1
|
Pietrzak D, Łuczak JW, Wiśniewski M. Beyond Tradition: Exploring Cutting-Edge Approaches for Accurate Diagnosis of Human Filariasis. Pathogens 2024; 13:447. [PMID: 38921745 PMCID: PMC11206659 DOI: 10.3390/pathogens13060447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Filariasis is recognised as a global public health threat, particularly in tropical and subtropical regions. It is caused by infection with a nematode parasite of the superfamily Filarioidea, including Wuchereria bancrofti, Brugia malayi, Onchocerca volvulus, and Onchocerca lupi. Three main types of filariasis have been classified: lymphatic filariasis, subcutaneous filariasis, and serous cavity filariasis. The symptoms exhibited by individuals afflicted with filariasis are diverse and contingent upon several variables, including the species of parasite, the host's health and immune response, and the stage of infection. While many classical parasitological techniques are considered indispensable tools for the diagnosis of parasitic infections in humans, alternative methods are being sought due to their limitations. Novel tests based on host-parasite interactions offer a rapid, simple, sensitive, and specific diagnostic tool in comparison to traditional parasitological methods. This article presents methods developed in the 21st century for the diagnosis of filariasis caused by invasion from W. bancrofti, B. malayi, O. volvulus, and O. lupi, as well as techniques that are currently in use. The development of modern diagnostic methods based on molecular biology constitutes a significant advancement in the fight against filariasis.
Collapse
Affiliation(s)
- Damian Pietrzak
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-786 Warsaw, Poland;
| | - Julia Weronika Łuczak
- Faculty of Animal Breeding, Bioengineering and Conservation, Warsaw University of Life Sciences—SGGW, 02-786 Warsaw, Poland;
| | - Marcin Wiśniewski
- Division of Parasitology and Parasitic Diseases, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, 02-786 Warsaw, Poland;
| |
Collapse
|
2
|
Doherty M, Grant JR, Pilotte N, Bennuru S, Fischer K, Fischer PU, Lustigman S, Nutman TB, Pfarr K, Hoerauf A, Unnasch TR, Hassan HK, Wanji S, Lammie PJ, Ottesen E, Mackenzie C, Williams SA. Optimized strategy for real-time qPCR detection of Onchocerca volvulus DNA in pooled Simulium sp. blackfly vectors. PLoS Negl Trop Dis 2023; 17:e0011815. [PMID: 38096317 PMCID: PMC10754622 DOI: 10.1371/journal.pntd.0011815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/28/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Onchocerca volvulus is a filarial parasite that is a major cause of dermatitis and blindness in endemic regions primarily in sub-Saharan Africa. Widespread efforts to control the disease caused by O. volvulus infection (onchocerciasis) began in 1974 and in recent years, following successful elimination of transmission in much of the Americas, the focus of efforts in Africa has moved from control to the more challenging goal of elimination of transmission in all endemic countries. Mass drug administration (MDA) with ivermectin has reached more than 150 million people and elimination of transmission has been confirmed in four South American countries, with at least two African countries having now stopped MDA as they approach verification of elimination. It is essential that accurate data for active transmission are used to assist in making the critical decision to stop MDA, since missing low levels of transmission and infection can lead to continued spread or recrudescence of the disease. METHODOLOGY/PRINCIPAL FINDINGS Current World Health Organization guidelines for MDA stopping decisions and post-treatment surveillance include screening pools of the Simulium blackfly vector for the presence of O. volvulus larvae using a PCR-ELISA-based molecular technique. In this study, we address the potential of an updated, practical, standardized molecular diagnostic tool with increased sensitivity and species-specificity by comparing several candidate qPCR assays. When paired with heat-stable reagents, a qPCR assay with a mitochondrial DNA target (OvND5) was found to be more sensitive and species-specific than an O150 qPCR, which targets a non-protein coding repetitive DNA sequence. The OvND5 assay detected 19/20 pools of 100 blackfly heads spiked with a single L3, compared to 16/20 for the O150 qPCR assay. CONCLUSIONS/SIGNIFICANCE Given the improved sensitivity, species-specificity and resistance to PCR inhibitors, we identified OvND5 as the optimal target for field sample detection. All reagents for this assay can be shipped at room temperature with no loss of activity. The qPCR protocol we propose is also simpler, faster, and more cost-effective than the current end-point molecular assays.
Collapse
Affiliation(s)
- Mary Doherty
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Jessica R. Grant
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Nils Pilotte
- Department of Biological Sciences, Quinnipiac University, Hamden, Connecticut, United States of America
| | - Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Kerstin Fischer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Peter U. Fischer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Kenneth Pfarr
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner-Site Bonn-Cologne, Bonn, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner-Site Bonn-Cologne, Bonn, Germany
| | - Thomas R. Unnasch
- Center for Global Health Infectious Disease Research, University of South Florida, Tampa, Florida, United States of America
| | - Hassan K. Hassan
- Center for Global Health Infectious Disease Research, University of South Florida, Tampa, Florida, United States of America
| | - Samuel Wanji
- Parasite and Vectors Research Unit, Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and the Environment, Buea, Cameroon
| | - Patrick J. Lammie
- NTD-SC, Task Force for Global Health, Atlanta, Georgia, United States of America
| | - Eric Ottesen
- NTD-SC, Task Force for Global Health, Atlanta, Georgia, United States of America
| | - Charles Mackenzie
- NTD-SC, Task Force for Global Health, Atlanta, Georgia, United States of America
- RLMF, The END Fund, New York, New York, United States of America
| | - Steven A. Williams
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts, United States of America
| |
Collapse
|
3
|
Yalley AK, Ahiatrogah S, Kafintu-Kwashie AA, Amegatcher G, Prah D, Botwe AK, Adusei-Poku MA, Obodai E, Nii-Trebi NI. A Systematic Review on Suitability of Molecular Techniques for Diagnosis and Research into Infectious Diseases of Concern in Resource-Limited Settings. Curr Issues Mol Biol 2022; 44:4367-4385. [PMID: 36286015 PMCID: PMC9601131 DOI: 10.3390/cimb44100300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Infectious diseases significantly impact the health status of developing countries. Historically, infectious diseases of the tropics especially have received insufficient attention in worldwide public health initiatives, resulting in poor preventive and treatment options. Many molecular tests for human infections have been established since the 1980s, when polymerase chain reaction (PCR) testing was introduced. In spite of the substantial innovative advancements in PCR technology, which currently has found wide application in most viral pathogens of global concern, the development and application of molecular diagnostics, particularly in resource-limited settings, poses potential constraints. This review accessed data from sources including PubMed, Google Scholar, the Web of Knowledge, as well as reports from the World Health Organization’s Annual Meeting on infectious diseases and examined these for current molecular approaches used to identify, monitor, or investigate some neglected tropical infectious diseases. This review noted some growth efforts in the development of molecular techniques for diagnosis of pathogens that appear to be common in resource limited settings and identified gaps in the availability and applicability of most of these molecular diagnostics, which need to be addressed if the One Health goal is to be achieved.
Collapse
Affiliation(s)
- Akua K. Yalley
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra P.O. Box KB 143, Ghana
| | - Selasie Ahiatrogah
- Department of Obstetrics and Gynaecology, College of Medicine, Pan African University of Life and Earth Sciences Institute, University of Ibadan, Ibadan P.O. Box 22133, Nigeria
| | - Anna A. Kafintu-Kwashie
- Department of Medical Microbiology, University of Ghana Medical School, Accra GA-221-1570, Ghana
| | - Gloria Amegatcher
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra P.O. Box KB 143, Ghana
| | - Diana Prah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Akua K. Botwe
- Molecular Biology Unit, Kintampo Health Research Centre, Ghana Health Service, Kintampo P.O. Box 200, Ghana
| | - Mildred A. Adusei-Poku
- Department of Medical Microbiology, University of Ghana Medical School, Accra GA-221-1570, Ghana
| | - Evangeline Obodai
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana
| | - Nicholas I. Nii-Trebi
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra P.O. Box KB 143, Ghana
- Correspondence: ; Tel.: +233-54-827-6424
| |
Collapse
|
4
|
Cheke RA, Little KE, Young S, Walker M, Basáñez MG. Taking the strain out of onchocerciasis? A reanalysis of blindness and transmission data does not support the existence of a savannah blinding strain of onchocerciasis in West Africa. ADVANCES IN PARASITOLOGY 2021; 112:1-50. [PMID: 34024357 DOI: 10.1016/bs.apar.2021.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Onchocerciasis (also known as 'river blindness'), is a neglected tropical disease (NTD) caused by the (Simulium-transmitted) filarial nematode Onchocerca volvulus. The occurrence of 'blinding' (savannah) and non-blinding (forest) parasite strains and the existence of corresponding, locally adapted Onchocerca-Simulium complexes were postulated to explain greater blindness prevalence in savannah than in forest foci. As a result, the World Health Organization (WHO) Onchocerciasis Control Programme in West Africa (OCP) focused anti-vectorial and anti-parasitic interventions in savannah endemic areas. In this paper, village-level data on blindness prevalence, microfilarial prevalence, and transmission intensity (measured by the annual transmission potential, the number of infective, L3, larvae per person per year) were extracted from 16 West-Central Africa-based publications, and analysed according to habitat (forest, forest-savannah mosaic, savannah) to test the dichotomous strain hypothesis in relation to blindness. When adjusting for sample size, there were no statistically significant differences in blindness prevalence between the habitats (one-way ANOVA, P=0.68, mean prevalence for forest=1.76±0.37 (SE); mosaic=1.49±0.38; savannah=1.89±0.26). The well-known relationship between blindness prevalence and annual transmission potential for savannah habitats was confirmed and shown to hold for (but not to be statistically different from) forest foci (excluding data from southern Côte d'Ivoire, in which blindness prevalence was significantly lower than in other West African forest communities, but which had been the focus of studies leading to the strain-blindness hypothesis that was accepted by OCP planners). We conclude that the evidence for a savannah blinding onchocerciasis strain in simple contrast with a non-blinding forest strain is equivocal. A re-appraisal of the strain hypothesis to explain patterns of ocular disease is needed to improve understanding of onchocerciasis epidemiology and disease burden estimates in the light of the WHO 2030 goals for onchocerciasis.
Collapse
Affiliation(s)
- Robert A Cheke
- Natural Resources Institute, Department of Agriculture, Health & Environment, University of Greenwich at Medway, Kent, United Kingdom; London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Stephen Young
- Natural Resources Institute, Department of Agriculture, Health & Environment, University of Greenwich at Medway, Kent, United Kingdom
| | - Martin Walker
- London Centre for Neglected Tropical Disease Research, Department of Pathobiology and Populations Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Maria-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research (LCNTDR), Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom; MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, London, United Kingdom.
| |
Collapse
|
5
|
de Almeida M, Nascimento FS, Mathison BA, Bishop H, Bradbury RS, Cama VA, da Silva AJ. Duplex Real-Time PCR Assay for Clinical Differentiation of Onchocerca lupi and Onchocerca volvulus. Am J Trop Med Hyg 2020; 103:1556-1562. [PMID: 32748784 DOI: 10.4269/ajtmh.20-0113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In the United States and Europe, human onchocerciasis is a rare disease caused by zoonotic or anthropophilic parasites in the genus Onchocerca. The zoonotic species identified in focal areas of Europe and United States is Onchocerca lupi, and Onchocerca volvulus, the anthroponotic species, may be found among people who had lived in endemic areas of Africa, the Arabian Peninsula, or Latin America. Onchocerciasis due to O. lupi is an emergent parasitic disease, with limited diagnostic methods, in addition to the lack of information on its biology, transmission, and epidemiology. Cutaneous nodules are the disease's most prevalent manifestation but lack diagnostic specificity. To address the diagnosis of onchocerciasis at reference laboratories, we developed a duplex TaqMan real-time PCR (qPCR) method, targeting the cytochrome oxidase subunit I locus which has species-specific probes to identify and differentiate O. lupi from O. volvulus. We determined the performance of the duplex with a panel of 45 samples: 11 positives for O. lupi, six for O. volvulus, five samples with negative results for Onchocerca spp., and 23 non-Onchocerca nematodes. The duplex qPCR correctly detected 10 of 11 O. lupi- and six of six O. volvulus-positive specimens. The new duplex assay allowed the simultaneous detection and discrimination of O. lupi and O. volvulus in clinical specimens, expediting and facilitating the clinical diagnosis of O. lupi in non-endemic settings where the disease is an infrequent finding.
