chen P, Kalbasi Anaraki D, Baroncini M, Mannoury la Cour C, Millan MJ, Prevot V, Delagrange P, Jockers R. Convergence of melatonin and serotonin (5-HT) signaling at MT2/5-HT2C receptor heteromers. J Biol Chem 2015; 290:11537-46. [PMID: 25770211 DOI: 10.1074/jbc.m114.559542] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Indexed: 11/06/2022] Open
Abstract
Inasmuch as the neurohormone melatonin is synthetically derived from serotonin (5-HT), a close interrelationship between both has long been suspected. The present study reveals a hitherto unrecognized cross-talk mediated via physical association of melatonin MT2 and 5-HT2C receptors into functional heteromers. This is of particular interest in light of the "synergistic" melatonin agonist/5-HT2C antagonist profile of the novel antidepressant agomelatine. A suite of co-immunoprecipitation, bioluminescence resonance energy transfer, and pharmacological techniques was exploited to demonstrate formation of functional MT2 and 5-HT2C receptor heteromers both in transfected cells and in human cortex and hippocampus. MT2/5-HT2C heteromers amplified the 5-HT-mediated Gq/phospholipase C response and triggered melatonin-induced unidirectional transactivation of the 5-HT2C protomer of MT2/5-HT2C heteromers. Pharmacological studies revealed distinct functional properties for agomelatine, which shows "biased signaling." These observations demonstrate the existence of functionally unique MT2/5-HT2C heteromers and suggest that the antidepressant agomelatine has a distinctive profile at these sites potentially involved in its therapeutic effects on major depression and generalized anxiety disorder. Finally, MT2/5-HT2C heteromers provide a new strategy for the discovery of novel agents for the treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Maud Kamal
- From the INSERM, U1016, Institut Cochin, 75014 Paris, France, CNRS UMR 8104, 75014 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Florence Gbahou
- From the INSERM, U1016, Institut Cochin, 75014 Paris, France, CNRS UMR 8104, 75014 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Jean-Luc Guillaume
- From the INSERM, U1016, Institut Cochin, 75014 Paris, France, CNRS UMR 8104, 75014 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Avais M Daulat
- From the INSERM, U1016, Institut Cochin, 75014 Paris, France, CNRS UMR 8104, 75014 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Abla Benleulmi-Chaachoua
- From the INSERM, U1016, Institut Cochin, 75014 Paris, France, CNRS UMR 8104, 75014 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Marine Luka
- From the INSERM, U1016, Institut Cochin, 75014 Paris, France, CNRS UMR 8104, 75014 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Patty Chen
- From the INSERM, U1016, Institut Cochin, 75014 Paris, France, CNRS UMR 8104, 75014 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Dina Kalbasi Anaraki
- From the INSERM, U1016, Institut Cochin, 75014 Paris, France, CNRS UMR 8104, 75014 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Marc Baroncini
- INSERM, Jean-Pierre Aubert Research Center, U837, 59045 Lille, France, and
| | | | - Mark J Millan
- Institut de Recherches Servier, 78290 Croissy/Seine, France
| | - Vincent Prevot
- INSERM, Jean-Pierre Aubert Research Center, U837, 59045 Lille, France, and
| | | | - Ralf Jockers
- From the INSERM, U1016, Institut Cochin, 75014 Paris, France, CNRS UMR 8104, 75014 Paris, France, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France,
| |
Collapse
|
22
|
Nagy AD, Iwamoto A, Kawai M, Goda R, Matsuo H, Otsuka T, Nagasawa M, Furuse M, Yasuo S. Melatonin adjusts the expression pattern of clock genes in the suprachiasmatic nucleus and induces antidepressant-like effect in a mouse model of seasonal affective disorder. Chronobiol Int 2014; 32:447-57. [PMID: 25515595 DOI: 10.3109/07420528.2014.992525] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recently, we have shown that C57BL/6J mice exhibit depression-like behavior under short photoperiod and suggested them as an animal model for investigating seasonal affective disorder (SAD). In this study, we tested if manipulations of the circadian clock with melatonin treatment could effectively modify depression-like and anxiety-like behaviors and brain serotonergic system in C57BL/6J mice. Under short photoperiods (8-h light/16-h dark), daily melatonin treatments 2 h before light offset have significantly altered the 24-h patterns of mRNA expression of circadian clock genes (per1, per2, bmal1 and clock) within the suprachiasmatic nuclei (SCN) mostly by increasing amplitude in their expressional rhythms without inducing robust phase shifts in them. Melatonin treatments altered the expression of genes of serotonergic neurotransmission in the dorsal raphe (tph2, sert, vmat2 and 5ht1a) and serotonin contents in the amygdala. Importantly, melatonin treatment reduced the immobility in forced swim test, a depression-like behavior. As a key mechanism of melatonin-induced antidepressant-like effect, the previously proposed phase-advance hypothesis of the circadian clock could not be confirmed under conditions of our experiment. However, our findings of modest adjustments in both the amplitude and phase of the transcriptional oscillators in the SCN as a result of melatonin treatments may be sufficient to associate with the effects seen in the brain serotonergic system and with the improvement in depression-like behavior. Our study confirmed a predictive validity of C57BL/6J mice as a useful model for the molecular analysis of links between the clock and brain serotonergic system, which could greatly accelerate our understanding of the pathogenesis of SAD, as well as the search for new treatments.
