1
|
Sivoňová MK, Kaplán P, Tatarková Z, Lichardusová L, Dušenka R, Jurečeková J. Androgen receptor and soy isoflavones in prostate cancer. Mol Clin Oncol 2018; 10:191-204. [PMID: 30680195 DOI: 10.3892/mco.2018.1792] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022] Open
Abstract
Androgens and androgen receptor (AR) play a critical role not only in normal prostate development, but also in prostate cancer. For that reason, androgen deprivation therapy (ADT) is the primary treatment for prostate cancer. However, the majority of patients develop castration-resistant prostate cancer, which eventually leads to mortality. Novel therapeutic approaches, including dietary changes, have been explored. Soy isoflavones have become a focus of interest because of their positive health benefits on numerous diseases, particularly hormone-related cancers, including prostate and breast cancers. An important strategy for the prevention and/or treatment of prostate cancer might thus be the action of soy isoflavones on the AR signaling pathway. The current review article provides a detailed overview of the anticancer potential of soy isoflavones (genistein, daidzein and glycitein), as mediated by their effect on AR.
Collapse
Affiliation(s)
- Monika Kmetová Sivoňová
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Peter Kaplán
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia.,Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Zuzana Tatarková
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lucia Lichardusová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Róbert Dušenka
- Department of Urology, Jessenius Faculty of Medicine and UHM in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Jana Jurečeková
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
2
|
Albarran L, Lopez JJ, Salido GM, Rosado JA. Historical Overview of Store-Operated Ca(2+) Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:3-24. [PMID: 27161222 DOI: 10.1007/978-3-319-26974-0_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Calcium influx is an essential mechanism for the activation of cellular functions both in excitable and non-excitable cells. In non-excitable cells, activation of phospholipase C by occupation of G protein-coupled receptors leads to the generation of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG), which, in turn, initiate two Ca(2+) entry pathways: Ca(2+) release from intracellular Ca(2+) stores, signaled by IP3, leads to the activation of store-operated Ca(2+) entry (SOCE); on the other hand, DAG activates a distinct second messenger-operated pathway. SOCE is regulated by the filling state of the intracellular calcium stores. The search for the molecular components of SOCE has identified the stromal interaction molecule 1 (STIM1) as the Ca(2+) sensor in the endoplasmic reticulum and Orai1 as a store-operated channel (SOC) subunit. Furthermore, a number of reports have revealed that several members of the TRPC family of channels also take part of the SOC macromolecular complex. This introductory chapter summarizes the early pieces of evidence that led to the concept of SOCE and the components of the store-operated signaling pathway.
Collapse
Affiliation(s)
- Letizia Albarran
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Av. Universidad s/n, 10003, Cáceres, Spain
| | - Jose J Lopez
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Av. Universidad s/n, 10003, Cáceres, Spain
| | - Ginés M Salido
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Av. Universidad s/n, 10003, Cáceres, Spain
| | - Juan A Rosado
- Departamento de Fisiología, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
3
|
Berna-Erro A, Jardín I, Smani T, Rosado JA. Regulation of Platelet Function by Orai, STIM and TRP. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:157-81. [PMID: 27161229 DOI: 10.1007/978-3-319-26974-0_8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Agonist-induced changes in cytosolic Ca(2+) concentration ([Ca(2+)]c) are central events in platelet physiology. A major mechanism supporting agonist-induced Ca(2+) signals is store-operated Ca(2+) entry (SOCE), where the Ca(2+) sensor STIM1 and the channels of the Orai family, as well as TRPC members are the key elements. STIM1-dependent SOCE plays a major role in collagen-stimulated Ca(2+) signaling, phosphatidylserine exposure and thrombin generation. Furthermore, studies involving Orai1 gain-of-function mutants and platelets from Orai1-deficient mice have revealed the importance of this channel in thrombosis and hemostasis to those found in STIM1-deficient mice indicating that SOCE might play a prominent role in thrombus formation. Moreover, increase in TRPC6 expression might lead to thrombosis in humans. The role of STIM1, Orai1 and TRPCs, and thus SOCE, in thrombus formation, suggests that therapies directed against SOCE and targeting these molecules during cardiovascular and cerebrovascular events could significantly improve traditional anti-thrombotic treatments.
Collapse
Affiliation(s)
- Alejandro Berna-Erro
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, 08003, Spain
| | - Isaac Jardín
- Department of Physiology (Cell Physiology Research Group), University of Extremadura, Cáceres, 10003, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain
| | - Juan A Rosado
- Departamento de Fisiología, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
4
|
Lever RA, Hussain A, Sun BB, Sage SO, Harper AGS. Conventional protein kinase C isoforms differentially regulate ADP- and thrombin-evoked Ca²⁺ signalling in human platelets. Cell Calcium 2015; 58:577-88. [PMID: 26434503 DOI: 10.1016/j.ceca.2015.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 11/15/2022]
Abstract
Rises in cytosolic Ca(2+) concentration ([Ca(2+)]cyt) are central in platelet activation, yet many aspects of the underlying mechanisms are poorly understood. Most studies examine how experimental manipulations affect agonist-evoked rises in [Ca(2+)]cyt, but these only monitor the net effect of manipulations on the processes controlling [Ca(2+)]cyt (Ca(2+) buffering, sequestration, release, entry and removal), and cannot resolve the source of the Ca(2+) or the transporters or channels affected. To investigate the effects of protein kinase C (PKC) on platelet Ca(2+) signalling, we here monitor Ca(2+) flux around the platelet by measuring net Ca(2+) fluxes to or from the extracellular space and the intracellular Ca(2+) stores, which act as the major sources and sinks for Ca(2+) influx into and efflux from the cytosol, as well as monitoring the cytosolic Na(+) concentration ([Na(+)]cyt), which influences platelet Ca(2+) fluxes via Na(+)/Ca(2+) exchange. The intracellular store Ca(2+) concentration ([Ca(2+)]st) was monitored using Fluo-5N, the extracellular Ca(2+) concentration ([Ca(2+)]ext) was monitored using Fluo-4 whilst [Ca(2+)]cyt and [Na(+)]cyt were monitored using Fura-2 and SFBI, respectively. PKC inhibition using Ro-31-8220 or bisindolylmaleimide I potentiated ADP- and thrombin-evoked rises in [Ca(2+)]cyt in the absence of extracellular Ca(2+). PKC inhibition potentiated ADP-evoked but reduced thrombin-evoked intracellular Ca(2+) release and Ca(2+) removal into the extracellular medium. SERCA inhibition using thapsigargin and 2,5-di(tert-butyl) l,4-benzohydroquinone abolished the effect of PKC inhibitors on ADP-evoked changes in [Ca(2+)]cyt but only reduced the effect on thrombin-evoked responses. Thrombin evokes substantial rises in [Na(+)]cyt which would be expected to reduce Ca(2+) removal via the Na(+)/Ca(2+) exchanger (NCX). Thrombin-evoked rises in [Na(+)]cyt were potentiated by PKC inhibition, an effect which was not due to altered changes in non-selective cation permeability of the plasma membrane as assessed by Mn(2+) quench of Fura-2 fluorescence. PKC inhibition was without effect on thrombin-evoked rises in [Ca(2+)]cyt following SERCA inhibition and either removal of extracellular Na(+) or inhibition of Na(+)/K(+)-ATPase activity by removal of extracellular K(+) or treatment with digoxin. These data suggest that PKC limits ADP-evoked rises in [Ca(2+)]cyt by acceleration of SERCA activity, whilst rises in [Ca(2+)]cyt evoked by the stronger platelet activator thrombin are limited by PKC through acceleration of both SERCA and Na(+)/K(+)-ATPase activity, with the latter limiting the effect of thrombin on rises in [Na(+)]cyt and so forward mode NCX activity. The use of selective PKC inhibitors indicated that conventional and not novel PKC isoforms are responsible for the inhibition of agonist-evoked Ca(2+) signalling.
Collapse
Affiliation(s)
- Robert A Lever
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | - Azhar Hussain
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | - Benjamin B Sun
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | - Stewart O Sage
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | - Alan G S Harper
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom; Institute for Science and Technology in Medicine, Keele University, Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, United Kingdom.
| |
Collapse
|
5
|
Redondo PC, Rosado JA. Store-operated calcium entry: unveiling the calcium handling signalplex. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:183-226. [PMID: 25805125 DOI: 10.1016/bs.ircmb.2015.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) is an important mechanism for Ca(2+) influx in non-excitable cells, also present in excitable cells. The activation of store-operated channels (SOCs) is finely regulated by the filling state of the intracellular agonist-sensitive Ca(2+) compartments, and both, the mechanism of sensing the Ca(2+) stores and the nature and functional properties of the SOCs, have been a matter of intense investigation and debate. The identification of STIM1 as the endoplasmic reticulum Ca(2+) sensor and both Orai1, as the pore-forming subunit of the channels mediating the Ca(2+)-selective store-operated current, and the members of the TRPC subfamily of proteins, as the channels mediating the cation-permeable SOCs, has shed new light on the underlying events. This review summarizes the initial hypothesis and the current advances on the mechanism of activation of SOCE.
Collapse
Affiliation(s)
- Pedro C Redondo
- Department of Physiology, University of Extremadura, Cáceres, Spain
| | - Juan A Rosado
- Department of Physiology, University of Extremadura, Cáceres, Spain
| |
Collapse
|
6
|
Isoflavones: estrogenic activity, biological effect and bioavailability. Eur J Drug Metab Pharmacokinet 2013; 38:15-25. [PMID: 23161396 DOI: 10.1007/s13318-012-0112-y] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 11/06/2012] [Indexed: 02/07/2023]
Abstract
Isoflavones are phytoestrogens with potent estrogenic activity; genistein, daidzein and glycitein are the most active isoflavones found in soy beans. Phytoestrogens have similarity in structure with the human female hormone 17-β-estradiol, which can bind to both alpha and beta estrogen receptors, and mimic the action of estrogens on target organs, thereby exerting many health benefits when used in some hormone-dependent diseases. Numerous clinical studies claim benefits of genistein and daidzein in chemoprevention of breast and prostate cancer, cardiovascular disease and osteoporosis as well as in relieving postmenopausal symptoms. The ability of isoflavones to prevent cancer and other chronic diseases largely depends on pharmacokinetic properties of these compounds, in particular absorption and distribution to the target tissue. The chemical form in which isoflavones occur is important because it influences their bioavailability and, therefore, their biological activity. Glucose-conjugated isoflavones are highly polar, water-soluble compounds. They are hardly absorbed by the intestinal epithelium and have weaker biological activities than the corresponding aglycone. Different microbial families of colon can transform glycosylated isoflavones into aglycones. Clinical studies show important differences between the aglycone and conjugated forms of genistein and daidzein. The evaluation of isoflavone metabolism and bioavailability is crucial to understanding their biological effects. Lipid-based formulations such as drug incorporation into oils, emulsions and self-microemulsifying formulations have been introduced to increase bioavailability. Complexation with cyclodextrin also represent a valid method to improve the physicochemical characteristics of these substances in order to be absorbed and distributed to target tissues. We review and discuss pharmacokinetic issues that critically influence the biological activity of isoflavones.
