1
|
Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol 2024; 98:1323-1367. [PMID: 38483584 PMCID: PMC11303474 DOI: 10.1007/s00204-024-03696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 01/31/2024] [Indexed: 03/27/2024]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are well recognized for playing a dual role, since they can be either deleterious or beneficial to biological systems. An imbalance between ROS production and elimination is termed oxidative stress, a critical factor and common denominator of many chronic diseases such as cancer, cardiovascular diseases, metabolic diseases, neurological disorders (Alzheimer's and Parkinson's diseases), and other disorders. To counteract the harmful effects of ROS, organisms have evolved a complex, three-line antioxidant defense system. The first-line defense mechanism is the most efficient and involves antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). This line of defense plays an irreplaceable role in the dismutation of superoxide radicals (O2•-) and hydrogen peroxide (H2O2). The removal of superoxide radicals by SOD prevents the formation of the much more damaging peroxynitrite ONOO- (O2•- + NO• → ONOO-) and maintains the physiologically relevant level of nitric oxide (NO•), an important molecule in neurotransmission, inflammation, and vasodilation. The second-line antioxidant defense pathway involves exogenous diet-derived small-molecule antioxidants. The third-line antioxidant defense is ensured by the repair or removal of oxidized proteins and other biomolecules by a variety of enzyme systems. This review briefly discusses the endogenous (mitochondria, NADPH, xanthine oxidase (XO), Fenton reaction) and exogenous (e.g., smoking, radiation, drugs, pollution) sources of ROS (superoxide radical, hydrogen peroxide, hydroxyl radical, peroxyl radical, hypochlorous acid, peroxynitrite). Attention has been given to the first-line antioxidant defense system provided by SOD, CAT, and GPx. The chemical and molecular mechanisms of antioxidant enzymes, enzyme-related diseases (cancer, cardiovascular, lung, metabolic, and neurological diseases), and the role of enzymes (e.g., GPx4) in cellular processes such as ferroptosis are discussed. Potential therapeutic applications of enzyme mimics and recent progress in metal-based (copper, iron, cobalt, molybdenum, cerium) and nonmetal (carbon)-based nanomaterials with enzyme-like activities (nanozymes) are also discussed. Moreover, attention has been given to the mechanisms of action of low-molecular-weight antioxidants (vitamin C (ascorbate), vitamin E (alpha-tocopherol), carotenoids (e.g., β-carotene, lycopene, lutein), flavonoids (e.g., quercetin, anthocyanins, epicatechin), and glutathione (GSH)), the activation of transcription factors such as Nrf2, and the protection against chronic diseases. Given that there is a discrepancy between preclinical and clinical studies, approaches that may result in greater pharmacological and clinical success of low-molecular-weight antioxidant therapies are also subject to discussion.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Suliman Y Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
| |
Collapse
|
2
|
Bartimoccia S, Praktiknjo M, Nocella C, Schierwagen R, Cammisotto V, Jansen C, Cristiano L, Castellani V, Chang J, Carnevale R, Maiucci S, Uschner FE, Pignatelli P, Brol MJ, Trebicka J, Violi F. Association between endotoxemia and blood no in the portal circulation of cirrhotic patients: results of a pilot study. Intern Emerg Med 2024; 19:713-720. [PMID: 38409619 DOI: 10.1007/s11739-024-03534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024]
Abstract
Pathophysiology of portal vein thrombosis (PVT) in cirrhosis is still not entirely understood. Elevated levels of lipopolysaccharides (LPS) in portal circulation are significantly associated with hypercoagulation, increased platelet activation and endothelial dysfunction. The aim of the study was to investigate if LPS was associated with reduced portal venous flow, the third component of Virchow's triad, and the underlying mechanism. Serum nitrite/nitrate, as a marker of nitric oxide (NO) generation, and LPS were measured in the portal and systemic circulation of 20 patients with cirrhosis undergoing transjugular intrahepatic portosystemic shunt (TIPS) procedure; portal venous flow velocity (PVV) was also measured in each patient and correlated with NO and LPS levels. Serum nitrite/nitrate and LPS were significantly higher in the portal compared to systemic circulation; a significant correlation was found between LPS and serum nitrite/nitrate (R = 0.421; p < 0.01). Median PVV before and after TIPS was 15 cm/s (6-40) and 31 cm/s (14-79), respectively. Correlation analysis of PVV with NO and LPS showed a statistically significant negative correlation of PVV with portal venous NO concentration (R = - 0.576; p = 0.020), but not with LPS. In vitro study with endothelial cells showed that LPS enhanced endothelial NO biosynthesis, which was inhibited by L-NAME, an inhibitor of NO synthase, or TAK-242, an inhibitor of TLR4, the LPS receptor; this effect was accomplished by up-regulation of eNOS and iNOS. The study shows that in cirrhosis, endotoxemia may be responsible for reduced portal venous flow via overgeneration of NO and, therefore, contribute to the development of PVT.