Collapse
Affiliation(s)
- Andras David Nagy
- Faculty of Agriculture, Laboratory of Regulation in Metabolism and Behavior, Kyushu University , Higashi-ku, Fukuoka , Japan and
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Donazzolo Y, Latreille M, Caillaud MA, Mocaer E, Seguin L. Evaluation of the Effects of Therapeutic and Supratherapeutic Doses of Agomelatine on the QT/QTc Interval. J Cardiovasc Pharmacol 2014; 64:440-51. [DOI: 10.1097/fjc.0000000000000136] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Guardiola-Lemaitre B, De Bodinat C, Delagrange P, Millan MJ, Munoz C, Mocaër E. Agomelatine: mechanism of action and pharmacological profile in relation to antidepressant properties. Br J Pharmacol 2014; 171:3604-19. [PMID: 24724693 PMCID: PMC4128060 DOI: 10.1111/bph.12720] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/26/2014] [Accepted: 04/03/2014] [Indexed: 12/12/2022] Open
Abstract
Agomelatine behaves both as a potent agonist at melatonin MT1 and MT2 receptors and as a neutral antagonist at 5-HT2C receptors. Accumulating evidence in a broad range of experimental procedures supports the notion that the psychotropic effects of agomelatine are due to the synergy between its melatonergic and 5-hydroxytryptaminergic effects. The recent demonstration of the existence of heteromeric complexes of MT1 and MT2 with 5-HT2C receptors at the cellular level may explain how these two properties of agomelatine translate into a synergistic action that, for example, leads to increases in hippocampal proliferation, maturation and survival through modulation of multiple cellular pathways (increase in trophic factors, synaptic remodelling, glutamate signalling) and key targets (early genes, kinases). The present review focuses on the pharmacological properties of this novel antidepressant. Its mechanism of action, strikingly different from that of conventional classes of antidepressants, opens perspectives towards a better understanding of the physiopathological bases underlying depression.
Collapse
|
25
|
Buoli M, Mauri MC, Altamura AC. Pharmacokinetic evaluation of agomelatine for the treatment of generalised anxiety disorder. Expert Opin Drug Metab Toxicol 2014; 10:885-92. [PMID: 24717138 DOI: 10.1517/17425255.2014.907794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Preliminary data indicate agomelatine as a promising molecule for both acute and long-term treatment of generalised anxiety disorder (GAD). AREAS COVERED The present review illustrates the pharmacokinetic properties of agomelatine and their implications for the management of GAD patients. A search of the main database sources (Medline, Isi Web of Knowledge and Medscape) was performed in order to obtain a complete and balanced evaluation of agomelatine pharmacokinetics for the treatment of GAD. The word 'agomelatine' was associated with 'pharmacokinetics', 'GAD', 'anxiety' and 'tolerability'. No restriction criteria were established in relation to methodology or year of publication. Only English-language articles were included. EXPERT OPINION Short half-life and 1-day administration make agomelatine an interesting molecule for GAD treatment. However, potential interactions with a number of compounds necessitate caution when prescribing and using agomelatine in patients with psychiatric (e.g., alcohol abuse) or medical comorbidities. Further data are necessary to define a precise risk/benefit ratio in special populations such as elderly patients suffering from GAD.
Collapse
Affiliation(s)
- Massimiliano Buoli
- University of Milan, Department of Psychiatry, Fondazione IRCCS Ca'Granda Ospedale Maggiore Policlinico , Milan , Italy
| | | | | |
Collapse
|
26
|
Gumuslu E, Mutlu O, Sunnetci D, Ulak G, Celikyurt IK, Cine N, Akar F, Savlı H, Erden F. The Antidepressant Agomelatine Improves Memory Deterioration and Upregulates CREB and BDNF Gene Expression Levels in Unpredictable Chronic Mild Stress (UCMS)-Exposed Mice. Drug Target Insights 2014; 8:11-21. [PMID: 24634580 PMCID: PMC3948735 DOI: 10.4137/dti.s13870] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/19/2014] [Accepted: 02/06/2014] [Indexed: 01/05/2023] Open
Abstract
Agomelatine, a novel antidepressant with established clinical efficacy, acts as an agonist of melatonergic MT1 and MT2 receptors and as an antagonist of 5-HT2C receptors. The present study was undertaken to investigate whether chronic treatment with agomelatine would block unpredictable chronic mild stress (UCMS)-induced cognitive deterioration in mice in passive avoidance (PA), modified elevated plus maze (mEPM), novel object recognition (NOR), and Morris water maze (MWM) tests. Moreover, the effects of stress and agomelatine on brain-derived neurotrophic factor (BDNF) and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) messenger ribonucleic acid (mRNA) levels in the hippocampus was also determined using quantitative real-time polymerase chain reaction (RT-PCR). Male inbred BALB/c mice were treated with agomelatine (10 mg/kg, i.p.), melatonin (10 mg/kg), or vehicle daily for five weeks. The results of this study revealed that UCMS-exposed animals exhibited memory deterioration in the PA, mEPM, NOR, and MWM tests. The chronic administration of melatonin had a positive effect in the PA and +mEPM tests, whereas agomelatine had a partial effect. Both agomelatine and melatonin blocked stress-induced impairment in visual memory in the NOR test and reversed spatial learning and memory impairment in the stressed group in the MWM test. Quantitative RT-PCR revealed that CREB and BDNF gene expression levels were downregulated in UCMS-exposed mice, and these alterations were reversed by chronic agomelatine or melatonin treatment. Thus, agomelatine plays an important role in blocking stress-induced hippocampal memory deterioration and activates molecular mechanisms of memory storage in response to a learning experience.