Collapse
Affiliation(s)
- Marcos de Almeida
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Fernanda S Nascimento
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Blaine A Mathison
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Henry Bishop
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Richard S Bradbury
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Vitaliano A Cama
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Alexandre J da Silva
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
6
|
Differential susceptibility of Onchocerca volvulus microfilaria to ivermectin in two areas of contrasting history of mass drug administration in Cameroon: relevance of microscopy and molecular techniques for the monitoring of skin microfilarial repopulation within six months of direct observed treatment. BMC Infect Dis 2020; 20:726. [PMID: 33008333 PMCID: PMC7530974 DOI: 10.1186/s12879-020-05444-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/23/2020] [Indexed: 11/24/2022] Open
Abstract
Background Ivermectin is an excellent microfilaricide against Onchocerca volvulus. However, in some regions, long term use of ivermectin has resulted in sub-optimal responses to the treatment. More data to properly document the phenomenon in various contexts of ivermectin mass drug administration (IVM-MDA) is needed. Also, there is a need to accurately monitor a possible repopulation of skin by microfilariae following treatment. Skin snip microscopy is known to have a low sensitivity in individuals with light infections, which can be the case following treatment. This study was designed with two complementary objectives: (i) to assess the susceptibility of O. volvulus microfilariae to ivermectin in two areas undergoing IVM-MDA for different lengths of time, and (ii) to document the repopulation of skin by the O. volvulus microfilariae following treatment, using 3 independent diagnostic techniques. Method Identified microfilaridermic individuals were treated with ivermectin and re-examined after 1, 3, and 6 months using microscopy, actin real-time PCR (actin-qPCR) and O-150 LAMP assays. Susceptibility to ivermectin and trends in detecting reappearance of skin microfilariae were determined using three techniques. Microscopy was used as an imperfect gold standard to determine the performance of actin-qPCR and LAMP. Results In Bafia with over 20 years of IVM-MDA, 11/51 (21.6%) direct observe treated microfilaridemic participants were still positive for skin microfilariae after 1 month. In Melong, with 10 years of IVM-MDA, 2/29 (6.9%) treated participants were still positive. The microfilarial density reduction per skin biopsy within one month following treatment was significantly lower in participants from Bafia. In both study sites, the molecular techniques detected higher proportions of infected individuals than microscopy at all monitoring time points. LAMP demonstrated the highest levels of sensitivity and real-time PCR was found to have the highest specificity. Conclusion Patterns in skin mirofilariae clearance and repopulation were established. O. volvulus worms from Bafia with higher number of annual MDA displayed a lower clearance and higher repopulation rate after treatment with ivermectin. Molecular assays displayed higher sensitivity in monitoring O. volvulus microfilaridemia within six months following treatment.
Collapse
|
7
|
Blanton RE. Population Genetics and Molecular Epidemiology of Eukaryotes. Microbiol Spectr 2018; 6:10.1128/microbiolspec.AME-0002-2018. [PMID: 30387414 PMCID: PMC6217834 DOI: 10.1128/microbiolspec.ame-0002-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 01/16/2023] Open
Abstract
Molecular epidemiology uses the distribution and organization of a pathogen's DNA to understand the distribution and determinants of disease. Since the biology of DNA for eukaryotic pathogens differs substantially from that of bacteria, the analytic approach to their molecular epidemiology can also differ. While many of the genotyping techniques presented earlier in this series, "Advances in Molecular Epidemiology of Infectious Diseases," can be applied to eukaryotes, the output must be interpreted in the light of how DNA is distributed from one generation to the next. In some cases, parasite populations can be evaluated in ways reminiscent of bacteria. They differ, however, when analyzed as sexually reproducing organisms, where all individuals are unique but the genetic composition of the population does not change unless a limited set of events occurs. It is these events (migration, mutation, nonrandom mating, selection, and genetic drift) that are of interest. At a given time, not all of them are likely to be equally important, so the list can easily be narrowed down to understand the driving forces behind the population as it is now and even what it will look like in the future. The main population characteristics measured to assess these events are differentiation and diversity, interpreted in the light of what is known about the population from observation. The population genetics of eukaryotes is important for planning and evaluation of control measures, surveillance, outbreak investigation, and monitoring of the development and spread of drug resistance. *This article is part of a curated collection.
Collapse
Affiliation(s)
- Ronald E Blanton
- Center for Global Health & Diseases, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
8
|
Kelly-Hope LA, Blundell HJ, Macfarlane CL, Molyneux DH. Innovative Surveillance Strategies to Support the Elimination of Filariasis in Africa. Trends Parasitol 2018; 34:694-711. [PMID: 29958813 DOI: 10.1016/j.pt.2018.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 01/18/2023]
Abstract
Lymphatic filariasis (LF) and onchocerciasis are two neglected tropical diseases (NTDs) of public health significance targeted for global elimination. The World Health Organization (WHO) African Region is a priority region, with the highest collective burden of LF and onchocerciasis globally. Coendemic loiasis further complicates elimination due to the risk of adverse events associated with ivermectin treatment. A public health framework focusing on health-related data, systematic collection of data, and analysis and interpretation of data is used to highlight the range of innovative surveillance strategies required for filariasis elimination. The most recent and significant developments include: rapid point-of-care test (POCT) diagnostics; clinical assessment tools; new WHO guidelines; open-access online data portals; mHealth platforms; large-scale prevalence maps; and the optimisation of mathematical models.
Collapse
Affiliation(s)
- Louise A Kelly-Hope
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Harriet J Blundell
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Cara L Macfarlane
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - David H Molyneux
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
9
|
Unnasch TR, Golden A, Cama V, Cantey PT. Diagnostics for onchocerciasis in the era of elimination. Int Health 2018; 10:i20-i26. [PMID: 29471336 PMCID: PMC5881263 DOI: 10.1093/inthealth/ihx047] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/19/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022] Open
Abstract
In the past few years, efforts to eliminate onchocerciasis from Africa have intensified. These efforts are primarily based on the mass distribution of the anti-helminthic drug Mectizan™ (ivermectin). This program has led to the development of new guidelines by the World Health Organization for the verification that transmission has been suppressed and eventually eliminated. The requirements of diagnostic tools for this purpose differ in many ways from tests used to diagnose infection in individuals. In this review, we summarize the progress that has been made to identify diagnostics that meet the specialized requirements needed to verify onchocerciasis elimination, discuss why these tests were selected and summarize the needs that still exist to complete the arsenal of diagnostic tools that will be useful as the goal of elimination is achieved.
Collapse
Affiliation(s)
- Thomas R Unnasch
- Center for Global Health Infectious Disease Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd., Suite 304, Tampa, FL 33612, USA
| | | | - Vitaliano Cama
- Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GAUSA
| | - Paul T Cantey
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| |
Collapse
|
10
|
O-5S quantitative real-time PCR: a new diagnostic tool for laboratory confirmation of human onchocerciasis. Parasit Vectors 2017; 10:451. [PMID: 28969662 PMCID: PMC5625774 DOI: 10.1186/s13071-017-2382-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 09/17/2017] [Indexed: 12/01/2022] Open
Abstract
Background Onchocerciasis is a parasitic disease caused by the filarial nematode Onchocerca volvulus. In endemic areas, the diagnosis is commonly confirmed by microscopic examination of skin snip samples, though this technique is considered to have low sensitivity. The available melting-curve based quantitative real-time PCR (qPCR) using degenerated primers targeting the O-150 repeat of O. volvulus was considered insufficient for confirming the individual diagnosis, especially in elimination studies. This study aimed to improve detection of O. volvulus DNA in clinical samples through the development of a highly sensitive qPCR assay. Methods A novel hydrolysis probe based qPCR assay was designed targeting the specific sequence of the O. volvulus O-5S rRNA gene. A total of 200 clinically suspected onchocerciasis cases were included from Goma district in South-west Ethiopia, from October 2012 through May 2013. Skin snip samples were collected and subjected to microscopy, O-150 qPCR, and the novel O-5S qPCR. Results Among the 200 individuals, 133 patients tested positive (positivity rate of 66.5%) and 67 negative by O-5S qPCR, 74 tested positive by microscopy (37.0%) and 78 tested positive by O-150 qPCR (39.0%). Among the 133 O-5S qPCR positive individuals, microscopy and O-150 qPCR detected 55.6 and 59.4% patients, respectively, implying a higher sensitivity of O-5S qPCR than microscopy and O-150 qPCR. None of the 67 individuals who tested negative by O-5S qPCR tested positive by microscopy or O-150 qPCR, implying 100% specificity of the newly designed O-5S qPCR assay. Conclusions The novel O-5S qPCR assay is more sensitive than both microscopic examination and the existing O-150 qPCR for the detection of O. volvulus from skin snip samples. The newly designed assay is an important step towards appropriate individual diagnosis and control of onchocerciasis. Electronic supplementary material The online version of this article (10.1186/s13071-017-2382-3) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Pilotte N, Unnasch TR, Williams SA. The Current Status of Molecular Xenomonitoring for Lymphatic Filariasis and Onchocerciasis. Trends Parasitol 2017; 33:788-798. [PMID: 28756911 DOI: 10.1016/j.pt.2017.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
The capacity of vector insect surveillance to provide estimates of pathogen prevalence and transmission potential has long been recognized within the global communities tasked with eliminating lymphatic filariasis (LF), the underlying cause of elephantiasis and hydrocele, and onchocerciasis (river blindness). Initially restricted to the practice of dissection, the potential of vector monitoring has grown due to the advent of molecular methods capable of increasing the sensitivity and throughput of testing. However, despite such advancement, operational research gaps remain. If insufficiently addressed, these gaps will reduce the utility of molecular xenomonitoring (MX) for onchocerciasis as elimination efforts expand into Africa. Similarly, such shortcomings will limit the programmatic usefulness of MX for LF, resulting in this technique's significant underutilization.