Collapse
Affiliation(s)
- Simona Bartimoccia
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Cristina Nocella
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Vittoria Cammisotto
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Christian Jansen
- Department of Medicine I, University Hospital Bonn, Bonn, Germany
| | | | - Valentina Castellani
- Department of General Surgery and Surgical Speciality, Sapienza University of Rome, Rome, Italy
| | - Johannes Chang
- Department of Medicine I, University Hospital Bonn, Bonn, Germany
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- IRCCS Neuromed, Località Camerelle, 86077, Pozzilli, IS, Italy
| | - Sofia Maiucci
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Pasquale Pignatelli
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro-Napoli, Via Orazio, 2, 80122, Naples, Italy
| | | | - Jonel Trebicka
- Department of Medicine B, University Hospital Münster, Münster, Germany
- European Foundation for the Study of Chronic Liver Failure, EF Clif, Barcelona, Spain
| | - Francesco Violi
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy.
- IRCCS Neuromed, Località Camerelle, 86077, Pozzilli, IS, Italy.
| |
Collapse
|
3
|
Chang S, Tat J, China SP, Kalyanaraman H, Zhuang S, Chan A, Lai C, Radic Z, Abdel-Rahman EA, Casteel DE, Pilz RB, Ali SS, Boss GR. Cobinamide is a strong and versatile antioxidant that overcomes oxidative stress in cells, flies, and diabetic mice. PNAS NEXUS 2022; 1:pgac191. [PMID: 36276587 PMCID: PMC9578022 DOI: 10.1093/pnasnexus/pgac191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/12/2022] [Indexed: 01/29/2023]
Abstract
Increased oxidative stress underlies a variety of diseases, including diabetes. Here, we show that the cobalamin/vitamin B12 analog cobinamide is a strong and multifaceted antioxidant, neutralizing superoxide, hydrogen peroxide, and peroxynitrite, with apparent rate constants of 1.9 × 108, 3.7 × 104, and 6.3 × 106 M-1 s-1, respectively, for cobinamide with the cobalt in the +2 oxidation state. Cobinamide with the cobalt in the +3 oxidation state yielded apparent rate constants of 1.1 × 108 and 8.0 × 102 M-1 s-1 for superoxide and hydrogen peroxide, respectively. In mammalian cells and Drosophila melanogaster, cobinamide outperformed cobalamin and two well-known antioxidants, imisopasem manganese and manganese(III)tetrakis(4-benzoic acid)porphyrin, in reducing oxidative stress as evidenced by: (i) decreased mitochondrial superoxide and return of the mitochondrial membrane potential in rotenone- and antimycin A-exposed H9c2 rat cardiomyocytes; (ii) reduced JNK phosphorylation in hydrogen-peroxide-treated H9c2 cells; (iii) increased growth in paraquat-exposed COS-7 fibroblasts; and (iv) improved survival in paraquat-treated flies. In diabetic mice, cobinamide administered in the animals' drinking water completely prevented an increase in lipid and protein oxidation, DNA damage, and fibrosis in the heart. Cobinamide is a promising new antioxidant that has potential use in diseases with heightened oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | - Shunhui Zhuang
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adriano Chan
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cassandra Lai
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zoran Radic
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Engy A Abdel-Rahman
- Tumor Biology Research Program, Children’s Cancer Hospital, Cairo 57357, Egypt,Pharmacology Department, Faculty of Medicine, Assuit University, Assuit 71515, Egypt
| | - Darren E Casteel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Renate B Pilz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
4
|
Crochemore C, Cimmaruta C, Fernández-Molina C, Ricchetti M. Reactive Species in Progeroid Syndromes and Aging-Related Processes. Antioxid Redox Signal 2022; 37:208-228. [PMID: 34428933 DOI: 10.1089/ars.2020.8242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Significance: Reactive species have been classically considered causative of age-related degenerative processes, but the scenario appears considerably more complex and to some extent counterintuitive than originally anticipated. The impact of reactive species in precocious aging syndromes is revealing new clues to understand and perhaps challenge the resulting degenerative processes. Recent Advances: Our understanding of reactive species has considerably evolved, including their hormetic effect (beneficial at a certain level, harmful beyond this level), the occurrence of diverse hormetic peaks in different cell types and organisms, and the extended type of reactive species that are relevant in biological processes. Our understanding of the impact of reactive species has also expanded from the dichotomic damaging/signaling role to modulation of gene expression. Critical Issues: These new concepts are affecting the study of aging and diseases where aging is greatly accelerated. We discuss how notions arising from the study of the underlying mechanisms of a progeroid disease, Cockayne syndrome, represent a paradigm shift that may shed a new light in understanding the role of reactive species in age-related degenerative processes. Future Issues: Future investigations urge to explore established and emerging notions to elucidate the multiple contributions of reactive species in degenerative processes linked to pathophysiological aging and their possible amelioration. Antioxid. Redox Signal. 37, 208-228.