Collapse
|
7
|
Abstract
Kawasaki disease (KD) is a diffuse vasculitis occurring in children and showing predilection for the coronary arteries. The etiology remains unknown, although some risk factors for susceptibility have been defined. Asian ethnicity is a primary risk factor. Several theories have circulated regarding the differences in KD ethnic incidence. Those theories implicating genetic differences among populations as the cause for this discrepancy have dominated and are areas of active investigation by multiple research groups. Differences in diet between Asians and Westerners are touted as reasons for certain ethnic-related discrepancies in susceptibility to cardiovascular disease and cancer in adults. Surprisingly, these cultural dietary differences have not been previously considered as the source of the discrepancy in KD incidence among these ethnic populations. Recent data from genetic studies have highlighted the role of specific immune receptors in the pathogenesis of KD. Functions of the Fcγ receptors (FcGRs) are modulated by isoflavones in soy, in particular, genistein. Epidemiological data from Hawaiian populations support an association between soy consumption and KD. These observations form the basis of a hypothesis: isoflavones participate in KD pathogenesis by modulating function of the FcGRs and by disrupting the balance between activation and inhibition of the inflammatory response.
Collapse
Affiliation(s)
- Michael A Portman
- Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
8
|
Abstract
Reviewed are new concepts and models of Ca(2+) signalling originating from work with various animal cells, as well as the applicability of these models to the signalling systems used by blood platelets. The following processes and mechanisms are discussed: Ca(2+) oscillations and waves; Ca(2+) -induced Ca(2+) release; involvement of InsP(3)-receptors and quanta1 release of Ca(2+); different pathways of phospholipase C activation; heterogeneity in the intracellular Ca(2+) stores; store-and receptor-regulated Ca(2+) entry. Additionally, some typical aspects of Ca(2+) signalling in platelets are reviewed: involvement of protein serine/threonine and tyrosine kinases in the regulation of signal transduction; possible functions of platelet glycoproteins; and the importance of Ca(2+) for the exocytotic and procoagulant responses.
Collapse
Affiliation(s)
- J W Heemskerk
- Departments of Human Biology/ Biochemistry, University of Limburg, P.O. 616, 6200, MD, Maastricht, The Netherlands
| | | |
Collapse
|
9
|
Lopez E, Jardin I, Berna-Erro A, Bermejo N, Salido GM, Sage SO, Rosado JA, Redondo PC. STIM1 tyrosine-phosphorylation is required for STIM1-Orai1 association in human platelets. Cell Signal 2012; 24:1315-22. [PMID: 22387225 DOI: 10.1016/j.cellsig.2012.02.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/16/2012] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
Abstract
Stromal interaction molecule 1 (STIM1) is a key element of the store-operated Ca(2+) entry mechanism (SOCE). Recently, regulation of STIM1 by glycosylation and phosphorylation on serine/threonine or proline residues has been described; however other modes of phosphorylation that are important for activating SOCE in platelets, such as tyrosine phosphorylation, have been poorly investigated. Here we investigate the latency of STIM1 phosphorylation on tyrosine residues during the first steps of SOCE activation. Human platelets were stimulated and fixed at desired times using rapid kinetic assays instruments, and immunoprecipitation and western blotting techniques were then used to investigate the pattern of STIM1 tyrosine phosphorylation during the first steps of SOCE activation. We have found that maximal STIM1 tyrosine phosphorylation occurred 2.5s after stimulation of human platelets with thapsigargin (Tg). STIM1 localized in the plasma membrane were also phosphorylated in platelets stimulated with Tg. By using chemical inhibitors that target different members of the Src family of tyrosine kinases (SKFs), two independent signaling pathways involved in STIM1 tyrosine phosphorylation during the first steps of SOCE activation were identified. We finally conclude that STIM1 tyrosine phosphorylation is a key event for the association of STIM1 with plasma membrane Ca(2+) channels such as Orai1, hence it is required for conducting SOCE activation.
Collapse
Affiliation(s)
- Esther Lopez
- Cell Physiology Research Group, Department of Physiology, University of Extremadura, 10003 Cáceres, Spain
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Marrero MB, Schieffer B, Bernstein KE, Ling BN. SYMPOSIUM: Experimental Biology 1995 Role of Mesangial Cell Ion Transport in Glomerular Physiology and Disease: ANGIOTENSIN II-INDUCED TYROSINE PHOSPHORYLATION IN MESANGIAL AND VASCULAR SMOOTH MUSCLE CELLS. Clin Exp Pharmacol Physiol 2010. [DOI: 10.1111/j.1440-1681.1996.tb03067.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Zbidi H, Salido S, Altarejos J, Perez-Bonilla M, Bartegi A, Rosado JA, Salido GM. Olive tree wood phenolic compounds with human platelet antiaggregant properties. Blood Cells Mol Dis 2009; 42:279-85. [PMID: 19195914 DOI: 10.1016/j.bcmd.2009.01.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 01/07/2009] [Indexed: 12/23/2022]
Abstract
Oleuropein and (+)-cycloolivil are natural polyphenolic compounds with a significant radical scavenging activity present in olive tree. We have investigated the antiaggregant effects of oleuropein and (+)-cycloolivil isolated from an ethyl acetate extract of olive tree wood. Oleuropein and (+)-cycloolivil reduced the ability of thrombin to stimulate platelet aggregation. Both compounds reduced thrombin-evoked Ca(2+) release and entry to a similar extent to hydroxytyrosol. This effect was greater in platelets from patients with type 2 diabetes mellitus than in controls. Thrombin-, thapsigargin- and 2,5-di-(tert-butyl)-1,4-hydroquinone (TBHQ)-evoked protein tyrosine phosphorylation, which is involved in Ca(2+) signalling and platelet aggregation, is inhibited by oleuropein and (+)-cycloolivil. oleuropein and (+)-cycloolivil are natural oxygen radical scavengers that reduce thrombin-induced protein tyrosine phosphorylation, Ca(2+) signalling and platelet aggregation. These observations suggest that oleuropein and (+)-cycloolivil may prevent thrombotic complications associated to platelet hyperaggregability and be the base for the development of antiaggregant therapeutic strategies.
Collapse
Affiliation(s)
- Hanene Zbidi
- Unité de Recherche de Biochimie, Institut Supérieur de Biotechnologie, 5019-Monastir, Tunisia
| | | | | | | | | | | | | |
Collapse
|
12
|
El Haouari M, Rosado JA. Platelet signalling abnormalities in patients with type 2 diabetes mellitus: a review. Blood Cells Mol Dis 2008; 41:119-23. [PMID: 18387322 DOI: 10.1016/j.bcmd.2008.02.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Accepted: 02/27/2008] [Indexed: 11/29/2022]
Abstract
The hyperactivation of platelets is involved in the cardiovascular complications associated with type 2 diabetes mellitus. Altered platelet behavior contributes to the angiopathies associated with diabetes. A number of mechanisms involved in platelet activation are altered in diabetes. Platelets from type 2 diabetic patients show an enhanced endogenous reactive oxygen species production and a reduced antioxidant capability, which increase the activity of several tyrosine kinases, such as the Bruton's tyrosine kinase, MAP kinases or proteins of the SRC family. Oxidative stress is also involved in the abnormal intracellular calcium homeostasis observed in platelets from type 2 diabetics, including an enhanced resting cytosolic calcium concentration and calcium release and entry in response to agonists. Moreover, diabetes alters the bioavailability of nitric oxide in platelets. Basal nitric oxide synthase activity is reduced in homogenates of platelets obtained from patients with type 2 diabetes mellitus. The study of these abnormalities might be helpful in the development of new pharmacological strategies to reduce platelet activation in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Mohammed El Haouari
- Laboratoire de Physiologie et d'Ethnopharmacologie, Département de Biologie, Université Mohamed 1er, Faculté des Sciences, Bd. Mohamed VI, BP 717, Oujda 60000, Morocco
| | | |
Collapse
|
13
|
Ben Amor N, Bouaziz A, Romera-Castillo C, Salido S, Linares-Palomino PJ, Bartegi A, Salido GM, Rosado JA. Characterization of the Intracellular Mechanisms Involved in the Antiaggregant Properties of Cinnamtannin B-1 from Bay Wood in Human Platelets. J Med Chem 2007; 50:3937-44. [PMID: 17602466 DOI: 10.1021/jm070508d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cinnamtannin B-1, a natural A-type proanthocyanidin recently identified as a radical scavenger component of Laurus nobilis L., exerts antiaggregant and antiapoptotic effects in human platelets. Here, we have investigated the intracellular mechanisms involved in the antiaggregant effects of cinnamtannin B-1. Cinnamtannin B-1 showed a greater free radical scavenging activity than vitamin C, vitamin E, or Trolox, among other antioxidants and reduced thrombin-evoked tubulin reorganization and platelet aggregation. Thrombin-evoked activation of Btk and pp60(src) was also inhibited by cinnamtannin B-1. In conclusion, we show that cinnamtannin B-1 is a powerful oxygen radical scavenger that reduces thrombin-evoked microtubular remodeling and activation of the tyrosine kinases Btk and pp60(src), which leads to inhibition of platelet aggregation. These observations suggest that cinnamtannin B-1 may prevent thrombotic complications associated to platelet hyperaggregability and hyperactivity, although further studies are necessary to establish appropriate therapeutic strategies.