Collapse
Affiliation(s)
- Esen Gumuslu
- Department of Medical Genetics, Kocaeli University Medical Faculty, Kocaeli, Turkey
| | - Oguz Mutlu
- Pharmacology, Kocaeli University Medical Faculty, Kocaeli, Turkey
| | - Deniz Sunnetci
- Department of Medical Genetics, Kocaeli University Medical Faculty, Kocaeli, Turkey
| | - Guner Ulak
- Pharmacology, Kocaeli University Medical Faculty, Kocaeli, Turkey
| | - Ipek K Celikyurt
- Pharmacology, Kocaeli University Medical Faculty, Kocaeli, Turkey
| | - Naci Cine
- Department of Medical Genetics, Kocaeli University Medical Faculty, Kocaeli, Turkey
| | - Furuzan Akar
- Pharmacology, Kocaeli University Medical Faculty, Kocaeli, Turkey
| | - Hakan Savlı
- Department of Medical Genetics, Kocaeli University Medical Faculty, Kocaeli, Turkey
| | - Faruk Erden
- Pharmacology, Kocaeli University Medical Faculty, Kocaeli, Turkey
| |
Collapse
|
27
|
Pandi-Perumal SR, Srinivasan V, Cardinali DP, Monti MJ. Could agomelatine be the ideal antidepressant? Expert Rev Neurother 2014; 6:1595-608. [PMID: 17144776 DOI: 10.1586/14737175.6.11.1595] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Depressive disorders are a common cause of chronic and recurrent psychiatric dysfunction, constituting the fourth leading cause of global diseases. Depression is associated with a high rate of morbidity and mortality, and is a leading cause of global disability. Despite the effectiveness of most currently available antidepressants, many of them have a number of undesirable side effects. Agomelatine is the first melatonin (MT)(1)/MT(2) agonist having 5-hydroxytryptamine (5-HT)(2C) and 5-HT(2B) antagonist properties and antidepressant activity. Agomelatine is effective in several animal models of depression and anxiety. In addition, three large, multicenter, multinational, placebo-controlled studies and several double-blind, placebo-controlled trials of agomelatine have demonstrated that it is a clinically effective and well-tolerated antidepressant in acute trials. Since currently available antidepressants are not always adequate to cause complete remission of symptoms in severely depressed patients, the superior rate of response achieved with agomelatine in this group of patients underlines its future for clinical use in depressive disorders. In summary, the clinical advantage of agomelatine is attributed to its novel mechanism of action, which helps not only to exert antidepressant action, but also to regulate the sleep-wake rhythm.
Collapse
Affiliation(s)
- S R Pandi-Perumal
- Comprehensive Center for Sleep Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Mount Sinai School of Medicine, 1176 5 Avenue, 6 Floor, Box 1232, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
28
|
Castanho A, Bothorel B, Seguin L, Mocaër E, Pévet P. Like melatonin, agomelatine (S20098) increases the amplitude of oscillations of two clock outputs: melatonin and temperature rhythms. Chronobiol Int 2013; 31:371-81. [DOI: 10.3109/07420528.2013.860457] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Stein DJ, Picarel-Blanchot F, Kennedy SH. Efficacy of the novel antidepressant agomelatine for anxiety symptoms in major depression. Hum Psychopharmacol 2013; 28:151-9. [PMID: 23532747 DOI: 10.1002/hup.2294] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 01/11/2013] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Anxiety in major depression is associated with increased morbidity. The antidepressant, agomelatine, which acts as an agonist at melatonin MT(1) and MT(2) receptors and as an antagonist at serotonin 5-HT(2C) receptors, has demonstrated efficacy and safety in both major depression and generalized anxiety disorder. Here, we investigated the efficacy of agomelatine in anxious depression. METHODS Data from three placebo-controlled short-term trials of agomelatine and three comparative studies of agomelatine versus fluoxetine, sertraline, and venlafaxine were pooled. Effects of agomelatine on anxiety symptoms were assessed with the Hamilton Anxiety Rating Scale in four studies (one vs placebo and three vs active comparator) and with the Hamilton Depression Rating Scale (HAMD) anxiety subscore in all six studies. Anxiolytic and antidepressant efficacies of agomelatine were assessed in patients with more severe anxiety symptoms at baseline (score ≥5 on HAMD anxiety subscore). RESULTS Agomelatine had a significantly greater effect on anxiety symptoms than both placebo and a number of comparator antidepressants. In more anxious depressed patients, agomelatine had a significantly greater effect on anxiety and depressive symptoms than both placebo and comparator antidepressants. CONCLUSION Once-a-day oral agomelatine is a new, efficacious alternative option for the treatment of anxiety in patients with major depression.
Collapse
Affiliation(s)
- Dan J Stein
- Department of Psychiatry, University of Cape Town, South Africa.