Collapse
Affiliation(s)
- Clément Crochemore
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France.,Sup'Biotech, Villejuif, France
| | - Chiara Cimmaruta
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France
| | - Cristina Fernández-Molina
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France.,Sorbonne Universités, UPMC, University of Paris 06, Paris, France
| | - Miria Ricchetti
- Team Stability of Nuclear and Mitochondrial DNA, Stem Cells and Development, UMR 3738 CNRS, Institut Pasteur, Paris, France
| |
Collapse
|
5
|
Faustova M, Nikolskaya E, Sokol M, Fomicheva M, Petrov R, Yabbarov N. Metalloporphyrins in Medicine: From History to Recent Trends. ACS APPLIED BIO MATERIALS 2020; 3:8146-8171. [PMID: 35019597 DOI: 10.1021/acsabm.0c00941] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The history of metalloporphyrins dates back more than 200 years ago. Metalloporphyrins are excellent catalysts, capable of forming supramolecular systems, participate in oxygen photosynthesis, transport, and used as contrast agents or superoxide dismutase mimetics. Today, metalloporphyrins represent complexes of conjugated π-electron system and metals from the entire periodic system. However, the effect of these compounds on living systems has not been fully understood, and researchers are exploring the properties of metalloporphyrins thereby extending their further application. This review provides an overview of the variety of metalloporphyrins that are currently used in different medicine fields and how metalloporphyrins became the subject of scientists' interest. Currently, metalloporphyrins utilization has expanded significantly, which gave us an opprotunuty to summarize recent progress in metalloporphyrins derivatives and prospects of their application in the treatment and diagnosis of different diseases.
Collapse
Affiliation(s)
- Mariia Faustova
- MIREA-Russian Technological University, Lomonosov Institute of Fine Chemical Technologies, 119454 Moscow, Russia.,N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena Nikolskaya
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria Sokol
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Margarita Fomicheva
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| | - Rem Petrov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikita Yabbarov
- N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia.,JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow Russia
| |
Collapse
|
6
|
Treulen F, Aguila L, Arias ME, Jofré I, Felmer R. Impact of post-thaw supplementation of semen extender with antioxidants on the quality and function variables of stallion spermatozoa. Anim Reprod Sci 2019; 201:71-83. [DOI: 10.1016/j.anireprosci.2018.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/17/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022]
|
7
|
Loffredo L, Cangemi R, Perri L, Catasca E, Calvieri C, Carnevale R, Nocella C, Equitani F, Ferro D, Violi F, Battaglia S, Bertazzoni G, Biliotti E, Bucci T, Calabrese CM, Casciaro M, Celestini A, De Angelis M, De Marzio P, Esvan R, Falcone M, Fazi L, Sulekova LF, Franchi C, Giordo L, Grieco S, Manzini E, Marinelli P, Mordenti M, Morelli S, Palange P, Pastori D, Pignatelli P, Capparuccia MR, Romiti GF, Rossi E, Ruscio E, Russo A, Scarpellini MG, Solimando L, Taliani G, Trapè S, Toriello F. Impaired flow-mediated dilation in hospitalized patients with community-acquired pneumonia. Eur J Intern Med 2016; 36:74-80. [PMID: 27727076 DOI: 10.1016/j.ejim.2016.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/21/2016] [Accepted: 09/09/2016] [Indexed: 01/27/2023]
Abstract
BACKGROUND Community-acquired pneumonia (CAP) is complicated by cardiovascular events as myocardial infarction and stroke but the underlying mechanism is still unclear. We hypothesized that endothelial dysfunction may be implicated and that endotoxemia may have a role. METHODS Fifty patients with CAP and 50 controls were enrolled. At admission and at discharge, flow-mediated dilation (FMD), serum levels of endotoxins and oxidative stress, as assessed by serum levels of nitrite/nitrate (NOx) and isoprostanes, were studied. RESULTS At admission, a significant difference between patients with CAP and controls was observed for FMD (2.1±0.3 vs 4.0±0.3%, p<0.001), serum endotoxins (157.8±7.6 vs 33.1±4.8pg/ml), serum isoprostanes (341±14 vs 286±10 pM, p=0.009) and