1
|
Beazer J, Sillars A, Beck S, Christoffersen C, Ferraz M, Mulder MT, Graham D, Karlsson H, Ljunggren S, Gill J, Freeman D. Favourable HDL composition in endurance athletes is not associated with changes in HDL in vitro antioxidant and endothelial anti-inflammatory function. Biosci Rep 2024; 44:BSR20241165. [PMID: 39344511 PMCID: PMC11499383 DOI: 10.1042/bsr20241165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024] Open
Abstract
Given the failure of high-density lipoprotein (HDL) raising therapies to reduce cardiovascular disease risk, attention has turned towards HDL composition and vascular protective functions. In individuals with insulin resistance, exercise interventions recover HDL function. However, the effect of exercise on HDL in otherwise healthy individuals is unknown. This cross-sectional study aimed to measure HDL composition and antioxidant/endothelial anti-inflammatory function in insulin sensitive endurance athlete and healthy control men. HDL was isolated using density gradient ultracentrifugation. HDL composition was measured using microplate assays for apolipoprotein A-I, total cholesterol content and apolipoprotein M. HDL protein composition was measured using nano-liquid chromatography tandem mass spectrometry. HDL subclass distribution was measured by native gel electrophoresis. HDL in vitro antioxidant function was measured by paraoxonase-1 activity assay and anti-inflammatory function assessed in endothelial cells. Compared with controls, endurance athlete HDL had higher apolipoprotein A-1 (1.65 ± 0.62 mg/ml vs 1.21 ± 0.34 mg/ml, P=0.028) and higher total cholesterol content (2.09 ± 0.44 mmol/L vs 1.54 ± 0.33 mmol/L, P<0.001). Proteomics revealed higher apolipoprotein A-II, A-IV and D and transthyretin in endurance athlete HDL versus controls. There was no difference observed in in vitro HDL antioxidant or anti-inflammatory functions between controls and endurance athletes. Despite a more favourable composition, endurance athlete HDL did not have higher in vitro antioxidant or anti-inflammatory function. It is possible that HDL has a ceiling of function, i.e. that healthy HDL function cannot be enhanced by endurance exercise.
Collapse
Affiliation(s)
- Jack David Beazer
- School of Cardiovascular and Metabolic Health, Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, United Kingdom
| | - Anne Sillars
- School of Cardiovascular and Metabolic Health, Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, United Kingdom
| | - Sally Beck
- School of Cardiovascular and Metabolic Health, Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, United Kingdom
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Section 3-01-3, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark and Institute of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3A, 2200 Copenhagen, Denmark
| | - Maria J. Ferraz
- Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Gorlaeus Building, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Monique T. Mulder
- Division of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, Erasmus University Medical Centre, Dr Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Delyth Graham
- School of Cardiovascular and Metabolic Health, Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, United Kingdom
| | - Helen Karlsson
- Occupational and Environmental Medicine Center in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, SE-58183 Linköping, Sweden
| | - Stefan Ljunggren
- Occupational and Environmental Medicine Center in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, SE-58183 Linköping, Sweden
| | - Jason Gill
- School of Cardiovascular and Metabolic Health, Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, United Kingdom
| | - Dilys J. Freeman
- School of Cardiovascular and Metabolic Health, Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, United Kingdom
| |
Collapse
|
2
|
Haraji S, Talaei-Hassanloui R, Ahmed S, Jin G, Lee D, Kim Y. Apolipoprotein D3 and LOX product play a role in immune-priming of a lepidopteran insect, Spodoptera exigua. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 158:105198. [PMID: 38795942 DOI: 10.1016/j.dci.2024.105198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024]
Abstract
Immune-priming occurs in insects after a prior pathogen exposure. However, its underlying mechanism in insects remains elusive. In the present work, immune-priming was detected in a lepidopteran insect, Spodoptera exigua. Specifically, a prior infection with a heat-killed pathogenic bacterium, Escherichia coli, led to increased survival upon the second infection of different pathogens. Plasma collected from larvae with the prior infection possessed the immune-priming factor(s) that significantly up-regulated cellular and humoral immune responses of naïve larvae. Our study also finds that variations in the timing of plasma collection for priming larvae resulted in distinct impacts on both cellular and humoral responses. However, when the active plasma exhibiting the immune-priming was heat-treated, it lost this priming activity, therefore suggesting that protein factor(s) play a role in this immune-priming. An immunofluorescence assay showed that the hemocytes collected from the immune-primed larvae highly reacted to a polyclonal antibody specific to a vertebrate lipocalin, apolipoprotein D (ApoD). Among 27 ApoD genes (Se-ApoD1 ∼ Se-ApoD27) of S. exigua, Se-ApoD3 was found to be highly induced during the immune-priming, in which it was shown to be expressed in hemocytes and fat body from a fluorescence in situ hybridization analysis. RNA interference of Se-ApoD3 expression significantly impaired the immune-priming of S. exigua larvae. Moreover, the inhibition of eicosanoid biosynthesis suppressed the immune-priming, in which treatment with a lipoxygenase (LOX) inhibitor-and not treatment with a cyclooxygenase inhibitor-suppressed immune-priming. Further, an addition of LOX product such as lipoxin A4 or lipoxin B4 significantly rescued the lost immune-priming activity. Taken together, these results suggest that a complex of ApoD3 and LOX product mediates the immune-priming activity of S. exigua.
Collapse
Affiliation(s)
- Shiva Haraji
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea; Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Reza Talaei-Hassanloui
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Shabbir Ahmed
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea
| | - Gahyeon Jin
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea
| | - Donghee Lee
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea.
| |
Collapse
|
3
|
He Z, Pan L, Xu Q, Zhou Y, Li P, Li Z, Wang Q. Studies on the characteristics of polycyclic aromatic hydrocarbons accumulation in lipids and the disturbance of lipid metabolism of Ruditapes philippinarum. CHEMOSPHERE 2024; 364:143304. [PMID: 39251158 DOI: 10.1016/j.chemosphere.2024.143304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) constitute a class of persistent organic pollutants with strong lipophilicity, which readily accumulate within organisms and have the effect to induce disorders in lipid metabolism. The present study aimed to investigate the accumulation localization and pattern of PAHs in Ruditapes philippinarum, and to reveal the association between PAHs and lipids metabolism. The 21-day exposure experiment was conducted using a mixture of phenanthrene, chrysene, and benzo[a]pyrene (the proportion is 1:1:1) at concentrations of 0.4 μg/L, 2 μg/L, and 10 μg/L. The tissue distribution of PAHs indicated that the digestive gland was the primary site of PAHs accumulation. Meanwhile, fluorescence colocalization suggested that PAHs primarily accumulated within the lipid droplets of digestive gland cells. This study further determined the transcriptomic and lipidomic profiles of the digestive gland to analyze the key genes involved in disrupted lipid metabolism and the major lipids affected. Lipidomic analysis identified the key differential metabolites as triglycerides (TGs). Furthermore, TGs were upregulated in the digestive gland had a total carbon atom number of 50-64 and a total number of 3-9 double bonds in the acyl side chains. Biochemical analysis experiments and oil red O stained frozen sections confirmed that the content of TGs steadily increased in various tissues during the experiment, leading to an elevated digestive gland index. Changes of lipid metabolism associated genes expression level also indicated that the synthesis of lipid in digestive gland were up-regulated while the decomposition was down-regulated. This study is the first to demonstrate the cellular localization of PAHs accumulation in bivalves and confirms the pattern of variation in TGs, providing new insights into the mechanisms of PAHs bioaccumulation and lipid metabolism disruption.
Collapse
Affiliation(s)
- Zhiheng He
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Qiuhong Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Pengfei Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Zeyuan Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Qiaoqiao Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
4
|
Dai Y, Bi M, Jiao Q, Du X, Yan C, Jiang H. Astrocyte-derived apolipoprotein D is required for neuronal survival in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:143. [PMID: 39095480 PMCID: PMC11297325 DOI: 10.1038/s41531-024-00753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
Apolipoprotein D (ApoD), a lipocalin transporter of small hydrophobic molecules, plays an essential role in several neurodegenerative diseases. It was reported that increased immunostaining for ApoD of glial cells surrounding dopaminergic (DAergic) neurons was observed in the brains of Parkinson's disease (PD) patients. Although preliminary findings supported the role of ApoD in neuroprotection, its derivation and effects on the degeneration of nigral DAergic neurons are largely unknown. In the present study, we observed that ApoD levels released from astrocytes were increased in PD models both in vivo and in vitro. When co-cultured with astrocytes, due to the increased release of astrocytic ApoD, the survival rate of primary cultured ventral midbrain (VM) neurons was significantly increased with 1-methyl-4-phenylpyridillium ion (MPP+) treatment. Increased levels of TAp73 and its phosphorylation at Tyr99 in astrocytes were required for the increased ApoD levels and its release. Conditional knockdown of TAp73 in the nigral astrocytes in vivo could aggravate the neurodegeneration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated PD mice. Our findings reported that astrocyte-derived ApoD was essential for DAergic neuronal survival in PD models, might provide new therapeutic targets for PD.
Collapse
Affiliation(s)
- Yingying Dai
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Chunling Yan
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| | - Hong Jiang
- Qingdao Hospital (Qingdao Municipal Hospital), University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
5
|
Ekim Kocabey A, Schneiter R. Human lipocalins bind and export fatty acids through the secretory pathway of yeast cells. Front Microbiol 2024; 14:1309024. [PMID: 38328584 PMCID: PMC10849133 DOI: 10.3389/fmicb.2023.1309024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/12/2023] [Indexed: 02/09/2024] Open
Abstract
The activation of fatty acids to their acyl-CoA derivatives is a crucial step for their integration into more complex lipids or their degradation via beta-oxidation. Yeast cells employ five distinct acyl-CoA synthases to facilitate this ATP-dependent activation of acyl chains. Notably, mutant cells that are deficient in two of these fatty acid-activating (FAA) enzymes, namely, Faa1 and Faa4, do not take up free fatty acids but rather export them out of the cell. This unique fatty acid export pathway depends on small, secreted pathogenesis-related yeast proteins (Pry). In this study, we investigate whether the expression of human fatty acid-binding proteins, including Albumin, fatty acid-binding protein 4 (Fabp4), and three distinct lipocalins (ApoD, Lcn1, and Obp2a), could promote fatty acid secretion in yeast. To optimize the expression and secretion of these proteins, we systematically examined various signal sequences in both low-copy and high-copy number plasmids. Our findings reveal that directing these fatty-acid binding proteins into the secretory pathway effectively promotes fatty acid secretion from a sensitized quadruple mutant model strain (faa1∆ faa4∆ pry1∆ pry3∆). Furthermore, the level of fatty acid secretion exhibited a positive correlation with the efficiency of protein secretion. Importantly, the expression of all human lipid-binding proteins rescued Pry-dependent fatty acid secretion, resulting in the secretion of both long-chain saturated and unsaturated fatty acids. These results not only affirm the in vitro binding capabilities of lipocalins to fatty acids but also present a novel avenue for enhancing the secretion of valuable lipidic compounds. Given the growing interest in utilizing yeast as a cellular factory for producing poorly soluble compounds and the potential of lipocalins as platforms for engineering substrate-binding specificity, our model is considered as a powerful tool for promoting the secretion of high-value lipid-based molecules.
Collapse
Affiliation(s)
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
6
|
del Valle E, Rubio-Sardón N, Menéndez-Pérez C, Martínez-Pinilla E, Navarro A. Apolipoprotein D as a Potential Biomarker in Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:15631. [PMID: 37958618 PMCID: PMC10650001 DOI: 10.3390/ijms242115631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Neuropsychiatric disorders (NDs) are a diverse group of pathologies, including schizophrenia or bipolar disorders, that directly affect the mental and physical health of those who suffer from them, with an incidence that is increasing worldwide. Most NDs result from a complex interaction of multiple genes and environmental factors such as stress or traumatic events, including the recent Coronavirus Disease (COVID-19) pandemic. In addition to diverse clinical presentations, these diseases are heterogeneous in their pathogenesis, brain regions affected, and clinical symptoms, making diagnosis difficult. Therefore, finding new biomarkers is essential for the detection, prognosis, response prediction, and development of new treatments for NDs. Among the most promising candidates is the apolipoprotein D (Apo D), a component of lipoproteins implicated in lipid metabolism. Evidence suggests an increase in Apo D expression in association with aging and in the presence of neuropathological processes. As a part of the cellular neuroprotective defense machinery against oxidative stress and inflammation, changes in Apo D levels have been demonstrated in neuropsychiatric conditions like schizophrenia (SZ) or bipolar disorders (BPD), not only in some brain areas but in corporal fluids, i.e., blood or serum of patients. What is not clear is whether variation in Apo D quantity could be used as an indicator to detect NDs and their progression. This review aims to provide an updated view of the clinical potential of Apo D as a possible biomarker for NDs.