Collapse
Affiliation(s)
- Nidhal Ben Amor
- Unité de Recherche de Biochimie, Institut Supérieur de Biotechnologie, 5019-Monastir, Tunisia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Chung SC, Limnander A, Kurosaki T, Weiss A, Korenbrot JI. Coupling Ca2+ store release to Icrac channel activation in B lymphocytes requires the activity of Lyn and Syk kinases. ACTA ACUST UNITED AC 2007; 177:317-28. [PMID: 17452533 PMCID: PMC2064139 DOI: 10.1083/jcb.200702050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Activation of the B cell receptor complex in B lymphocytes causes Ca2+ release from intracellular stores, which, in turn, activates ion channels known as Icrac. We investigated the mechanisms that link Ca2+ store release to channel gating in DT40 B lymphocyte cell lines genetically manipulated to suppress the expression of several tyrosine kinases: Btk, Lyn, Syk, and the Blnk adaptor molecule. The simultaneous but not the independent suppression of Lyn and Syk expression prevents the activation of Icrac without interfering with thapsigargin-sensitive Ca2+ store release. Icrac activation by Ca2+ is reversed in mutant cells by the homologous expression of the missing kinases. Pharmacological inhibition of kinase activity by LavendustinA and PP2 cause the same functional deficit as the genetic suppression of enzyme expression. Biochemical assays demonstrate that kinase activity is required as a tonic signal: targets must be phosphorylated to link Ca2+ store release to Icrac gating. The action of kinases on Icrac activation does not arise from control of the expression level of the stromal interaction molecule 1 and Orai1 proteins.
Collapse
Affiliation(s)
- S Clare Chung
- Department of Physiology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
15
|
Harper AGS, Sage SO. A role for the intracellular protease calpain in the activation of store-operated calcium entry in human platelets. Cell Calcium 2006; 41:169-78. [PMID: 16884770 DOI: 10.1016/j.ceca.2006.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 05/21/2006] [Accepted: 05/27/2006] [Indexed: 01/02/2023]
Abstract
Here, we report a novel role for the cysteine protease calpain in store-operated calcium entry. Several structurally and mechanistically unrelated inhibitors of calpain inhibited Ca2+ entry activated in human platelets by thapsigargin-evoked Ca2+ store depletion or the physiological agonist thrombin, whereas inhibitors of other cysteine proteases were without effect. The use of the cell-permeable fluorogenic calpain substrate 7-amino-4-chloromethylcoumarin, t-BOC-l-leucyl-l-methionine amide revealed rapid activation of calpain which was closely temporally correlated with Ca2+ store depletion even in the absence of a rise in cytosolic [Ca2+]. Calpain inhibition prevented the tyrosine phosphorylation of several proteins upon Ca2+ store depletion, suggesting that calpain may lie upstream of protein tyrosine phosphorylation that is known to be required for the activation of store-operated Ca2+ entry in human platelets. Earlier studies using calpain inhibitors may need reinterpretation in the light of this finding that calpain plays a role in the activation of physiological Ca2+ entry pathways.
Collapse
Affiliation(s)
- Alan G S Harper
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | | |
Collapse
|
16
|
Campbell CG, Brown BD, Dufner D, Thorland WG. Effects of soy or milk protein durign a high-fat feeding challenge on oxidative stress, inflammation, and lipids in healthy men. Lipids 2006; 41:257-65. [PMID: 16711600 DOI: 10.1007/s11745-006-5095-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Soy isoflavones may impede atherogenic processes associated with cardiovascular disease. Research suggests that the postprandial generation of TG-rich remnants contributes to the development of atherosclerosis. The purpose of the current study was to determine if 39 g soy (85 mg aglycone isoflavones, treatment) compared with 40 g milk protein (0 mg aglycone isoflavones, control) in combination with a high-fat meal can modify postprandial, atherogenic-associated events and biomarkers for oxidative stress, inflammation, and thrombosis. Fifteen healthy men (20-47 yr) participated in a double-blind cross-over meal-challenge study occurring on two nonconsecutive days. The study meals consisted of two high-fat apple muffins consumed with either a soy or milk shake (229 mL, 41% fat, 41% carbohydrate, and 18% protein). Blood samples were obtained at baseline (fasted) and hours two, four, and six postprandial. Plasma TG significantly increased in both treatment and control meal challenges compared with baseline. There were no significant differences (P > 0.05) between treatment (soy) and control (milk) for ex vivo copper-induced LDL oxidation, serum C-reactive protein, serum interleukin-6 (IL-6), serum fibrinogen, or plasma lipids (total cholesterol, HDL, LDL, TG). IL-6-concentrations significantly decreased as a function of time during either meal challenge (P = 0.005). These data suggest that consumption of soy or milk protein in conjunction with a high-fat meal does not acutely modify postprandial oxidative stress, inflammation, or plasma lipid concentrations in young, healthy men.
Collapse
Affiliation(s)
- Christina G Campbell
- Nutrition Research Laboratory, Department of Health and Human Development, Montana State University, Bozeman, Montana 59717, USA.
| | | | | | | |
Collapse
|
17
|
Redondo PC, Ben-Amor N, Salido GM, Bartegi A, Pariente JA, Rosado JA. Ca2+-independent activation of Bruton's tyrosine kinase is required for store-mediated Ca2+ entry in human platelets. Cell Signal 2005; 17:1011-21. [PMID: 15894173 DOI: 10.1016/j.cellsig.2004.11.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 11/24/2004] [Accepted: 11/25/2004] [Indexed: 11/29/2022]
Abstract
Store-mediated Ca(2+) entry (SMCE), which is rapidly activated by depletion of the intracellular Ca(2+) stores, is a major mechanism for Ca(2+) influx. Several studies have involved tyrosine kinases in the activation of SMCE, such as pp60(src), although at present those involved in the early activation steps are unknown. Here we report the involvement of Bruton's tyrosine kinase (Btk) in the early stages of SMCE in human platelets. Cell treatment with thrombin or thapsigargin (TG) plus ionomycin (Iono) results in rapid activation of Btk, which was independent of rise in intracellular Ca(2+) concentration ([Ca(2+)](i)) but dependent on H(2)O(2) generation. Platelet treatment with Btk inhibitors, LFM-A13 or terreic acid, significantly reduced TG+Iono- and thrombin-evoked SMCE. Btk was rapidly activated by addition of low concentrations of H(2)O(2), whose effect on Ca(2+) entry was prevented by Btk inhibitors. Our results indicate that pp60(src) and Btk co-immunoprecipitate after platelet stimulation with TG+Iono, thrombin or H(2)O(2). In addition, we have found that LFM-A13 impaired actin filament reorganization after store depletion and agonist-induced activation of pp60(src), while the inhibitor of pp60(src), a protein that requires actin reorganization for its activation, did not modify Btk activation, suggesting that Btk is upstream of pp60(src). We propose a role for Btk in the early steps of activation of SMCE in human platelets.
Collapse
|
18
|
Saavedra FR, Redondo PC, Hernández-Cruz JM, Salido GM, Pariente JA, Rosado JA. Store-operated Ca(2+) entry and tyrosine kinase pp60(src) hyperactivity are modulated by hyperglycemia in platelets from patients with non insulin-dependent diabetes mellitus. Arch Biochem Biophys 2005; 432:261-8. [PMID: 15542065 DOI: 10.1016/j.abb.2004.09.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 09/29/2004] [Indexed: 11/28/2022]
Abstract
We have investigated the involvement of store-operated Ca(2+) entry (SOCE) in the abnormal platelet Ca(2+) homeostasis in patients with non insulin-dependent diabetes mellitus (NIDDM). In a medium containing 180 mg/dL glucose, platelets from NIDDM patients showed an increased SOCE compared to controls. We found that tyrosine phosphorylation was elevated in platelets from NIDDM patients. Consistent with this, the activity of the tyrosine kinase pp60(src) is enhanced in platelets from diabetic patients. When the experiments were performed in a medium containing 90 mg/dL both, SOCE and pp60(src) activity, were similar to those found in control platelets. Our results indicate that SOCE is altered in platelets from NIDDM patients probably due to the increased activity of the tyrosine kinase pp60(src). Both, SOCE and pp60(src) activity in platelets from NIDDM patients are more susceptible to the extracellular glucose concentration, which seems to be involved in the dysfunction of these mechanisms.
Collapse
|
19
|
John CD, Christian HC, Morris JF, Flower RJ, Solito E, Buckingham JC. Kinase-dependent regulation of the secretion of thyrotrophin and luteinizing hormone by glucocorticoids and annexin 1 peptides. J Neuroendocrinol 2003; 15:946-57. [PMID: 12969239 DOI: 10.1046/j.1365-2826.2003.01081.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Our previous studies have identified a role for annexin 1 (ANXA1), a protein produced by the pituitary folliculostellate cells, as a paracrine/juxtacrine mediator of the acute regulatory effects of glucocorticoids on the release of adrenocorticotropic hormone and other pituitary hormones. In the present study, we focused on the secretion of thyroid stimulating hormone (TSH) and luteinizing hormone (LH) and used a battery of ANXA1-derived peptides to identify the key domains in the ANXA1 molecule that are critical to the inhibition of peptide release. In addition, as ANXA1 is a substrate for protein kinase C (PKC) and tyrosine kinase, we examined the roles of these kinases in the manifestation of the ANXA1-dependent inhibitory actions of dexamethasone on TSH and LH release. Dexamethasone suppressed the forskolin-induced release of TSH and LH from rat anterior pituitary tissue in vitro. Its effects were mimicked by human recombinant ANXA1 (hrANXA1) and a truncated protein, ANXA1(1-188). ANXA1(Ac2-26), also suppressed stimulated peptide release but it lacked both the potency and the efficacy of the parent protein. Shorter N-terminal ANXA1 sequences were without effect. The PKC inhibitor PKC(19-36) abolished the inhibitory actions of dexamethasone on the forskolin-evoked release of TSH and LH; it also attenuated the inhibitory actions of ANXA1(Ac2-26). Similar effects were produced by annexin 5 (ANXA5) which sequesters PKC in other systems. By contrast, the tyrosine kinase inhibitors, p60v-src (137-157) and genistein, had no effect on the secretion of TSH or LH alone or in the presence of forskolin and/or dexamethasone. Dexamethasone caused the translocation of a tyrosine-phosphorylated species of ANXA1 to the surface of pituitary cells. The total amount of ANXA1 exported from the cells in response to the steroid was unaffected by tyrosine kinase blockade. However, the degree of tyrosine-phosphorylation of the exported protein was markedly reduced by genistein. These results suggest that (i) the ANXA1-dependent inhibitory actions of dexamethasone on the release of TSH and LH require PKC and sequences in the N-terminal domain of ANXA1, but are independent of tyrosine kinase, and (ii) while dexamethasone induces the cellular exportation of a tyrosine-phosphorylated species of ANXA1, tyrosine phosphorylation per se is not critical to the steroid-induced passage of ANXA1 across the membrane.