NOx (24.3±1.1 vs 29.7±2.2μM). Simple linear correlation analysis showed that serum endotoxins significantly correlated with Pneumonia Severity Index score (Rs=0.386, p=0.006). Compared to baseline, at discharge CAP patients showed a significant increase of FMD and NOx (from 2.1±0.3 to 4.6±0.4%, p<0.001 and from 24.3±1.1 to 31.1±1.5μM, p<0.001, respectively) and a significant decrease of serum endotoxins and isoprostanes (from 157.8±7.6 to 55.5±2.3pg/ml, p<0.001, and from 341±14 to 312±14 pM, p<0.001, respectively). Conversely, no changes for FMD, NOx, serum endotoxins and isoprostanes were observed in controls between baseline and discharge. Changes of FMD significantly correlated with changes of serum endotoxins (Rs=-0.315; p=0.001). CONCLUSIONS The study provides the first evidence that CAP is characterized by impaired FMD with a mechanism potentially involving endotoxin production and oxidative stress.
Collapse
Affiliation(s)
- Lorenzo Loffredo
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Roberto Cangemi
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Ludovica Perri
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Elisa Catasca
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Camilla Calvieri
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberto Carnevale
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Cristina Nocella
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Francesco Equitani
- Transfusion Medicine and Immuno-Hematology Unit, Santa Maria Goretti Hospital, Latina, Italy
| | - Domenico Ferro
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Francesco Violi
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy.
| | - Simona Battaglia
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Giuliano Bertazzoni
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Elisa Biliotti
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Tommaso Bucci
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Cinzia Myriam Calabrese
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Marco Casciaro
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Andrea Celestini
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Maurizio De Angelis
- Infectious and Tropical Diseases Unit, Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo De Marzio
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Rozenn Esvan
- Infectious and Tropical Diseases Unit, Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | - Marco Falcone
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Lucia Fazi
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Lucia Fontanelli Sulekova
- Infectious and Tropical Diseases Unit, Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | - Cristiana Franchi
- Infectious and Tropical Diseases Unit, Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | - Laura Giordo
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Stefania Grieco
- Infectious and Tropical Diseases Unit, Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | - Elisa Manzini
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Paolo Marinelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Michela Mordenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Sergio Morelli
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Paolo Palange
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Daniele Pastori
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Pasquale Pignatelli
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Marco Rivano Capparuccia
- Infectious and Tropical Diseases Unit, Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulio Francesco Romiti
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Elisabetta Rossi
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Eleonora Ruscio
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Alessandro Russo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Maria Gabriella Scarpellini
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Luisa Solimando
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Gloria Taliani
- Infectious and Tropical Diseases Unit, Department of Clinical Medicine, Sapienza University of Rome, Rome, Italy
| | - Stefano Trapè
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Filippo Toriello
- I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
8
|