Collapse
Affiliation(s)
- Nils Pilotte
- Department of Biological Sciences, Smith College, Northampton, MA, USA; Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA, USA; These authors contributed equally to this work
| | - Thomas R Unnasch
- Department of Global Health, University of South Florida, Tampa, FL, USA; These authors contributed equally to this work
| | - Steven A Williams
- Department of Biological Sciences, Smith College, Northampton, MA, USA; Molecular and Cellular Biology Program, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
12
|
Doyle SR, Bourguinat C, Nana-Djeunga HC, Kengne-Ouafo JA, Pion SDS, Bopda J, Kamgno J, Wanji S, Che H, Kuesel AC, Walker M, Basáñez MG, Boakye DA, Osei-Atweneboana MY, Boussinesq M, Prichard RK, Grant WN. Genome-wide analysis of ivermectin response by Onchocerca volvulus reveals that genetic drift and soft selective sweeps contribute to loss of drug sensitivity. PLoS Negl Trop Dis 2017; 11:e0005816. [PMID: 28746337 PMCID: PMC5546710 DOI: 10.1371/journal.pntd.0005816] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 08/07/2017] [Accepted: 07/19/2017] [Indexed: 12/30/2022] Open
Abstract
Background Treatment of onchocerciasis using mass ivermectin administration has reduced morbidity and transmission throughout Africa and Central/South America. Mass drug administration is likely to exert selection pressure on parasites, and phenotypic and genetic changes in several Onchocerca volvulus populations from Cameroon and Ghana—exposed to more than a decade of regular ivermectin treatment—have raised concern that sub-optimal responses to ivermectin's anti-fecundity effect are becoming more frequent and may spread. Methodology/Principal findings Pooled next generation sequencing (Pool-seq) was used to characterise genetic diversity within and between 108 adult female worms differing in ivermectin treatment history and response. Genome-wide analyses revealed genetic variation that significantly differentiated good responder (GR) and sub-optimal responder (SOR) parasites. These variants were not randomly distributed but clustered in ~31 quantitative trait loci (QTLs), with little overlap in putative QTL position and gene content between the two countries. Published candidate ivermectin SOR genes were largely absent in these regions; QTLs differentiating GR and SOR worms were enriched for genes in molecular pathways associated with neurotransmission, development, and stress responses. Finally, single worm genotyping demonstrated that geographic isolation and genetic change over time (in the presence of drug exposure) had a significantly greater role in shaping genetic diversity than the evolution of SOR. Conclusions/Significance This study is one of the first genome-wide association analyses in a parasitic nematode, and provides insight into the genomics of ivermectin response and population structure of O. volvulus. We argue that ivermectin response is a polygenically-determined quantitative trait (QT) whereby identical or related molecular pathways but not necessarily individual genes are likely to determine the extent of ivermectin response in different parasite populations. Furthermore, we propose that genetic drift rather than genetic selection of SOR is the underlying driver of population differentiation, which has significant implications for the emergence and potential spread of SOR within and between these parasite populations. Onchocerciasis is a human parasitic disease endemic across large areas of Sub-Saharan Africa, where more than 99% of the estimated 100 million people globally at-risk live. The microfilarial stage of Onchocerca volvulus causes pathologies ranging from mild itching to visual impairment and ultimately, irreversible blindness. Mass administration of ivermectin kills microfilariae and has an anti-fecundity effect on adult worms by temporarily inhibiting the development in utero and/or release into the skin of new microfilariae, thereby reducing morbidity and transmission. Phenotypic and genetic changes in some parasite populations that have undergone multiple ivermectin treatments in Cameroon and Ghana have raised concern that sub-optimal response to ivermectin's anti-fecundity effect may increase in frequency, reducing the impact of ivermectin-based control measures. We used next generation sequencing of small pools of parasites to define genome-wide genetic differences between phenotypically characterised good and sub-optimal responder parasites from Cameroon and Ghana, and identified multiple regions of the genome that differentiated the response types. These regions were largely different between parasites from these two countries but revealed common molecular pathways that might be involved in determining the extent of response to ivermectin's anti-fecundity effect. These data reveal a more complex than previously described pattern of genetic diversity among O. volvulus populations that differ in their geography and response to ivermectin treatment.
Collapse
Affiliation(s)
- Stephen R. Doyle
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Australia
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
- * E-mail: (SRD); (RKP); (WNG)
| | - Catherine Bourguinat
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, Québec, Canada
| | - Hugues C. Nana-Djeunga
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, Yaoundé, Cameroon
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé, Cameroon
| | - Jonas A. Kengne-Ouafo
- Research Foundation in Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Sébastien D. S. Pion
- Institut de Recherche pour le Développement (IRD), IRD UMI 233 TransVIHMI – Université Montpellier – INSERM U1175, Montpellier, France
| | - Jean Bopda
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Joseph Kamgno
- Centre for Research on Filariasis and other Tropical Diseases (CRFilMT), Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Samuel Wanji
- Research Foundation in Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Hua Che
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, Québec, Canada
| | - Annette C. Kuesel
- UNICEF/UNDP/World Bank/World Health Organization Special Programme for Research and Training in Tropical Diseases (WHO/TDR), World Health Organization, Geneva, Switzerland
| | - Martin Walker
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, United Kingdom
| | - Maria-Gloria Basáñez
- London Centre for Neglected Tropical Disease Research, Department of Infectious Disease Epidemiology, Faculty of Medicine, School of Public Health, Imperial College London, United Kingdom
| | - Daniel A. Boakye
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Mike Y. Osei-Atweneboana
- Department of Environmental Biology and Health Water Research Institute, Council for Scientific and Industrial Research (CSIR), Accra, Ghana
| | - Michel Boussinesq
- Institut de Recherche pour le Développement (IRD), IRD UMI 233 TransVIHMI – Université Montpellier – INSERM U1175, Montpellier, France
| | - Roger K. Prichard
- Institute of Parasitology, McGill University, Sainte Anne-de-Bellevue, Québec, Canada
- * E-mail: (SRD); (RKP); (WNG)
| | - Warwick N. Grant
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Australia
- * E-mail: (SRD); (RKP); (WNG)
| |
Collapse
|
13
|
Poole CB, Li Z, Alhassan A, Guelig D, Diesburg S, Tanner NA, Zhang Y, Evans TC, LaBarre P, Wanji S, Burton RA, Carlow CKS. Colorimetric tests for diagnosis of filarial infection and vector surveillance using non-instrumented nucleic acid loop-mediated isothermal amplification (NINA-LAMP). PLoS One 2017; 12:e0169011. [PMID: 28199317 PMCID: PMC5310896 DOI: 10.1371/journal.pone.0169011] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 11/19/2016] [Indexed: 11/26/2022] Open
Abstract
Accurate detection of filarial parasites in humans is essential for the implementation and evaluation of mass drug administration programs to control onchocerciasis and lymphatic filariasis. Determining the infection levels in vector populations is also important for assessing transmission, deciding when drug treatments may be terminated and for monitoring recrudescence. Immunological methods to detect infection in humans are available, however, cross-reactivity issues have been reported. Nucleic acid-based molecular assays offer high levels of specificity and sensitivity, and can be used to detect infection in both humans and vectors. In this study we developed loop-mediated isothermal amplification (LAMP) tests to detect three different filarial DNAs in human and insect samples using pH sensitive dyes for enhanced visual detection of amplification. Furthermore, reactions were performed in a portable, non-instrumented nucleic acid amplification (NINA) device that provides a stable heat source for LAMP. The efficacy of several strand displacing DNA polymerases were evaluated in combination with neutral red or phenol red dyes. Colorimetric NINA-LAMP assays targeting Brugia Hha I repeat, Onchocerca volvulus GST1a and Wuchereria bancrofti LDR each exhibit species-specificity and are also highly sensitive, detecting DNA equivalent to 1/10-1/5000th of one microfilaria. Reaction times varied depending on whether a single copy gene (70 minutes, O. volvulus) or repetitive DNA (40 min, B. malayi and W. bancrofti) was employed as a biomarker. The NINA heater can be used to detect multiple infections simultaneously. The accuracy, simplicity and versatility of the technology suggests that colorimetric NINA-LAMP assays are ideally suited for monitoring the success of filariasis control programs.
Collapse
Affiliation(s)
| | - Zhiru Li
- New England Biolabs, Ipswich, MA United States of America
| | - Andy Alhassan
- New England Biolabs, Ipswich, MA United States of America
| | - Dylan Guelig
- PATH, Seattle, Washington, United States of America
| | | | | | - Yinhua Zhang
- New England Biolabs, Ipswich, MA United States of America
| | | | - Paul LaBarre
- PATH, Seattle, Washington, United States of America
| | - Samuel Wanji
- Research Foundation in Tropical Diseases and Environment, Buea, Cameroon
| | | | | |
Collapse
|
14
|
Davies JB, Oskam L, Luján R, Schoone GJ, Kroon CCM, López-Martínez LA, Paniagua-Alvarez AJ. Detection ofOnchocerca volvulusDNA in pools of wild-caughtSimulium ochraceumby use of the polymerase chain reaction. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1998.11813293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
15
|
Alhassan A, Osei-Atweneboana MY, Kyeremeh KF, Poole CB, Li Z, Tettevi E, Tanner NA, Carlow CKS. Comparison of a new visual isothermal nucleic acid amplification test with PCR and skin snip analysis for diagnosis of onchocerciasis in humans. Mol Biochem Parasitol 2016; 210:10-12. [PMID: 27473357 DOI: 10.1016/j.molbiopara.2016.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
Accurate, simple and affordable diagnostics are needed to detect Onchocerca volvulus infection in humans. A newly developed colorimetric loop-mediated isothermal amplification (LAMP) assay was compared to PCR and skin snip analysis for diagnosis of onchocerciasis. The robustness and simplicity of the assay indicates that it may be a useful field tool for surveillance in endemic countries.
Collapse
Affiliation(s)
| | | | - Kwadwo F Kyeremeh
- University of Ghana, Noguchi Memorial Institute for Medical Research, Accra, Ghana
| | | | - Zhiru Li
- New England Biolabs, Ipswich, MA, USA
| | - Edward Tettevi
- Council for Scientific and Industrial Research, Water Research Institute, Accra, Ghana
| | | | | |
Collapse
|
16
|
Small ST, Tisch DJ, Zimmerman PA. Molecular epidemiology, phylogeny and evolution of the filarial nematode Wuchereria bancrofti. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2014; 28:33-43. [PMID: 25176600 PMCID: PMC4257870 DOI: 10.1016/j.meegid.2014.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/17/2014] [Accepted: 08/19/2014] [Indexed: 12/18/2022]
Abstract
Wuchereria bancrofti (Wb) is the most widely distributed of the three nematodes known to cause lymphatic filariasis (LF), the other two being Brugia malayi and Brugia timori. Current tools available to monitor LF are limited to diagnostic tests targeting DNA repeats, filarial antigens, and anti-filarial antibodies. While these tools are useful for detection and surveillance, elimination programs have yet to take full advantage of molecular typing for inferring infection history, strain fingerprinting, and evolution. To date, molecular typing approaches have included whole mitochondrial genomes, genotyping, targeted sequencing, and random amplified polymorphic DNA (RAPDs). These studies have revealed much about Wb biology. For example, in one study in Papua New Guinea researchers identified 5 major strains that were widespread and many minor strains some of which exhibit geographic stratification. Genome data, while rare, has been utilized to reconstruct evolutionary relationships among taxa of the Onchocercidae (the clade of filarial nematodes) and identify gene synteny. Their phylogeny reveals that speciation from the common ancestor of both B. malayi and Wb occurred around 5-6 millions years ago with shared ancestry to other filarial nematodes as recent as 15 million years ago. These discoveries hold promise for gene discovery and identifying drug targets in species that are more amenable to in vivo experiments. Continued technological developments in whole genome sequencing and data analysis will likely replace many other forms of molecular typing, multiplying the amount of data available on population structure, genetic diversity, and phylogenetics. Once widely available, the addition of population genetic data from genomic studies should hasten the elimination of LF parasites like Wb. Infectious disease control programs have benefited greatly from population genetics data and recently from population genomics data. However, while there is currently a surplus of data for diseases like malaria and HIV, there is a scarcity of this data for filarial nematodes. With the falling cost of genome sequencing, research on filarial nematodes could benefit from the addition of population genetics statistics and phylogenetics especially in dealing with elimination programs. A comprehensive review focusing on population genetics of filarial nematode does not yet exist. Here our goal is to provide a current overview of the molecular epidemiology of W. bancrofti (Wb) the primary causative agent of LF. We begin by reviewing studies utilizing molecular typing techniques with specific focus on genomic and population datasets. Next, we used whole mitochondrial genome data to construct a phylogeny and examine the evolutionary history of the Onchocercidae. Then, we provide a perspective to aid in understanding how population genetic techniques translate to modern epidemiology. Finally, we introduce the concept of genomic epidemiology and provide some examples that will aid in future studies of Wb.