Collapse
Affiliation(s)
- Eva del Valle
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (E.d.V.); (N.R.-S.); (C.M.-P.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Nuria Rubio-Sardón
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (E.d.V.); (N.R.-S.); (C.M.-P.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Carlota Menéndez-Pérez
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (E.d.V.); (N.R.-S.); (C.M.-P.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Eva Martínez-Pinilla
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (E.d.V.); (N.R.-S.); (C.M.-P.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Ana Navarro
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (E.d.V.); (N.R.-S.); (C.M.-P.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| |
Collapse
|
7
|
Fyfe-Desmarais G, Desmarais F, Rassart É, Mounier C. Apolipoprotein D in Oxidative Stress and Inflammation. Antioxidants (Basel) 2023; 12:antiox12051027. [PMID: 37237893 DOI: 10.3390/antiox12051027] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Apolipoprotein D (ApoD) is lipocalin able to bind hydrophobic ligands. The APOD gene is upregulated in a number of pathologies, including Alzheimer's disease, Parkinson's disease, cancer, and hypothyroidism. Upregulation of ApoD is linked to decreased oxidative stress and inflammation in several models, including humans, mice, Drosophila melanogaster and plants. Studies suggest that the mechanism through which ApoD modulates oxidative stress and regulate inflammation is via its capacity to bind arachidonic acid (ARA). This polyunsaturated omega-6 fatty acid can be metabolised to generate large variety of pro-inflammatory mediators. ApoD serves as a sequester, blocking and/or altering arachidonic metabolism. In recent studies of diet-induced obesity, ApoD has been shown to modulate lipid mediators derived from ARA, but also from eicosapentaenoic acid and docosahexaenoic acid in an anti-inflammatory way. High levels of ApoD have also been linked to better metabolic health and inflammatory state in the round ligament of morbidly obese women. Since ApoD expression is upregulated in numerous diseases, it might serve as a therapeutic agent against pathologies aggravated by OS and inflammation such as many obesity comorbidities. This review will present the most recent findings underlying the central role of ApoD in the modulation of both OS and inflammation.
Collapse
Affiliation(s)
- Guillaume Fyfe-Desmarais
- Laboratory of Metabolism of Lipids, Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Department of Biological Sciences, University of Quebec in Montreal (UQAM), 141 Av. du Président-Kennedy, Montreal, QC H2X 1Y4, Canada
| | - Fréderik Desmarais
- Department of Medecine, Faculty of Medecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, 1050 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
| | - Éric Rassart
- Laboratory of Metabolism of Lipids, Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Department of Biological Sciences, University of Quebec in Montreal (UQAM), 141 Av. du Président-Kennedy, Montreal, QC H2X 1Y4, Canada
| | - Catherine Mounier
- Laboratory of Metabolism of Lipids, Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Department of Biological Sciences, University of Quebec in Montreal (UQAM), 141 Av. du Président-Kennedy, Montreal, QC H2X 1Y4, Canada
| |
Collapse
|
8
|
Apolipoprotein D modulates lipid mediators and osteopontin in an anti-inflammatory direction. Inflamm Res 2023; 72:263-280. [PMID: 36536251 DOI: 10.1007/s00011-022-01679-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND HDL has been proposed to possess anti-inflammatory properties; however, the detail mechanisms have not been fully elucidated. METHODS We investigated the roles of Apolipoprotein D (ApoD) in the pathogenesis of inflammation in the mouse model of diet-induced obesity and that of lipopolysaccharide-induced sepsis and the in vitro experiments. Furthermore, we analyzed serum ApoD levels in human subjects. RESULTS The overexpression of human ApoD decreased the plasma IL-6 and TNF-a levels in both mice models. Lipidomics analyses demonstrated association of ApoD with increase of arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, as well as of their metabolites, and of the anti-inflammatory molecule sphingosine 1-phosphate, and decrease of proinflammatory lysophosphatidic acids and lysophosphatidylinositol. ApoD-containing lipoproteins might directly bind eicosapentaenoic acid and docosahexaenoic acid. The modulations of the lysophosphatidic acid and sphingosine 1-phosphate levels resulted from the suppression of autotaxin expression and elevation of apolipoprotein M (ApoM), respectively. Moreover, ApoD negatively regulated osteopontin, a proinflammatory adipokine. The activation of PPARg by ApoD might suppress autotaxin and osteopontin. Serum ApoD levels were negatively correlated with the serum osteopontin and autotaxin levels and, positively with serum ApoM levels. CONCLUSION ApoD is an anti-inflammatory apolipoprotein, which modulates lipid mediators and osteopontin in an anti-inflammatory direction.
Collapse
|
9
|
Wu LJ, Li F, Song Y, Zhang ZF, Fan YL, Liu TX. Proteome Analysis of Male Accessory Gland Secretions in the Diamondback Moth, Plutella xylostella (Lepidoptera: Plutellidae). INSECTS 2023; 14:132. [PMID: 36835702 PMCID: PMC9960318 DOI: 10.3390/insects14020132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
In insects, male accessory gland proteins (ACPs) are important reproductive proteins secreted by male accessory glands (MAGs) of the internal male reproductive system. During mating, ACPs are transferred along with sperms inside female bodies and have a significant impact on the post-mating physiology changes of the females. Under sexual selection pressures, the ACPs exhibit remarkably rapid and divergent evolution and vary from species to species. The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a major insect pest of cruciferous vegetables worldwide. Mating has a profound impact on the females' behavior and physiology in this species. It is still unclear what the ACPs are in this species. In this study, two different proteomic methods were used to identify ACPs in P. xylostella. The proteins of MAGs were compared immediately before and after mating by using a tandem mass tags (TMT) quantitative proteomic analysis. The proteomes of copulatory bursas (CB) in mated females shortly after mating were also analyzed by the shotgun LC-MS/MS technique. In total, we identified 123 putative secreted ACPs. Comparing P. xylostella with other four insect ACPs, trypsins were the only ACPs detected in all insect species. We also identified some new insect ACPs, including proteins with chitin binding Peritrophin-A domain, PMP-22/ EMP/ MP20/ Claudin tight junction domain-containing protein, netrin-1, type II inositol 1,4,5-trisphosphate 5-phosphatase, two spaetzles, allatostatin-CC, and cuticular protein. This is the first time that ACPs have been identified and analyzed in P. xylostella. Our results have provided an important list of putative secreted ACPs, and have set the stage for further exploration of the functions of these putative proteins in P. xylostella reproduction.
Collapse
Affiliation(s)
- Li-Juan Wu
- State Key Laboratory for Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs P. R. China, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Fan Li
- State Key Laboratory for Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Institute of Agricultural Sciences of Suqian, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Yue Song
- State Key Laboratory for Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs P. R. China, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Zhan-Feng Zhang
- State Key Laboratory for Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs P. R. China, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Yong-Liang Fan
- State Key Laboratory for Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs P. R. China, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Tong-Xian Liu
- State Key Laboratory for Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs P. R. China, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Institute of Entomology, Guizhou University, Guiyang 550025, China
| |
Collapse
|
10
|
Santos DV, Gontijo NF, Pessoa GCD, Sant'Anna MRV, Araujo RN, Pereira MH, Koerich LB. An updated catalog of lipocalins of the chagas disease vector Rhodnius prolixus (Hemiptera, Reduviidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 146:103797. [PMID: 35640811 DOI: 10.1016/j.ibmb.2022.103797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
The haematophagy process by arthropods has been one of the main targets of studies in the parasite-host interaction, and the kissing-bug Rhodnius prolixus, vector of the protozoan Trypanosoma cruzi, has been one of the main models for such studies. Still in the 1980s, it was identified that among the salivary proteins for disrupting vertebrate host homeostasis, lipocalins were among the most relevant proteins for this process. Since then, 30 lipocalins have been identified in the salivary glands of R. prolixus, that promotes vasodilatation, prevents inflammation, act as anticoagulants and inhibits platelet aggregation. The present work aims to identify new lipocalins from R. prolixus, combining transcriptome and genome data. Identified new genes were mapped and had their structure annotated. To infer an evolutionary relationship between lipocalins, and to support the predicted functions for each lipocalin, all amino acid sequences were used to construct phylogenetic trees. We identified a total of 29 new lipocalins, 3 new bioaminogenic-biding proteins (which act to inhibit platelet aggregation and vasodilation), 9 new inhibitors of platelet aggregation, 7 new apolipoproteins and 10 lipocalins with no putative function. In addition, we observed that several of the lipocalins are also expressed in different R. prolxius tissues, including gut, central nervous system, antennae, and reproductive organs. In addition to newly identified lipocalins and a mapping the new and old lipocalins in the genome of R. prolixus, our study also carried out a review on functional status and nomenclature of some of the already identified lipocalins. Our study reinforces that we are far from understanding the role of lipocalins in the physiology of R. prolixus, and that studies of this family are still of great relevance.
Collapse
Affiliation(s)
- Daniela V Santos
- Laboratorio de Fisiologia de Insetos Hematofagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Nelder F Gontijo
- Laboratorio de Fisiologia de Insetos Hematofagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Garsielle C D Pessoa
- Laboratorio de Fisiologia de Insetos Hematofagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Mauricio R V Sant'Anna
- Laboratorio de Fisiologia de Insetos Hematofagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Ricardo N Araujo
- Laboratorio de Fisiologia de Insetos Hematofagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Marcos H Pereira
- Laboratorio de Fisiologia de Insetos Hematofagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Leonardo B Koerich
- Laboratorio de Fisiologia de Insetos Hematofagos, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
| |
Collapse
|
11
|
Elevated levels of apolipoprotein D predict poor outcome in patients with suspected or established coronary artery disease. Atherosclerosis 2021; 341:27-33. [PMID: 34959206 DOI: 10.1016/j.atherosclerosis.2021.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/23/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Apolipoprotein D (apoD) is a lipocalin exerting neuroprotective effects. However, the relevance of apoD in respect to cardiovascular risk is largely unexplored. Therefore, this study aimed to evaluate the ability of apoD to predict future all-cause mortality, cardiovascular mortality, and cardiovascular events. METHODS Serum apoD levels were measured in a cohort of 531 Caucasian individuals who underwent coronary angiography (356 males, 175 females; mean age 65 ± 10 years). Fatal and non-fatal events were recorded over a median follow-up period of 5.8 years. RESULTS ApoD concentrations at baseline correlated significantly with age, presence of the metabolic syndrome, body mass index, lipoprotein levels, fasting glucose, and estimated glomerular filtration rate. Kaplan-Meier curve analyses by gender-stratified quartiles of apoD revealed that the cumulative incidence rates of mortality and cardiovascular events become higher with increasing apoD levels. The adjusted hazard ratios for participants in the highest quartile of apoD compared to those in the lowest quartile were 4.00 (95% confidence interval [CI] 1.49-10.74) for overall mortality, 5.47 (95% CI 1.20-25.00) for cardiovascular mortality, and 2.52 (95% CI 1.28-5.00) for cardiovascular events. CONCLUSIONS High circulating levels of apoD are an indicator of poor prognosis in patients with suspected or established coronary artery disease.
Collapse
|
12
|
Sanchez D, Ganfornina MD. The Lipocalin Apolipoprotein D Functional Portrait: A Systematic Review. Front Physiol 2021; 12:738991. [PMID: 34690812 PMCID: PMC8530192 DOI: 10.3389/fphys.2021.738991] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein D is a chordate gene early originated in the Lipocalin protein family. Among other features, regulation of its expression in a wide variety of disease conditions in humans, as apparently unrelated as neurodegeneration or breast cancer, have called for attention on this gene. Also, its presence in different tissues, from blood to brain, and different subcellular locations, from HDL lipoparticles to the interior of lysosomes or the surface of extracellular vesicles, poses an interesting challenge in deciphering its physiological function: Is ApoD a moonlighting protein, serving different roles in different cellular compartments, tissues, or organisms? Or does it have a unique biochemical mechanism of action that accounts for such apparently diverse roles in different physiological situations? To answer these questions, we have performed a systematic review of all primary publications where ApoD properties have been investigated in chordates. We conclude that ApoD ligand binding in the Lipocalin pocket, combined with an antioxidant activity performed at the rim of the pocket are properties sufficient to explain ApoD association with different lipid-based structures, where its physiological function is better described as lipid-management than by long-range lipid-transport. Controlling the redox state of these lipid structures in particular subcellular locations or extracellular structures, ApoD is able to modulate an enormous array of apparently diverse processes in the organism, both in health and disease. The new picture emerging from these data should help to put the physiological role of ApoD in new contexts and to inspire well-focused future research.
Collapse
Affiliation(s)
- Diego Sanchez
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| | - Maria D Ganfornina
- Instituto de Biologia y Genetica Molecular, Unidad de Excelencia, Universidad de Valladolid-Consejo Superior de Investigaciones Cientificas, Valladolid, Spain
| |
Collapse
|
13
|
Adipose-Derived Lipid-Binding Proteins: The Good, the Bad and the Metabolic Diseases. Int J Mol Sci 2021; 22:ijms221910460. [PMID: 34638803 PMCID: PMC8508731 DOI: 10.3390/ijms221910460] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Adipose tissue releases a large range of bioactive factors called adipokines, many of which are involved in inflammation, glucose homeostasis and lipid metabolism. Under pathological conditions such as obesity, most of the adipokines are upregulated and considered as deleterious, due to their pro-inflammatory, pro-atherosclerotic or pro-diabetic properties, while only a few are downregulated and would be designated as beneficial adipokines, thanks to their counteracting properties against the onset of comorbidities. This review focuses on six adipose-derived lipid-binding proteins that have emerged as key factors in the development of obesity and diabetes: Retinol binding protein 4 (RBP4), Fatty acid binding protein 4 (FABP4), Apolipoprotein D (APOD), Lipocalin-2 (LCN2), Lipocalin-14 (LCN14) and Apolipoprotein M (APOM). These proteins share structural homology and capacity to bind small hydrophobic molecules but display opposite effects on glucose and lipid metabolism. RBP4 and FABP4 are positively associated with metabolic syndrome, while APOD and LCN2 are ubiquitously expressed proteins with deleterious or beneficial effects, depending on their anatomical site of expression. LCN14 and APOM have been recently identified as adipokines associated with healthy metabolism. Recent findings on these lipid-binding proteins exhibiting detrimental or protective roles in human and murine metabolism and their involvement in metabolic diseases are also discussed.