Zhang Z, Bi C, Fan Y, Wang H, Bao Y. Cefepime, a fourth-generation cephalosporin, in complex with manganese, inhibits proteasome activity and induces the apoptosis of human breast cancer cells. Int J Mol Med 2015; 36:1143-50. [PMID: 26239216 DOI: 10.3892/ijmm.2015.2297] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 07/20/2015] [Indexed: 11/06/2022] Open
Abstract
Cefepime (FEP), which is a member of the fourth-generation cephalosporin class, has been extensively studied as a biochemical and antimicrobial reagent in recent years. Manganese (Mn) is important in the biochemical and physiological processes of many living organisms, and it is also high expressed in some tumor tissues. In the present study, we aimed to investigate the proteasome-inhibitory and anti-proliferative properties of 8 metal complexes (FEP‑Cu, FEP-Zn, FEP-Co, FEP-Ni, FEP-Cd, FEP-Cr, FEP-Fe, FEP-Mn) in MDA-MB‑231 human breast cancer cells. The FEP-Mn complex was found to be more potent in its ability to inhibit cell proliferation and proteasome activity than the other compounds tested. Moreover, the FEP-Mn complex inhibited proteasomal chymotrypsin-like (CT-like) activity and induced the apoptosis of breast cancer cells in a dose-and time-dependent manner. Furthermore, the MCF-10A cells were much less sensitive to the FEP complexes compared with the MDA-MB-231 breast cancer cells. These results demonstrated that the FEP-Mn(II) complex has the potential to act as a proteasome inhibitor and apoptosis inducer and therefore has possible future applications in cancer chemotherapy.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong 276826, P.R. China
| | - Caifeng Bi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P.R. China
| | - Yuhua Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P.R. China
| | - Huannan Wang
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272100, P.R. China
| | - Yan Bao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, Shandong 266100, P.R. China
| |
Collapse
|
9
|
|
10
|
Carreira BP, Morte MI, Santos AI, Lourenço AS, Ambrósio AF, Carvalho CM, Araújo IM. Nitric oxide from inflammatory origin impairs neural stem cell proliferation by inhibiting epidermal growth factor receptor signaling. Front Cell Neurosci 2014; 8:343. [PMID: 25389386 PMCID: PMC4211408 DOI: 10.3389/fncel.2014.00343] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/05/2014] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is characterized by activation of microglial cells, followed by production of nitric oxide (NO), which may have different outcomes on neurogenesis, favoring or inhibiting this process. In the present study, we investigated how the inflammatory mediator NO can affect proliferation of neural stem cells (NSCs), and explored possible mechanisms underlying this effect. We investigated which mechanisms are involved in the regulation of NSC proliferation following treatment with an inflammatory stimulus (lipopolysaccharide plus IFN-γ), using a culture system of subventricular zone (SVZ)-derived NSCs mixed with microglia cells obtained from wild-type mice (iNOS(+/+)) or from iNOS knockout mice (iNOS(-/-)). We found an impairment of NSC cell proliferation in iNOS(+/+) mixed cultures, which was not observed in iNOS(-/-) mixed cultures. Furthermore, the increased release of NO by activated iNOS(+/+) microglial cells decreased the activation of the ERK/MAPK signaling pathway, which was concomitant with an enhanced nitration of the EGF receptor. Preventing nitrogen reactive species formation with MnTBAP, a scavenger of peroxynitrite (ONOO(-)), or using the ONOO(-) degradation catalyst FeTMPyP, cell proliferation and ERK signaling were restored to basal levels in iNOS(+/+) mixed cultures. Moreover, exposure to the NO donor NOC-18 (100 μM), for 48 h, inhibited SVZ-derived NSC proliferation. Regarding the antiproliferative effect of NO, we found that NOC-18 caused the impairment of signaling through the ERK/MAPK pathway, which may be related to increased nitration of the EGF receptor in NSC. Using MnTBAP nitration was prevented, maintaining ERK signaling, rescuing NSC proliferation. We show that NO from inflammatory origin leads to a decreased function of the EGF receptor, which compromised proliferation of NSC. We also demonstrated that NO-mediated nitration of the EGF receptor caused a decrease in its phosphorylation, thus preventing regular proliferation signaling through the ERK/MAPK pathway.