Collapse
Affiliation(s)
- C D John
- Department of Neuroendocrinology, Division of Neuroscience and Psychological Medicine, Imperial College London, London, UK
| | | | | | | | | | | |
Collapse
|
20
|
Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Griel AE, Etherton TD. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 2002; 113 Suppl 9B:71S-88S. [PMID: 12566142 DOI: 10.1016/s0002-9343(01)00995-0] [Citation(s) in RCA: 1201] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
"Bioactive compounds" are extranutritional constituents that typically occur in small quantities in foods. They are being intensively studied to evaluate their effects on health. The impetus sparking this scientific inquiry was the result of many epidemiologic studies that have shown protective effects of plant-based diets on cardiovascular disease (CVD) and cancer. Many bioactive compounds have been discovered. These compounds vary widely in chemical structure and function and are grouped accordingly. Phenolic compounds, including their subcategory, flavonoids, are present in all plants and have been studied extensively in cereals, legumes, nuts, olive oil, vegetables, fruits, tea, and red wine. Many phenolic compounds have antioxidant properties, and some studies have demonstrated favorable effects on thrombosis and tumorogenesis and promotion. Although some epidemiologic studies have reported protective associations between flavonoids or other phenolics and CVD and cancer, other studies have not found these associations. Various phytoestrogens are present in soy, but also in flaxseed oil, whole grains, fruits, and vegetables. They have antioxidant properties, and some studies demonstrated favorable effects on other CVD risk factors, and in animal and cell culture models of cancer. However, because phytoestrogens act both as partial estrogen agonists and antagonists, their effects on cancer are likely complex. Hydroxytyrosol, one of many phenolics in olives and olive oil, is a potent antioxidant. Resveratrol, found in nuts and red wine, has antioxidant, antithrombotic, and anti-inflammatory properties, and inhibits carcinogenesis. Lycopene, a potent antioxidant carotenoid in tomatoes and other fruits, is thought to protect against prostate and other cancers, and inhibits tumor cell growth in animals. Organosulfur compounds in garlic and onions, isothiocyanates in cruciferous vegetables, and monoterpenes in citrus fruits, cherries, and herbs have anticarcinogenic actions in experimental models, as well as cardioprotective effects. In summary, numerous bioactive compounds appear to have beneficial health effects. Much scientific research needs to be conducted before we can begin to make science-based dietary recommendations. Despite this, there is sufficient evidence to recommend consuming food sources rich in bioactive compounds. From a practical perspective, this translates to recommending a diet rich in a variety of fruits, vegetables, whole grains, legumes, oils, and nuts.
Collapse
Affiliation(s)
- Penny M Kris-Etherton
- Graduate Program in Nutrition, Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Pulses supply many bioactive substances found in minor amounts in food, but which may have significant metabolic and/or physiological effects. These compounds have long been classified as antinutritional factors, but many studies have reconsidered their impact on health. Some could play a role in the prevention of the major diseases of affluent societies. As these compounds can be beneficial or adverse, depending on conditions, an assessment of their various physiological effects is necessary to determine whether they should be preserved or eliminated in each main nutritional situation.
Collapse
Affiliation(s)
- Martine M-J Champ
- National Institute for Agronomic Research (INRA), Human Nutrition Research Centre, Rue de la Géraudière, BP 71627, 44316 Nantes, Cedex 03, France.
| |
Collapse
|
22
|
Dobrydneva Y, Williams RL, Morris GZ, Blackmore PF. Dietary phytoestrogens and their synthetic structural analogues as calcium channel blockers in human platelets. J Cardiovasc Pharmacol 2002; 40:399-410. [PMID: 12198326 DOI: 10.1097/00005344-200209000-00009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Phytoestrogens have been shown to inhibit platelet activation by blocking platelet calcium channels. This study examined the effect of several synthetic derivatives of trans-resveratrol, genistein, and daidzein on platelet free intracellular calcium ([Ca2+]i) elevation in thrombin-activated platelets and the possible mechanisms of this inhibitory effect. Studies were conducted on fresh human platelets from healthy volunteers. The fluorescent dye fura-2 was used to monitor [Ca2+]i in platelets. At 10 microM-resveratrol, triacetyl-trans-resveratrol, and trimethoxy-trans-resveratrol produced, respectively, 57 +/- 4%, 40 +/- 4%, and 21 +/- 1% inhibition; genistein, acetylgenistein, and dihydrogenistein produced 51 +/- 10%, 26 +/- 7%, and 16 +/- 2% inhibition, respectively; daidzein and diacetyldaidzein produced 56 +/- 5% and 45 +/- 10% inhibition of thrombin-induced [Ca2+]i elevation. The inhibitory effect was immediate and appeared to directly affect the calcium influx channels. Phytoestrogen action on [Ca2+]i did not cause alteration in nitric oxide signaling. Tyrosine phosphorylation was not involved in the inhibition of [Ca2+]i elevation by phytoestrogens, because the percent inhibition produced by the tyrosine kinase inhibitor genistein and its inactive analogue daidzein on thrombin-induced and thapsigargin-induced [Ca2+]i elevation was not significantly different for either compound at any concentration tested. Structure-activity relationship studies on this limited set of compounds reveal the requirements for the stilbene pharmacophore for the calcium-blocking activity.
Collapse
Affiliation(s)
- Yuliya Dobrydneva
- Department of Physiologogical Sciences, Eastern Virginia Medical School, Norfolk 23501, USA
| | | | | | | |
Collapse
|
23
|
Campos AH, Calixto JB, Schor N. Bradykinin induces a calcium-store- dependent calcium influx in mouse mesangial cells. Nephron Clin Pract 2002; 91:308-15. [PMID: 12053070 DOI: 10.1159/000058409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bradykinin (BK) elicits extracellular-dependent [Ca2+](i) elevations in mouse mesangial cells (MMC) that are not blocked by verapamil, nifedipine, L-nicardipine, NiCl(2), or LaCl(3). The aim of the present study was to evaluate the mechanisms involved in calcium influx induced by BK in MMC. [Ca2+](i) was analyzed through spectrofluorometry employing fura-2-AM, and the data were expressed as [Ca2+](i )obtained/[Ca2+](i )basal ratio. Heparin (IP(3), a receptor antagonist) almost abolished the effects of BK in MMC (1.85 +/- 0.15 vs. 1.13 +/- 0.02, n = 4, p = 0.001). Following external and intracellular calcium store depletion, BK's effect was absent even after successful extracellular calcium replenishment. ML-7 (a myosin light chain kinase inhibitor) blocked responses to thapsigargin (2.62 +/- 0.13 vs. 1.11 +/- 0.04, n = 4, p < 0.001), but not those of BK (6.51 +/- 0.39, n = 6, vs. 5.86 +/- 1.17, n = 4, p = 0.39). On the other hand, genistein (a tyrosine kinase inhibitor) was able to inhibit thapsigargin (3.12 +/- 0.22, n = 5, vs. 1.28 +/- 0.16, n = 4, p < 0.001) as well as BK responses (6.46 +/- 0.66 vs. 2.89 +/- 0.61, n = 4, p < 0.05). Econazole (a P-450 monooxygenase inhibitor) inhibited the responses to both thapsigargin (3.45 +/- 0.16 vs. 1.03 +/- 0.03, n = 4, p < 0.001) and BK (6.49 +/- 0.83, n = 6, vs. 1.17 +/- 0.08, n = 4, p = 0.01). Finally, responses to BK were not affected by indomethacin (6.69 +/- 0.66 vs. 6.57 +/- 0.87, n = 4, p = 0.916). Thus, BK promotes an IP(3)-sensitive store-dependent calcium influx in MMC. This phenomenon seems to involve tyrosine kinase and P-450 monooxygenase products in its transduction pathway.
Collapse
Affiliation(s)
- Alexandre H Campos
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo, Brazil
| | | | | |
Collapse
|
24
|
Abstract
Phytoestrogens have been investigated at the epidemiological, clinical and molecular levels to determine their potential health benefits. The two major groups of phytoestrogens, isoflavones and lignans, are abundant in soy products and flax respectively, but are also present in a variety of other foods. It is thought that these estrogen-like compounds may protect against chronic diseases, such as hormone-dependent cancers, cardiovascular disease and osteoporosis. Furthermore, phytoestrogens are used as a natural alternative to hormone replacement therapy and to reduce menopausal symptoms. Phytoestrogens have been shown to induce both estrogenic and anti-estrogenic effects but their biological relevance and potency have not been well characterized. In children, consumption of soy-based formulas and soy milk can lead to high levels of exposure to phytoestrogens with only limited data available concerning potential benefits or adverse effects. Phytoestrogens are considered good candidates for use in natural therapies and as chemopreventive agents in adults. Safe and efficacious levels have yet to be established.
Collapse
Affiliation(s)
- Aliza Stark
- Faculty of Agricultural, Food and Environmental Quality Sciences, Hebrew University of Jerusalem, Rehovot, Israel
| | | |
Collapse
|
25
|
Davis MJ, Wu X, Nurkiewicz TR, Kawasaki J, Gui P, Hill MA, Wilson E. Regulation of ion channels by protein tyrosine phosphorylation. Am J Physiol Heart Circ Physiol 2001; 281:H1835-62. [PMID: 11668044 DOI: 10.1152/ajpheart.2001.281.5.h1835] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ion channels are regulated by protein phosphorylation and dephosphorylation of serine, threonine, and tyrosine residues. Evidence for the latter process, tyrosine phosphorylation, has increased substantially since this topic was last reviewed. In this review, we present a comprehensive summary and synthesis of the literature regarding the mechanism and function of ion channel regulation by protein tyrosine kinases and phosphatases. Coverage includes the majority of voltage-gated, ligand-gated, and second messenger-gated channels as well as several types of channels that have not yet been cloned, including store-operated Ca2+ channels, nonselective cation channels, and epithelial Na+ and Cl- channels. Additionally, we discuss the critical roles that channel-associated scaffolding proteins may play in localizing protein tyrosine kinases and phosphatases to the vicinity of ion channels.