Collapse
Affiliation(s)
- Scott T Small
- The Center for Global Health and Diseases, Case Western Reserve University, School of Medicine, Cleveland, OH, United States.
| | - Daniel J Tisch
- The Center for Global Health and Diseases, Case Western Reserve University, School of Medicine, Cleveland, OH, United States
| | - Peter A Zimmerman
- The Center for Global Health and Diseases, Case Western Reserve University, School of Medicine, Cleveland, OH, United States
| |
Collapse
|
17
|
Alhassan A, Makepeace BL, LaCourse EJ, Osei-Atweneboana MY, Carlow CKS. A simple isothermal DNA amplification method to screen black flies for Onchocerca volvulus infection. PLoS One 2014; 9:e108927. [PMID: 25299656 PMCID: PMC4191976 DOI: 10.1371/journal.pone.0108927] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/09/2014] [Indexed: 11/30/2022] Open
Abstract
Onchocerciasis is a debilitating neglected tropical disease caused by infection with the filarial parasite Onchocerca volvulus. Adult worms live in subcutaneous tissues and produce large numbers of microfilariae that migrate to the skin and eyes. The disease is spread by black flies of the genus Simulium following ingestion of microfilariae that develop into infective stage larvae in the insect. Currently, transmission is monitored by capture and dissection of black flies and microscopic examination of parasites, or using the polymerase chain reaction to determine the presence of parasite DNA in pools of black flies. In this study we identified a new DNA biomarker, encoding O. volvulus glutathione S-transferase 1a (OvGST1a), to detect O. volvulus infection in vector black flies. We developed an OvGST1a-based loop-mediated isothermal amplification (LAMP) assay where amplification of specific target DNA is detectable using turbidity or by a hydroxy naphthol blue color change. The results indicated that the assay is sensitive and rapid, capable of detecting DNA equivalent to less than one microfilaria within 60 minutes. The test is highly specific for the human parasite, as no cross-reaction was detected using DNA from the closely related and sympatric cattle parasite Onchocerca ochengi. The test has the potential to be developed further as a field tool for use in the surveillance of transmission before and after implementation of mass drug administration programs for onchocerciasis.
Collapse
Affiliation(s)
- Andy Alhassan
- Division of Genome Biology, New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Benjamin L. Makepeace
- Institute of Infection & Global Health, University of Liverpool, Liverpool, United Kingdom
| | | | | | - Clotilde K. S. Carlow
- Division of Genome Biology, New England Biolabs, Ipswich, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Rodríguez-Pérez MA, Gopal H, Adeleke MA, De Luna-Santillana EJ, Gurrola-Reyes JN, Guo X. Detection of Onchocerca volvulus in Latin American black flies for pool screening PCR using high-throughput automated DNA isolation for transmission surveillance. Parasitol Res 2013; 112:3925-31. [PMID: 24030195 DOI: 10.1007/s00436-013-3583-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 08/18/2013] [Indexed: 10/26/2022]
Abstract
The posttreatment entomological surveillance (ES) of onchocerciasis in Latin America requires quite large numbers of flies to be examined for parasite infection to prove that the control strategies have worked and that the infection is on the path of elimination. Here, we report a high-throughput automated DNA isolation of Onchocerca volvulus for PCR using a major Latin American black fly vector of onchocerciasis. The sensitivity and relative effectiveness of silica-coated paramagnetic beads was evaluated in comparison with phenol chloroform (PC) method which is known as the gold standard of DNA extraction for ES in Latin America. The automated method was optimized in the laboratory and validated in the field to detect parasite DNA in Simulium ochraceum sensu lato flies in comparison with PC. The optimization of the automated method showed that it is sensitive to detect O. volvulus with a pool size of 100 flies as compared with PC which utilizes 50 flies pool size. The validation of the automated method in comparison with PC in an endemic community showed that 5/67 and 3/134 heads pools were positive for the two methods, respectively. There was no statistical variation (P < 0.05) in the estimation of transmission indices generated by automated method when compared with PC method. The fact that the automated method is sensitive to pool size up to 100 confers advantage over PC method and can, therefore, be employed in large-scale ES of onchocerciasis transmission in endemic areas of Latin America.
Collapse
Affiliation(s)
- Mario A Rodríguez-Pérez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro esquina Elías Piña S/N, Colonia Narciso Mendoza, 88710, Cd. Reynosa, Tamaulipas, Mexico,
| | | | | | | | | | | |
Collapse
|
19
|
Eisenbarth A, Ekale D, Hildebrandt J, Achukwi MD, Streit A, Renz A. Molecular evidence of 'Siisa form', a new genotype related to Onchocerca ochengi in cattle from North Cameroon. Acta Trop 2013; 127:261-5. [PMID: 23727461 DOI: 10.1016/j.actatropica.2013.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/08/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
Abstract
Onchocerca ochengi, a filarial nematode parasite from African Zebu cattle is considered to be the closest relative of Onchocerca volvulus, the causative agent of river blindness. Both Onchocerca species share the vector, black flies of the Simulium damnosum complex. Correct identification of their infective third-stage larvae in man-biting vectors is crucial to distinguish the transmission of human or animal parasites. In order to identify different closely related Onchocerca species we surveyed the sequences from the three mitochondrial loci 12S rRNA, 16S rRNA and coxI in both adult worms isolated from Onchocerca-induced nodules in cattle and infective third stage larvae isolated from vector flies from North Cameroon. Two distinct groups of mitochondrial haplotypes were found in cattle as well as in flies. One of them has been formerly mentioned in the literature as Onchocerca sp. 'Siisa', a filaria isolated from the vector S. damnosum sensu lato in Uganda with hitherto unknown host. Both variants are found sympatric, also in the same nodule of the animal host and in the vector. In the flies we also found the mitochondrial haplotype that had been described for O. volvulus which is about equally different from the two previously mentioned ones as they are from each other. These results suggest a higher genetic diversification of Onchocerca ochengi than previously reported.
Collapse
|
20
|
Higazi TB, Zarroug IMA, Mohamed HA, Elmubark WA, Deran TCM, Aziz N, Katabarwa M, Hassan HK, Unnasch TR, Mackenzie CD, Richards F, Hashim K. Interruption of Onchocerca volvulus transmission in the Abu Hamed focus, Sudan. Am J Trop Med Hyg 2013; 89:51-7. [PMID: 23690554 PMCID: PMC3748488 DOI: 10.4269/ajtmh.13-0112] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/09/2013] [Indexed: 11/07/2022] Open
Abstract
Abu Hamed, Sudan, the northernmost location of onchocerciasis in the world, began community-directed treatment with ivermectin (CDTI) in 1998, with annual treatments enhanced to semiannual in 2007. We assessed the status of the parasite transmission in 2011 entomologically, parasitologically, and serologically. O-150 pool screening showed no parasite DNA in 17,537 black flies collected in 2011 (95% confidence interval upper limit [95% CI UL] = 0.023). Skin microfilariae, nodules, and signs of skin disease were absent in 536 individuals in seven local communities. Similarly, no evidence of Onchocerca volvulus Ov16 antibodies was found in 6,756 school children ≤ 10 years (95% CI UL = 0.03%). Because this assessment of the focus meets the 2001 World Health Organization (WHO) criteria for interrupted transmission, treatment was halted in 2012, and a post-treatment surveillance period was initiated in anticipation of declaration of disease elimination in this area. We provide the first evidence in East Africa that long-term CDTI alone can interrupt transmission of onchocerciasis.
Collapse
Affiliation(s)
- Tarig B Higazi
- Department of Biological Sciences, Ohio University, Zanesville, OH, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cheke RA, Garms R. Indices of onchocerciasis transmission by different members of the Simulium damnosum complex conflict with the paradigm of forest and savanna parasite strains. Acta Trop 2013; 125:43-52. [PMID: 22995985 DOI: 10.1016/j.actatropica.2012.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 08/29/2012] [Accepted: 09/05/2012] [Indexed: 11/18/2022]
Abstract
Onchocerciasis in savanna zones is generally more severe than in the forest and pathologies also differ geographically, differences often ascribed to the existence of two or more strains and incompatibilities between vectors and strains. However, flies in the forest transmit more infective larvae than their savanna counterparts, even in sympatry, contradicting expectations based on the forest and savanna strains paradigm. We analysed data on the numbers of Onchocerca volvulus larvae of different stages found in 10 different taxonomic categories of the Simulium damnosum complex derived from more than 48,800 dissections of flies from Sierra Leone in the west of Africa to Uganda in the east. The samples were collected before widespread ivermectin distribution and thus provide a baseline for evaluating control measures. Savanna species contained fewer larvae per infected or per infective fly than the forest species, even when biting and parous rates were accounted for. The highest transmission indices were found in the forest-dwelling Pra form of Simulium sanctipauli (616 L3/1000 parous flies) and the lowest in the savanna-inhabiting species S. damnosum/S. sirbanum (135) and S. kilibanum (65). Frequency distributions of numbers of L1-2 and L3 larvae found in parous S. damnosum/S. sirbanum, S. kilibanum, S. squamosum, S. yahense, S. sanctipauli, S. leonense and S. soubrense all conformed to the negative binomial distribution, with the mainly savanna-dwelling species (S. damnosum/S. sirbanum) having less overdispersed distributions than the mainly forest-dwelling species. These infection patterns were maintained even when forest and savanna forms were sympatric and biting the same human population. Furthermore, for the first time, levels of blindness were positively correlated with infection intensities of the forest vector S. yahense, consistent with relations previously reported for savanna zones. Another novel result was that conversion rates of L1-2 larvae to L3s were equivalent for both forest and savanna vectors. We suggest that either a multiplicity of factors are contributing to the observed disease patterns or that many parasite strains exist within a continuum.
Collapse
Affiliation(s)
- Robert A Cheke
- Natural Resources Institute, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Chatham, Kent ME4 4TB, UK.
| | | |
Collapse
|
22
|
Gopal H, Hassan HK, Rodríguez-Pérez MA, Toé LD, Lustigman S, Unnasch TR. Oligonucleotide based magnetic bead capture of Onchocerca volvulus DNA for PCR pool screening of vector black flies. PLoS Negl Trop Dis 2012; 6:e1712. [PMID: 22724041 PMCID: PMC3378604 DOI: 10.1371/journal.pntd.0001712] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 05/14/2012] [Indexed: 11/30/2022] Open
Abstract
Background Entomological surveys of Simulium vectors are an important component in the criteria used to determine if Onchocerca volvulus transmission has been interrupted and if focal elimination of the parasite has been achieved. However, because infection in the vector population is quite rare in areas where control has succeeded, large numbers of flies need to be examined to certify transmission interruption. Currently, this is accomplished through PCR pool screening of large numbers of flies. The efficiency of this process is limited by the size of the pools that may be screened, which is in turn determined by the constraints imposed by the biochemistry of the assay. The current method of DNA purification from pools of vector black flies relies upon silica adsorption. This method can be applied to screen pools containing a maximum of 50 individuals (from the Latin American vectors) or 100 individuals (from the African vectors). Methodology/Principal Findings We have evaluated an alternative method of DNA purification for pool screening of black flies which relies upon oligonucleotide capture of Onchocerca volvulus genomic DNA from homogenates prepared from pools of Latin American and African vectors. The oligonucleotide capture assay was shown to reliably detect one O. volvulus infective larva in pools containing 200 African or Latin American flies, representing a two-four fold improvement over the conventional assay. The capture assay requires an equivalent amount of technical time to conduct as the conventional assay, resulting in a two-four fold reduction in labor costs per insect assayed and reduces reagent costs to $3.81 per pool of 200 flies, or less than $0.02 per insect assayed. Conclusions/Significance The oligonucleotide capture assay represents a substantial improvement in the procedure used to detect parasite prevalence in the vector population, a major metric employed in the process of certifying the elimination of onchocerciasis. The absence of infective larvae of Onchocerca volvulus in the black fly vector of this parasite is a major criterion used to certify that transmission has been eliminated in a focus. This process requires screening large numbers of flies. Currently, this is accomplished by screening pools of flies using a PCR-based assay. The number of flies that may be included in each pool is currently limited by the DNA purification process to 50 flies for Latin American vectors and 100 flies for African vectors. Here, we describe a new method for DNA purification that relies upon a specific oligonucleotide to capture and immobilize the parasite DNA on a magnetic bead. This method permits the reliable detection of a single infective larva of O. volvulus in pools containing up to 200 individual flies. The method described here will dramatically improve the efficiency of pool screening of vector black flies, making the process of elimination certification easier and less expensive to implement.