Collapse
|
14
|
Yin J, Spillman E, Cheng ES, Short J, Chen Y, Lei J, Gibbs M, Rosenthal JS, Sheng C, Chen YX, Veerasammy K, Choetso T, Abzalimov R, Wang B, Han C, He Y, Yuan Q. Brain-specific lipoprotein receptors interact with astrocyte derived apolipoprotein and mediate neuron-glia lipid shuttling. Nat Commun 2021; 12:2408. [PMID: 33893307 PMCID: PMC8065144 DOI: 10.1038/s41467-021-22751-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/29/2021] [Indexed: 02/08/2023] Open
Abstract
Lipid shuttling between neurons and glia contributes to the development, function, and stress responses of the nervous system. To understand how a neuron acquires its lipid supply from specific lipoproteins and their receptors, we perform combined genetic, transcriptome, and biochemical analyses in the developing Drosophila larval brain. Here we report, the astrocyte-derived secreted lipocalin Glial Lazarillo (GLaz), a homolog of human Apolipoprotein D (APOD), and its neuronal receptor, the brain-specific short isoforms of Drosophila lipophorin receptor 1 (LpR1-short), cooperatively mediate neuron-glia lipid shuttling and support dendrite morphogenesis. The isoform specificity of LpR1 defines its distribution, binding partners, and ability to support proper dendrite growth and synaptic connectivity. By demonstrating physical and functional interactions between GLaz/APOD and LpR1, we elucidate molecular pathways mediating lipid trafficking in the fly brain, and provide in vivo evidence indicating isoform-specific expression of lipoprotein receptors as a key mechanism for regulating cell-type specific lipid recruitment.
Collapse
Affiliation(s)
- Jun Yin
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Emma Spillman
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Ethan S Cheng
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jacob Short
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Yang Chen
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jingce Lei
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mary Gibbs
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Justin S Rosenthal
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Chengyu Sheng
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yuki X Chen
- The City University of New York, Graduate Center-Advanced Science Research Center, New York, NY, USA
- The City College of New York, CUNY, New York, NY, USA
| | - Kelly Veerasammy
- The City University of New York, Graduate Center-Advanced Science Research Center, New York, NY, USA
- The City College of New York, CUNY, New York, NY, USA
| | - Tenzin Choetso
- The City University of New York, Graduate Center-Advanced Science Research Center, New York, NY, USA
- The City College of New York, CUNY, New York, NY, USA
| | - Rinat Abzalimov
- The City University of New York, Graduate Center-Advanced Science Research Center, New York, NY, USA
| | - Bei Wang
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Chun Han
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Ye He
- The City University of New York, Graduate Center-Advanced Science Research Center, New York, NY, USA
| | - Quan Yuan
- Dendrite Morphogenesis and Plasticity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
15
|
Desmarais F, Hervé V, Bergeron KF, Ravaut G, Perrotte M, Fyfe-Desmarais G, Rassart E, Ramassamy C, Mounier C. Cerebral Apolipoprotein D Exits the Brain and Accumulates in Peripheral Tissues. Int J Mol Sci 2021; 22:ijms22084118. [PMID: 33923459 PMCID: PMC8073497 DOI: 10.3390/ijms22084118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Apolipoprotein D (ApoD) is a secreted lipocalin associated with neuroprotection and lipid metabolism. In rodent, the bulk of its expression occurs in the central nervous system. Despite this, ApoD has profound effects in peripheral tissues, indicating that neural ApoD may reach peripheral organs. We endeavor to determine if cerebral ApoD can reach the circulation and accumulate in peripheral tissues. Three hours was necessary for over 40% of all the radiolabeled human ApoD (hApoD), injected bilaterally, to exit the central nervous system (CNS). Once in circulation, hApoD accumulates mostly in the kidneys/urine, liver, and muscles. Accumulation specificity of hApoD in these tissues was strongly correlated with the expression of lowly glycosylated basigin (BSG, CD147). hApoD was observed to pass through bEnd.3 blood brain barrier endothelial cells monolayers. However, cyclophilin A did not impact hApoD internalization rates in bEnd.3, indicating that ApoD exit from the brain is either independent of BSG or relies on additional cell types. Overall, our data showed that ApoD can quickly and efficiently exit the CNS and reach the liver and kidneys/urine, organs linked to the recycling and excretion of lipids and toxins. This indicated that cerebral overexpression during neurodegenerative episodes may serve to evacuate neurotoxic ApoD ligands from the CNS.
Collapse
Affiliation(s)
- Frederik Desmarais
- Laboratoire du Métabolisme Moléculaire des Lipides, Centre de Recherches CERMO-FC, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (F.D.); (K.F.B.); (G.R.); (G.F.-D.)
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (V.H.); (E.R.)
| | - Vincent Hervé
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (V.H.); (E.R.)
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 boul. des Prairies, Laval, QC H7V 1B7, Canada;
| | - Karl F. Bergeron
- Laboratoire du Métabolisme Moléculaire des Lipides, Centre de Recherches CERMO-FC, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (F.D.); (K.F.B.); (G.R.); (G.F.-D.)
| | - Gaétan Ravaut
- Laboratoire du Métabolisme Moléculaire des Lipides, Centre de Recherches CERMO-FC, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (F.D.); (K.F.B.); (G.R.); (G.F.-D.)
| | - Morgane Perrotte
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 boul. des Prairies, Laval, QC H7V 1B7, Canada;
| | - Guillaume Fyfe-Desmarais
- Laboratoire du Métabolisme Moléculaire des Lipides, Centre de Recherches CERMO-FC, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (F.D.); (K.F.B.); (G.R.); (G.F.-D.)
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (V.H.); (E.R.)
| | - Eric Rassart
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (V.H.); (E.R.)
| | - Charles Ramassamy
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 boul. des Prairies, Laval, QC H7V 1B7, Canada;
- Correspondence: (C.R.); (C.M.)
| | - Catherine Mounier
- Laboratoire du Métabolisme Moléculaire des Lipides, Centre de Recherches CERMO-FC, Département des Sciences Biologiques, Université du Québec à Montréal (UQAM), 141 av. du Président-Kennedy, Montréal, QC H2X 1Y4, Canada; (F.D.); (K.F.B.); (G.R.); (G.F.-D.)
- Correspondence: (C.R.); (C.M.)
| |
Collapse
|
16
|
Targeting metabolic pathways for extension of lifespan and healthspan across multiple species. Ageing Res Rev 2020; 64:101188. [PMID: 33031925 DOI: 10.1016/j.arr.2020.101188] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Metabolism plays a significant role in the regulation of aging at different levels, and metabolic reprogramming represents a major driving force in aging. Metabolic reprogramming leads to impaired organismal fitness, an age-dependent increase in susceptibility to diseases, decreased ability to mount a stress response, and increased frailty. The complexity of age-dependent metabolic reprogramming comes from the multitude of levels on which metabolic changes can be connected to aging and regulation of lifespan. This is further complicated by the different metabolic requirements of various tissues, cross-organ communication via metabolite secretion, and direct effects of metabolites on epigenetic state and redox regulation; however, not all of these changes are causative to aging. Studies in yeast, flies, worms, and mice have played a crucial role in identifying mechanistic links between observed changes in various metabolic traits and their effects on lifespan. Here, we review how changes in the organismal and organ-specific metabolome are associated with aging and how targeting of any one of over a hundred different targets in specific metabolic pathways can extend lifespan. An important corollary is that restriction or supplementation of different metabolites can change activity of these metabolic pathways in ways that improve healthspan and extend lifespan in different organisms. Due to the high levels of conservation of metabolism in general, translating findings from model systems to human beings will allow for the development of effective strategies for human health- and lifespan extension.
Collapse
|
17
|
Growth, Metabolite, Antioxidative Capacity, Transcriptome, and the Metabolome Response to Dietary Choline Chloride in Pacific White Shrimp Litopenaeus vannamei. Animals (Basel) 2020; 10:ani10122246. [PMID: 33266099 PMCID: PMC7760581 DOI: 10.3390/ani10122246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Choline is a vitamin-like nutrient and has many metabolic and physiological functions in aquatic animals. Unfortunately, the information on the optimal requirement of dietary choline in Litopenaeus vannamei is limited, and the molecular and metabolic mechanisms of choline on L. vannamei are unclear. Hence, in this study, the growth performance, whole-body composition, serum characteristics, hepatopancreatic antioxidant indexes, serum metabolome and hepatopancreas transcriptome were performed. In this study, the growth of L. vannamei was not affected by dietary choline. Dietary choline played an important role in arachidonic acid and glycerophospholipid metabolism and decreased the oxidant damage of L. vannamei, while excessive choline can inhibit the digestion of protein and reduce the whole-body crude protein in shrimp. Based on the results of weight gain and lipid peroxidation reduction, 1082 mg/kg dietary choline could meet the growth requirement of L. vannamei, but 2822 mg/kg dietary choline was needed to reduce peroxidation damage. The present study would provide valuable information on the requirement of choline in L. vannamei, and help to understand the molecular and metabolic mechanisms of choline in shrimp. Abstract To determine the response of Pacific white shrimp Litopenaeus vannamei to different levels of dietary choline, juvenile white shrimp (1.75 ± 0.09 g) were fed six semi-purified diets supplemented with 0 (control), 2000, 4000, 6000, 8000, and 12,000 mg/kg choline chloride for eight weeks. Growth performance, whole-body composition, serum characteristics and hepatopancreatic antioxidant indexes were evaluated. Meanwhile, serum metabolome and hepatopancreas transcriptome were performed to examine the overall difference in metabolite and gene expression. The weight gain, survival, specific growth rate, condition factor and hepatosomatic index were not affected by dietary choline levels. The shrimp fed 6000 mg/kg dietary choline chloride gained the maximal whole-body crude protein, which was significantly higher than that of shrimp fed with 12,000 mg/kg dietary choline. Serum total cholesterol of shrimp fed 6000 mg/kg dietary choline was higher than that in shrimp fed 4000 mg/kg choline. Dietary choline significantly decreased malondialdehyde content, superoxide dismutase, and glutathione peroxidase activities in shrimp hepatopancreas. Compared with the shrimp fed 6000 mg/kg dietary choline chloride, the glycerophospholipid metabolism pathway was significantly enriched in the shrimp fed 0 mg/kg dietary choline chloride, and the choline content and bile salt-activated lipase-like expression were upregulated. The expression of trypsin-1-like in protein digestion and absorption pathway was significantly downregulated in the shrimp fed 12,000 mg/kg dietary choline chloride. Apolipoprotein D might be a potential biomarker in shrimp, and dietary choline played an important role in lipid metabolism, especially in the reduction of oxidative damage in L. vannamei. Based on the results of weight gain and degree of oxidative damage, 1082 mg/kg dietary choline could meet the growth requirement of L. vannamei, but 2822 mg/kg dietary choline was needed to reduce peroxidation damage.
Collapse
|
18
|
Qiao JW, Fan YL, Wu BJ, Wang D, Liu TX. Involvement of apolipoprotein D in desiccation tolerance and adult fecundity of Acyrthosiphon pisum. JOURNAL OF INSECT PHYSIOLOGY 2020; 127:104160. [PMID: 33137328 DOI: 10.1016/j.jinsphys.2020.104160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 06/11/2023]
Abstract
Apolipoprotein D (ApoD) is a lipocalin superfamily member that plays important roles in the transport of small hydrophobic molecules, lipid metabolism, and stress resistance. Cuticular hydrocarbons are the principal components of the epicuticular lipid layer and play a critical role in water retention against environmental desiccation stress; however, the mechanism underlying the role of ApoD in insect desiccation tolerance has not yet been elucidated. Here, we report the molecular constitution, functional analysis, and phylogenetic relationship of the ApoD gene in Acyrthosiphon pisum (ApApoD). We found that ApApoD was transcribed throughout the life cycle of A. pisum, but was prominently expressed in the embryonic period and abdominal cuticle. In addition, we optimized the dose and silencing duration of RNAi, observing that RNAi against ApApoD significantly reduced the levels of both internal and cuticular hydrocarbons and adult fecundity. Moreover, cuticular hydrocarbon deficiency increased the sensitivity of aphids to desiccation stress and reduced their survival time, while desiccation stress significantly increased ApApoD expression. Together, it is confirmed that ApApoD participates in regulating cuticular hydrocarbon content of aphids under desiccation stress and is crucial for aphid reproduction. Therefore, the ApApoD gene of A. pisum may be a potential target for RNAi-based insect pest control due to its involvement in cuticular hydrocarbon accumulation and reproduction.
Collapse
Affiliation(s)
- Jian-Wen Qiao
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yong-Liang Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Bing-Jin Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
19
|
Sałkowska A, Karaś K, Karwaciak I, Walczak-Drzewiecka A, Krawczyk M, Sobalska-Kwapis M, Dastych J, Ratajewski M. Identification of Novel Molecular Markers of Human Th17 Cells. Cells 2020; 9:cells9071611. [PMID: 32635226 PMCID: PMC7407666 DOI: 10.3390/cells9071611] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022] Open
Abstract
Th17 cells are important players in host defense against pathogens such as Staphylococcus aureus, Candida albicans, and Bacillus anthracis. Th17 cell-mediated inflammation, under certain conditions in which balance in the immune system is disrupted, is the underlying pathogenic mechanism of certain autoimmune disorders, e.g., rheumatoid arthritis, Graves' disease, multiple sclerosis, and psoriasis. In the present study, using transcriptomic profiling, we selected genes and analyzed the expression of these genes to find potential novel markers of Th17 lymphocytes. We found that APOD (apolipoprotein D); C1QL1 (complement component 1, Q subcomponent-like protein 1); and CTSL (cathepsin L) are expressed at significantly higher mRNA and protein levels in Th17 cells than in the Th1, Th2, and Treg subtypes. Interestingly, these genes and the proteins they encode are well associated with the function of Th17 cells, as these cells produce inflammation, which is linked with atherosclerosis and angiogenesis. Furthermore, we found that high expression of these genes in Th17 cells is associated with the acetylation of H2BK12 within their promoters. Thus, our results provide new information regarding this cell type. Based on these results, we also hope to better identify pathological conditions of clinical significance caused by Th17 cells.