Collapse
Affiliation(s)
- M J Davis
- Department of Medical Physiology, Cardiovascular Research Institute, Texas A&M University System Health Science Center, College Station, Texas 77845, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Petrescu G, Costuleanu M, Slatineanu SM, Costuleanu N, Foia L, Costuleanu A. Contractile effects of angiotensin peptides in rat aorta are differentially dependent on tyrosine kinase activity. J Renin Angiotensin Aldosterone Syst 2001; 2:180-7. [PMID: 11881120 DOI: 10.3317/jraas.2001.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
It has been suggested that tyrosine kinase activity participates in the regulation of signal transduction associated with angiotensin II (Ang II)-induced pharmaco-mechanical coupling in rat aortic smooth muscle. We further tested the effects of genistein, a tyrosine-kinase inhibitor, and its inactive analogue, daidzein, on angiotensin I (Ang I), angiotensin III (Ang III) and angiotensin IV (Ang IV) contractions, as compared with those on Ang II. Genistein partially inhibited Ang II- and Ang I-induced contractions. The genistein-induced inhibition was more evident on Ang III and especially important on Ang IV contractile effects. Thus, Ang IV- and Ang III-induced contractions seem to be more dependent on tyrosine kinase activity than those evoked by Ang II or Ang I. Daidzein did not significantly affect the contractile effects of any of angiotensin peptides tested. These results clearly suggest that the inhibition of the action of angiotensin peptides actions by genistein is mediated by inhibition of endogenous tyrosine kinase activity. Furthermore, our data show that the type and/or intensity of tyrosine kinase activity is differentially associated with the contractile effects of different angiotensin peptides in rat aorta. Nifedipine, a blocker of membrane L-type Ca2+ channels, strongly inhibited Ang IV-induced contractions. At the same time, it significantly inhibited Ang III contractile effects as compared with Ang II and Ang I contractions. Meanwhile, we observed a close relationship between calcium influx and tyrosine kinase phosphorylation activity under the stimulatory effects of angiotensin peptides. Furthermore, genistein did not significantly influence the phasic contractions induced by angiotensin peptides in Ca2+-free Krebs-Henseleit solution. Thus, it appears that Ca2+ influx, rather than the release of Ca2+ from IP3-sensitive stores, may play a major role in the contractile effects of angiotensin peptides in rat aorta via tyrosine kinase activation. One argument against a direct action of genistein on the Ca2+ channel itself is that it did not markedly affect the K+-induced contraction (depolarisation) in rat aorta. At the same time, a potential role for tyrosine kinase activity in the process of calcium entry is suggested. An elevation of intracellular calcium via tyrosine kinase-mediated processes may mediate the actions of G-protein coupled receptor agonists in smooth muscle, including angiotensin peptides.
Collapse
Affiliation(s)
- G Petrescu
- Department of Physiology, University of Medicine and Pharmacy GR. T. Popa, Iasi, Romania.
| | | | | | | | | | | |
Collapse
|
27
|
Rosado JA, Meijer EM, Hamulyak K, Novakova I, Heemskerk JW, Sage SO. Fibrinogen binding to the integrin alpha(IIb)beta(3) modulates store-mediated calcium entry in human platelets. Blood 2001; 97:2648-56. [PMID: 11313254 DOI: 10.1182/blood.v97.9.2648] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Effects of the occupation of integrin alpha(IIb)beta(3) by fibrinogen on Ca(++) signaling in fura-2-loaded human platelets were investigated. Adding fibrinogen to washed platelet suspensions inhibited increases in cytosolic [Ca(++)] concentrations ([Ca(++)](i)) evoked by adenosine diphosphate (ADP) and thrombin in a concentration-dependent manner in the presence of external Ca(++) but not in the absence of external Ca(++) or in the presence of the nonselective cation channel blocker SKF96365, indicating selective inhibition of Ca(++) entry. Fibrinogen also inhibited store-mediated Ca(++) entry (SMCE) activated after Ca(++) store depletion using thapsigargin. The inhibitory effect of fibrinogen was reversed if fibrinogen binding to alpha(IIb)beta(3) was blocked using RDGS or abciximab and was absent in platelets from patients homozygous for Glanzmann thrombasthenia. Fibrinogen was without effect on SMCE once activated. Activation of SMCE in platelets occurs through conformational coupling between the intracellular stores and the plasma membrane and requires remodeling of the actin cytoskeleton. Fibrinogen inhibited actin polymerization evoked by ADP or thapsigargin in control cells and in cells loaded with the Ca(++) chelator dimethyl BAPTA. It also inhibited the translocation of the tyrosine kinase p60(src) to the cytoskeleton. These results indicate that the binding of fibrinogen to integrin alpha(IIb)beta(3) inhibits the activation of SMCE in platelets by a mechanism that may involve modulation of the reorganization of the actin cytoskeleton and the cytoskeletal association of p60(src). This action may be important in intrinsic negative feedback to prevent the further activation of platelets subjected.
Collapse
Affiliation(s)
- J A Rosado
- Department of Physiology, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Store-mediated Ca2+ entry is the main pathway for Ca2+ influx in platelets and many other cells. Several hypotheses have considered both direct and indirect coupling mechanisms between the endoplasmic reticulum and the plasma membrane. Here we pay particular attention to new insights into the regulation of store-mediated Ca2+ entry: the role of the cytoskeleton in a secretion-like coupling model. In this model, Ca2+ entry may be mediated by a reversible trafficking and coupling of the endoplasmic reticulum with the plasma membrane, that shows close parallels to the events mediating secretion. As with secretion, the actin cytoskeleton plays an inhibitory role in the activation of Ca2+ entry by preventing the approach and coupling of the endoplasmic reticulum with the plasma membrane, making cytoskeletal remodelling a key event in the activation of Ca2+ entry. We also review recent advances investigating the regulation of store-mediated Ca2+ entry by small GTPases and phosphoinositides, which might be involved in the store-mediated Ca2+ entry pathway through roles in the remodelling of the cytoskeleton.
Collapse
Affiliation(s)
- J A Rosado
- Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | | |
Collapse
|
29
|
Rosado JA, Sage SO. Regulation of plasma membrane Ca2+-ATPase by small GTPases and phosphoinositides in human platelets. J Biol Chem 2000; 275:19529-35. [PMID: 10748016 DOI: 10.1074/jbc.m001319200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have investigated the restoration of [Ca(2+)](i) in human platelets following the discharge of the intracellular Ca(2+) stores. We found that the plasma membrane Ca(2+)-ATPase is the main mechanism involved in Ca(2+) extrusion in human platelets. Treatment of platelets with the farnesylcysteine analogs, farnesylthioacetic acid and N-acetyl-S-geranylgeranyl-l-cysteine, inhibitors of activation of Ras proteins, accelerated the rate of decay of [Ca(2+)](i) to basal levels after activation with thapsigargin combined with a low concentration of ionomycin, indicating that Ras proteins are involved in the negative regulation of Ca(2+) extrusion. Rho A, which is involved in actin polymerization, was not responsible for this effect. Consistent with this, the actin polymerization inhibitors, cytochalasin D and latrunculin A, did not alter the recovery of [Ca(2+)](i). Activation of human platelets with thapsigargin and ionomycin stimulated the tyrosine phosphorylation of the plasma membrane Ca(2+)-ATPase, a mechanism that was inhibited by farnesylcysteine analogs, suggesting that Ras proteins could regulate Ca(2+) extrusion by mediating tyrosine phosphorylation of the plasma membrane Ca(2+)-ATPase. Treatment of platelets with LY294002, a specific inhibitor of phosphatidylinositol 3- and phosphatidylinositol 4-kinase, resulted in a reduction in the rate of recovery of [Ca(2+)](i) to basal levels, suggesting that the products of these kinases are involved in stimulating Ca(2+) extrusion in human platelets.
Collapse
Affiliation(s)
- J A Rosado
- Department of Physiology, University of Cambridge, Downing Street, Cambridge CB2 3EG, United Kingdom
| | | |
Collapse
|
30
|
Rosado JA, Sage SO. Phosphoinositides are required for store-mediated calcium entry in human platelets. J Biol Chem 2000; 275:9110-3. [PMID: 10734043 DOI: 10.1074/jbc.275.13.9110] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently observed that small GTP-binding proteins are important for mediation of store-mediated Ca(2+) entry in human platelets through the reorganization of the actin cytoskeleton. Because it has been shown in platelets and other cells that small GTP-binding proteins regulate the activity of phosphatidylinositol 3-kinase and phosphatidylinositol 4-kinase, whose products, phosphoinositides, play a key role in the reorganization of the actin cytoskeleton, we have investigated the role of these lipid kinases in store-mediated Ca(2+) entry. Treatment of platelets with LY294002, an inhibitor of phosphatidylinositol 3- and phosphatidylinositol 4-kinases, resulted in a concentration-dependent inhibition of Ca(2+) entry stimulated by thapsigargin or the physiological agonist, thrombin. In addition, wortmannin, another inhibitor of these kinases, which is structurally unrelated to LY294002, significantly reduced store-mediated Ca(2+) entry. The inhibitory effect of LY294002 was not mediated either by blockage of Ca(2+) channels or by modification of membrane potential. LY294002 inhibited actin polymerization stimulated by thrombin or thapsigargin. These results indicate that both phosphatidylinositol 3-kinase and phosphatidylinositol 4-kinase are required for activation of store-mediated Ca(2+) entry in human platelets and that the mechanism could involve the reorganization of the actin cytoskeleton.