| | | | | |
Collapse
|
30
|
Mutlu O, Gumuslu E, Ulak G, Celikyurt IK, Akar F, Bektas E, Demirtas T, Kır HM, Musul MM, Erden F. Antidepressant-Like Activity of Agomelatine in the Mouse Unpredictable Chronic Mild Stress Model. Drug Dev Res 2013. [DOI: 10.1002/ddr.21064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Oguz Mutlu
- Department of Pharmacology; Kocaeli University Medical Faculty; 41380; Kocaeli; Turkey
| | - Esen Gumuslu
- Department of Medical Genetics; Kocaeli University Medical Faculty; 41380; Kocaeli; Turkey
| | - Guner Ulak
- Department of Pharmacology; Kocaeli University Medical Faculty; 41380; Kocaeli; Turkey
| | | | - Furuzan Akar
- Department of Pharmacology; Kocaeli University Medical Faculty; 41380; Kocaeli; Turkey
| | - Emine Bektas
- Department of Pharmacology; Kocaeli University Medical Faculty; 41380; Kocaeli; Turkey
| | - Tugce Demirtas
- Department of Pharmacology; Kocaeli University Medical Faculty; 41380; Kocaeli; Turkey
| | - Hale Maral Kır
- Department of Biochemistry; Kocaeli University Medical Faculty; 41380; Kocaeli; Turkey
| | - Mahmut Mert Musul
- Department of Biochemistry; Kocaeli University Medical Faculty; 41380; Kocaeli; Turkey
| | - Faruk Erden
- Department of Pharmacology; Kocaeli University Medical Faculty; 41380; Kocaeli; Turkey
| |
Collapse
|
31
|
Chenu F, El Mansari M, Blier P. Electrophysiological effects of repeated administration of agomelatine on the dopamine, norepinephrine, and serotonin systems in the rat brain. Neuropsychopharmacology 2013; 38:275-84. [PMID: 22871919 PMCID: PMC3527117 DOI: 10.1038/npp.2012.140] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Agomelatine is a melatonergic MT1/MT2 agonist and a serotonin (5-HT) 5-HT(2C) antagonist. The effects of 2-day and 14-day administration of agomelatine were investigated on the activity of ventral tegmental area (VTA) dopamine (DA), locus coeruleus (LC) norepinephrine (NE), and dorsal raphe nucleus (DRN) 5-HT neurons using in vivo electrophysiology in rats. The 5-HT(1A) transmission was assessed at hippocampus CA3 pyramidal neurons. After a 2-day regimen of agomelatine (40 mg/kg/day, i.p.), an increase in the number of spontaneously active VTA-DA neurons (p<0.001) and in the firing rate of LC-NE neurons (p<0.001) was observed. After 14 days, the administration of agomelatine induced an increase in: (1) the number of spontaneously active DA neurons (p<0.05), (2) the bursting activity of DA neurons (bursts/min, p<0.01 and percentage of spikes occurring in bursts, p<0.05), (3) the firing rate of DRN-5-HT neurons (p<0.05), and (4) the tonic activation of postsynaptic 5-HT(1A) receptors located in the hippocampus. The increase in 5-HT firing rate was D2 dependent, as it was antagonized by the D2 receptor antagonist paliperidone. The enhancement of NE firing was restored by the 5-HT(2A) receptor antagonist MDL-100,907 after the 14-day regimen. All the effects of agomelatine were antagonized by a single administration of the melatonergic antagonist S22153 (except for the increase in the percentage of spikes occurring in burst for DA neurons). The present results suggest that (1) agomelatine exerts direct (2 days) and indirect (14 days) modulations of monoaminergic neuronal activity and (2) the melatonergic agonistic activity of agomelatine contributes to the enhancement of DA and 5-HT neurotransmission.
Collapse
Affiliation(s)
- Franck Chenu
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Mostafa El Mansari
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Pierre Blier
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada,Institute of Mental Health Research (IMHR), 1145 Carling Avenue, University of Ottawa, Room 6412, Ottawa K1Z 7K4, ON, Canada, Tel: +1 613 722 6521 (ext 6944), Fax: +1 613 761 3610, E-mail:
| |
Collapse
|
32
|
Li X, Frye MA, Shelton RC. Review of pharmacological treatment in mood disorders and future directions for drug development. Neuropsychopharmacology 2012; 37:77-101. [PMID: 21900884 PMCID: PMC3238080 DOI: 10.1038/npp.2011.198] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 08/06/2011] [Accepted: 08/06/2011] [Indexed: 02/07/2023]
Abstract
After a series of serendipitous discoveries of pharmacological treatments for mania and depression several decades ago, relatively little progress has been made for novel hypothesis-driven drug development in mood disorders. Multifactorial etiologies of, and lack of a full understanding of, the core neurobiology of these conditions clearly have contributed to these development challenges. There are, however, relatively novel targets that have raised opportunities for progress in the field, such as glutamate and cholinergic receptor modulators, circadian regulators, and enzyme inhibitors, for alternative treatment. This review will discuss these promising new treatments in mood disorders, the underlying mechanisms of action, and critical issues of their clinical application. For these new treatments to be successful in clinical practice, it is also important to design innovative clinical trials that identify the specific actions of new drugs, and, ideally, to develop biomarkers for monitoring individualized treatment response. It is predicted that future drug development will identify new agents targeting the molecular mechanisms involved in the pathophysiology of mood disorders.
Collapse
Affiliation(s)
- Xiaohua Li
- Department of Psychiatry and Behavioral Neuroscience, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
33
|
Carney RM, Shelton RC. Agomelatine for the treatment of major depressive disorder. Expert Opin Pharmacother 2011; 12:2411-9. [DOI: 10.1517/14656566.2011.607812] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
McClung CA. Circadian rhythms and mood regulation: insights from pre-clinical models. Eur Neuropsychopharmacol 2011; 21 Suppl 4:S683-93. [PMID: 21835596 PMCID: PMC3179573 DOI: 10.1016/j.euroneuro.2011.07.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/06/2011] [Accepted: 07/13/2011] [Indexed: 12/13/2022]
Abstract
Affective disorders such as major depression, bipolar disorder, and seasonal affective disorder are associated with major disruptions in circadian rhythms. Indeed, altered sleep/wake cycles are a critical feature for diagnosis in the DSM IV and several of the therapies used to treat these disorders have profound effects on rhythm length and stabilization in human populations. Furthermore, multiple human genetic studies have identified polymorphisms in specific circadian genes associated with these disorders. Thus, there appears to be a strong association between the circadian system and mood regulation, although the mechanisms that underlie this association are unclear. Recently, a number of studies in animal models have begun to shed light on the complex interactions between circadian genes and mood-related neurotransmitter systems, the effects of light manipulation on brain circuitry, the impact of chronic stress on rhythms, and the ways in which antidepressant and mood-stabilizing drugs alter the clock. This review will focus on the recent advances that have been gleaned from the use of pre-clinical models to further our understanding of how the circadian system regulates mood.