Collapse
Affiliation(s)
- Anna Sałkowska
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.S.); (K.K.)
| | - Kaja Karaś
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.S.); (K.K.)
| | - Iwona Karwaciak
- Laboratory of Transcriptional Regulation, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland;
| | - Aurelia Walczak-Drzewiecka
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.W.-D.); (J.D.)
| | | | - Marta Sobalska-Kwapis
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
- BBMRI.pl Consortium, 54-066 Wroclaw, Poland
| | - Jarosław Dastych
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.W.-D.); (J.D.)
| | - Marcin Ratajewski
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (A.S.); (K.K.)
- Correspondence: ; Tel.: +48-42-209-33-89
| |
Collapse
|
20
|
Rassart E, Desmarais F, Najyb O, Bergeron KF, Mounier C. Apolipoprotein D. Gene 2020; 756:144874. [PMID: 32554047 DOI: 10.1016/j.gene.2020.144874] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/28/2022]
Abstract
ApoD is a 25 to 30 kDa glycosylated protein, member of the lipocalin superfamily. As a transporter of several small hydrophobic molecules, its known biological functions are mostly associated to lipid metabolism and neuroprotection. ApoD is a multi-ligand, multi-function protein that is involved lipid trafficking, food intake, inflammation, antioxidative response and development and in different types of cancers. An important aspect of ApoD's role in lipid metabolism appears to involve the transport of arachidonic acid, and the modulation of eicosanoid production and delivery in metabolic tissues. ApoD expression in metabolic tissues has been associated positively and negatively with insulin sensitivity and glucose homeostasis in a tissue dependent manner. ApoD levels rise considerably in association with aging and neuropathologies such as Alzheimer's disease, stroke, meningoencephalitis, moto-neuron disease, multiple sclerosis, schizophrenia and Parkinson's disease. ApoD is also modulated in several animal models of nervous system injury/pathology.
Collapse
Affiliation(s)
- Eric Rassart
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada.
| | - Frederik Desmarais
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada; Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Ouafa Najyb
- Laboratoire de Biologie Moléculaire, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Karl-F Bergeron
- Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| | - Catherine Mounier
- Laboratoire du Métabolisme Moléculaire des Lipides, Université du Québec à Montréal, Département des Sciences Biologiques, Case Postale 8888, Succursale Centre-ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
21
|
Desmarais F, Bergeron KF, Rassart E, Mounier C. Apolipoprotein D overexpression alters hepatic prostaglandin and omega fatty acid metabolism during the development of a non-inflammatory hepatic steatosis. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:522-531. [PMID: 30630053 DOI: 10.1016/j.bbalip.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/17/2018] [Accepted: 01/06/2019] [Indexed: 12/31/2022]
Abstract
Apolipoprotein D (ApoD) is a secreted lipocalin associated with neuroprotection and lipid metabolism. Overexpression of ApoD in mouse neural tissue induces the development of a non-inflammatory hepatic steatosis in 12-month-old transgenic animals. Previous data indicates that accumulation of arachidonic acid, ApoD's preferential ligand, and overactivation of PPARγ are likely the driving forces in the development of the pathology. However, the lack of inflammation under those conditions is surprising. Hence, we further investigated the apparent repression of inflammation during hepatic steatosis development in aging transgenic animals. The earliest modulation of lipid metabolism and inflammation occurred at 6 months with a transient overexpression of L-PGDS and concomitant overproduction of 15d-PGJ2, a PPARγ agonist. Hepatic lipid accumulation was detectable as soon as 9 months. Inflammatory polarization balance varied in time, with a robust anti-inflammatory profile at 6 months coinciding with 15d-PGJ2 overproduction. Omega-3 and omega-6 fatty acids were preferentially stored in the liver of 12-month-old transgenic mice and resulted in a higher omega-3/omega-6 ratio compared to wild type mice of the same age. Thus, inflammation seems to be controlled by several mechanisms in the liver of transgenic mice: first by an increase in 15d-PGJ2 production and later by a beneficial omega-3/omega-6 ratio. PPARγ seems to play important roles in these processes. The accumulation of several omega fatty acids species in the transgenic mouse liver suggests that ApoD might bind to a broader range of fatty acids than previously thought.
Collapse
Affiliation(s)
- Frederik Desmarais
- Molecular Metabolism of Lipids Laboratory, BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal (UQAM), Canada
| | - Karl-F Bergeron
- Molecular Metabolism of Lipids Laboratory, BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal (UQAM), Canada
| | - Eric Rassart
- Molecular Metabolism of Lipids Laboratory, BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal (UQAM), Canada
| | - Catherine Mounier
- Molecular Metabolism of Lipids Laboratory, BioMed Research Center, Biological Sciences Department, University of Quebec in Montreal (UQAM), Canada.
| |
Collapse
|
22
|
Khoonsari PE, Ossipova E, Lengqvist J, Svensson CI, Kosek E, Kadetoff D, Jakobsson PJ, Kultima K, Lampa J. The human CSF pain proteome. J Proteomics 2019; 190:67-76. [DOI: 10.1016/j.jprot.2018.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/27/2018] [Accepted: 05/20/2018] [Indexed: 12/13/2022]
|
23
|
Glasgow BJ, Abduragimov AR. Ligand binding complexes in lipocalins: Underestimation of the stoichiometry parameter (n). BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:1001-1007. [PMID: 30037780 PMCID: PMC6481938 DOI: 10.1016/j.bbapap.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/15/2018] [Accepted: 07/03/2018] [Indexed: 11/18/2022]
Abstract
The stoichiometry of a ligand binding reaction to a protein is given by a parameter (n). The value of this parameter may indicate the presence of protein monomer or dimers in the binding complex. Members of the lipocalin superfamily show variation in the stoichiometry of binding to ligands. In some cases the stoichiometry parameter (n) has been variously reported for the same protein as mono- and multimerization of the complex. Prime examples include retinol binding protein, β lactoglobulin and tear lipocalin, also called lipocalin-1(LCN1). Recent work demonstrated the stoichiometric ratio for ceramide:tear lipocalin varied (range n = 0.3-0.75) by several different methods. The structure of ceramide raises the intriguing possibility of a lipocalin dimer complex with each lipocalin molecule attached to one of the two alkyl chains of ceramide. The stoichiometry of the ceramide-tear lipocalin binding complex was explored in detail using size exclusion chromatography and time resolved fluorescence anisotropy. Both methods showed consistent results that tear lipocalin remains monomeric when bound to ceramide. Delipidation experiments suggest the most likely explanation is that the low 'n' values result from prior occupancy of the binding sites by native ligands. Lipocalins such as tear lipocalin that have numerous binding partners are particularly prone to an underestimated apparent stoichiometry parameter.
Collapse
Affiliation(s)
- Ben J Glasgow
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095, United States.
| | - Adil R Abduragimov
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095, United States
| |
Collapse
|
24
|
Kielkopf CS, Low JKK, Mok YF, Bhatia S, Palasovski T, Oakley AJ, Whitten AE, Garner B, Brown SHJ. Identification of a novel tetrameric structure for human apolipoprotein-D. J Struct Biol 2018; 203:205-218. [PMID: 29885491 DOI: 10.1016/j.jsb.2018.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/18/2018] [Accepted: 05/30/2018] [Indexed: 10/14/2022]
Abstract
Apolipoprotein-D is a 25 kDa glycosylated member of the lipocalin family that folds into an eight-stranded β-barrel with a single adjacent α-helix. Apolipoprotein-D specifically binds a range of small hydrophobic ligands such as progesterone and arachidonic acid and has an antioxidant function that is in part due to the reduction of peroxidised lipids by methionine-93. Therefore, apolipoprotein-D plays multiple roles throughout the body and is protective in Alzheimer's disease, where apolipoprotein-D overexpression reduces the amyloid-β burden in Alzheimer's disease mouse models. Oligomerisation is a common feature of lipocalins that can influence ligand binding. The native structure of apolipoprotein-D, however, has not been conclusively defined. Apolipoprotein-D is generally described as a monomeric protein, although it dimerises when reducing peroxidised lipids. Here, we investigated the native structure of apolipoprotein-D derived from plasma, breast cyst fluid (BCF) and cerebrospinal fluid. In plasma and cerebrospinal fluid, apolipoprotein-D was present in high-molecular weight complexes, potentially in association with lipoproteins. In contrast, apolipoprotein-D in BCF formed distinct oligomeric species. We assessed apolipoprotein-D oligomerisation using native apolipoprotein-D purified from BCF and a suite of complementary methods, including multi-angle laser light scattering, analytical ultracentrifugation and small-angle X-ray scattering. Our analyses showed that apolipoprotein-D predominantly forms a ∼95 to ∼100 kDa tetramer. Small-angle X-ray scattering analysis confirmed these findings and provided a structural model for apolipoprotein-D tetramer. These data indicate apolipoprotein-D rarely exists as a free monomer under physiological conditions and provide insights into novel native structures of apolipoprotein-D and into oligomerisation behaviour in the lipocalin family.
Collapse
Affiliation(s)
- Claudia S Kielkopf
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| | - Jason K K Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.
| | - Yee-Foong Mok
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia.
| | - Surabhi Bhatia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia.
| | - Tony Palasovski
- Illawarra and Shoalhaven Local Health District (ISLHD), Wollongong, NSW, Australia; Specialist Breast Clinic Sutherland Shire and Wollongong, NSW, Australia; Integrated Specialist Health Care Sutherland Shire, NSW, Australia
| | - Aaron J Oakley
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia; School of Chemistry, University of Wollongong, Wollongong, NSW, Australia.
| | - Andrew E Whitten
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia.
| | - Brett Garner
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| | - Simon H J Brown
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
25
|
Pascua-Maestro R, Diez-Hermano S, Lillo C, Ganfornina MD, Sanchez D. Protecting cells by protecting their vulnerable lysosomes: Identification of a new mechanism for preserving lysosomal functional integrity upon oxidative stress. PLoS Genet 2017; 13:e1006603. [PMID: 28182653 PMCID: PMC5325589 DOI: 10.1371/journal.pgen.1006603] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/24/2017] [Accepted: 01/24/2017] [Indexed: 12/31/2022] Open
Abstract
Environmental insults such as oxidative stress can damage cell membranes. Lysosomes are particularly sensitive to membrane permeabilization since their function depends on intraluminal acidic pH and requires stable membrane-dependent proton gradients. Among the catalog of oxidative stress-responsive genes is the Lipocalin Apolipoprotein D (ApoD), an extracellular lipid binding protein endowed with antioxidant capacity. Within the nervous system, cell types in the defense frontline, such as astrocytes, secrete ApoD to help neurons cope with the challenge. The protecting role of ApoD is known from cellular to organism level, and many of its downstream effects, including optimization of autophagy upon neurodegeneration, have been described. However, we still cannot assign a cellular mechanism to ApoD gene that explains how this protection is accomplished. Here we perform a comprehensive analysis of ApoD intracellular traffic and demonstrate its role in lysosomal pH homeostasis upon paraquat-induced oxidative stress. By combining single-lysosome in vivo pH measurements with immunodetection, we demonstrate that ApoD is endocytosed and targeted to a subset of vulnerable lysosomes in a stress-dependent manner. ApoD is functionally stable in this acidic environment, and its presence is sufficient and necessary for lysosomes to recover from oxidation-induced alkalinization, both in astrocytes and neurons. This function is accomplished by preventing lysosomal membrane permeabilization. Two lysosomal-dependent biological processes, myelin phagocytosis by astrocytes and optimization of neurodegeneration-triggered autophagy in a Drosophila in vivo model, require ApoD-related Lipocalins. Our results uncover a previously unknown biological function of ApoD, member of the finely regulated and evolutionary conserved gene family of extracellular Lipocalins. They set a lipoprotein-mediated regulation of lysosomal membrane integrity as a new mechanism at the hub of many cellular functions, critical for the outcome of a wide variety of neurodegenerative diseases. These results open therapeutic opportunities by providing a route of entry and a repair mechanism for lysosomes in pathological situations. This work is the result of our search for the mechanism of action of Apolipoprotein D (ApoD), a neuroprotective lipid-binding protein that confers cell resistance to oxidative stress. ApoD is one of the few genes consistently over-expressed in the aging brain of all vertebrate species, and no nervous system disease has been found concurring without ApoD over-expression. All evidence supports ApoD as an endogenous mechanism of protection. We demonstrate here that this extracellular lipid binding protein is endocytosed and targeted in a finely controlled way to subsets of lysosomes in need of protection, those most sensitive to oxidative stress. ApoD reveals the existence of biologically relevant lysosomal heterogeneity that conditions the oxidation state of cells, their phagocytic or autophagic capacity, and the final output in neurodegenerative conditions. The stable presence of ApoD in lysosomes is sufficient and necessary for lysosomes to recover from oxidation-induced membrane permeabilization and loss of proton gradients. ApoD-mediated control of lysosomal membrane integrity represents a new cell-protection mechanism at the hub of many cellular functions, and is critical for the outcome of a wide variety of neurodegenerative diseases. Therapeutic opportunities open, by providing a route of entry and a repair mechanism for lysosomes in pathological situations.