Collapse
Affiliation(s)
- Hemavathi Gopal
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa, Tamaulipas, México
| | - Hassan K. Hassan
- Department of Global Health, Global Health Infectious Disease Research Program, University of South Florida, Tampa, Florida, United States of America
| | | | - Laurent D. Toé
- Multi-Disease Surveillance Centre, Ouagadougou, Burkina Faso
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, United States of America
| | - Thomas R. Unnasch
- Department of Global Health, Global Health Infectious Disease Research Program, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
23
|
Rodríguez-Pérez MA, Unnasch TR, Real-Najarro O. Assessment and monitoring of onchocerciasis in Latin America. ADVANCES IN PARASITOLOGY 2012; 77:175-226. [PMID: 22137585 DOI: 10.1016/b978-0-12-391429-3.00008-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Onchocerciasis has historically been one of the leading causes of infectious blindness worldwide. It is endemic to tropical regions both in Africa and Latin America and in the Yemen. In Latin America, it is found in 13 foci located in 6 different countries. The epidemiologically most important focus of onchocerciasis in the Americas is located in a region spanning the border between Guatemala and Mexico. However, the Amazonian focus straddling the border of Venezuela and Brazil is larger in overall area because the Yanomami populations are scattered over a very large geographical region. Onchocerciasis is caused by infection with the filarial parasite Onchocerca volvulus. The infection is spread through the bites of an insect vector, black flies of the genus Simulium. In Africa, the major vectors are members of the S. damnosum complex, while numerous species serve as vectors of the parasite in Latin America. Latin America has had a long history of attempts to control onchocerciasis, stretching back almost 100 years. The earliest programmes used a strategy of surgical removal of the adult parasites from affected individuals. However, because many of the adult parasites lodge in undetectable and inaccessible areas of the body, the overall effect of this strategy on the prevalence of infection was relatively minor. In 1988, a new drug, ivermectin, was introduced that effectively killed the larval stage (microfilaria) of the parasite in infected humans. As the microfilaria is both the stage that is transmitted by the vector fly and the cause of most of the pathologies associated with the infection, ivermectin opened up a new strategy for the control of onchocerciasis. Concurrent with the use of ivermectin for the treatment of onchocerciasis, a number of sensitive new diagnostic tools were developed (both serological and nucleic acid based) that provided the efficiency, sensitivity and specificity necessary to monitor the decline and eventual elimination of onchocerciasis as a result of successful control. As a result of these advances, a strategy for the elimination of onchocerciasis was developed, based upon mass distribution of ivermectin to afflicted communities for periods lasting long enough to ensure that the parasite population was placed on the road to local elimination. This strategy has been applied for the past decade to the foci in Latin America by a programme overseen by the Onchocerciasis Elimination Program for the Americas (OEPA). The efforts spearheaded by OEPA have been very successful, eliminating ocular disease caused by O. volvulus, and eliminating and interrupting transmission of the parasite in 8 of the 13 foci in the region. As onchocerciasis approaches elimination in Latin America, several questions still need to be addressed. These include defining an acceptable upper limit for transmission in areas in which transmission is thought to have been suppressed (e.g. what is the maximum value for the upper bound of the 95% confidence interval for transmission rates in areas where transmission is no longer detectable), how to develop strategies for conducting surveillance for recrudescence of infection in areas in which transmission is thought to be interrupted and how to address the problem in areas where the mass distribution of ivermectin seems to be unable to completely eliminate the infection.
Collapse
Affiliation(s)
- Mario A Rodríguez-Pérez
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Ciudad Reynosa, Tamaulipas, México
| | | | | |
Collapse
|
24
|
Abstract
Since 1977, >2000 research papers described attempts to detect, identify and/or quantify parasites, or disease organisms carried by ecto-parasites, using DNA-based tests and 148 reviews of the topic were published. Despite this, only a few DNA-based tests for parasitic diseases are routinely available, and most of these are optional tests used occasionally in disease diagnosis. Malaria, trypanosomiasis, toxoplasmosis, leishmaniasis and cryptosporidiosis diagnosis may be assisted by DNA-based testing in some countries, but there are very few cases where the detection of veterinary parasites is assisted by DNA-based tests. The diagnoses of some bacterial (e.g. lyme disease) and viral diseases (e.g. tick borne encephalitis) which are transmitted by ecto-parasites more commonly use DNA-based tests, and research developing tests for these species makes up almost 20% of the literature. Other important uses of DNA-based tests are for epidemiological and risk assessment, quality control for food and water, forensic diagnosis and in parasite biology research. Some DNA-based tests for water-borne parasites, including Cryptosporidium and Giardia, are used in routine checks of water treatment, but forensic and food-testing applications have not been adopted in routine practice. Biological research, including epidemiological research, makes the widest use of DNA-based diagnostics, delivering enhanced understanding of parasites and guidelines for managing parasitic diseases. Despite the limited uptake of DNA-based tests to date, there is little doubt that they offer great potential to not only detect, identify and quantify parasites, but also to provide further information important for the implementation of parasite control strategies. For example, variant sequences within species of parasites and other organisms can be differentiated by tests in a manner similar to genetic testing in medicine or livestock breeding. If an association between DNA sequence and phenotype has been demonstrated, then qualities such as drug resistance, strain divergence, virulence, and origin of isolates could be inferred by DNA-based tests. No such tests are in clinical or commercial use in parasitology and few tests are available for other organisms. Why have DNA-based tests not had a bigger impact in veterinary and human medicine? To explore this question, technological, biological, economic and sociological factors must be considered. Additionally, a realistic expectation of research progress is needed. DNA-based tests could enhance parasite management in many ways, but patience, persistence and dedication will be needed to achieve this goal.
Collapse
|
25
|
Tang THT, López-Vélez R, Lanza M, Shelley AJ, Rubio JM, Luz SLB. Nested PCR to detect and distinguish the sympatric filarial species Onchocerca volvulus, Mansonella ozzardi and Mansonella perstans in the Amazon Region. Mem Inst Oswaldo Cruz 2011; 105:823-8. [PMID: 20945000 DOI: 10.1590/s0074-02762010000600016] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 07/22/2010] [Indexed: 11/21/2022] Open
Abstract
We present filaria-nested polymerase chain reaction (PCR), which is based on amplification of first internal transcribed spacer rDNA to distinguish three parasitic filarial species (Onchocerca volvulus, Mansonella ozzardi and Mansonella perstans) that can be found in the Amazon Region. Nested PCR-based identifications yielded the same results as those utilizing morphological characters. Nested PCR is highly sensitive and specific and it detects low-level infections in both humans and vectors. No cross-amplifications were observed with various other blood parasites and no false-positive results were obtained with the nested PCR. The method works efficiently with whole-blood, blood-spot and skin biopsy samples. Our method may thus be suitable for assessing the efficacy of filaria control programmes in Amazonia by recording parasite infections in both the human host and the vector. By specifically differentiating the major sympatric species of filaria, this technique could also enhance epidemiological research in the region.
Collapse
Affiliation(s)
- Thuy-Huong Ta Tang
- Malaria y Protozoos Emergentes, Servicio de Parasitología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo km 2, Majadahonda, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
26
|
Marchon-Silva V, Caër JC, Post RJ, Maia-Herzog M, Fernandes O. Detection of Onchocerca volvulus (Nematoda: Onchocercidae) infection in vectors from Amazonian Brazil following mass Mectizan™ distribution. Mem Inst Oswaldo Cruz 2007; 102:197-202. [PMID: 17426885 DOI: 10.1590/s0074-02762007005000010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 02/06/2007] [Indexed: 05/14/2023] Open
Abstract
Detection of Onchocerca volvulus in Simulium populations is of primary importance in the assessment of the effectiveness of onchocerciasis control programs. In Brazil, the main focus of onchocerciasis is in the Amazon region, in a Yanomami reserve. The main onchocerciasis control strategy in Brazil is the semi-annually mass distribution of the microfilaricide ivermectin. In accordance with the control strategy for the disease, polymerase chain reaction (PCR) was applied in pools of simuliids from the area to detect the helminth infection in the vectors, as recommended by the Onchocerciasis Elimination Program for the Americas and the World Health Organization. Systematic sampling was performed monthly from September 1998 to October 1999, and a total of 4942 blackflies were collected from two sites (2576 from Balawaú and 2366 from Toototobi). The molecular methodology was found to be highly sensitive and specific for the detection of infected and/or infective blackflies in pools of 50 blackflies. The results from the material collected under field conditions showed that after the sixth cycle of distribution of ivermectin, the prevalence of infected blackflies with O. volvulus had decreased from 8.6 to 0.3% in Balawaú and from 4 to 0.1% in Toototobi.
Collapse
Affiliation(s)
- Verônica Marchon-Silva
- Laboratório de Epidemiologia Molecular de Doenças Infecciosas, Departamento de Medicina Tropical, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brasil.
| | | | | | | | | |
Collapse
|
27
|
Krueger A, Fischer P, Morales-Hojas R. Molecular phylogeny of the filaria genus Onchocerca with special emphasis on Afrotropical human and bovine parasites. Acta Trop 2007; 101:1-14. [PMID: 17174932 DOI: 10.1016/j.actatropica.2006.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 11/10/2006] [Accepted: 11/14/2006] [Indexed: 10/23/2022]
Abstract
Filarial parasites of the genus Onchocerca are found in a broad spectrum of ungulate hosts. One species, O. volvulus, is a human parasite that can cause severe disease (onchocerciasis or 'river blindness'). The phylogenetic relationships and the bionomics of many of the nearly 30 known species remain dubious. Here, the phylogeny of 11 species representing most major lineages of the genus is investigated by analysing DNA sequences from three mitochondrial genes (ND5, 12S and 16S rRNA) and portions of the intergenic spacer of the nuclear 5s rRNA. Special emphasis is given to a clade containing a yet unassigned specimen from Uganda (O. sp. 'Siisa'), which appears to be intermediate between O. volvulus and O. ochengi. While the latter can be differentiated by the O-150 tandem repeat commonly used for molecular diagnostics, O. volvulus and O. sp.'Siisa' cannot be differentiated by this marker. In addition, a worm specimen from an African bushbuck appears to be closely related to the bovine O. dukei and represents the basal taxon of the human/bovine clade. At the base of the genus, our data suggest O. flexuosa (red deer), O. ramachandrini (warthog) and O. armillata (cow) to be the representatives of ancient lineages. The results provide better insight into the evolution and zoogeography of Onchocerca. They also have epidemiological and taxonomic implications by providing a framework for more accurate molecular diagnosis of filarial larvae in vectors.