Collapse
Affiliation(s)
- J A Rosado
- Department of Physiology, University of Cambridge, Downing St., Cambridge CB2 3EG, United Kingdom
| | | |
Collapse
|
31
|
Dobrydneva Y, Williams RL, Blackmore PF. trans-Resveratrol inhibits calcium influx in thrombin-stimulated human platelets. Br J Pharmacol 1999; 128:149-57. [PMID: 10498846 PMCID: PMC1571595 DOI: 10.1038/sj.bjp.0702749] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/1999] [Revised: 05/28/1999] [Accepted: 06/01/1999] [Indexed: 11/09/2022] Open
Abstract
1. The phytoestrogenic compound trans-resveratrol (trans-3,5, 4'-trihydroxystilbene) is found in appreciable quantities in grape skins and wine. It has been shown that both products rich in trans-resveratrol and pure trans-resveratrol inhibit platelet aggregation both in vivo and in vitro. However the mechanism of this action still remains unknown. 2. An essential component of the aggregation process in platelets is an increase in intracellular free Ca2+ ([Ca2+]i). Ca2+ must enter the cell from the external media through specific and tightly regulated Ca2+ channels in the plasma membrane. The objective of this study was to characterize what effect trans-resveratrol had on the Ca2+ channels in thrombin stimulated platelets. 3. In this study we showed that trans-resveratrol immediately inhibited Ca2+ influx in thrombin-stimulated platelets with an IC50 of 0.5 microM. trans-Resveratrol at 0.1, 1.0 and 10.0 microM produced 20+/-6, 37+/-6 and 57+/-4% inhibition respectively of the effect of thrombin (0.01 u ml(-1)) to increase [Ca2+]i. 4. trans-Resveratrol also inhibited spontaneous Ba2+ entry into Fura-2 loaded platelets, with 0.1, 1.0 and 10.0 microM trans-resveratrol producing 10+/-5, 30+/-5 and 50+/-7% inhibition respectively. This indicated that trans-resveratrol directly inhibited Ca2+ channel activity in the platelets in the absence of agonist stimulation. 5. trans-Resveratrol also inhibited thapsigargin-mediated Ca2+ influx into platelets. This suggests that the store-operated Ca2+ channels are one of the possible targets of trans-resveratrol. These channels rely on the emptying of the internal Ca2+ stores to initiate influx of Ca2+ into the cell. 6. The phytoestrogens genistein, daidzein, apigenin and genistein-glucoside (genistin) produced inhibitory effects against thrombin similar to those seen with trans-resveratrol. 7. We conclude that trans-resveratrol is an inhibitor of store-operated Ca2+ channels in human platelets. This accounts for the ability of trans-resveratrol to inhibit platelet aggregation induced by thrombin.
Collapse
Affiliation(s)
- Yuliya Dobrydneva
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, VA 23501, U.S.A
| | - Roy L Williams
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia, VA 23501, U.S.A
| | - Peter F Blackmore
- Department of Physiological Sciences, Eastern Virginia Medical School, PO Box 1980, Norfolk, Virginia, VA 23501-1980, U.S.A
| |
Collapse
|
32
|
Martínez MC, Martin S, Toti F, Fressinaud E, Dachary-Prigent J, Meyer D, Freyssinet JM. Significance of capacitative Ca2+ entry in the regulation of phosphatidylserine expression at the surface of stimulated cells. Biochemistry 1999; 38:10092-8. [PMID: 10433717 DOI: 10.1021/bi990129p] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The transverse redistribution of plasma membrane phosphatidylserine is one of the hallmarks of cells undergoing apoptosis and also occurs in cells fulfilling a more specialized function, such as platelets after appropriate activation. Although an increase in intracellular Ca2+ is required to trigger the remodeling of the plasma membrane, little information regarding intracellular signals leading to phosphatidylserine externalization has been provided. Scott syndrome is an extremely rare inherited disorder of the migration of phosphatidylserine toward the exoplasmic leaflet of the plasma membrane of stimulated blood cells. We have studied here the intracellular Ca2+ mobilization and Ca2+ entry involved in tyrosine phosphorylation in Epstein Barr virus (EBV)-infected B cells derived from a patient with Scott syndrome, her daughter, and control subjects. An alteration of Ca2+ entry through the plasma membrane and subsequent tyrosine phosphorylation induced by Ca2+ were observed in Scott EBV-B cells, but the release of Ca2+ from intracellular stores was normal. Furthermore, phosphatidylserine externalization at the surface of stimulated cells does not depend on tyrosine kinases. These results suggest that the defect of phosphatidylserine exposure in Scott syndrome cells is related to the alteration of a particular way of Ca2+ entry, referred to as capacitative Ca2+ entry, although some differences may be related to the cell type. Hence, this genetic mutant testifies to the prime significance of Ca2+ signaling in the regulation of phosphatidylserine expression at the surface of stimulated cells.
Collapse
Affiliation(s)
- M C Martínez
- Institut d'Hématologie et d'Immunologie, Faculté de Médecine, Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Bagchi S, Bhaumik G, Raha S. Inhibition of calcium signaling in ultraviolet-irradiated fibroblasts: role of tyrosine phosphorylation and protein kinase C. Biochem Biophys Res Commun 1999; 261:504-10. [PMID: 10425215 DOI: 10.1006/bbrc.1999.1043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our aim was to study whether ultraviolet radiation produced any alterations in the subsequent signaling response of V79 fibroblasts to mitogenic stimulus. In ultraviolet C (UVC)-irradiated V79 fibroblasts, increase in cytosolic calcium in response to thrombin was nearly abolished in the presence of 3 mM external Ca(2+). UVC-treated V79 cells showed a greatly enhanced permeability to Ca(2+) which was reversed by pretreatment with genistein, a tyrosine kinase inhibitor. Genistein also alleviated the inhibition of thrombin response caused by UVC. In UVC-treated cells, significant activation of protein kinase C (PKC) occurred only on exposure to 3 mM external calcium and PKC inhibitors (H-7 or staurosporine) reversed UVC-induced adverse effects on the thrombin response. Therefore, it is likely that protein tyrosine phosphorylation by UVC may play a role in the subsequent inhibition of thrombin response in V79 cells through increased calcium influx and activation of PKC.
Collapse
Affiliation(s)
- S Bagchi
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta, 700064, India
| | | | | |
Collapse
|
34
|
Sun X, Martinez JR, Zhang GH. Inhibition of Ca2+ influx by pentoxifylline in NR8383 alveolar macrophages. IMMUNOPHARMACOLOGY 1999; 43:47-58. [PMID: 10437656 DOI: 10.1016/s0162-3109(99)00042-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pentoxifylline (PTF), a phosphodiesterase (PDE) inhibitor, can prevent inflammation and tissue damage in animal and in vitro human studies. However, the underlying mechanism remains unclear. Since Ca2+ is a critical signal regulating the release of inflammatory mediators in macrophages, the effects of PTF on Ca2+ influx were examined in NR8383 alveolar macrophages (AMs). PTF induced a dose-dependent inhibition on Ca2+ influx activated by zymosan and by protein kinase C (PKC) activators 1,2-dioctanoyl-sn-glycerol (DOG) or phorbol-12-myristate 13-acetate (PMA). The inhibition appeared to be specifically on the receptor-operated Ca2+ entry. The capacitative Ca2+ entry was not affected by PTF. The inhibition was not due to altered cAMP levels since the zymosan-activated Ca2+ influx was not affected by the adenylate cyclase activator forskolin, nor by dibutyryl cAMP. Pretreatment with protein tyrosine kinase (PTK) inhibitor genistein abolished zymosan-induced, but not DOG-induced Ca2+ influx, suggesting that PTK is an upstream element of the signaling cascade and not the target of PTF. The Ca2+ entry activated by zymosan and by PKC activators was inhibited by the mitogen-activated protein kinase (MAPK) inhibitor PD98059. Moreover, activation of MAPK by C6-ceramide (C6C) triggered a similar Ca2+ influx as elicited by zymosan and PKC activators, suggesting that MAPK is an element of the pathway. The C6C-induced Ca2+ influx was also inhibited by PTF. These results indicate that PTF blocks the receptor-operated Ca2+ influx in NR8383 AMs by inhibiting PDE which may acts as a downstream element of the signaling pathway or by direct interaction with Ca2+ channels.
Collapse
Affiliation(s)
- X Sun
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, 78284, USA
| | | | | |
Collapse
|
35
|
Korzets A, Chagnac A, Weinstein T, Ori Y, Malachi T, Gafter U. H2O2 induces DNA repair in mononuclear cells: evidence for association with cytosolic Ca2+ fluxes. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 1999; 133:362-9. [PMID: 10218767 DOI: 10.1016/s0022-2143(99)90067-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cellular DNA repair systems are induced whenever DNA is damaged. Reactive oxygen species (ROS) are generated, in vivo, in the tissues as a result of regular cellular metabolism or after exposure to oxidizing agents, such as ultraviolet (UV) irradiation. It has been suggested that ROS mediate DNA damage. The objectives of the study were as follows: (1) to investigate whether hydrogen peroxide (H2O2), the commonly occurring cellular ROS, induces DNA repair as a response to the damage it probably causes; (2) to evaluate whether H2O2-induced DNA repair, if present, is signaled through a Ca2(+)-dependent pathway via the tyrosine kinase signal transduction. H2O2 was found to induce DNA repair in human peripheral blood mononuclear cells (PBMCs) in a dose-dependent manner. The recovery of RNA synthesis, which occurred after DNA repair, confirmed that transcribable DNA was repaired. The inhibition of tyrosine kinase activity by genistein reduced the DNA repair significantly. Furthermore, H2O2 caused a dose-dependent significant rise in cytosolic calcium ((Ca2+)i). H2O2 also induced a small rise in (Ca2+)i of cytosolic Ca2(+)-depleted cells, probably reflecting the release of Ca2+ from internal stores. Genistein inhibited both Ca2+ influx and Ca2+ release from internal stores. In summary, H2O2 induced a DNA repair synthesis that was in part Ca2+ dependent and signaled via tyrosine kinase. The changes in DNA repair paralleled changes in (Ca2+)i. The H2O2-induced (Ca2+)i rise was mostly the result of influx, but to some degree it was also due to the translocation of Ca2+ from internal stores.
Collapse
Affiliation(s)
- A Korzets
- Department of Nephrology, Rabin Medical Center, Petah-Tikva, Israel
| | | | | | | | | | | |
Collapse
|
36
|
Setchell KD, Cassidy A. Dietary isoflavones: biological effects and relevance to human health. J Nutr 1999; 129:758S-767S. [PMID: 10082786 DOI: 10.1093/jn/129.3.758s] [Citation(s) in RCA: 657] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Substantial evidence indicates that diets high in plant-based foods may explain the epidemiologic variance of many hormone-dependent diseases that are a major cause of mortality and morbidity in Western populations. There is now an increased awareness that plants contain many phytoprotectants. Lignans and isoflavones represent two of the main classes of phytoestrogens of current interest in clinical nutrition. Although ubiquitous in their occurrence in the plant kingdom, these bioactive nonnutrients are found in particularly high concentrations in flaxseeds and soybeans and have been found to have a wide range of hormonal and nonhormonal activities that serve to provide plausible mechanisms for the potential health benefits of diets rich in phytoestrogens. Data from animal and in vitro studies provide convincing evidence for the potential of phytoestrogens in influencing hormone-dependent states; although the clinical application of diets rich in these estrogen mimics is in its infancy, data from preliminary studies suggest beneficial effects of importance to health. This review focuses on the more recent studies pertinent to this field and includes, where appropriate, the landmark and historical literature that has led to the exponential increase in interest in phytoestrogens from a clinical nutrition perspective.