Collapse
Affiliation(s)
- Raquel Pascua-Maestro
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Sergio Diez-Hermano
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
| | - Concepción Lillo
- Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain
| | - Maria D. Ganfornina
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
- * E-mail: (MDG); (DS)
| | - Diego Sanchez
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, Valladolid, Spain
- * E-mail: (MDG); (DS)
| |
Collapse
|
26
|
di Masi A, Trezza V, Leboffe L, Ascenzi P. Human plasma lipocalins and serum albumin: Plasma alternative carriers? J Control Release 2016; 228:191-205. [PMID: 26951925 DOI: 10.1016/j.jconrel.2016.02.049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 01/14/2023]
Abstract
Lipocalins are an evolutionarily conserved family of proteins that bind and transport a variety of exogenous and endogenous ligands. Lipocalins share a conserved eight anti-parallel β-sheet structure. Among the different lipocalins identified in humans, α-1-acid glycoprotein (AGP), apolipoprotein D (apoD), apolipoprotein M (apoM), α1-microglobulin (α1-m) and retinol-binding protein (RBP) are plasma proteins. In particular, AGP is the most important transporter for basic and neutral drugs, apoD, apoM, and RBP mainly bind endogenous molecules such as progesterone, pregnenolone, bilirubin, sphingosine-1-phosphate, and retinol, while α1-m binds the heme. Human serum albumin (HSA) is a monomeric all-α protein that binds endogenous and exogenous molecules like fatty acids, heme, and acidic drugs. Changes in the plasmatic levels of lipocalins and HSA are responsible for the onset of pathological conditions associated with an altered drug transport and delivery. This, however, does not necessary result in potential adverse effects in patients because many drugs can bind both HSA and lipocalins, and therefore mutual compensatory binding mechanisms can be hypothesized. Here, molecular and clinical aspects of ligand transport by plasma lipocalins and HSA are reviewed, with special attention to their role as alterative carriers in health and disease.
Collapse
Affiliation(s)
- Alessandra di Masi
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, I-00146 Roma, Italy; Istituto Nazionale di Biostrutture e Biosistemi, Via delle Medaglie d'Oro 305, I-00136 Roma, Italy.
| | - Viviana Trezza
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, I-00146 Roma, Italy
| | - Loris Leboffe
- Dipartimento di Scienze, Università Roma Tre, Viale Marconi 446, I-00146 Roma, Italy; Istituto Nazionale di Biostrutture e Biosistemi, Via delle Medaglie d'Oro 305, I-00136 Roma, Italy
| | - Paolo Ascenzi
- Istituto Nazionale di Biostrutture e Biosistemi, Via delle Medaglie d'Oro 305, I-00136 Roma, Italy; Laboratorio Interdipartimentale di Microscopia Elettronica, Università Roma Tre, Via della Vasca Navale 79, I-00146 Roma, Italy
| |
Collapse
|
27
|
Li H, Ruberu K, Karl T, Garner B. Cerebral Apolipoprotein-D Is Hypoglycosylated Compared to Peripheral Tissues and Is Variably Expressed in Mouse and Human Brain Regions. PLoS One 2016; 11:e0148238. [PMID: 26829325 PMCID: PMC4734669 DOI: 10.1371/journal.pone.0148238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/14/2016] [Indexed: 01/26/2023] Open
Abstract
Recent studies have shown that cerebral apoD levels increase with age and in Alzheimer’s disease (AD). In addition, loss of cerebral apoD in the mouse increases sensitivity to lipid peroxidation and accelerates AD pathology. Very little data are available, however, regarding the expression of apoD protein levels in different brain regions. This is important as both brain lipid peroxidation and neurodegeneration occur in a region-specific manner. Here we addressed this using western blotting of seven different regions (olfactory bulb, hippocampus, frontal cortex, striatum, cerebellum, thalamus and brain stem) of the mouse brain. Our data indicate that compared to most brain regions, the hippocampus is deficient in apoD. In comparison to other major organs and tissues (liver, spleen, kidney, adrenal gland, heart and skeletal muscle), brain apoD was approximately 10-fold higher (corrected for total protein levels). Our analysis also revealed that brain apoD was present at a lower apparent molecular weight than tissue and plasma apoD. Utilising peptide N-glycosidase-F and neuraminidase to remove N-glycans and sialic acids, respectively, we found that N-glycan composition (but not sialylation alone) were responsible for this reduction in molecular weight. We extended the studies to an analysis of human brain regions (hippocampus, frontal cortex, temporal cortex and cerebellum) where we found that the hippocampus had the lowest levels of apoD. We also confirmed that human brain apoD was present at a lower molecular weight than in plasma. In conclusion, we demonstrate apoD protein levels are variable across different brain regions, that apoD levels are much higher in the brain compared to other tissues and organs, and that cerebral apoD has a lower molecular weight than peripheral apoD; a phenomenon that is due to the N-glycan content of the protein.
Collapse
Affiliation(s)
- Hongyun Li
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Kalani Ruberu
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Tim Karl
- Neuroscience Research Australia, Randwick, NSW 2031, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Schizophrenia Research Institute, Randwick, NSW 2031, Australia
| | - Brett Garner
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
- School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
- * E-mail:
| |
Collapse
|
28
|
Armanmehr S, Kalhor HR, Tabarraei A. Production of a soluble and functional recombinant apolipoproteinD in the Pichia pastoris expression system. Protein Expr Purif 2016; 121:157-62. [PMID: 26826316 DOI: 10.1016/j.pep.2016.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/17/2016] [Accepted: 01/25/2016] [Indexed: 11/16/2022]
Abstract
ApolipoproteinD (ApoD) is a human glycoprotein from the lipocalin family. ApoD contains a conserved central motif of an 8-stranded antiparallel β-sheet, which forms a beta-barrel that can be used for transport and storage of diverse hydrophobic ligands. Due to hydrophobic nature of ApoD, it has been difficult to generate a recombinant version of this protein. In the present work, we aimed at the production of ApoD in the robust Pichia pastoris expression system. To this end, the ApoD gene sequence was synthesized and subcloned for expression in the yeast host cells. Following integration of the ApoD gene into the yeast genomic region using homologous recombination, the ApoD recombinant protein was induced using methanol, reaching its maximum induction at 96 h. Having purified the ApoD recombinant protein by affinity chromatography, we measured the dissociation constant (KD) using its natural ligands: progesterone and arachidonic acid. Our results provide a viable solution to the production of recombinant ApoD protein in lieu of previous obstacles in generating soluble and functional ApoD protein.
Collapse
Affiliation(s)
- Shiva Armanmehr
- Metabolic Disorder Research Center, Golestan University of Medical Science, Gorgan, Iran; Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Hamid Reza Kalhor
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| | - Alijan Tabarraei
- Department of Microbiology, School of Medicine, Golestan University of Medical Science, Gorgan, Iran
| |
Collapse
|
29
|
Ramirez JL, de Almeida Oliveira G, Calvo E, Dalli J, Colas RA, Serhan CN, Ribeiro JM, Barillas-Mury C. A mosquito lipoxin/lipocalin complex mediates innate immune priming in Anopheles gambiae. Nat Commun 2015; 6:7403. [PMID: 26100162 PMCID: PMC4542143 DOI: 10.1038/ncomms8403] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/05/2015] [Indexed: 12/11/2022] Open
Abstract
Exposure of Anopheles gambiae mosquitoes to Plasmodium infection enhances the ability of their immune system to respond to subsequent infections. However, the molecular mechanism that allows the insect innate immune system to ‘remember' a previous encounter with a pathogen has not been established. Challenged mosquitoes constitutively release a soluble haemocyte differentiation factor into their haemolymph that, when transferred into Naive mosquitoes, also induces priming. Here we show that this factor consists of a Lipoxin/Lipocalin complex. We demonstrate that innate immune priming in mosquitoes involves a persistent increase in expression of Evokin (a lipid carrier of the lipocalin family), and in their ability to convert arachidonic acid to lipoxins, predominantly Lipoxin A4. Plasmodium ookinete midgut invasion triggers immune priming by inducing the release of a mosquito lipoxin/lipocalin complex. A soluble factor induced by Plasmodium infection promotes hemocyte differentiation and increases mosquitoe resistance to subsequent infections. Here the authors show that this factor consists of a Lipocalin/Lipoxin A4 complex, and that insects can metabolize arachidonic acid to produce lipoxins.
Collapse
Affiliation(s)
- Jose Luis Ramirez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Giselle de Almeida Oliveira
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Jesmond Dalli
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Romain A Colas
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jose M Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| |
Collapse
|
30
|
Labrie M, Lalonde S, Najyb O, Thiery M, Daneault C, Des Rosiers C, Rassart E, Mounier C. Apolipoprotein D Transgenic Mice Develop Hepatic Steatosis through Activation of PPARγ and Fatty Acid Uptake. PLoS One 2015; 10:e0130230. [PMID: 26083030 PMCID: PMC4470830 DOI: 10.1371/journal.pone.0130230] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/18/2015] [Indexed: 12/27/2022] Open
Abstract
Transgenic mice (Tg) overexpressing human apolipoprotein D (H-apoD) in the brain are resistant to neurodegeneration. Despite the use of a neuron-specific promoter to generate the Tg mice, they expressed significant levels of H-apoD in both plasma and liver and they slowly develop hepatic steatosis and insulin resistance. We show here that hepatic PPARγ expression in Tg mice is increased by 2-fold compared to wild type (WT) mice. Consequently, PPARγ target genes Plin2 and Cide A/C are overexpressed, leading to increased lipid droplets formation. Expression of the fatty acid transporter CD36, another PPARgamma target, is also increased in Tg mice associated with elevated fatty acid uptake as measured in primary hepatocytes. Elevated expression of AMPK in the liver of Tg leads to phosphorylation of acetyl CoA carboxylase, indicating a decreased activity of the enzyme. Fatty acid synthase expression is also induced but the hepatic lipogenesis measured in vivo is not significantly different between WT and Tg mice. In addition, expression of carnitine palmitoyl transferase 1, the rate-limiting enzyme of beta-oxidation, is slightly upregulated. Finally, we show that overexpressing H-apoD in HepG2 cells in presence of arachidonic acid (AA), the main apoD ligand, increases the transcriptional activity of PPARγ. Supporting the role of apoD in AA transport, we observed enrichment in hepatic AA and a decrease in plasmatic AA concentration. Taken together, our results demonstrate that the hepatic steatosis observed in apoD Tg mice is a consequence of increased PPARγ transcriptional activity by AA leading to increased fatty acid uptake by the liver.
Collapse
Affiliation(s)
- Marilyne Labrie
- Centre de recherche BioMed, Département des Sciences Biologiques, Université du Québec, Montréal, Québec, H3C 3P8, Canada
| | - Simon Lalonde
- Centre de recherche BioMed, Département des Sciences Biologiques, Université du Québec, Montréal, Québec, H3C 3P8, Canada
| | - Ouafa Najyb
- Centre de recherche BioMed, Département des Sciences Biologiques, Université du Québec, Montréal, Québec, H3C 3P8, Canada
| | - Maxime Thiery
- Centre de recherche BioMed, Département des Sciences Biologiques, Université du Québec, Montréal, Québec, H3C 3P8, Canada
| | - Caroline Daneault
- Montreal Heart Institute Research Center, Montreal, Quebec, H1T 1C8,Canada
| | - Chrisitne Des Rosiers
- Department of Nutrition, Université de Montréal, Montréal, Québec, H3C 3J7,Canada
- Montreal Heart Institute Research Center, Montreal, Quebec, H1T 1C8,Canada
| | - Eric Rassart
- Centre de recherche BioMed, Département des Sciences Biologiques, Université du Québec, Montréal, Québec, H3C 3P8, Canada
| | - Catherine Mounier
- Centre de recherche BioMed, Département des Sciences Biologiques, Université du Québec, Montréal, Québec, H3C 3P8, Canada
- * E-mail:
| |
Collapse
|
31
|
Najyb O, Brissette L, Rassart E. Apolipoprotein D Internalization Is a Basigin-dependent Mechanism. J Biol Chem 2015; 290:16077-87. [PMID: 25918162 DOI: 10.1074/jbc.m115.644302] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 01/07/2023] Open
Abstract
Apolipoprotein D (apoD), a member of the lipocalin family, is a 29-kDa secreted glycoprotein that binds and transports small lipophilic molecules. Expressed in several tissues, apoD is up-regulated under different stress stimuli and in a variety of pathologies. Numerous studies have revealed that overexpression of apoD led to neuroprotection in various mouse models of acute stress and neurodegeneration. This multifunctional protein is internalized in several cells types, but the specific internalization mechanism remains unknown. In this study, we demonstrate that the internalization of apoD involves a specific cell surface receptor in 293T cells, identified as the transmembrane glycoprotein basigin (BSG, CD147); more particularly, its low glycosylated form. Our results show that internalized apoD colocalizes with BSG into vesicular compartments. Down-regulation of BSG disrupted the internalization of apoD in cells. In contrast, overexpression of basigin in SH-5YSY cells, which poorly express BSG, restored the uptake of apoD. Cyclophilin A, a known ligand of BSG, competitively reduced apoD internalization, confirming that BSG is a key player in the apoD internalization process. In summary, our results demonstrate that basigin is very likely the apoD receptor and provide additional clues on the mechanisms involved in apoD-mediated functions, including neuroprotection.