Collapse
Affiliation(s)
- Bruno P Carreira
- Centre for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Maria I Morte
- Centre for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Ana I Santos
- Centre for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal ; Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve Faro, Portugal ; Centre for Molecular and Structural Biomedicine, CBME/IBB, University of Algarve Faro, Portugal
| | - Ana S Lourenço
- Centre for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal ; Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve Faro, Portugal ; Centre for Molecular and Structural Biomedicine, CBME/IBB, University of Algarve Faro, Portugal
| | - António F Ambrósio
- Centre for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal ; Centre of Ophthalmology and Vision Sciences, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra Coimbra, Portugal
| | - Caetana M Carvalho
- Centre for Neuroscience and Cell Biology, University of Coimbra Coimbra, Portugal
| | - Inês M Araújo
- Regenerative Medicine Program, Department of Biomedical Sciences and Medicine, University of Algarve Faro, Portugal ; Centre for Molecular and Structural Biomedicine, CBME/IBB, University of Algarve Faro, Portugal
| |
Collapse
|
11
|
Abstract
SIGNIFICANCE Cancer is the second leading cause of death in the United States. Considering the quality of life and treatment cost, the best way to fight against cancer is to prevent or suppress cancer development. Cancer is preventable as indicated by human papilloma virus (HPV) vaccination and tamoxifen/raloxifen treatment in breast cancer prevention. The activities of superoxide dismutases (SODs) are often lowered during early cancer development, making it a rational candidate for cancer prevention. RECENT ADVANCES SOD liposome and mimetics have been shown to be effective in cancer prevention animal models. They've also passed safety tests during early phase clinical trials. Dietary supplement-based SOD cancer prevention provides another opportunity for antioxidant-based cancer prevention. New mechanistic studies have revealed that SOD inhibits not only oncogenic activity, but also subsequent metabolic shifts during early tumorigenesis. CRITICAL ISSUES Lack of sufficient animal model studies targeting specific cancers; and lack of clinical trials and support from pharmaceutical industries also hamper efforts in further advancing SOD-based cancer prevention. FUTURE DIRECTIONS To educate and obtain support from our society that cancer is preventable. To combine SOD-based therapeutics with other cancer preventive agents to obtain synergistic effects. To formulate a dietary supplementation-based antioxidant approach for cancer prevention. Lastly, targeting specific populations who are prone to carcinogens, which can trigger oxidative stress as the mechanism of carcinogenesis.
Collapse
Affiliation(s)
- Delira Robbins
- 1 Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital , Memphis, Tennessee
| | | |
Collapse
|
12
|
Pan H, Shen K, Wang X, Meng H, Wang C, Jin B. Protective effect of metalloporphyrins against cisplatin-induced kidney injury in mice. PLoS One 2014; 9:e86057. [PMID: 24454954 PMCID: PMC3891880 DOI: 10.1371/journal.pone.0086057] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 12/05/2013] [Indexed: 12/22/2022] Open
Abstract
Oxidative and nitrative stress is a well-known phenomenon in cisplatin-induced nephrotoxicity. The purpose of this work is to study the role of two metalloporphyrins (FeTMPyP and MnTBAP), water soluble complexes, in cisplatin-induced renal damage and their ability to scavenge peroxynitrite. In cisplatin-induced nephropathy study in mice, renal nitrative stress was evident by the increase in protein nitration. Cisplatin-induced nephrotoxicity was also evident by the histological damage from the loss of the proximal tubular brush border, blebbing of apical membranes, tubular epithelial cell detachment from the basement membrane, or intra-luminal aggregation of cells and proteins and by the increase in blood urea nitrogen and serum creatinine. Cisplatin-induced apoptosis and cell death as shown by Caspase 3 assessments, TUNEL staining and DNA fragmentation Cisplatin-induced nitrative stress, apoptosis and nephrotoxicity were attenuated by both metalloporphyrins. Heme oxygenase (HO-1) also plays a critical role in metalloporphyrin-mediated protection of cisplatin-induced nephrotoxicity. It is evident that nitrative stress plays a critical role in cisplatin-induced nephrotoxicity in mice. Our data suggest that peroxynitrite is involved, at least in part, in cisplatin-induced nephrotoxicity and protein nitration and cisplatin-induced nephrotoxicity can be prevented with the use of metalloporphyrins.