Collapse
Affiliation(s)
- Colleen A McClung
- Department of Psychiatry, University of Pittsburgh Medical School, 450 Technology Dr. Suite 223, Pittsburgh, PA 15219, United States.
| |
Collapse
|
35
|
The melatonergic agonist and clinically active antidepressant, agomelatine, is a neutral antagonist at 5-HT(2C) receptors. Int J Neuropsychopharmacol 2011; 14:768-83. [PMID: 20946699 DOI: 10.1017/s1461145710001045] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The novel antidepressant, agomelatine, behaves as an agonist at melatonergic receptors, and as an antagonist at edited, human serotonin2C(VSV) receptors [h5-HT2C(VSV)Rs]. However, its actions at constitutively active 5-HT2CRs have yet to be characterized, an issue addressed herein. At unedited h5-HT2C(INI)Rs expressed in HEK-293 cells, 5-HT enhanced [35S]GTPγS binding to Gαq, whereas the inverse agonists SB206,553 and S32006 inhibited binding and, by analogy to the neutral antagonist, SB242,084, agomelatine exerted no effect alone. Mirroring these observations, 5-HT stimulated, whereas SB206,553 and S32006 inhibited, [3H]inositol phosphate formation. Both the agonist actions of 5-HT and the inverse agonist actions of SB206,553 and S32006 were abolished by agomelatine and SB242,084. As demonstrated by bioluminescence resonance energy transfer, 5-HT enhanced, whereas SB206,553 and S32006 decreased, association of 'h5-HT2C(INI)-Rluc-tagged' receptors with yellow-fluorescence-protein-coupled β-arrestin2. These actions of 5-HT, SB206,553 and S32006 were prevented by agomelatine and SB242,084 were ineffective alone. As shown by ELISA and confocal microscopy, prolonged (18 h) exposure to SB206,553 or S32006 enhanced cell surface expression of N-terminal Flag-tagged h5-HT2C(INI)Rs: these effects were blocked by agomelatine and SB242,084, which were inactive alone. Finally, following pre-exposure to SB206,553 or S32006 for 18 h, 5-HT triggered 5-HT2CR-mediated elevations in cytosolic Ca2+ in primary cultures of mice cortical neurons. Agomelatine and SB242,084, inactive alone, prevented these actions of SB206,553 and S32006. In conclusion, agomelatine behaves as a neutral antagonist at constitutively active h5-HT2C(INI)Rs and native, cortical 5-HT2CRs. It will be of interest to determine whether the neutral antagonist properties of agomelatine are related to its favourable clinical profile of antidepressant properties with few side-effects and no discontinuation syndrome.
Collapse
|
36
|
Memory facilitating effects of agomelatine in the novel object recognition memory paradigm in the rat. Pharmacol Biochem Behav 2011; 98:511-7. [PMID: 21352847 DOI: 10.1016/j.pbb.2011.02.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 02/04/2011] [Accepted: 02/14/2011] [Indexed: 12/30/2022]
Abstract
The aim of the present study was to evaluate the effects of agomelatine, an antidepressant with melatonergic agonist and 5-HT(2C) antagonist properties, in the rat novel object recognition (NOR) task, a model of short-term episodic memory. To assess the potential involvement of its chronobiotic activity, single intraperitoneal administration of agomelatine and NOR testing were performed either in the evening or in the morning. In both conditions, using a 24h retention interval, vehicle-treated rats did not discriminate between the novel and the familiar object (recognition index was not different from chance performance) while object memory performance of rats treated with agomelatine either in the evening (10 and 40mg/kg) or in the morning (2.5, 10, and 40mg/kg) was significantly improved. Moreover, the selective 5-HT(2C) antagonist SB 242,084 (0.63, 2.5, and 10mg/kg) and melatonin (2.5, 10, and 40mg/kg) displayed also memory facilitating effects in both administration conditions. Finally, thioperamide used as positive reference compound to validate the experimental conditions, demonstrated a memory facilitating effect. In conclusion, agomelatine was shown to possess memory facilitating effects in the rat NOR task and both melatonergic agonist and 5-HT(2C) antagonist properties could be involved in these effects.
Collapse
|
37
|
Dubocovich ML, Delagrange P, Krause DN, Sugden D, Cardinali DP, Olcese J. International Union of Basic and Clinical Pharmacology. LXXV. Nomenclature, classification, and pharmacology of G protein-coupled melatonin receptors. Pharmacol Rev 2010; 62:343-80. [PMID: 20605968 PMCID: PMC2964901 DOI: 10.1124/pr.110.002832] [Citation(s) in RCA: 413] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The hormone melatonin (5-methoxy-N-acetyltryptamine) is synthesized primarily in the pineal gland and retina, and in several peripheral tissues and organs. In the circulation, the concentration of melatonin follows a circadian rhythm, with high levels at night providing timing cues to target tissues endowed with melatonin receptors. Melatonin receptors receive and translate melatonin's message to influence daily and seasonal rhythms of physiology and behavior. The melatonin message is translated through activation of two G protein-coupled receptors, MT(1) and MT(2), that are potential therapeutic targets in disorders ranging from insomnia and circadian sleep disorders to depression, cardiovascular diseases, and cancer. This review summarizes the steps taken since melatonin's discovery by Aaron Lerner in 1958 to functionally characterize, clone, and localize receptors in mammalian tissues. The pharmacological and molecular properties of the receptors are described as well as current efforts to discover and develop ligands for treatment of a number of illnesses, including sleep disorders, depression, and cancer.