Collapse
Affiliation(s)
- Ouafa Najyb
- From the Laboratoire de Biologie Moléculaire and
| | - Louise Brissette
- Laboratoire du Métabolisme des Lipoprotéines, Département des Sciences Biologiques, Centre BioMed, Université du Québec à Montréal, Succursale Centre-ville, Montréal, Quebec H3C 3P8, Canada
| | - Eric Rassart
- From the Laboratoire de Biologie Moléculaire and
| |
Collapse
|
32
|
Janecek E, Wilk E, Schughart K, Geffers R, Strube C. Microarray gene expression analysis reveals major differences between Toxocara canis and Toxocara cati neurotoxocarosis and involvement of T. canis in lipid biosynthetic processes. Int J Parasitol 2015; 45:495-503. [PMID: 25843806 DOI: 10.1016/j.ijpara.2015.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 12/27/2022]
Abstract
Toxocara canis and Toxocara cati are globally occurring intestinal nematodes of dogs and cats with a high zoonotic potential. Migrating larvae in the CNS of paratenic hosts, including humans, may cause neurotoxocarosis resulting in a variety of neurological symptoms. Toxocara canis exhibits a stronger affinity to the CNS than T. cati, causing more severe neurological symptoms in the mouse model. Pathomechanisms of neurotoxocarosis as well as host responses towards the respective parasite are mostly unknown. Therefore, the aim of this study was to characterise the pathogenesis at a transcriptional level using whole genome microarray expression analysis and identify differences and similarities between T. canis- and T. cati-infected brains. Microarray analysis was conducted in cerebra and cerebella of infected C57Bl/6J mice 42daysp.i. revealing more differentially transcribed genes for T. canis- than T. cati-infected brains. In cerebra and cerebella of T. canis-infected mice, a total of 2304 and 1954 differentially transcribed genes, respectively, were identified whereas 113 and 760 differentially transcribed genes were determined in cerebra and cerebella of T. cati-infected mice. Functional annotation analysis revealed major differences in host responses in terms of significantly enriched biological modules. Up-regulated genes were mainly associated with the terms "immune and defence response", "sensory perception" as well as "behaviour/taxis" retrieved from the Gene Ontology database. These observations indicate a strong immune response in both infection groups with T. cati-infected brains revealing less severe reactions. Down-regulated genes in T. canis-infected cerebra and cerebella revealed a significant enrichment for the Gene Ontology term "lipid/cholesterol biosynthetic process". Cholesterol is a highly abundant and important component in the brain, representing several functions. Disturbances of synthesis as well as concentration changes may lead to dysfunction in signal transduction and neurodegenerative disease. Overall, only a minor overlap of differentially transcribed genes was observed between the two infection groups in both brain parts. Most genes are regulated individually in each infection group, supporting the evident differences of both roundworm species observed in the paratenic host in previous studies. In summary the present study underlines the differences in pathogenicity of T. canis and T. cati. It furthermore provides a comprehensive basis for future analyses over the course of infection as well as functional tests to identify gene regulatory circuits that are crucial for pathogenesis of neurotoxocarosis. The results of this study provide a promising foundation for further specific research to evaluate the particular pathogenetic mechanisms and to identify possible therapeutic targets.
Collapse
Affiliation(s)
- Elisabeth Janecek
- Institute for Parasitology, University of Veterinary Medicine Hannover, Germany
| | - Esther Wilk
- Department Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Schughart
- Department Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany; University of Veterinary Medicine Hannover, University of Tennessee Health Science Center, USA
| | - Robert Geffers
- Research Group Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Christina Strube
- Institute for Parasitology, University of Veterinary Medicine Hannover, Germany.
| |
Collapse
|
33
|
del Caño-Espinel M, Acebes JR, Sanchez D, Ganfornina MD. Lazarillo-related Lipocalins confer long-term protection against type I Spinocerebellar Ataxia degeneration contributing to optimize selective autophagy. Mol Neurodegener 2015; 10:11. [PMID: 25888134 PMCID: PMC4374295 DOI: 10.1186/s13024-015-0009-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 03/02/2015] [Indexed: 12/22/2022] Open
Abstract
Background A diverse set of neurodegenerative disorders are caused by abnormal extensions of polyglutamine (poly-Q) stretches in various, functionally unrelated proteins. A common feature of these diseases is altered proteostasis. Autophagy induction is part of the endogenous response to poly-Q protein expression. However, if autophagy is not resolved properly, clearance of toxic proteins or aggregates cannot occur effectively. Likewise, excessive autophagy induction can cause autophagic stress and neurodegeneration. The Lipocalins ApoD, Glial Lazarillo (GLaz) and Neural Lazarillo (NLaz) are neuroprotectors upon oxidative stress or aging. In this work we test whether these Lipocalins also protect against poly-Q-triggered deterioration of protein quality control systems. Results Using a Drosophila retinal degeneration model of Type-1 Spinocerebellar Ataxia (SCA1) combined with genetic manipulation of NLaz and GLaz expression, we demonstrate that both Lipocalins protect against SCA1 neurodegeneration. They are part of the endogenous transcriptional response to SCA1, and their effect is non-additive, suggesting participation in a similar mechanism. GLaz beneficial effects persist throughout aging, and appears when expressed by degenerating neurons or by retinal support and glial cells. GLaz gain-of-function reduces cell death and the extent of ubiquitinated proteins accumulation, and decreases the expression of Atg8a/LC3, p62 mRNA and protein levels, and GstS1 induction. Over-expression of GLaz is able to reduce p62 and ubiquitinated proteins levels when rapamycin-dependent and SCA1-dependent inductions of autophagy are combined. In the absence of neurodegeneration, GLaz loss-of-function increases Atg8a/LC3 mRNA and p62 protein levels without altering p62 mRNA levels. Knocking-down autophagy, by interfering with Atg8a or p62 expression or by expressing dominant-negative Atg1/ULK1 or Atg4a transgenes, rescues SCA1-dependent neurodegeneration in a similar extent to the protective effect of GLaz. Further GLaz-dependent improvement is concealed. Conclusions This work shows for the first time that a Lipocalin rescues neurons from pathogenic SCA1 degeneration by optimizing clearance of aggregation-prone proteins. GLaz modulates key autophagy genes and lipid-peroxide clearance responsive genes. Down-regulation of selective autophagy causes similar and non-additive rescuing effects. These data suggest that SCA1 neurodegeneration concurs with autophagic stress, and places Lazarillo-related Lipocalins as valuable players in the endogenous protection against the two major contributors to aging and neurodegeneration: ROS-dependent damage and proteostasis deterioration. Electronic supplementary material The online version of this article (doi:10.1186/s13024-015-0009-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manuela del Caño-Espinel
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, c/ Sanz y Forés 3, 47003, Valladolid, Spain.
| | - Judith R Acebes
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, c/ Sanz y Forés 3, 47003, Valladolid, Spain.
| | - Diego Sanchez
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, c/ Sanz y Forés 3, 47003, Valladolid, Spain.
| | - Maria D Ganfornina
- Instituto de Biología y Genética Molecular-Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid-CSIC, c/ Sanz y Forés 3, 47003, Valladolid, Spain.
| |
Collapse
|
34
|
Li H, Ruberu K, Muñoz SS, Jenner AM, Spiro A, Zhao H, Rassart E, Sanchez D, Ganfornina MD, Karl T, Garner B. Apolipoprotein D modulates amyloid pathology in APP/PS1 Alzheimer's disease mice. Neurobiol Aging 2015; 36:1820-33. [PMID: 25784209 DOI: 10.1016/j.neurobiolaging.2015.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 01/22/2015] [Accepted: 02/10/2015] [Indexed: 11/24/2022]
Abstract
Apolipoprotein D (apoD) is expressed in the brain and levels are increased in affected brain regions in Alzheimer's disease (AD). The role that apoD may play in regulating AD pathology has not been addressed. Here, we crossed both apoD-null mice and Thy-1 human apoD transgenic mice with APP-PS1 amyloidogenic AD mice. Loss of apoD resulted in a nearly 2-fold increase in hippocampal amyloid plaque load, as assessed by immunohistochemical staining. Conversely, transgenic expression of neuronal apoD reduced hippocampal plaque load by approximately 35%. This latter finding was associated with a 60% decrease in amyloid β 1-40 peptide levels, and a 34% decrease in insoluble amyloid β 1-42 peptide. Assessment of β-site amyloid precursor protein cleaving enzyme-1 (BACE1) levels and proteolytic products of amyloid precursor protein and neuregulin-1 point toward a possible association of altered BACE1 activity in association with altered apoD levels. In conclusion, the current studies provide clear evidence that apoD regulates amyloid plaque pathology in a mouse model of AD.
Collapse
Affiliation(s)
- Hongyun Li
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Kalani Ruberu
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Sonia Sanz Muñoz
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Andrew M Jenner
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Adena Spiro
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Hua Zhao
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia
| | - Eric Rassart
- Laboratoire de biologie moléculaire, Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, Canada; BioMed, centre de recherches biomédicales, Université du Québec à Montréal, Montréal, Canada
| | - Diego Sanchez
- Departamento de Bioquímica y Biología Molecular y Fisiología - Instituto de Biología y Genética Molecular, Universidad de Valladolid - CSIC, Valladolid, Spain
| | - Maria D Ganfornina
- Departamento de Bioquímica y Biología Molecular y Fisiología - Instituto de Biología y Genética Molecular, Universidad de Valladolid - CSIC, Valladolid, Spain
| | - Tim Karl
- Neuroscience Research Australia, Randwick, NSW, Australia; School of Medical Sciences, University of New South Wales, NSW, Australia; Schizophrenia Research Institute, Darlinghurst, NSW, Australia
| | - Brett Garner
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia; School of Biological Sciences, University of Wollongong, NSW, Australia.
| |
Collapse
|
35
|
Vajrychova M, Kacerovsky M, Tambor V, Hornychova H, Lenco J. Microbial invasion and histological chorioamnionitis upregulate neutrophil-gelatinase associated lipocalin in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med 2014; 29:12-21. [PMID: 25424376 DOI: 10.3109/14767058.2014.991305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Our recent exploratory proteomic study suggested increased levels of neutrophil-gelatinase associated lipocalin (P80188, NGAL_HUMAN) due to microbial invasion of the amniotic cavity (MIAC) and histological chorioamnionitis (HCA) in women with preterm prelabor rupture of the membranes. In this study, we verified the proteomics findings by assessing the amniotic fluid NGAL by ELISA in the original exploratory cohort. The NGAL level was significantly higher in women positive for both MIAC and HCA compared to women with both conditions ruled out (median 75.1 ng/ml versus 27.9 ng/ml; p < 0.0001). For independent validation and to assess NGALs potential to stratify women positive for both MIAC and HCA from women in whom at least one of these conditions was absent, we subsequently designed a retrospective replication cohort. Significantly higher NGAL levels were found in women positive for both MIAC and HCA (median 65.9 ng/ml versus 34.2 ng/ml; p = 0.0061). Significantly higher levels of NGAL were confirmed only in strata below 32 weeks of gestation. Based on the observed likelihood ratio, the best predictive cutoff level (47.1 ng/ml) was evaluated in both cohorts. Data from the verification cohort implied that NGAL is a valuable clinical marker for revealing MIAC leading to HCA; however, this potential was not replicated in the replication cohort.
Collapse
Affiliation(s)
- Marie Vajrychova
- a Department of Molecular Pathology and Biology, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic
| | - Marian Kacerovsky
- b Biomedical Research Center, University Hospital , Hradec Kralove , Czech Republic .,c Department of Obstetrics and Gynecology, Faculty of Medicine , Charles University in Prague , Hradec Kralove , Czech Republic , and
| | - Vojtech Tambor
- b Biomedical Research Center, University Hospital , Hradec Kralove , Czech Republic
| | - Helena Hornychova
- d Fingerland's Department of Pathology, University Hospital and Faculty of Medicine , Charles University in Prague , Hradec Kralove , Czech Republic
| | - Juraj Lenco
- a Department of Molecular Pathology and Biology, Faculty of Military Health Sciences , University of Defence , Hradec Kralove , Czech Republic
| |
Collapse
|
36
|
García-Mateo N, Ganfornina MD, Montero O, Gijón MA, Murphy RC, Sanchez D. Schwann cell-derived Apolipoprotein D controls the dynamics of post-injury myelin recognition and degradation. Front Cell Neurosci 2014; 8:374. [PMID: 25426024 PMCID: PMC4227524 DOI: 10.3389/fncel.2014.00374] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/21/2014] [Indexed: 01/29/2023] Open
Abstract
Management of lipids, particularly signaling lipids that control neuroinflammation, is crucial for the regeneration capability of a damaged nervous system. Knowledge of pro- and anti-inflammatory signals after nervous system injury is extensive, most of them being proteins acting through well-known receptors and intracellular cascades. However, the role of lipid binding extracellular proteins able to modify the fate of lipids released after injury is not well understood. Apolipoprotein D (ApoD) is an extracellular lipid binding protein of the Lipocalin family induced upon nervous system injury. Our previous study shows that axon regeneration is delayed without ApoD, and suggests its participation in early events during Wallerian degeneration. Here we demonstrate that ApoD is expressed by myelinating and non-myelinating Schwann cells and is induced early upon nerve injury. We show that ApoD, known to bind arachidonic acid (AA), also interacts with lysophosphatidylcholine (LPC) in vitro. We use an in vivo model of nerve crush injury, a nerve explant injury model, and cultured macrophages exposed to purified myelin, to uncover that: (i) ApoD regulates denervated Schwann cell-macrophage signaling, dampening MCP1- and Tnf-dependent macrophage recruitment and activation upon injury; (ii) ApoD controls the over-expression of the phagocytosis activator Galectin-3 by infiltrated macrophages; (iii) ApoD controls the basal and injury-triggered levels of LPC and AA; (iv) ApoD modifies the dynamics of myelin-macrophage interaction, favoring the initiation of phagocytosis and promoting myelin degradation. Regulation of macrophage behavior by Schwann-derived ApoD is therefore a key mechanism conditioning nerve injury resolution. These results place ApoD as a lipid binding protein controlling the signals exchanged between glia, neurons and blood-borne cells during nerve recovery after injury, and open the possibility for a therapeutic use of ApoD as a regeneration-promoting agent.