Collapse
Affiliation(s)
- Hao Pan
- Department of Urology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kezhen Shen
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Xueping Wang
- Department of Urology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongzhou Meng
- Department of Urology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chaojun Wang
- Department of Urology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Baiye Jin
- Department of Urology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
13
|
The protective role of MnTBAP in oxidant-mediated injury and inflammation in a rat model of lung contusion. Surgery 2013; 154:980-90. [PMID: 24139490 DOI: 10.1016/j.surg.2013.05.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/10/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Lung contusion (LC) is a unique direct and focal insult that is considered a major risk factor for the initiation of acute lung injury and acute respiratory distress syndrome. We have shown recently that consumption of nitric oxide (due to excess superoxide) resulting in peroxynitrite formation leads to decreased vascular reactivity after LC. In this study, we set out to determine whether the superoxide scavenger Mn (III) tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP) plays a protective role in alleviating acute inflammatory response and injury in LC. METHODS Nonlethal, closed-chest, bilateral LC was induced in a rodent model. Administration of the superoxide dismutase mimetic MnTBAP concurrently in LC in rats was performed, and bronchoalveolar lavage (BAL) and lung samples were analyzed for degree of injury and inflammation at 5 and 24 h after the insult. The extent of injury was assessed by the measurement of cells and albumin with cytokine levels in the BAL and lungs. Lung samples were subjected to H&E and superoxide staining with dihydro-ethidium. Protein-bound dityrosine and nitrotyrosine levels were quantified in lung tissue by tandem mass spectrometry. RESULTS The degrees of lung injury after LC as determined by BAL albumin levels were significantly decreased in the MnTBAP-administered rats at all the time points when compared to the corresponding controls. The release of proinflammatory cytokines and BAL neutrophils was significantly less in the rats administered MnTBAP after LC. Administration of MnTBAP decreased tissue damage and decreased necrosis and neutrophil-rich exudate at the 24-h time point. Staining for superoxide anions showed significantly greater intensity in the lung samples from the LC group compared to the LC+ MnTBAP group. High-performance liquid chromatography/tandem mass spectrometry revealed that MnTBAP treatment significantly attenuated dityrosine and nitrotyrosine levels, consistent with decreased oxidant injury. CONCLUSION Superoxide dismutase mimetic-MnTBAP reduced permeability and oxidative injury in LC and may have a therapeutic role in diminishing inflammation in LC.
Collapse
|
14
|
Ling X, Bao F, Qian H, Liu D. The temporal and spatial profiles of cell loss following experimental spinal cord injury: effect of antioxidant therapy on cell death and functional recovery. BMC Neurosci 2013; 14:146. [PMID: 24238557 PMCID: PMC3924333 DOI: 10.1186/1471-2202-14-146] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 11/12/2013] [Indexed: 01/22/2023] Open
Abstract
Background Traumatic spinal cord injury (SCI)-induced overproduction of endogenous deleterious substances triggers secondary cell death to spread damage beyond the initial injury site. Substantial experimental evidence supports reactive species (RS) as important mediators of secondary cell death after SCI. This study established quantitative temporal and spatial profiles of cell loss, characterized apoptosis, and evaluated the effectiveness of a broad spectrum RS scavenger - Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP) and a combination of MnTBAP plus nitro-L-arginine to prevent cell loss and neurological dysfunction following contusion SCI to the rat spinal cord. Results By counting the number of surviving cells in spinal cord sections removed at 1, 6, 12, 24, 48, 72 h and 1 week post-SCI and at 0 – 4 mm from the epicenter, the temporal and spatial profiles of motoneuron and glia loss were established. Motoneurons continued to disappear over a week and the losses decreased with increasing distance from the epicenter. Significant glia loss peaked at 24 to 48 h post-SCI, but only at sections 0–1.5 mm from the epicenter. Apoptosis of neurons, motoneurons and astrocytes was characterized morphologically by double immuno-staining with cell-specific markers and apoptosis indicators and confirmed by transmission electron microscopy. DNA laddering, ELISA quantitation and caspase-3 activation in the spinal cord tissue indicated more intense DNA fragments and greater caspase-3 activation in the epicenter than at 1 and 2 cm away from the epicenter or the sham-operated sections. Intraperitoneal treatment with MnTBAP + nitro-L-arginine significantly reduced motoneuron and cell loss and apoptosis in the gray and white matter compared with the vehicle-treated group. MnTBAP alone significantly reduced the number of apoptotic cells and improved functional recovery as evaluated by three behavioral tests. Conclusions Our temporal and spatial profiles of cell loss provide data bases for determining the time and location for pharmacological intervention. Our demonstration that apoptosis follows SCI and that MnTBAP alone or MnTBAP + nitro-L-arginine significantly reduces apoptosis correlates SCI-induced apoptosis with RS overproduction. MnTBAP significantly improved functional recovery, which strongly supports the important role of antioxidant therapy in treating SCI and the candidacy of MnTBAP for such treatment.