Collapse
Affiliation(s)
- Margarita L Dubocovich
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo State University of New York, 3435 Main Street, Buffalo, NY 14214, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Agomelatine, the first melatonergic antidepressant: discovery, characterization and development. Nat Rev Drug Discov 2010; 9:628-42. [DOI: 10.1038/nrd3140] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Depresión y ritmos circadianos: relación farmacológica. El papel de la agomelatina. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2010. [DOI: 10.1016/s1888-9891(10)70008-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Srinivasan V, Pandi-Perumal SR, Trahkt I, Spence DW, Poeggeler B, Hardeland R, Cardinali DP. Melatonin and melatonergic drugs on sleep: possible mechanisms of action. Int J Neurosci 2009; 119:821-46. [PMID: 19326288 DOI: 10.1080/00207450802328607] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pineal melatonin is synthesized and secreted in close association with the light/dark cycle. The temporal relationship between the nocturnal rise in melatonin secretion and the "opening of the sleep gate" (i.e., the increase in sleep propensity at the beginning of the night), coupled with the sleep-promoting effects of exogenous melatonin, suggest that melatonin is involved in the regulation of sleep. The sleep-promoting and sleep/wake rhythm regulating effects of melatonin are attributed to its action on MT(1) and MT(2) melatonin receptors present in the suprachiasmatic nucleus (SCN) of the hypothalamus. Animal experiments carried out in rats, cats, and monkeys have revealed that melatonin has the ability to reduce sleep onset time and increase sleep duration. However, clinical studies reveal inconsistent findings, with some of them reporting beneficial effects of melatonin on sleep, whereas in others only marginal effects are documented. Recently a prolonged-release 2-mg melatonin preparation (Circadin(TM)) was approved by the European Medicines Agency as a monotherapy for the short-term treatment of primary insomnia in patients who are aged 55 or above. Several melatonin derivatives have been shown to increase nonrapid eye movement (NREM) in rats and are of potential pharmacological importance. So far only one of these melatonin derivatives, ramelteon, has received approval from the U.S. Food and Drug Administration to be used as a sleep promoter. Ramelteon is a novel MT(1) and MT(2) melatonergic agonist that has specific effects on melatonin receptors in the SCN and is effective in promoting sleep in experimental animals such as cats and monkeys. In clinical trials, ramelteon reduced sleep onset latency and promoted sleep in patients with chronic insomnia, including an older adult population. Both melatonin and ramelteon promote sleep by regulating the sleep/wake rhythm through their actions on melatonin receptors in the SCN, a unique mechanism of action not shared by any other hypnotics. Moreover, unlike benzodiazepines, ramelteon causes neither withdrawal effects nor dependence. Agomelatine, another novel melatonergic antidepressant in its final phase of approval for clinical use, has been shown to improve sleep in depressed patients and to have an antidepressant efficacy that is partially attributed to its effects on sleep-regulating mechanisms.
Collapse
Affiliation(s)
- Venkataramanujan Srinivasan
- SRM Medical College Hospital and Research Centre, SRM University, Kattankulathoor, Kancheepuram District, India
| | | | | | | | | | | | | |
Collapse
|
41
|
The antidepressant agomelatine blocks the adverse effects of stress on memory and enables spatial learning to rapidly increase neural cell adhesion molecule (NCAM) expression in the hippocampus of rats. Int J Neuropsychopharmacol 2009; 12:329-41. [PMID: 18706130 DOI: 10.1017/s1461145708009255] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Agomelatine, a novel antidepressant with established clinical efficacy, acts as a melatonin receptor agonist and 5-HT(2C) receptor antagonist. As stress is a significant risk factor in the development of depression, we sought to determine if chronic agomelatine treatment would block the stress-induced impairment of memory in rats trained in the radial-arm water maze (RAWM), a hippocampus-dependent spatial memory task. Moreover, since neural cell adhesion molecule (NCAM) is known to be critically involved in memory consolidation and synaptic plasticity, we evaluated the effects of agomelatine on NCAM, and polysialylated NCAM (PSA-NCAM) expression in rats given spatial memory training with or without predator stress. Adult male rats were pre-treated with agomelatine (10 mg/kg i.p., daily for 22 d), followed by a single day of RAWM training and memory testing. Rats were given 12 training trials and then they were placed either in their home cages (no stress) or near a cat (predator stress). Thirty minutes later the rats were given a memory test trial followed immediately by brain extraction. We found that: (1) agomelatine blocked the predator stress-induced impairment of spatial memory; (2) agomelatine-treated stressed, as well as non-stressed, rats exhibited a rapid training-induced increase in the expression of synaptic NCAM in the ventral hippocampus; and (3) agomelatine treatment blocked the water-maze training-induced decrease in PSA-NCAM levels in both stressed and non-stressed animals. This work provides novel observations which indicate that agomelatine blocks the adverse effects of stress on hippocampus-dependent memory and activates molecular mechanisms of memory storage in response to a learning experience.
Collapse
|
42
|
Dolder CR, Nelson M, Snider M. Agomelatine treatment of major depressive disorder. Ann Pharmacother 2008; 42:1822-31. [PMID: 19033480 DOI: 10.1345/aph.1l296] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To review the efficacy, safety, pharmacologic, and pharmacokinetic data of agomelatine to better understand its potential role in the treatment of patients with major depressive disorder. DATA SOURCES A MEDLINE search (1966-October 2008) was conducted using the following terms: agomelatine, antidepressant, S20098, melatonin, serotonin, 5-HT(2C), MT, efficacy, safety, adverse effect, pharmacology, pharmacokinetic, receptor binding, depression, major depressive disorder, and mood disorder. STUDY SELECTION AND DATA EXTRACTION All articles in English identified from the data sources were evaluated. Randomized, controlled trials involving humans were prioritized in the review. The references of published articles identified in the initial search process were also examined for any additional studies appropriate for the review. DATA SYNTHESIS Agomelatine, a potent agonist at type 1 and 2 melatonin receptors, selectively inhibits serotonin. It is extensively metabolized via cytochrome P450 isoenyzmes 1A1, 1A2, and 2C9 to metabolites with less activity than the parent drug. Five randomized controlled studies were identified that examined the efficacy and safety of agomelatine in major depressive disorder. In general, agomelatine was found to produce significant improvements in depressive symptoms compared with placebo on many, but not all, rating scales. Three of the trials had active comparator arms (ie, venlafaxine, paroxetine). In these 3 investigations, agomelatine produced effects on depressive symptoms similar to those of the comparator drugs. A small number of studies have demonstrated sleep benefits with the use of agomelatine in depressed patients. Positive findings also exist for the use of agomelatine in seasonal affective disorder and bipolar depression. The most common adverse effects reported with agomelatine use were headache, nasopharyngitis, and gastrointestinal complaints. The magnitude of agomelatine-related adverse effects appears to be at least similar to some currently marketed antidepressants. CONCLUSIONS Overall, agomelatine is a promising and well-tolerated medication for the treatment of major depressive disorder. More large-scale controlled trials are needed to gain a better understanding of the relative efficacy and safety of agomelatine.