Collapse
MESH Headings
- Africa South of the Sahara
- Animals
- Base Sequence
- Cattle
- Cattle Diseases/parasitology
- DNA, Helminth/chemistry
- DNA, Helminth/genetics
- DNA, Mitochondrial/chemistry
- DNA, Mitochondrial/genetics
- Humans
- Molecular Sequence Data
- NADH Dehydrogenase/chemistry
- NADH Dehydrogenase/genetics
- Onchocerca/classification
- Onchocerca/genetics
- Onchocerciasis/parasitology
- Onchocerciasis/veterinary
- Phylogeny
- Polymerase Chain Reaction
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- Sequence Alignment
Collapse
Affiliation(s)
- A Krueger
- Department of Molecular Parasitology, and Federal Forces Department for Tropical Medicine at the Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, D-20359 Hamburg, Germany.
| | | | | |
Collapse
|
28
|
Ramírez-Ramírez A, Sánchez-Tejeda G, Méndez-Galván J, Unnasch TR, Monroy-Ostria A. Molecular studies of Onchocerca volvulus isolates from Mexico. INFECTION GENETICS AND EVOLUTION 2006; 6:171-6. [PMID: 15919244 DOI: 10.1016/j.meegid.2005.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Revised: 02/17/2005] [Accepted: 03/02/2005] [Indexed: 11/22/2022]
Abstract
DNA from Onchocerca volvulus from Oaxaca and Chiapas, Mexico were used as templates to amplify members of the O-150 Onchocerca specific repeat sequence family. The resulting PCR amplicons all hybridized with OVS2, an oligonucleotide that has been previously shown to recognize amplicons derived from O. volvulus with 100% sensitivity. However, when PCR products amplified from the O. volvulus specific plasmid pOVS134 were used as a probe, most samples did not hybridize. Similarly, when PCR products amplified from DNA isolated from adult O. volvulus from Oaxaca were used as a probe, amplicons from adult worms from both Oaxaca and Chiapas were recognized, but PCR products from infected black flies from Chiapas were not recognized. Amplicons derived from an adult worm from Chiapas hybridized with PCR products produced from adult parasites from both Oaxaca and Chiapas and to PCR products derived from the DNA of infected black flies from Chiapas. These data, when taken together, suggest that differences exist among the repeat sequence populations of parasites from Oaxaca and Chiapas in Mexico, suggesting that the O-150 repeat sequence family may be a useful tool for biogeographic studies of O. volvulus in the Americas.
Collapse
Affiliation(s)
- Alicia Ramírez-Ramírez
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, IPN, Carpio y Plan de Ayala, Col. Casco de Santo Tomás, C.P. 11340, México D.F., Mexico
| | | | | | | | | |
Collapse
|
29
|
Tchakouté VL, Graham SP, Jensen SA, Makepeace BL, Nfon CK, Njongmeta LM, Lustigman S, Enyong PA, Tanya VN, Bianco AE, Trees AJ. In a bovine model of onchocerciasis, protective immunity exists naturally, is absent in drug-cured hosts, and is induced by vaccination. Proc Natl Acad Sci U S A 2006; 103:5971-6. [PMID: 16585501 PMCID: PMC1458682 DOI: 10.1073/pnas.0601385103] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2005] [Indexed: 01/24/2023] Open
Abstract
Onchocerciasis (river blindness) is a major parasitic disease of humans in sub-Saharan Africa caused by the microfilarial stage of the nematode Onchocerca volvulus. Using Onchocerca ochengi, a closely related species which infects cattle and is transmitted by the same black fly vector (Simulium damnosum sensu lato) as O. volvulus, we have conducted longitudinal studies after either natural field exposure or experimental infection to determine whether, and under what circumstances, protective immunity exists in onchocerciasis. On the basis of the adult worm burdens (nodules) observed, we determined that cattle reared in endemic areas without detectable parasites (putatively immune) were significantly less susceptible to heavy field challenge than age-matched, naïve controls (P = 0.002), whereas patently infected cattle, cured of infection by adulticide treatment with melarsomine, were fully susceptible. Cattle immunized with irradiated third-stage larvae were significantly protected against experimental challenge (100% reduction in median nodule load, P = 0.003), and vaccination also conferred resistance to severe and prolonged field challenge (64% reduction in median nodule load, P = 0.053; and a significant reduction in microfilarial positivity rates and density, P < 0.05). These results constitute evidence of protective immunity in a naturally evolved host-Onchocerca sp. relationship and provide proof-of-principle for immunoprophylaxis under experimental and field conditions.
Collapse
Affiliation(s)
- Virginia L. Tchakouté
- *Veterinary Parasitology, Liverpool School of Tropical Medicine and Faculty of Veterinary Science, University of Liverpool, Liverpool L3 5QA, United Kingdom
| | - Simon P. Graham
- Division of Molecular Biology and Immunology, Liverpool School of Tropical Medicine, University of Liverpool, Liverpool L3 5QA, United Kingdom
| | - Siv Aina Jensen
- *Veterinary Parasitology, Liverpool School of Tropical Medicine and Faculty of Veterinary Science, University of Liverpool, Liverpool L3 5QA, United Kingdom
| | - Benjamin L. Makepeace
- *Veterinary Parasitology, Liverpool School of Tropical Medicine and Faculty of Veterinary Science, University of Liverpool, Liverpool L3 5QA, United Kingdom
| | - Charles K. Nfon
- *Veterinary Parasitology, Liverpool School of Tropical Medicine and Faculty of Veterinary Science, University of Liverpool, Liverpool L3 5QA, United Kingdom
- Institut de Recherche Agricole pour le Développement, Wakwa, BP 65 Ngaoundéré, Cameroon
| | - Leo M. Njongmeta
- *Veterinary Parasitology, Liverpool School of Tropical Medicine and Faculty of Veterinary Science, University of Liverpool, Liverpool L3 5QA, United Kingdom
| | - Sara Lustigman
- Lindsay F. Kimball Research Institute, New York Blood Center, New York, NY 10021; and
| | - Peter A. Enyong
- Tropical Medicine Research Station, P.O. Box 55, Kumba, Cameroon
| | - Vincent N. Tanya
- Institut de Recherche Agricole pour le Développement, Wakwa, BP 65 Ngaoundéré, Cameroon
| | - Albert E. Bianco
- Division of Molecular Biology and Immunology, Liverpool School of Tropical Medicine, University of Liverpool, Liverpool L3 5QA, United Kingdom
| | - Alexander J. Trees
- *Veterinary Parasitology, Liverpool School of Tropical Medicine and Faculty of Veterinary Science, University of Liverpool, Liverpool L3 5QA, United Kingdom
| |
Collapse
|
30
|
Abstract
Our knowledge of gene and genome organization in nematodes is growing rapidly, partly as a result of the Caenorhabditis elegans genome project. Here Martin Hammond and Ted Bianco review what is known about the organization of genes and genomes in parasitic nematode species, using information gained from molecular and cytological approaches. They suggest that there are implications not only for a wide range of problems in parasitology but also for our understanding of genome evolution in eukaryotes.
Collapse
Affiliation(s)
- M P Hammond
- Department of Biochemistry, University of the West Indies, Mona, Kingston 7, Jamaica
| | | |
Collapse
|
31
|
Abstract
The cattle parasite, Onchocerca ochengi, is widely distributed in West Africa. Significantly, Simulium darnnosum, the vector o f the important human parasite, O. volvulus, the cause o f river blindness, also appears to be the vector of O. ochengi. For epidemiological reasons it is therefore vital to be able to distinguish the infective larvae o f these filoriae. Here, Sandy Trees also describes other features of the cattle parasite that make it of significance to investigations of human filariases.
Collapse
Affiliation(s)
- A J Trees
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK L3 5QA
| |
Collapse
|
32
|
Ayong LS, Tume CB, Wembe FE, Simo G, Asonganyi T, Lando G, Ngu JL. Development and evaluation of an antigen detection dipstick assay for the diagnosis of human onchocerciasis. Trop Med Int Health 2005; 10:228-33. [PMID: 15730506 DOI: 10.1111/j.1365-3156.2004.01384.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To improve on the diagnosis of onchocerciasis, especially light infections, we developed and evaluated an oncho-dipstick test based on the detection of Onchocerca volvulus specific antigens in urine and tears. The test was able to detect as little as 25 ng/ml of parasite specific antigens in samples and took as little as 3 h. Evaluation of the assay on 456 residents of an onchocerciasis hyperendermic area in Cameroon resulted in 408 (89.5%) positives in urine and 374 (82%) positives in tears. The prevalence of onchocerciasis in the study area, as determined by Rapid Epidemiological Mapping of Onchocerciasis (REMO) and skin snip methods, was 52 and 36.8%, respectively. The sensitivity of the oncho-dipstick assay was 100% in urine and 92% in tears; its specificity was 100% in both. Concordance between urine and tear test results from the same individuals was 87%. The test strips were sufficiently reactive when left at room temperature for up to 8 months. The test would be useful for laboratory diagnosis of onchocerciasis in low transmission zones and to ascertain successful treatment of patients in experimental drug studies.
Collapse
|
33
|
Abstract
Polymerase chain reaction (PCR) represents a powerful new technology with a variety of field applications. While most of these are still experimental, implementation of PCR-based detection of Onchocerca volvulus in black flies, and subspecific differentiation strongly suggest that potential problems can be overcome. Because of high sensitivity and specificity, PCR provides in some cases the only means to address central parasitological questions, and may well become the 'gold standard' by which other diagnostic techniques are measured. In spite of these advantages, routine implementation of PCR,at present,requires transportation of samples to a central facility for processing, and personnel whose technical competence is high. In addition, reagents are expensive. Robert Barker here weighs up these considerations with regard to the potential utility of PCR assays for some applications.
Collapse
Affiliation(s)
- R H Barker
- Harvard School of Public Health, Department o f Tropical Public Health, 665 Huntington Avenue, Boston, MA 02115-6021, USA
| |
Collapse
|
34
|
Pischke S, Büttner DW, Liebau E, Fischer P. An internal control for the detection of Onchocerca volvulus DNA by PCR-ELISA and rapid detection of specific PCR products by DNA Detection Test Strips. Trop Med Int Health 2002; 7:526-31. [PMID: 12031075 DOI: 10.1046/j.1365-3156.2002.00890.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We developed a polymerase chain reaction-enzyme-linked immunosorbent assay (PCR-ELISA) for the detection of Onchocerca volvulus DNA. To standardize the PCR and to avoid false-negative results, an internal control DNA was co-amplified by the same set of primers. We differentiated the wild-type PCR product of the O-150 DNA sequence from the internal control by specific DNA probes. Detection of biotinylated PCR products by DNA probes was performed by ELISA to quantify the PCR product or by DNA Detection Test Strips as a rapid field technique. The methods were evaluated on skin biopsies from individuals living in an area endemic for O. volvulus in Uganda, but with low microfilaria densities because of ivermectin treatment. Microfilaria density was assessed by a single skin snip and a second skin snip was examined by PCR. Among 69 samples from microfilaria carriers, 47 (68%) were positive by ELISA and 55 (80%) by test strip detection of PCR products. When 39 samples of microfilaria-negative individuals from the same area were tested, 10 (27%) were positive by ELISA and 12 (31%) by test strips. None of the 19 samples obtained from persons living in an area not endemic for O. volvulus but endemic for Mansonella streptocerca was positive in either test. Although the ELISA is theoretically more sensitive than the test strips for the detection of PCR products, examination of field samples revealed that the test strip method had a higher operational sensitivity and was more convenient to perform. Thus, the DNA Detection Test Strips are a rapid and low-tech tool for identification of PCR products in laboratories of countries endemic for onchocerciasis.