Collapse
Affiliation(s)
- K D Setchell
- Clinical Mass Spectrometry, Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | |
Collapse
|
37
|
Abstract
CHD is a major cause of morbidity and mortality in women. The incidence of CHD in premenopausal women is low but increases substantially after the menopause, and this difference suggests that endogenous oestrogens are cardioprotective. Observational prospective studies have consistently shown that exogenous oestrogens also lower CHD risk. The biological mechanisms by which endogenous and exogenous oestrogens exert their protective effect are multifactorial, affecting lipids, carbohydrate metabolism, body fat distribution and blood pressure. The prevention of CHD with oestrogen therapy is therefore aimed both at correction of the traditional risk factors and at direct control of vessel structure and function. The wide international variation in rates of CHD together with the lower mortality in sub-groups of the population suggests that a considerable proportion of CHD may be prevented by dietary modification. Since phyto-oestrogens are structually similar to oestrogen, they have the potential to mimic its effects in vivo. The hypocholesterolaemic effects of soyabean protein (rich in phyto-oestrogen precursors) are well established, but the underlying mechanism and atherogenic potential of these changes are unknown. One isoflavone, genistein, has been shown in vitro to exert effects which may slow the development of atherosclerotic disease. However, further studies are required to determine the dose-related changes induced by phyto-oestrogens on serum lipoproteins, haemostasis and vascular function.
Collapse
Affiliation(s)
- A Cassidy
- Centre for Nutrition and Food Safety, University of Surrey, Guildford, UK.
| | | |
Collapse
|
38
|
Stojilkovic SS. Calcium Signaling Systems. Compr Physiol 1998. [DOI: 10.1002/cphy.cp070109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Riondino S, Gazzaniga PP, Pulcinelli FM. Shape change is independent of tyrosine phosphorylation of p130 in human platelets. Thromb Res 1998; 92:73-8. [PMID: 9792114 DOI: 10.1016/s0049-3848(98)00109-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
It has been previously suggested that tyrosine phosphorylation of p62, p68, and p130 might be necessary for the platelet shape change to occur. In preliminary studies we observed that high concentrations (30 microM) of a protein kinase C inhibitor, Ro 31-8220, selectively suppressed p130 tyrosine phosphorylation induced by thrombin, the thromboxane synthetic analogue (U46619) and ADP. Therefore, we have investigated the correlation, if any, between p130 tyrosine phosphorylation and platelet shape change induced by the same agonists in the presence of Ro 31-8220. Our results demonstrated that high concentrations of this compound almost completely abolished p130 tyrosine phosphorylation, whereas they had no effect on platelet shape change, thus proving a dissociation between these two phenomena. Our data support the hypothesis that a role in platelet shape change might be played by tyrosine phosphorylation of proteins other than p130.
Collapse
Affiliation(s)
- S Riondino
- Department of Experimental Medicine and Pathology, University of Rome La Sapienza, Italy
| | | | | |
Collapse
|
40
|
Abstract
Women are exposed to xenobiotic estrogens at least to the same extent as men. These estrogenic chemicals are either from plant material in the diet (phytoestrogens) or from industrial sources. Mainly industrially derived environmental estrogens may accumulate within the food chain and persist in human adipose tissue. In contrast, phytoestrogens do not bioaccumulate and are rapidly excreted in urine. The phytoestrogens probably represent the source of most extensive exposure for humans. Epidemiological evidence suggests that diets rich in phytoestrogens are associated with reduced incidences of cardiovascular disease, breast cancer, prostate cancer and osteoporosis. The numerous bioactivities (other than just estrogenicity) of phytoestrogens and related dietary compounds make it difficult to single out the mechanisms mediating such protective effects. The possibility that the newly discovered estrogen receptor beta may be an important modulator of phytoestrogen action is opening up new lines of research. While the evidence suggests that phytoestrogens may be of positive relevance to postmenopausal women, indications that exposure of women to industrially derived xenobiotic estrogens provides risks to health remain unproven. Further work is necessary to clarify the relative importance of 'xenobiotic' estrogens to human health, but it must be emphasized that the estrogenic potency of all the xenobiotic estrogens is very low compared with that of endogenous estrogens.
Collapse
Affiliation(s)
- A Cassidy
- Centre for Nutrition and Food Safety, School of Biological Sciences, University of Surrey, London, UK
| | | |
Collapse
|
41
|
Grönroos E, Thodeti CK, Sjölander A. Leukotriene D4 induces a rapid increase in cAMP in the human epithelial cell line, Int 407: a potential role for this signal in the regulation of calcium influx through the plasma membrane. Cell Calcium 1998; 24:9-16. [PMID: 9793684 DOI: 10.1016/s0143-4160(98)90084-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although the LTD4-induced Ca2+ influx in human epithelial cells has been shown to be regulated by a pertussis toxin-sensitive heterotrimeric G-protein, most likely a G alpha i3 protein [Adolfsson J.L.P., Ohd J.F., Sjölander A. Leukotriene D4-induced activation and translocation of the G-protein alpha i3-subunit in human epithelial cells. Biochem Biophys Res Commun 1996; 226: 413-419], the signalling pathway further downstream is still unclear. In the present study, we investigated the possible involvement of cAMP and protein kinase A activity in the LTD4-induced Ca2+ influx in the epithelial cell line Int 407. Stimulation with LTD4, but not with the calcium ionophore ionomycin, triggered a rapid increase (peak at 7 s) in the cellular cAMP level, an effect that was totally abolished by pertussis toxin. Furthermore, the LTD4-induced Ca2+ signal was reduced by 60% when cells that had been pre-incubated with the protein kinase A inhibitor Rp-cAMPS (50 microM for 30 min) were stimulated in a calcium containing medium. In contrast, Rp-cAMPS had no apparent effect on the LTD4-induced Ca2+ signal when the cells were stimulated in a calcium-depleted medium. The immediate LTD4-induced protein tyrosine phosphorylation (15 s), previously shown to be necessary for the subsequent Ca2+ influx, was abolished not only by pretreatment with pertussis toxin but also by exposure to Rp-cAMPS. Furthermore, direct activation of the cellular adenylyl cyclase activity by treatment with forskolin alone induced a prompt Ca2+ signal in the presence, but not in the absence, of extracellular Ca2+, identical results were obtained with the cell permeable cAMP analogue 8-bromo-cAMP. In addition, forskolin induced protein tyrosine phosphorylation similar to that seen with LTD4. These results suggest that protein kinase A activity participates in the regulation of the LTD4-induced Ca2+ influx at a site that is downstream of the activation of the pertussis toxin-sensitive G-protein but upstream of a LTD4-stimulated tyrosine kinase(s).
Collapse
Affiliation(s)
- E Grönroos
- Department of Laboratory Medicine, Lund University, Malmö, Sweden
| | | | | |
Collapse
|
42
|
Affiliation(s)
- F C Mooren
- Medizinische Klinik und Poliklinik B, Westfälische Wilhelm-Universität, Münster, Germany
| | | |
Collapse
|
43
|
Abstract
Incidences of breast, colorectal and prostate cancer are high in the Western world compared to countries in Asia. We have postulated that the Western diet compared to the semivegetarian diet in some Asian countries may alter hormone production, metabolism or action at the cellular level by some biochemical mechanisms. Our interest has been focused on two groups of hormone-like diphenolic phyto-oestrogens of dietary origin, the lignans and isoflavonoids abundant in plasma of subjects living in areas with low cancer incidence. The precursors of the biologically active compounds detected in man are found in soybean products, whole-grain cereal food, seeds, and berries. The plant lignan and isoflavonoid glycosides are converted by intestinal bacteria to hormone-like compounds. The weakly oestrogenic diphenols formed influence sex-hormone production, metabolism and biological activity, intracellular enzymes, protein synthesis, growth factor action, malignant cell proliferation, differentiation, cell adhesion and angiogenesis in such a way as to make them strong candidates for a role as natural cancer-protective compounds. Their effect on some of the most important steroid biosynthetic enzymes may result in beneficial modulation of hormone concentrations and action in the cells preventing development of cancer. Owing to their oestrogenic activity they reduce hot flushes and vaginal dryness in postmenopausal women and may to some degree inhibit osteoporosis, but alone they may be insufficient for complete protection. Soy intake prevents oxidation of the low-density lipoproteins in vitro when isolated from soy-treated individuals and affect favourably plasma lipid concentrations. Animal experiments provide evidence suggesting that both lignans and isoflavonoids may prevent the development of cancer as well as atherosclerosis. However, in some of these experiments it has not been possible to separate the phyto-oestrogen effect from the effect of other components in the food. The isoflavonoids and lignans may play a significant inhibitory role in cancer development particularly in the promotional phase of the disease, but recent evidence points also to a role in the initiation stage of carcinogenesis. At present, however, no definite recommendations can be made as to the dietary amounts needed for prevention of disease. This review deals with all the above-mentioned aspects of phyto-oestrogens.
Collapse
Affiliation(s)
- H Adlercreutz
- Department of Clinical Chemistry, University of Helsinki, Meilahti Hospital, Finland.
| | | |
Collapse
|
44
|
Heemskerk JW, Farndale RW, Sage SO. Effects of U73122 and U73343 on human platelet calcium signalling and protein tyrosine phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1355:81-8. [PMID: 9030204 DOI: 10.1016/s0167-4889(96)00113-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have investigated the actions of the PLC inhibitor, U73122, and its close analogue, U73343, which does not inhibit PLC, in Fura-2-loaded human platelets. Rises in [Ca2+]i evoked by thrombin and collagen, and the TxA2-dependent rise in [Ca2+]i evoked by thapsigargin, were abolished by U73122, indicating that it inhibits the activity of both beta and gamma isoforms of PLC. The supposed control compound U73343, was found to inhibit TxA2 formation; it therefore partially inhibited the rise in [Ca2+]i evoked by low concentrations of thrombin, by thapsigargin or by collagen. U73343 had a greater effect than aspirin on the action of collagen, indicating an action on the TxA2-independent component of the signal, via PLC gamma-U73343 lowered TxA2 production by inhibiting the activation of cPLA2, probably at a tyrosine phosphorylation step. U73343 seems to inhibit only the tyrosine kinases involved in the activation of PLC gamma and the generation of TxA2. In contrast, U73122 increased tyrosine phosphorylation of platelet proteins, perhaps by inhibiting receptor independent tyrosine phosphatases, but inhibited all further tyrosine phosphorylation on addition of thrombin or other agonists.