Collapse
|
43
|
Abstract
Most of the available antidepressants, with different pharmacological profiles, such as inhibitors of serotonin reuptake (SSRIs) or norepinephrine reuptake (NRIs) or both (SNRIs), have limitations leading some patients to drop out of treatment. Another direction of research has therefore been undertaken, based initially on the fact that affective disorders are most often characterized by abnormal patterns of circadian rhythms. This consideration has led to the synthesis of agomelatine, a novel antidepressant combining melatonergic MT(1) and MT(2) agonism and serotonergic 5-HT(2C) antagonism. The antidepressant effects of agomelatine have been investigated in different animal models, including chronic mild stress, forced swimming, learned helplessness and psychosocial stress. All studies reported an antidepressant-like effect of agomelatine. A resynchronizing activity of agomelatine was seen in animal models for delayed sleep phase syndrome and in several original models of circadian disturbance, such as rodents infected by trypanosome or old hamsters. This activity of agomelatine on circadian rhythms was further confirmed in humans. Furthermore, several randomized, double-blind, placebo-controlled and comparator-controlled studies of agomelatine in the treatment of major depressive disorder indicate that agomelatine is effective and well tolerated.
Collapse
Affiliation(s)
- Y Le Strat
- INSERM U675, IFR02, Faculté de Médecine Xavier Bichat/Université Paris, Paris, France
| | | |
Collapse
|
44
|
Agomelatina: un nuevo enfoque farmacológico en el tratamiento de la depresión con traducción clínica. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1134-5934(08)76482-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Pandi-Perumal SR, Srinivasan V, Spence DW, Cardinali DP. Role of the melatonin system in the control of sleep: therapeutic implications. CNS Drugs 2008; 21:995-1018. [PMID: 18020480 DOI: 10.2165/00023210-200721120-00004] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The circadian rhythm of pineal melatonin secretion, which is controlled by the suprachiasmatic nucleus (SCN), is reflective of mechanisms that are involved in the control of the sleep/wake cycle. Melatonin can influence sleep-promoting and sleep/wake rhythm-regulating actions through the specific activation of MT(1) (melatonin 1a) and MT(2) (melatonin 1b) receptors, the two major melatonin receptor subtypes found in mammals. Both receptors are highly concentrated in the SCN. In diurnal animals, exogenous melatonin induces sleep over a wide range of doses. In healthy humans, melatonin also induces sleep, although its maximum hypnotic effectiveness, as shown by studies of the timing of dose administration, is influenced by the circadian phase. In both young and elderly individuals with primary insomnia, nocturnal plasma melatonin levels tend to be lower than those in healthy controls. There are data indicating that, in affected individuals, melatonin therapy may be beneficial for ameliorating insomnia symptoms. Melatonin has been successfully used to treat insomnia in children with attention-deficit hyperactivity disorder or autism, as well as in other neurodevelopmental disorders in which sleep disturbance is commonly reported. In circadian rhythm sleep disorders, such as delayed sleep-phase syndrome, melatonin can significantly advance the phase of the sleep/wake rhythm. Similarly, among shift workers or individuals experiencing jet lag, melatonin is beneficial for promoting adjustment to work schedules and improving sleep quality. The hypnotic and rhythm-regulating properties of melatonin and its agonists (ramelteon, agomelatine) make them an important addition to the armamentarium of drugs for treating primary and secondary insomnia and circadian rhythm sleep disorders.
Collapse
Affiliation(s)
- Seithikurippu R Pandi-Perumal
- Comprehensive Center for Sleep Medicine, Department of Pulmonary, Critical Care, and Sleep Medicine, Mt Sinai School of Medicine, New York, New York 10029, USA.