Collapse
Affiliation(s)
- Nadia García-Mateo
- Lazarillo Lab, Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC Valladolid, Spain
| | - Maria D Ganfornina
- Lazarillo Lab, Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC Valladolid, Spain
| | - Olimpio Montero
- Mass Spectrometry Unit, Center for Biotechnology Development (CDB), Consejo Superior de Investigaciones Científicas Valladolid, Spain
| | - Miguel A Gijón
- Department of Pharmacology, University of Colorado Denver Aurora, CO, USA
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver Aurora, CO, USA
| | - Diego Sanchez
- Lazarillo Lab, Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC Valladolid, Spain
| |
Collapse
|
37
|
Dassati S, Waldner A, Schweigreiter R. Apolipoprotein D takes center stage in the stress response of the aging and degenerative brain. Neurobiol Aging 2014; 35:1632-42. [PMID: 24612673 PMCID: PMC3988949 DOI: 10.1016/j.neurobiolaging.2014.01.148] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/17/2014] [Accepted: 01/30/2014] [Indexed: 02/08/2023]
Abstract
Apolipoprotein D (ApoD) is an ancient member of the lipocalin family with a high degree of sequence conservation from insects to mammals. It is not structurally related to other major apolipoproteins and has been known as a small, soluble carrier protein of lipophilic molecules that is mostly expressed in neurons and glial cells within the central and peripheral nervous system. Recent data indicate that ApoD not only supplies cells with lipophilic molecules, but also controls the fate of these ligands by modulating their stability and oxidation status. Of particular interest is the binding of ApoD to arachidonic acid and its derivatives, which play a central role in healthy brain function. ApoD has been shown to act as a catalyst in the reduction of peroxidized eicosanoids and to attenuate lipid peroxidation in the brain. Manipulating its expression level in fruit flies and mice has demonstrated that ApoD has a favorable effect on both stress resistance and life span. The APOD gene is the gene that is upregulated the most in the aging human brain. Furthermore, ApoD levels in the nervous system are elevated in a large number of neurologic disorders including Alzheimer's disease, schizophrenia, and stroke. There is increasing evidence for a prominent neuroprotective role of ApoD because of its antioxidant and anti-inflammatory activity. ApoD emerges as an evolutionarily conserved anti-stress protein that is induced by oxidative stress and inflammation and may prove to be an effective therapeutic agent against a variety of neuropathologies, and even against aging.
Collapse
Affiliation(s)
- Sarah Dassati
- Department of Neurological Rehabilitation, Private Hospital "Villa Melitta", Bolzano, Italy
| | - Andreas Waldner
- Department of Neurological Rehabilitation, Private Hospital "Villa Melitta", Bolzano, Italy
| | - Rüdiger Schweigreiter
- Division of Neurobiochemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria.
| |
Collapse
|
38
|
Ruiz M, Ganfornina MD, Correnti C, Strong RK, Sanchez D. Ligand binding-dependent functions of the lipocalin NLaz: an in vivo study in Drosophila. FASEB J 2013; 28:1555-67. [PMID: 24361577 DOI: 10.1096/fj.13-240556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lipocalins are small extracellular proteins mostly described as lipid carriers. The Drosophila lipocalin NLaz (neural Lazarillo) modulates the IIS pathway and regulates longevity, stress resistance, and behavior. Here, we test whether a native hydrophobic pocket structure is required for NLaz to perform its functions. We use a point mutation altering the binding pocket (NLaz(L130R)) and control mutations outside NLaz binding pocket. Tryptophan fluorescence titration reveals that NLaz(L130R) loses its ability to bind ergosterol and the pheromone 7(z)-tricosene but retains retinoic acid binding. Using site-directed transgenesis in Drosophila, we test the functionality of the ligand binding-altered lipocalin at the organism level. NLaz-dependent life span reduction, oxidative stress and starvation sensitivity, aging markers accumulation, and deficient courtship are rescued by overexpression of NLaz(WT), but not of NLaz(L130R). Transcriptional responses to aging and oxidative stress show a large set of age-responsive genes dependent on the integrity of NLaz binding pocket. Inhibition of IIS activity and modulation of oxidative stress and infection-responsive genes are binding pocket-dependent processes. Control of energy metabolites on starvation appears to be, however, insensitive to the modification of the NLaz binding pocket.
Collapse
Affiliation(s)
- Mario Ruiz
- 2Instituto de Biología y Genética Molecular, c/Sanz y Forés 3, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain.
| | | | | | | | | |
Collapse
|
39
|
Identification of apolipoprotein D as a cardioprotective gene using a mouse model of lethal atherosclerotic coronary artery disease. Proc Natl Acad Sci U S A 2013; 110:17023-8. [PMID: 24082102 DOI: 10.1073/pnas.1315986110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mice with homozygous null mutations in the HDL receptor (scavenger receptor class B, type I, or SR-BI) and apolipoprotein E (apoE) genes [SR-BI/apoE double KO (SR-BI(-/-)/apoE(-/-) or dKO) mice] spontaneously develop occlusive, atherosclerotic coronary artery disease (CAD) and die prematurely (50% mortality at 42 d of age). Using microarray mRNA expression profiling, we identified genes whose expression in the hearts of dKO mice changed substantially during disease progression [at 21 d of age (no CAD), 31 d of age (small myocardial infarctions), and 43 d of age (extensive myocardial infarctions) vs. CAD-free SR-BI(+/-)/apoE(-/-) controls]. Expression of most genes that increased >sixfold in dKO hearts at 43 d also increased after coronary artery ligation. We examined the influence and potential mechanism of action of apolipoprotein D (apoD) whose expression in dKO hearts increased 80-fold by 43 d. Analysis of ischemia/reperfusion-induced myocardial infarction in both apoD KO mice and wild-type mice with abnormally high plasma levels of apoD (adenovirus-mediated hepatic overexpression) established that apoD reduces myocardial infarction. There was a correlation of apoD's ability to protect primary cultured rat cardiomyocytes from hypoxia/reoxygenation injury with its potent ability to inhibit oxidation in a standard antioxidation assay in vitro. We conclude that dKO mice represent a useful mouse model of CAD and apoD may be part of an intrinsic cardioprotective system, possibly as a consequence of its antioxidation activity.
Collapse
|
40
|
Valle ED, Navarro A, Mendez E, Juarez A, Astudillo A, Tolivia J. Could Apolipoprotein D be a Neuronal Marker of Necrobiosis? J Histotechnol 2013. [DOI: 10.1179/his.2001.24.1.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
41
|
Ruiz M, Sanchez D, Correnti C, Strong RK, Ganfornina MD. Lipid-binding properties of human ApoD and Lazarillo-related lipocalins: functional implications for cell differentiation. FEBS J 2013; 280:3928-43. [PMID: 23777559 DOI: 10.1111/febs.12394] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/29/2013] [Accepted: 06/13/2013] [Indexed: 12/31/2022]
Abstract
Lipocalins are a family of proteins characterized by a conserved eight-stranded β-barrel structure with a ligand-binding pocket. They perform a wide range of biological functions and this functional multiplicity must relate to the lipid partner involved. Apolipoprotein D (ApoD) and its insect homologues, Lazarillo (Laz) and neural Lazarillo (NLaz), share common ancestral functions like longevity, stress resistance and lipid metabolism regulation, coexisting with very specialized functions, like courtship behavior. Using tryptophan fluorescence titration, we screened the binding of 15 potential lipid partners for NLaz, ApoD and Laz and uncovered several novel ligands with apparent dissociation constants in the low micromolar range. Retinoic acid (RA), retinol, fatty acids and sphingomyelin are shared ligands. Sterols, however, showed a species-specific binding pattern: cholesterol did not show strong binding to human ApoD, whereas NLaz and Laz did bind ergosterol. Among the lipocalin-specific ligands, we found that ApoD selectively binds the endocannabinoid anandamide but not 2-acylglycerol, and that NLaz binds the pheromone 7-tricosene, but not 7,11-heptacosadiene or 11-cis-vaccenyl acetate. To test the functional relevance of lipocalin ligand binding at the cellular level, we analyzed the effect of ApoD, Laz and NLaz preloaded with RA on neuronal differentiation. Our results show that ApoD is necessary and sufficient to allow for RA differentiating activity. Both human ApoD and Drosophila NLaz successfully deliver RA to immature neurons, driving neurite outgrowth. We conclude that ApoD, NLaz and Laz bind selectively to a different but overlapping set of lipid ligands. This multispecificity can explain their varied physiological functions.
Collapse
Affiliation(s)
- Mario Ruiz
- Departamento de Bioquímica y Biología Molecular y Fisiología-Instituto de Biología y Genética Molecular, Universidad de Valladolid-CSIC, Valladolid, Spain
| | | | | | | | | |
Collapse
|
42
|
Oakley AJ, Bhatia S, Ecroyd H, Garner B. Molecular dynamics analysis of apolipoprotein-D-lipid hydroperoxide interactions: mechanism for selective oxidation of Met-93. PLoS One 2012; 7:e34057. [PMID: 22479522 PMCID: PMC3316614 DOI: 10.1371/journal.pone.0034057] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 02/23/2012] [Indexed: 01/01/2023] Open
Abstract
Background Recent studies suggest reduction of radical-propagating fatty acid hydroperoxides to inert hydroxides by interaction with apolipoprotein-D (apoD) Met93 may represent an antioxidant function for apoD. The nature and structural consequences of this selective interaction are unknown. Methodology/Principal Findings Herein we used molecular dynamics (MD) analysis to address these issues. Long-timescale simulations of apoD suggest lipid molecules are bound flexibly, with the molecules free to explore multiple conformations in a binding site at the entrance to the classical lipocalin ligand-binding pocket. Models of 5s- 12s- and 15s-hydroperoxyeicosatetraenoic acids were created and the lipids found to wrap around Met93 thus providing a plausible mechanism by which eicosatetraenoic acids bearing hydroperoxides on different carbon atoms can interact with Met93 to yield Met93 sulfoxide (Met93SO). Simulations of glycosylated apoD indicated that a second solvent exposed Met at position 49 was shielded by a triantennerary N-glycan attached to Asn45 thereby precluding lipid interactions. MD simulations of apoD showed B-factors of the loop containing Met93SO were higher in the oxidized protein, indicating increased flexibility that is predicted to destabilize the protein and promote self-association. Conclusions/Significance These studies provide novel insights into the mechanisms that may contribute to the antioxidant function of apoD and the structural consequences that result if Met93SO is not redox-cycled back to its native state.
Collapse
Affiliation(s)
- Aaron J. Oakley
- Illawarra Health and Medical Research Institute, University of Wollongong, New South Wales, Australia
- School of Chemistry, University of Wollongong, New South Wales, Australia
- * E-mail: (AJO); (BG)
| | - Surabhi Bhatia
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Heath Ecroyd
- Illawarra Health and Medical Research Institute, University of Wollongong, New South Wales, Australia
- School of Biological Sciences, University of Wollongong, New South Wales, Australia
| | - Brett Garner
- Illawarra Health and Medical Research Institute, University of Wollongong, New South Wales, Australia
- School of Biological Sciences, University of Wollongong, New South Wales, Australia
- * E-mail: (AJO); (BG)
| |
Collapse
|
43
|
Ma D, Assumpção TCF, Li Y, Andersen JF, Ribeiro J, Francischetti IMB. Triplatin, a platelet aggregation inhibitor from the salivary gland of the triatomine vector of Chagas disease, binds to TXA(2) but does not interact with glycoprotein PVI. Thromb Haemost 2011; 107:111-23. [PMID: 22159626 DOI: 10.1160/th11-10-0685] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 10/26/2011] [Indexed: 02/05/2023]
Abstract
Salivary glands from haematophagous animals express a notable diversity of negative modulators of platelet function. Triplatin is an inhibitor of collagen-induced platelet aggregation which has been described as an antagonist of glycoprotein VI (GPVI). Because triplatin displays sequence homology to members of the lipocalin family of proteins, we investigated whether triplatin mechanism of action could be explained by interaction with pro-haemostatic prostaglandins. Our results demonstrate that triplatin inhibits platelet aggregation induced by low doses of collagen, thromboxane A2 (TXA(2)) mimetic (U46619), and arachidonic acid (AA). On the other hand, it does not inhibit platelet aggregation by convulxin, PMA, or low-dose ADP. Isothermal titration calorimetry (ITC) revealed that triplatin binds AA, cTXA(2), TXB(2), U46619 or prostaglandin (PG)H(2) mimetic (U51605). Consistent with its ligand specificity, triplatin induces relaxation of rat aorta contracted with U46619. Triplatin also interacts with PGF(2α) and PGJ(2), but not with leukotrienes, AA or biogenic amines. Surface plasmon resonance experiments failed to demonstrate interaction of triplatin with GPVI; it also did to inhibit platelet adhesion to fibrillar or soluble collagen. Because triplatin displays sequence similarity to apolipoprotein D (ApoD) - a lipocalin associated with high-density lipoprotein, ApoD was tested as a putative TXA(2)-binding molecule. ITC failed to demonstrate binding of ApoD to all prostanoids described above, or to AA. Furthermore, ApoD was devoid of inhibitory properties towards platelets activation by AA, collagen, or U46619. In conclusion, triplatin mechanism of action has been elucidated without ambiguity as a novel TXA(2)- and PGF(2α)- binding protein. It conceivably blocks platelet aggregation and vasoconstriction, thus contributing to successful blood feeding at the vector-host interface.