Collapse
Affiliation(s)
- J W Heemskerk
- Department of Human Biology and Biochemistry, University of Limburg, Maastricht, The Netherlands
| | | | | |
Collapse
|
45
|
Abstract
Depletion of intracellular Ca2+ stores activates an influx of Ca2+ from the extracellular medium. This capacitative Ca2+ entry as originally proposed by Putney in 1986 can be studied with drugs that inhibit sarco/endoplasmic reticulum ATPase. In the present study we examined the effects of depletion of internal Ca2+ stores on Ca2+ influx in rat Sertoli cells utilizing thapsigargin and cyclopiazonic acid. Both inhibitors induced a rapid and dose-dependent rise in [Ca2+]i that was dependent on an influx of Ca2+ from the extracellular medium since it was rapidly blocked by the addition of the Ca2+ chelating agent EGTA. In the absence of external Ca2+ thapsigargin and cyclopiazonic acid still produced an increase in [Ca2+]i that was lower than that observed in Ca2+ medium and was transient since [Ca2+]i returned to basal levels by few minutes. In these experimental conditions readdition of Ca2+ induced a rapid rise in [Ca2+]i supporting a role for Ca2+ influx. Increase of plasma membrane permeability to Ca2+ induced by thapsigargin and cyclopiazonic acid were confirmed by the ability of Mn2+ to permeate through Ca2+ channels and to quench intracellular fura-2 fluorescence after challenge with these inhibitors. Mn2+ induced influx was blocked by La3+, a well known blocker of Ca2+ channels. These results demonstrate that internal Ca2+ stores depletion induce Ca2+ influx from the extracellular medium in rat Sertoli cells providing evidence for the existence of capacitative Ca2+ entry in these cells.
Collapse
Affiliation(s)
- M Rossato
- III Cattedra di Patologia Medica, University of Padova, Italy
| | | | | | | |
Collapse
|
46
|
Vostal JG, Shafer B. Thapsigargin-induced calcium influx in the absence of detectable tyrosine phosphorylation in human platelets. J Biol Chem 1996; 271:19524-9. [PMID: 8702645 DOI: 10.1074/jbc.271.32.19524] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Tyrosine phosphorylation is a potential mechanism for mediating store-operated calcium (SOC) influx in platelets and other nonexcitable cells. Thapsigargin induces calcium-dependent tyrosine phosphorylation and SOC influx in platelets. We prevented thapsigargin-induced tyrosine phosphorylation by buffering cytosolic calcium rise with the calcium chelator 1, 2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetomethoxyester (BAPTA-AM). Calcium influx, induced by thapsigargin and measured by 45Ca2+ accumulation, persisted in BAPTA-loaded platelets in the absence of tyrosine phosphorylation. This calcium influx was blocked by the SOC influx inhibitor SKF-96365. Tyrosine kinase inhibitors have been used to demonstrate a role for tyrosine phosphorylation in SOC influx. We compared the effects of four tyrosine kinase inhibitors genistein, methyl-2, 5-dihydroxycinnamate (erbstatin analog), tyrphostin A47, and lavendustin A, on thapsigargin-induced tyrosine phosphorylation in control platelets and on thapsigargin-induced SOC influx into BAPTA-loaded platelets in absence of tyrosine phosphorylation. Tyrphostin A47 prevented all measurable tyrosine phosphorylation in control platelets, but did not decrease calcium influx into BAPTA-loaded platelets. Genistein and the erbstatin analog were poor inhibitors of tyrosine phosphorylation but decreased SOC influx into BAPTA-loaded platelets to 55.8 +/- 3% and 51.9 +/- 7.5% of control, respectively. Lavendustin A did not decrease tyrosine phosphorylation or calcium influx. Thus, thapsigargin-induced SOC influx can occur without detectable tyrosine phosphorylation and the inhibition of SOC influx by tyrosine kinase inhibitors does not correlate with their ability to prevent tyrosine phosphorylation.
Collapse
Affiliation(s)
- J G Vostal
- Laboratory of Cellular Hematology, Division of Hematology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
47
|
Wheeler-Jones CP, May MJ, Morgan AJ, Pearson JD. Protein tyrosine kinases regulate agonist-stimulated prostacyclin release but not von Willebrand factor secretion from human umbilical vein endothelial cells. Biochem J 1996; 315 ( Pt 2):407-16. [PMID: 8615807 PMCID: PMC1217210 DOI: 10.1042/bj3150407] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The rapid synthesis and release of prostacyclin (PGI2) and the exocytotic secretion of von Willebrand Factor (vWF) elicited by activation of G-protein-coupled receptors on endothelium occur via signaling mechanisms which are incompletely defined. Activation of protein tyrosine kinases (PTKs) and modulation of the tyrosine-phosphorylation state of endogenous proteins have been implicated in several cellular processes including arachidonate release and exocytosis. In the present study we have examined the regulatory role of PTKs in agonist-stimulated release of PGI2 and vWF from human umbilical vein endothelial cells (HUVECs) using two chemically and mechanistically dissimilar PTK inhibitors (genistein and ST271). Genistein, but not the less active analogue daidzein, dose-dependently attenuated PGI2 release in response to thrombin and histamine (IC50 approx. 20 microM), and to the thrombin-receptor-activating peptide. A more potent inhibition of thrombin- and histamine-induced PGI2 synthesis was observed in cells exposed to ST271. In contrast, neither genistein nor ST271 modulated agonist-drive vWF secretion. At concentrations that abolished PGI2 release, genistein blocked thrombin- or histamine-evoked tyrosine phosphorylation of a 42 kDa protein. Ca2+ ionophore-induced PGI2 generation, but not vWF secretion, was also inhibited by both genistein and ST271, suggesting that these agents modulate PGI2 synthesis by acting at, or distal to, agonist-induced changes in intracellular CA2+ ([Ca2+]i). In fura-2-loaded HUVECs genistein partially reduced the histamine-induced peak [Ca2+]i but had no effect on the thrombin response. Ca(2+)-induced PGI2 release from electrically permeabilized HUVECs was abolished in the presence of ST271 or genistein, but not diadzein. The generation of PGI2 in response to exogenous arachidonic acid was not modulated by genistein or ST271, suggesting that PTK inhibitors do not directly inhibit cyclo-oxygenase activity. Taken together, these results suggest that PTKs regulate PGI2 synthesis and release in HUVECs by modulating, directly or indirectly, a CA(2+)-sensitive step upstream of cyclo-oxygenase.
Collapse
Affiliation(s)
- C P Wheeler-Jones
- Vascular Biology Research Centre, King's College London, Kensington, U.K
| | | | | | | |
Collapse
|
48
|
Cichowski K, Brugge JS, Brass LF. Thrombin receptor activation and integrin engagement stimulate tyrosine phosphorylation of the proto-oncogene product, p95vav, in platelets. J Biol Chem 1996; 271:7544-50. [PMID: 8631786 DOI: 10.1074/jbc.271.13.7544] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The vav proto-oncogene product, p95vav or Vav, is primarily expressed in hematopoietic cells and has been shown to be a substrate for tyrosine kinases. Although its function is unknown, Vav shares a region of homology with DBL, an exchange factor for the Rho family of GTP-binding proteins. The presence of this domain and the observation that cells transformed with Vav display prominent stress fibers and focal adhesions similar to those that are observed in RhoA transformed cells suggests that Vav may play a role in regulating the actin cytoskeleton. We have, therefore, examined Vav phosphorylation in platelets, which undergo dramatic cytoskeletal reorganization in response to agonists. Two potent platelet agonists, thrombin (via its G protein-coupled receptor) and collagen (via its interaction with the alpha2beta1 integrin), caused Vav to become phosphorylated on tyrosine. Weaker platelet agonists, including ADP, epinephrine and the thromboxane A2 analog, U46619, did not. The phosphorylation of Vav in response to thrombin was maximal within 15 s and was unaffected by aspirin, inhibitors of aggregation, or the presence of the ADP scavenger, apyrase. Vav phosphorylation was also observed when platelets became adherent to immobilized collagen (via integrin alpha2beta1), fibronectin (via integrin alpha5beta1), and fibrinogen (via integrin alphaIIbbeta3). These results show that Vav phosphorylation by tyrosine kinases 1) occurs during platelet activation by potent agonists, 2) also occurs when platelets adhere to biologically relevant matrix proteins, 3) requires neither platelet aggregation nor the release of secondary agonists such as ADP and TxA2, and 4) can be initiated by at least some members of two additional classes of receptors, G protein-coupled receptors and integrins, providing further evidence that both of these can couple to tyrosine kinases.
Collapse
Affiliation(s)
- K Cichowski
- Department of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | | | | |
Collapse
|
49
|
Jenner S, Farndale RW, Sage SO. Wortmannin inhibits store-mediated calcium entry and protein tyrosine phosphorylation in human platelets. FEBS Lett 1996; 381:249-51. [PMID: 8601465 DOI: 10.1016/0014-5793(96)00130-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effects of the WT on store-mediated Ca2+ entry and protein tyrosine phosphorylation were investigated in fura-2-loaded human platelets. Wortmannin (2 microM) attenuated the rise in [Ca2+]i caused by Ca2+ entry while having no effect on the mobilisation of Ca2+ from internal stores. It also reduced store-depletion-evoked protein tyrosine phosphorylation. These findings demonstrate that WT is an inhibitor of tyrosine phosphorylation and store-mediated calcium entry and provide further evidence for the involvement of a tyrosine phosphorylation step in the link between Ca2+ store depletion and Ca2+ influx in human platelets.
Collapse
Affiliation(s)
- S Jenner
- The Physiological Laboratory, University of Cambridge, UK
| | | | | |
Collapse
|
50
|
Cassidy A. Physiological effects of phyto-oestrogens in relation to cancer and other human health risks. Proc Nutr Soc 1996; 55:399-417. [PMID: 8832809 DOI: 10.1079/pns19960038] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- A Cassidy
- Nutritional Chemoprevention and Gut Metabolism Group, Medical Research Council, Dunn Clinical Nutrition Centre, Cambridge
| |
Collapse
|