| | | | | | | |
Collapse
|
46
|
Jet lag: therapeutic use of melatonin and possible application of melatonin analogs. Travel Med Infect Dis 2008; 6:17-28. [PMID: 18342269 DOI: 10.1016/j.tmaid.2007.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 12/04/2007] [Accepted: 12/13/2007] [Indexed: 01/28/2023]
Abstract
Each year millions of travelers undertake long distance flights over one or more continents. These multiple time zone flights produce a constellation of symptoms known as jet lag. Familiar to almost every intercontinental traveler is the experience of fatigue upon arrival in a new time zone, but almost as problematic are a number of other jet lag symptoms. These include reduced alertness, nighttime insomnia, loss of appetite, depressed mood, poor psychomotor coordination and reduced cognitive skills, all symptoms which are closely affected by both the length and direction of travel. The most important jet lag symptoms are due to disruptions to the body's sleep/wake cycle. Clinical and pathophysiological studies also indicate that jet lag can exacerbate existing affective disorders. It has been suggested that dysregulation of melatonin secretion and occurrence of circadian rhythm disturbances may be the common links which underlie jet lag and affective disorders. Largely because of its regulatory effects on the circadian system, melatonin has proven to be highly effective for treating the range of symptoms that accompany transmeridian air travel. Additionally, it has been found to be of value in treating mood disorders like seasonal affective disorder. Melatonin acts on MT(1) and MT(2) melatonin receptors located in the hypothalamic suprachiasmatic nuclei, the site of the body's master circadian clock. Melatonin resets disturbed circadian rhythms and promotes sleep in jet lag and other circadian rhythm sleep disorders, including delayed sleep phase syndrome and shift-work disorder. Although post-flight melatonin administration works efficiently in transmeridian flights across less than 7-8 times zones, in the case longer distances, melatonin should be given by 2-3 days in advance to the flight. To deal with the unwanted side effects which usually accompany this pre-departure treatment (acute soporific and sedative effects in times that may not be wanted), the suppression of circadian rhythmicity by covering symmetrically the phase delay and the phase advance portions of the phase response curve for light, together with the administration of melatonin at local bedtime to resynchronize the circadian oscillator, have been proposed. The current view that sleep loss is a major cause of jet lag has focused interest on two recently developed pharmacological agents. Ramelteon and agomelatine are melatonin receptor agonists which, compared to melatonin itself, have a longer half-life and greater affinity for melatonin receptors and consequently are thought to hold promise for treating a variety of circadian disruptions.
Collapse
|
47
|
Calabrese JR, Guelfi JD, Perdrizet-Chevallier C. Agomelatine adjunctive therapy for acute bipolar depression: preliminary open data. Bipolar Disord 2007; 9:628-35. [PMID: 17845278 DOI: 10.1111/j.1399-5618.2007.00507.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Agomelatine has been shown to be safe and efficient in the treatment of major depressive disorder at 25 mg daily. The aim of this study was to gather preliminary data regarding the antidepressant efficacy of agomelatine in patients with bipolar I disorder experiencing a major depressive episode. METHODS Bipolar I patients on lithium (n = 14) or valpromide (n = 7), with a Hamilton Rating Scale for Depression (HAM-D-17) total score > or = 18, were given adjunctive open-label agomelatine at 25 mg/day for a minimum of 6 weeks followed by an optional extension of up to an additional 46 weeks. RESULTS Using intent-to-treat data, 81% of patients met criteria for marked improvement (>50% improvement from baseline in HAM-D score) at study endpoint. Patients were severely depressed at study entry (HAM-D of 25.2) and 47.6% responded as early as at one week of treatment. Nineteen patients entered the optional extension period for a mean of 211 days (range 6-325 days). Eleven patients completed the one-year extension on agomelatine. There were no dropouts due to adverse events during the acute phase of treatment (6 weeks). Six patients experienced serious adverse events during the one-year period. Three lithium-treated patients experienced manic or hypomanic episodes during the optional extension period, one of which was treatment-related. CONCLUSIONS These results indicate the effectiveness of agomelatine 25 mg in the treatment of depressed bipolar I patients co-medicated with lithium or valpromide. A randomized controlled trial is planned to confirm these results.
Collapse
Affiliation(s)
- Joseph R Calabrese
- University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
48
|
Bertaina-Anglade V, la Rochelle CD, Boyer PA, Mocaër E. Antidepressant-like effects of agomelatine (S 20098) in the learned helplessness model. Behav Pharmacol 2007; 17:703-13. [PMID: 17110796 DOI: 10.1097/fbp.0b013e3280116e5c] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To confirm the antidepressant-like activity of agomelatine (S 20098), a melatonin agonist and 5-hydroxytryptamine2C antagonist, already reported in the chronic mild stress and forced swimming tests, the effects of agomelatine were investigated in the learned helplessness test and compared with those of imipramine, melatonin and a selective 5-hydroxytryptamine2C antagonist, SB-242 084. Agomelatine was administered for 5 days either once a day or twice a day, and the effects of pretreatment by a melatonin receptor antagonist, S 22153 (20 mg/kg/day), were studied. A deficit in avoidance learning was observed in helpless control animals. Agomelatine (10 mg/kg/day) administered once a day significantly reduced this deficit with an effect similar to that of imipramine. Effects of agomelatine were abolished by S 22153 pretreatment. Melatonin or SB-242 084 did not reduce the deficit of helpless control animals. These results confirm the antidepressant-like activity of agomelatine and suggest a role of melatonin receptors in its mechanism of action.
Collapse
|
49
|
McClung CA. Circadian genes, rhythms and the biology of mood disorders. Pharmacol Ther 2007; 114:222-32. [PMID: 17395264 PMCID: PMC1925042 DOI: 10.1016/j.pharmthera.2007.02.003] [Citation(s) in RCA: 476] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 02/09/2007] [Indexed: 12/11/2022]
Abstract
For many years, researchers have suggested that abnormalities in circadian rhythms may underlie the development of mood disorders such as bipolar disorder (BPD), major depression and seasonal affective disorder (SAD). Furthermore, some of the treatments that are currently employed to treat mood disorders are thought to act by shifting or "resetting" the circadian clock, including total sleep deprivation (TSD) and bright light therapy. There is also reason to suspect that many of the mood stabilizers and antidepressants used to treat these disorders may derive at least some of their therapeutic efficacy by affecting the circadian clock. Recent genetic, molecular and behavioral studies implicate individual genes that make up the clock in mood regulation. As well, important functions of these genes in brain regions and neurotransmitter systems associated with mood regulation are becoming apparent. In this review, the evidence linking circadian rhythms and mood disorders, and what is known about the underlying biology of this association, is presented.
Collapse
Affiliation(s)
- Colleen A McClung
- Department of Psychiatry and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9070, USA.
| |
Collapse
|
50
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|