Collapse
Affiliation(s)
- Dongying Ma
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | | | |
Collapse
|
44
|
Jiménez-Palomares M, Cózar-Castellano I, Ganfornina MD, Sánchez D, Perdomo G. Genetic deficiency of apolipoprotein D in the mouse is associated with nonfasting hypertriglyceridemia and hyperinsulinemia. Metabolism 2011; 60:1767-74. [PMID: 21632073 DOI: 10.1016/j.metabol.2011.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 04/25/2011] [Accepted: 04/26/2011] [Indexed: 11/17/2022]
Abstract
Apolipoprotein D (ApoD) is an atypical apolipoprotein with an incompletely understood function in the regulation of triglyceride and glucose metabolism. We have demonstrated that elevated ApoD production in mice results in improved postprandial triglyceride clearance. This work studies the role of ApoD deficiency in the regulation of triglyceride and glucose metabolism and its dependence on aging. We used ApoD knockout (ApoD-KO) mice of 3 and 21 months of age. Body weight and food intake were measured. Hepatic histology, triglyceride content, lipoprotein lipase levels, and plasma metabolites were studied. Phenotypic characterization of glucose metabolism was performed using glucose tolerance test. β-Cell mass, islet volume, and islet number were analyzed by histomorphometry. Apolipoprotein D deficiency results in nonfasting hypertriglyceridemia in young (P = .01) and aged mice (P = .002). In young ApoD-KO mice, hypertriglyceridemia was associated with 30% to 50% increased food intake in nonfasting and fasting conditions, respectively, without changes in body weight. In addition, lipoprotein lipase levels were reduced by 35% in adipose tissue (P = .006). In aged ApoD-KO mice, hypertriglyceridemia was not associated with changes in food intake or body weight, whereas hepatic triglyceride levels were reduced by 35% (P = .02). Furthermore, nonfasting plasma insulin levels were elevated by 2-fold in young (P = .016) and aged (P = .004) ApoD-KO mice, without changes in blood glucose levels, glucose tolerance, β-cell mass, or islet number. These findings underscore the importance of ApoD in the regulation of plasma insulin levels and triglyceride metabolism, suggesting that ApoD plays an important role in the pathogenesis of dyslipidemia.
Collapse
|
45
|
Zhang X, Azhar G, Helms S, Burton B, Huang C, Zhong Y, Gu X, Fang H, Tong W, Wei JY. Identification of New SRF Binding Sites in Genes Modulated by SRF Over-Expression in Mouse Hearts. GENE REGULATION AND SYSTEMS BIOLOGY 2011; 5:41-59. [PMID: 21792293 PMCID: PMC3140411 DOI: 10.4137/grsb.s7457] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background: To identify in vivo new cardiac binding sites of serum response factor (SRF) in genes and to study the response of these genes to mild over-expression of SRF, we employed a cardiac-specific, transgenic mouse model, with mild over-expression of SRF (Mild-O SRF Tg). Methodology: Microarray experiments were performed on hearts of Mild-O-SRF Tg at 6 months of age. We identified 207 genes that are important for cardiac function that were differentially expressed in vivo. Among them the promoter region of 192 genes had SRF binding motifs, the classic CArG or CArG-like (CArG-L) elements. Fifty-one of the 56 genes with classic SRF binding sites had not been previously reported. These SRF-modulated genes were grouped into 12 categories based on their function. It was observed that genes associated with cardiac energy metabolism shifted toward that of carbohydrate metabolism and away from that of fatty acid metabolism. The expression of genes that are involved in transcription and ion regulation were decreased, but expression of cytoskeletal genes was significantly increased. Using public databases of mouse models of hemodynamic stress (GEO database), we also found that similar altered expression of the SRF-modulated genes occurred in these hearts with cardiac ischemia or aortic constriction as well. Conclusion and significance: SRF-modulated genes are actively regulated under various physiological and pathological conditions. We have discovered that a large number of cardiac genes have classic SRF binding sites and were significantly modulated in the Mild-O-SRF Tg mouse hearts. Hence, the mild elevation of SRF protein in the heart that is observed during typical adult aging may have a major impact on many SRF-modulated genes, thereby affecting cardiac structure and performance. The results from our study could help to enhance our understanding of SRF regulation of cellular processes in the aged heart.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Donald W. Reynolds Department of Geriatrics, The University of Arkansas for Medical Sciences and Geriatric Research, Education, and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Expression and localization of the iron-siderophore binding protein lipocalin 2 in the normal rat brain and after kainate-induced excitotoxicity. Neurochem Int 2011; 59:591-9. [PMID: 21683107 DOI: 10.1016/j.neuint.2011.04.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/18/2011] [Accepted: 04/04/2011] [Indexed: 12/21/2022]
Abstract
Lipocalin 2 (LCN2) is produced by mammalian hosts to bind bacterial siderophore and sequester free iron as part of an innate immune response, and could also play a role in tissue iron homeostasis, but thus far, little is known about its expression in the CNS. The present study was carried out to study the expression of the lipocalin in the normal rat brain and after neuronal injury induced by kainate (KA). Low levels of LCN2 mRNA and protein expression were detected in most regions of the normal brain except the olfactory bulb, brainstem and cerebellum. KA lesions resulted in damage to the hippocampus, leading to an early increase at three days and a sustained elevation in LCN2 mRNA level of 16-fold, and protein expression at 80-fold in the lesioned tissue compared to controls at 2 weeks post-KA injection. The sustained elevation in mRNA expression was not detected among other lipocalins surveyed using real-time RT-PCR - apoD, PGDS, Rbp4 and LCN5. Single and double immunostaining confirmed that LCN2 is present in astrocytes in the olfactory bulb, brainstem and cerebellum of the normal brain, and reactive astrocytes in the KA-lesioned hippocampus. In conclusion, the present study showed LCN2 to be present in select brain regions, and is upregulated in astrocytes after neuronal injury induced by kainate. We postulate that, as in the periphery, LCN2 may have a role in iron transport or trafficking in the CNS.
Collapse
|
47
|
Antioxidant activities of recombinant amphioxus (Branchiostoma belcheri) apolipoprotein D. Mol Biol Rep 2010; 38:1847-51. [PMID: 20848217 DOI: 10.1007/s11033-010-0301-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 09/03/2010] [Indexed: 10/19/2022]
Abstract
Apolipoprotein D (ApoD), a member of lipocalin, has been recently shown to be involved in regulating protection from oxidative stress. The absence of ApoD in mouse and Drosophila can reduce the resistance to oxidative stress and shorten lifespan. However, little information is available regarding the expression in vitro of ApoD and its biochemical properties. Amphioxus (Branchiostoma belcheri) ApoD, BbApoD, is an archetype of vertebrate ApoD proteins. In this study, the prokaryotic expression plasmid pET32a-BbApoD was constructed and recombinant BbApoD expressed in Escherichia coli BL21 and purified. Antioxidation assays showed that the recombinant BbApoD protein had the capacities to scavenge hydroxyl radicals (≥ 240 μg/ml) and to prevent nicking of the supercoiled DNA (≥ 100 μg/ml) in vitro, providing a biochemical evidence for antioxidant role of ApoD. This supports the notion that ApoD is part of the mechanisms regulating protection from oxidative stresses.
Collapse
|
48
|
Elliott DA, Weickert CS, Garner B. Apolipoproteins in the brain: implications for neurological and psychiatric disorders. ACTA ACUST UNITED AC 2010; 51:555-573. [PMID: 21423873 DOI: 10.2217/clp.10.37] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The brain is the most lipid-rich organ in the body and, owing to the impermeable nature of the blood-brain barrier, lipid and lipoprotein metabolism within this organ is distinct from the rest of the body. Apolipoproteins play a well-established role in the transport and metabolism of lipids within the CNS; however, evidence is emerging that they also fulfill a number of functions that extend beyond lipid transport and are critical for healthy brain function. The importance of apolipoproteins in brain physiology is highlighted by genetic studies, where apolipoprotein gene polymorphisms have been identified as risk factors for several neurological diseases. Furthermore, the expression of brain apolipoproteins is significantly altered in several brain disorders. The purpose of this article is to provide an up-to-date assessment of the major apolipoproteins found in the brain (ApoE, ApoJ, ApoD and ApoA-I), covering their proposed roles and the factors influencing their level of expression. Particular emphasis is placed on associations with neurological and psychiatric disorders.
Collapse
Affiliation(s)
- David A Elliott
- Prince of Wales Medical Research Institute, Randwick, Sydney, NSW 2031, Australia
| | | | | |
Collapse
|
49
|
Levros LC, Do Carmo S, Edouard E, Legault P, Charfi C, Rassart E. Characterization of nuclear factors modulating the apolipoprotein D promoter during growth arrest: implication of PARP-1, APEX-1 and ERK1/2 catalytic activities. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1062-71. [PMID: 20493910 PMCID: PMC7114184 DOI: 10.1016/j.bbamcr.2010.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/22/2010] [Accepted: 04/29/2010] [Indexed: 11/28/2022]
Abstract
Human Apolipoprotein D (apoD) is upregulated under several stress conditions and pathological situations such as neurodegenerative diseases and cancers. We previously showed that apoD mRNA expression is induced in growth-arrested cells and demonstrated the specific binding of nuclear proteins to the region −514 to −475 of the promoter. Such region contains a pair of Serum Responsive Elements (SRE), an Ets-Binding Site (EBS) and a Glucocorticoid Responsive Element (GRE). In this study, we show that Parp-1, HnRNP-U, CBF-A, BUB-3, Kif4, APEX-1 and Ifi204 bind these regulatory elements of the apoD promoter. Specific binding of HnRNP-U and Parp-1 was confirmed by Electrophoretic Mobility Shift Assay (EMSA). In a biotin pull-down assay, Kif4 and BUB-3 bind preferentially the SRE1 and the EBS-GRE sites, respectively, while APEX-1 seems recruited indirectly to these elements. We found that the mRNA expression of some of these binding factors is upregulated in growth-arrested cells and that these proteins also transactivate the apoD promoter. In agreement with these results, mutants of APEX-1 and of Parp-1 defective for their DNA-binding and catalytic activities could not transactivate the promoter. The knockdown of Parp-1 and HnRNP-U and the use of specific inhibitors of MEK1/2 and of Parp-1 also inhibited the induction of apoD gene expression. Moreover, ERK1/2 was found activated in a biphasic manner post serum-starvation and the inhibition of Parp-1 causes a sustained activation of ERK2 but not ERK1 for up to 2 h. Altogether, these findings demonstrate the importance of Parp-1, APEX-1 and ERK1/2 catalytic activities in the growth arrest-induced apoD gene expression.
Collapse
Affiliation(s)
- Louis-Charles Levros
- Laboratoire de biologie moléculaire, Département des Sciences Biologiques, and Centre BioMed, Université du Québec à Montréal, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
50
|
Navarro A, del Valle E, Juárez A, Martinez E, Ordóñez C, Astudillo A, Tolivia J. Apolipoprotein D synthesis progressively increases in frontal cortex during human lifespan. AGE (DORDRECHT, NETHERLANDS) 2010; 32:85-96. [PMID: 19936966 PMCID: PMC2829646 DOI: 10.1007/s11357-009-9117-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 10/05/2009] [Indexed: 05/04/2023]
Abstract
Apolipoprotein D (apo D) is a lipocalin present in the nervous system that may be related to processes of reinnervation, regeneration and neuronal cell protection. On the other hand, apo D expression has been correlated, in some brain regions, with normal ageing and neurodegenerative diseases. To elucidate the regional and cellular expression of apo Din normal human brain during ageing, we performed a detailed and extensive study in samples of post-mortem human cerebral cortices. To achieve this study, slot-blot techniques, for protein and mRNA,as well as immunohistochemistry and hybridohistochemistry methods, were used. A positive correlation for apo D expression with ageing was found;furthermore, mRNA levels, as well as the protein ones, were higher in the white than in the grey matter. Immunohistochemistry and non-isotopic in situ hybridization showed that apo D is synthesised in both neurons and glial cells. Apo D expression is notorious in oligodendrocytes, but with ageing, the number of neurons that synthesise apo D is increased.Our results indicate that apo D could play a fundamental role in central nervous system ageing and in the reduction of products derived from lipid peroxidation. The increment in the expression of apo D with ageing can be included in a global mechanism of cellular protection to prevent the deleterious effects caused by ageing.
Collapse
Affiliation(s)
- Ana Navarro
- Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Julián Clavería s/n, Oviedo, 33006 Spain
| | - Eva del Valle
- Life Sciences Department, The Open University, Walton Hall, Milton Keynes, Buckinghamshire MK7 6AA UK
| | - Amalia Juárez
- Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Julián Clavería s/n, Oviedo, 33006 Spain
| | - Eva Martinez
- Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Julián Clavería s/n, Oviedo, 33006 Spain
| | - Cristina Ordóñez
- Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Julián Clavería s/n, Oviedo, 33006 Spain
| | - Aurora Astudillo
- Servicio de Anatomía Patológica, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Jorge Tolivia
- Departamento de Morfología y Biología Celular, Facultad de Biología y Medicina, Universidad de Oviedo, Julián Clavería s/n, Oviedo, 33006 Spain
| |
Collapse
|