Collapse
Affiliation(s)
- S Pischke
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | |
Collapse
|
35
|
MacDonald AJ, Turaga PSD, Harmon-Brown C, Tierney TJ, Bennett KE, McCarthy MC, Simonek SC, Enyong PA, Moukatte DW, Lustigman S. Differential cytokine and antibody responses to adult and larval stages of Onchocerca volvulus consistent with the development of concomitant immunity. Infect Immun 2002; 70:2796-804. [PMID: 12010965 PMCID: PMC127981 DOI: 10.1128/iai.70.6.2796-2804.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The possibility of concomitant immunity and its potential mechanisms in Onchocerca volvulus infection were examined by analyzing cytokine and antibody responses to infective larval (third-stage larvae [L3] and molting L3 [mL3]), adult female worm (F-OvAg), and skin microfilaria (Smf) antigens in infected individuals in a region of hyperendemicity in Cameroon as a function of age. Peripheral blood mononuclear cell interleukin 5 (IL-5) responses to F-OvAg and Smf declined significantly with age (equivalent to years of exposure to O. volvulus). In contrast, IL-5 secretion in response to L3 and mL3 remained elevated with increasing age. Gamma interferon responses to L3, mL3, and F-OvAg were low or suppressed and unrelated to age, except for responses to Smf in older subjects. IL-10 levels were uniformly elevated, regardless of age, in response to L3, mL3, and F-OvAg but not to Smf, for which levels declined with age. A total of 49 to 60% of subjects had granulocyte-macrophage colony-stimulating factor responses to all O. volvulus antigens unrelated to age. Analysis of levels of stage-specific immunoglobulin G3 (IgG3) and IgE revealed a striking, age-dependent dissociation between antibody responses to larval antigens (L3 and a recombinant L3-specific protein, O. volvulus ALT-1) which were significantly increased or maintained with age and antibody responses to F-OvAg, which decreased. Levels of IgG1 to L3 and F-OvAg were elevated regardless of age, and levels of IgG4 increased significantly with age, although not to O. volvulus ALT-1, which may have unique L3-specific epitopes. Immunofluorescence staining of whole larvae showed that total anti-L3 immunoglobulin levels also increased with the age of the serum donor. The separate and distinct cytokine and antibody responses to adult and infective larval stages of O. volvulus which are age related are consistent with the acquisition of concomitant immunity in infected individuals.
Collapse
Affiliation(s)
- Angus J MacDonald
- Laboratory of Molecular Parasitology, New York Blood Center, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
During the 1980s, the idea of using deoxyribonucleic acid probes for specific identification and diagnosis of infectious agents became very fashionable. There was therefore an explosion in the development of these tools and one particular group of organisms which received much attention was the parasitic nematodes. This review traces the development and use of such probes with the filarial nematode Onchocerca volvulus, with emphasis on their application to resolving certain 'problems' associated with this parasite, e.g. whether or not strains exist and difficulties in distinguishing the infective larval stage morphologically from related species.
Collapse
Affiliation(s)
- William Harnett
- Department of Immunology, University of Strathclyde, Glasgow, G4 0NR, Scotland, UK.
| |
Collapse
|
37
|
González LM, Montero E, Sciutto E, Harrison LJS, Parkhouse RME, Garate T. Differential diagnosis of Taenia saginata and Taenia solium infections: from DNA probes to polymerase chain reaction. Trans R Soc Trop Med Hyg 2002; 96 Suppl 1:S243-50. [PMID: 12055846 DOI: 10.1016/s0035-9203(02)90083-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective of this work was the rapid and easy differential diagnosis of Taenia saginata and T. solium. First, a T. saginata size-selected genomic deoxyribonucleic acid (gDNA) library was constructed in the vector lambda gt10 using the 2-4 kb fraction from the parasite DNA digested with EcoR1, under 'star' conditions. After differential screening of the library and hybridization analysis with DNA from T. saginata, T. solium, T. taeniaeformis, T. crassiceps, and Echinococcus granulosus (bovine, porcine, and human), 2 recombinant phages were selected. They were designated HDP1 and HDP2. HDP1 reacted specifically with T. saginata DNA, and HDP2 recognized DNA from both T. saginata and T. solium. The 2 DNA probes were then sequenced and further characterized. HDP1 was a repetitive sequence with a 53 bp monomeric unit repeated 24 times in direct tandem along the 1272 bp fragment, while the 3954 bp HDP2 was not a repetitive sequence. Using the sequencing data, oligonucleotides were designed and used in a polymerase chain reaction (PCR). The 2 selected oligonucleotides from probe HDP1 (PTs4F1 and PTs4R1) specifically amplified gDNA from T. saginata, but not T. solium or other related cestodes, with a sensitivity of < 10 pg of T. saginata gDNA, about the quantity of DNA in one taeniid egg. The 3 oligonucleotides selected from the HDP2 sequence (PTs7S35F1, PTs7S35F2, and PTs7S35R1) allowed the differential amplification of gDNA from T. saginata, T. solium and E. granulosus in a multiplex PCR, again with a sensitivity of < 10 pg. These diagnostic tools have immediate application in the differential diagnosis of T. solium and T. saginata in humans and in the diagnosis of dubious cysts in the slaughterhouse. We also hope to apply them to epidemiological surveys of, for example, soil and water in endemic areas.
Collapse
Affiliation(s)
- Luis Miguel González
- Ministerio de Sanidad y Consumo, Instituto de Salud Carlos III, Centro Nacional de Microbiologia, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Seidenfaden R, Fischer A, Bonow I, Ekale D, Tanya V, Renz A. Combined benefits of annual mass treatment with ivermectin and cattle zooprophylaxis on the severity of human onchocerciasis in northern Cameroon. Trop Med Int Health 2001; 6:715-25. [PMID: 11555439 DOI: 10.1046/j.1365-3156.2001.00771.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We studied the effect of 10 annual distributions of ivermectin for control of human onchocerciasis on the reduction of Onchocerca volvulus transmission by Simulium vector flies. Prevalence and infection load in the human population decreased, whilst the annual biting rates (ABR) of the vector remained unchanged. The annual transmission potential of infective larvae of O. volvulus fell to 40% of the pre-intervention level, but was still sufficient to maintain endemicity. However, recent immigration of herds of nomadic cattle into the study area has diverted the flies from man to cattle, creating an additional zooprophylactic effect. The predominant transmission of the bovine filaria O. ochengi to man also provides some concomitant cross-protective immunity against further infestations with O. volvulus. The effects of ivermectin on O. volvulus, combined with the zooprophylactic effects of the increased cattle population, have produced a complex beneficial influence on the transmission of human onchocerciasis.
Collapse
Affiliation(s)
- R Seidenfaden
- Department of Parasitology, Zoological Institute, University of Hohenheim, Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Graham SP, Trees AJ, Collins RA, Moore DM, Guy FM, Taylor MJ, Bianco AE. Down-regulated lymphoproliferation coincides with parasite maturation and with the collapse of both gamma interferon and interleukin-4 responses in a bovine model of onchocerciasis. Infect Immun 2001; 69:4313-9. [PMID: 11401968 PMCID: PMC98501 DOI: 10.1128/iai.69.7.4313-4319.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Onchocerciasis is a debilitating parasitic infection caused by the filarial nematode Onchocerca volvulus. Infections are chronic, and persistence of the parasites for several years argues for highly adapted mechanisms of immune evasion. Due to the restricted host repertoire of O. volvulus, we have used the cattle parasite Onchocerca ochengi to investigate the nature of immunomodulation underpinning these long-term infections. Cattle were infected with a single inoculation of 350 infective-stage larvae under laboratory conditions (n = 6). Intradermal nodules containing immature adult worms were detected from 110 days postinfection, and microfilariae in skin were detected from day 280 postinfection. Parasite-specific responses during early infection were nonpolarized with respect to the major Th cytokines (interleukin-4 [IL-4], IL-2, and gamma interferon [IFN-gamma]) produced by antigen-stimulated peripheral blood mononuclear cells (PBMC) or serum antibody isotypes. Antigen-induced proliferation of PBMC peaked shortly after exposure and remained high during the prepatent infection. As the parasites matured and animals developed patent infections, there was a profound down-regulation of lymphoproliferation, accompanied by sharp falls in the expression of both IL-4 and IFN-gamma and a gradual decline in IL-2. Levels of immunoglobulin G2 (IgG2) fell, while those of IgG1 remained high. We conclude that neither a classical Th2 response nor a simple Th1-to-Th2 switch is sufficient to explain the immunomodulation associated with patent Onchocerca infections. Instead, there is an initial Th0 response, which matures into a response with some, but not all of the features of a Th2 response. The natural host-parasite relationship of O. ochengi in cattle may be useful as both a descriptive and predictive tool to test more refined models of immunomodulation in onchocerciasis.
Collapse
Affiliation(s)
- S P Graham
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
40
|
Watts KJ, Reddy GR, Holmes RA, Lok JB, Knight DH, Smith G, Courtney CH. Seasonal prevalence of third-stage larvae of Dirofilaria immitis in mosquitoes from Florida and Louisiana. J Parasitol 2001; 87:322-9. [PMID: 11318562 DOI: 10.1645/0022-3395(2001)087[0322:spotsl]2.0.co;2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Heads of 109,597 mosquitoes collected during 1996 and 1997 from Gainesville, Florida (1996, n = 39,131; 1997, = 34,209), Bartow, Florida (1996, n = 12,000; 1997, n = 12,000), and Baton Rouge, Louisiana (1996, n = 12,257) were tested by a polymerase chain reaction and Southern hybridization-based test for the presence of third-stage larvae of the canine heartworm Dirofilaria immitis. Mosquito heads were pooled (1-200 heads) by month, locality, and species for testing. The test used was species specific for D. immitis and was capable of detecting DNA from a single larva in a pool of 200 mosquito heads. Specificity for the third larval stage was achieved by probing only mosquito heads. One or more D. immitis-infected mosquito heads were detected in each month of the year from Barrow in both 1996 and 1997. No infected mosquito heads were detected from Gainesville or Baton Rouge in December, January, February, or March. These results are in general agreement with previous sentinel dog and model prediction studies that showed heartworm transmission in the warm temperate Gulf coast region of the United States to be seasonal rather than continuous as previously believed.
Collapse
Affiliation(s)
- K J Watts
- College of Veterinary Medicine, University of Florida, Gainesville 32610-0125, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Morales-Hojas R, Post RJ, Shelley AJ, Maia-Herzog M, Coscarón S, Cheke RA. Characterisation of nuclear ribosomal DNA sequences from Onchocerca volvulus and Mansonella ozzardi (Nematoda: Filarioidea) and development of a PCR-based method for their detection in skin biopsies. Int J Parasitol 2001; 31:169-77. [PMID: 11239937 DOI: 10.1016/s0020-7519(00)00156-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The internal transcribed spacer region (ITS1, 5.8S gene and ITS2) of the two filarial nematodes Onchocerca volvulus and Mansonella ozzardi was sequenced, and two species-specific primers designed in the ITS2 to develop a PCR-based method for their specific detection and differentiation. When used with a universal reverse primer, the two species-specific primers gave amplification products of different size, which were readily separated in an agarose gel. The PCR was tested on skin biopsies from 51 people from three localities in Brazil where M. ozzardi is present, and results have been compared with those of parasitological examination of blood. The species-specific PCR gave a higher percentage of detection of infection by M. ozzardi than the parasitological examination of blood. No infection with O. volvulus was detected by PCR. This PCR-based assay may assist in determining the nature of infection in areas where both filarial species exist in sympatry.
Collapse
Affiliation(s)
- R Morales-Hojas
- Department of Entomology, The Natural History Museum, Cromwell Road, SW7 5BD, London, UK.
| | | | | | | | | | | |
Collapse
|
42
|
Higazi TB, Katholi CR, Mahmoud BM, Baraka OZ, Mukhtar MM, Qubati YA, Unnasch TR. Onchocerca volvulus: genetic diversity of parasite isolates from Sudan. Exp Parasitol 2001; 97:24-34. [PMID: 11207111 DOI: 10.1006/expr.2000.4589] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Onchocerciasis in Sudan exists in three distinct foci which exhibit differing clinical presentations. Previous studies have demonstrated that a tandemly repeated Onchocerca sequence family with a unit repeat length of 150 bp (the O-150 family) is a useful marker for deducing relationships among different O. volvulus populations. In the current study, the O-150 repeat families of O. volvulus from Sudan were analyzed and compared to each other and to those of parasites from West Africa. Similar to West African and American O. volvulus, the O-150 families of the Sudanese parasites could be divided into clusters within which little or no intracluster variation was evident, suggesting that the O-150 family in these parasites was subject to the forces of concerted evolution. Statistical analysis of the O-150 families from the different Sudanese parasite isolates, employing a nested algorithm based on an analysis of variance, revealed that O. volvulus endemic to the northern focus at Abu Hamed were significantly different from all other O. volvulus populations examined to date. In contrast, parasites from the southern and eastern foci of Sudan were indistinguishable from those endemic to the West African savanna. The significance of these data are discussed in light of knowledge of the biogeography and biology of transmission of O. volvulus in Africa.
Collapse
Affiliation(s)
- T B Higazi
- Division of Geographic Medicine, BBRB 203, University of Alabama at Birmingham, 35294, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Hojas RM, Post RJ. Regional genetic variation in the major sperm protein genes of Onchocerca volvulus and Mansonella ozzardi (Nematoda: Filarioidea). Int J Parasitol 2000; 30:1459-65. [PMID: 11428336 DOI: 10.1016/s0020-7519(00)00117-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Onchocerca volvulus and Mansonella ozzardi are two human filarial parasites present in South and Central America. In the Brazilian Amazonia they are found in sympatry, and the lack of clear morphological diagnostic characters in the microfilariae hinders their identification. The major sperm protein (MSP) gene of both species has been sequenced and characterised to determine its potential as a molecular diagnostic character. The length of the MSP gene is different in each species, and this could be used to detect and differentiate them by running the polymerase chain reaction (PCR) product in an agarose gel. Two major gene groups were identified in O. volvulus with a genetic distance of 6% between them. In M. ozzardi only one major group of genes was observed. The high similarity between the protein amino acid sequence of both filarial species confirms that the MSP has been highly conserved through nematode evolution.
Collapse
Affiliation(s)
- R M Hojas
- Department of Entomology, The Natural History Museum, London, UK.
| | | |
Collapse
|
44
|
Abstract
Onchocerca volvulus, the filarial parasite that causes onchocerciasis or river blindness, contains three distinct genomes. These include the nuclear genome, the mitochondrial genome and the genome of an intracellular endosymbiont of the genus Wolbachia. The nuclear genome is roughly 1.5x10(8) bp in size, and is arranged on four chromosome pairs. Analysis of expressed sequence tags from different life-cycle stages has resulted in the identification of transcripts from roughly 4000 O. volvulus genes. Several of these transcripts are highly abundant, including those encoding collagen and cuticular proteins. Analysis of several gene sequences from O. volvulus suggests that the nuclear genes of O. volvulus are relatively compact and are interrupted relatively frequently by small introns. The intron-exon boundaries of these genes generally follow the GU-AG rule characteristic of the splice donor and acceptors of other vertebrate organisms. The nuclear genome also contains at least one repeated sequence family of a 150 bp repeat which is arranged in tandem arrays and appears subject to concerted evolution. The mitochondrial genome of O. volvulus is remarkably compact, only 13747 bp in size. Consistent with the small size of the genome, four gene pairs overlap, eight contain no intergenic regions and the remaining gene pairs are separated by small intergenic domains ranging from 1 to 46 bp. The protein-coding genes of the O. volvulus mitochondrial genome exhibit a striking codon bias, with 15/20 amino acids having a single codon preference greater than 70%. Intraspecific variation in both the nuclear and mitochondrial genomes appears to be quite limited, consistent with the hypothesis that O. volvulus has suffered a genetic bottleneck in the recent past.
Collapse
Affiliation(s)
- T R Unnasch
- Division of Geographic Medicine, University of Alabama at Birmingham, 35294, USA.
| | | |
Collapse
|
45
|
Turaga PS, Tierney TJ, Bennett KE, McCarthy MC, Simonek SC, Enyong PA, Moukatte DW, Lustigman S. Immunity to onchocerciasis: cells from putatively immune individuals produce enhanced levels of interleukin-5, gamma interferon, and granulocyte-macrophage colony-stimulating factor in response to Onchocerca volvulus larval and male worm antigens. Infect Immun 2000; 68:1905-11. [PMID: 10722581 PMCID: PMC97365 DOI: 10.1128/iai.68.4.1905-1911.2000] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antigen-specific interleukin-5 (IL-5), gamma interferon (IFN-gamma), and granulocyte-macrophage colony-stimulating factor (GM-CSF) responses in individuals living in an area of hyperendemicity for onchocerciasis in Cameroon were examined. The responses against antigens prepared from Onchocerca volvulus third-stage larvae (L3), molting L3 (mL3), and crude extract from adult males (M-OvAg) were compared to the responses against antigens from adult female worms and skin microfilariae. Cytokine responses for the putatively immune individuals (PI) and the infected individuals (INF) were compared. A differential cytokine profile of IL-5 (Th2 phenotype) and IFN-gamma (Th1 phenotype) was found in these individuals in response to the antigens. In both the PI and the INF, Th2 responses against all the antigens tested were dominant. However, in the PI group as a whole, there was an enhanced Th2 response against the larval antigens and the adult male and adult female antigens, and a Th1 response in a subgroup of the PI (27 to 54.5%) against L3, mL3, and M-OvAg antigens was present. While the PI produced significantly higher levels of GM-CSF against L3, mL3, and M-OvAg antigens than the INF, there was no difference in the GM-CSF responses of the groups against the other antigens. The present study indicated that, in comparison to the INF, the PI have distinct larva-specific and adult male-specific cytokine responses, thus supporting the premise that immunological studies of the PI would lead to the identification of immune mechanisms and the target genes that play a role in protective immunity.
Collapse
Affiliation(s)
- P S Turaga
- Laboratory of Molecular Parasitology, New York Blood Center, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
González LM, Montero E, Harrison LJ, Parkhouse RM, Garate T. Differential diagnosis of Taenia saginata and Taenia solium infection by PCR. J Clin Microbiol 2000; 38:737-44. [PMID: 10655377 PMCID: PMC86191 DOI: 10.1128/jcm.38.2.737-744.2000] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have designed species-specific oligonucleotides which permit the differential detection of two species of cestodes, Taenia saginata and Taenia solium. The oligonucleotides contain sequences established for two previously reported, noncoding DNA fragments cloned from a genomic library of T. saginata. The first, which is T. saginata specific (fragment HDP1), is a repetitive sequence with a 53-bp monomeric unit repeated 24 times in direct tandem along the 1, 272-bp fragment. From this sequence the two oligonucleotides that were selected (oligonucleotides PTs4F1 and PTs4R1) specifically amplified genomic DNA (gDNA) from T. saginata but not T. solium or other related cestodes and had a sensitivity down to 10 pg of T. saginata gDNA. The second DNA fragment (fragment HDP2; 3,954 bp) hybridized to both T. saginata and T. solium DNAs and was not a repetitive sequence. Three oligonucleotides (oligonucleotides PTs7S35F1, PTs7S35F2, and PTs7S35R1) designed from the sequence of HDP2 allowed the differential amplification of gDNAs from T. saginata, T. solium, and Echinococcus granulosus in a multiplex PCR, which exhibits a sensitivity of 10 pg.
Collapse
Affiliation(s)
- L M González
- Ministerio de Sanidad y Consumo, Instituto de Salud Carlos III, Centro Nacional de Microbiologia, 28220 Majadahonda, Madrid, Spain
| | | | | | | | | |
Collapse
|
47
|
Garrido-Ramos MA, de la Herrán R, Jamilena M, Lozano R, Ruiz Rejón C, Ruiz Rejón M. Evolution of centromeric satellite DNA and its use in phylogenetic studies of the Sparidae family (Pisces, Perciformes). Mol Phylogenet Evol 1999; 12:200-4. [PMID: 10381322 DOI: 10.1006/mpev.1998.0609] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this paper, we use the EcoRI centromeric satellite DNA family conserved in Sparidae as a taxonomic and a phylogenetic marker. The analyses of 56 monomeric units (187 bp in size) obtained by means of cloning and PCR from 10 sparid species indicate that this repetitive DNA evolves by concerted evolution. Different phylogenetic inference methods, such as neighbor-joining and UPGMA, group the 56 repeats by taxonomic affinity and support the existence of at least two monophyletic groups within the Sparidae family. These results reinforce the recent taxonomic revision of the genera Sparus and Pagrus and contradict previous classifications of the Sparidae family.
Collapse
|
48
|
Maia-Herzog M, Shelley AJ, Bradley JE, Luna Dias AP, Calvão RH, Lowry C, Camargo M, Rubio JM, Post RJ, Coelho GE. Discovery of a new focus of human onchocerciasis in central Brazil. Trans R Soc Trop Med Hyg 1999; 93:235-9. [PMID: 10492748 DOI: 10.1016/s0035-9203(99)90005-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
An autochthonous case of human onchocerciasis was reported 13 years ago in the town of Minaçu, northern Goiás (Brazil), but a subsequent survey of the population using the traditional technique of examining skin biopsies with the light microscope failed to detect other cases. Recent surveys using more sensitive diagnostic techniques (serodiagnosis, DNA probes, Mazzotti test) that are detailed in this paper revealed the presence of other cases of the disease in Minaçu, the nearby town of Formoso and at the Buracão gold mine near Paranã. The data show that transmission of the disease has occurred to local people living in town and on farms and that gold miners (garimpeiros) are a likely source of infection.
Collapse
Affiliation(s)
- M Maia-Herzog
- Departamento de Entomologia, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Anderson TJ, Blouin MS, Beech RN. Population biology of parasitic nematodes: applications of genetic markers. ADVANCES IN PARASITOLOGY 1998; 41:219-83. [PMID: 9734295 DOI: 10.1016/s0065-308x(08)60425-x] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- T J Anderson
- Wellcome Trust Centre for Epidemiology of Infectious Disease, Department of Zoology, Oxford, UK
| | | | | |
Collapse
|
50
|
Morlais I, Grebaut P, Bodo JM, Djoha S, Cuny G, Herder S. Detection and identification of trypanosomes by polymerase chain reaction in wild tsetse flies in Cameroon. Acta Trop 1998; 70:109-17. [PMID: 9707369 DOI: 10.1016/s0001-706x(98)00014-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The prevalence of various species and subgroups of trypanosomes in infected flies from three sleeping sickness foci in Cameroon was determined by the use of polymerase chain reaction (PCR). The predominant tsetse species found were Glossina palpalis palpalis. Microscopical examination of 943 non-teneral tsetse flies revealed an average infection rate of 10.4%. A total of 90 flies were analyzed for trypanosome identification with primer sets specific for Trypanosoma (Trypanozoon) brucei s.l., T. (Duttonella) vitax, T. (Nannomonas) simiae, and forest type T. (Nannomonas) congolense. PCR succeeded in identifying 52 of the 90 infected flies. Other primers were also tested on microscope positive/PCR-negative infections, and trypanosome subgroups were detected (Kilifi type and savannah type T. congolense). PCR amplification allowed identification of immature infections and revealed mixed-infections. The PCR technique failed to identify 42.2% (38/90) of the parasitologically positive flies and the reasons for this failure are discussed.
Collapse
Affiliation(s)
- I Morlais
- Laboratoire d'Epidémiologie des Maladies à Vecteurs, Centre ORSTOM, Montpellier, France.
| | | | | | | | | | | |
Collapse
|