Collapse
Affiliation(s)
- Xiang Ling
- Department of Neurology, University of Texas Medical Branch, 301 University Blvd,, Rt, 0881, Galveston, TX 77555-0881, USA.
| | | | | | | |
Collapse
|
15
|
Gutierrez DA, Fernandez-Tenorio M, Ogrodnik J, Niggli E. NO-dependent CaMKII activation during β-adrenergic stimulation of cardiac muscle. Cardiovasc Res 2013; 100:392-401. [PMID: 23963842 DOI: 10.1093/cvr/cvt201] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS During β-adrenergic receptor (β-AR) stimulation, phosphorylation of cardiomyocyte ryanodine receptors by protein kinases may contribute to an increased diastolic Ca(2+) spark frequency. Regardless of prompt activation of protein kinase A during β-AR stimulation, this appears to rely more on activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), by a not yet identified signalling pathway. The goal of the present study was to identify and characterize the mechanisms which lead to CaMKII activation and elevated Ca(2+) spark frequencies during β-AR stimulation in single cardiomyocytes in diastolic conditions. METHODS AND RESULTS Confocal imaging revealed that β-AR stimulation increases endogenous NO production in cardiomyocytes, resulting in NO-dependent activation of CaMKII and a subsequent increase in diastolic Ca(2+) spark frequency. These changes of spark frequency could be mimicked by exposure to the NO donor GSNO and were sensitive to the CaMKII inhibitors KN-93 and AIP. In vitro, CaMKII became nitrosated and its activity remained increased independent of Ca(2+) in the presence of GSNO, as assessed with biochemical assays. CONCLUSIONS β-AR stimulation of cardiomyocytes may activate CaMKII by a novel direct pathway involving NO, without requiring Ca(2+) transients. This crosstalk between two established signalling pathways may contribute to arrhythmogenic diastolic Ca(2+) release and Ca(2+) waves during adrenergic stress, particularly in combination with cardiac diseases. In addition, NO-dependent activation of CaMKII is likely to have repercussions in many cellular signalling systems and cell types.
Collapse
Affiliation(s)
- Daniel A Gutierrez
- Department of Physiology, University of Bern, Bühlplatz 5, CH-3012 Bern, Switzerland
| | | | | | | |
Collapse
|
16
|
Gil L, Pérez D, Tápanes R, Pérez J, Grune T. Does mitochondrial dysfunction during antiretroviral therapy in human immunodeficiency virus infection suggest antioxidant supplementation as a beneficial option? Redox Rep 2013; 10:113-9. [PMID: 16156949 DOI: 10.1179/135100005x38905] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Over the last few years, a relative decline of the morbidity and mortality of human immunodeficiency virus (HIV) infection in industrialised countries has been observed due to the use of a potent combined therapy known as high active antiretroviral therapies (HAARTs). It has led to a decrease of viral load and a quantitative and qualitative improvement of immune function in patients, especially CD4+ T-lymphocyte count, having as a consequence a decrease of infectious complications and a global clinical improvement. Besides the positive effects of HAARTs on immune and metabolic alterations during HIV infection, it has been reported that the commonly used drugs AZT, ddI, and ddC are toxic to hepatocytes. Recent reports continue to point to the mitochondria as targets for toxicity. The prevalence of these symptoms is continued during acquired immunodeficiency syndrome (AIDS). The effects of oxidative stress occurring as a consequence of mitochondrial toxicity may amplify some of the pathophysiological and phenotypic events during infection. Mitochondrial stabilisation and antioxidative strategies are possible new therapeutic aims since the antiretroviral treatment is prolonged with increased longevity from AIDS, which has become a more manageable chronic illness. The aim of the present review article is to summarize the current knowledge about mitochondrial dysfunction during HAART and its consequence for patients with chronic treatment. Oxidative stress may serve as one pathway for cellular damage in AIDS and its treatment. One important future goal is to prevent or attenuate the side effects of HAART so that improved disease management can be achieved.
Collapse
Affiliation(s)
- Lizette Gil
- Laboratory of Clinical Pharmacology, Hospital, Institute of Tropical Medicine Pedro Kourí (IPK), Ciudad Habana, Cuba
| | | | | | | | | |
Collapse
|
17
|
Schrammel A, Mussbacher M, Winkler S, Haemmerle G, Stessel H, Wölkart G, Zechner R, Mayer B. Cardiac oxidative stress in a mouse model of neutral lipid storage disease. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1600-8. [PMID: 23867907 PMCID: PMC3795454 DOI: 10.1016/j.bbalip.2013.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/19/2013] [Accepted: 07/08/2013] [Indexed: 12/11/2022]
Abstract
Cardiac oxidative stress has been implicated in the pathogenesis of hypertrophy, cardiomyopathy and heart failure. Systemic deletion of the gene encoding adipose triglyceride lipase (ATGL), the enzyme that catalyzes the rate-limiting step of triglyceride lipolysis, results in a phenotype characterized by severe steatotic cardiac dysfunction. The objective of the present study was to investigate a potential role of oxidative stress in cardiac ATGL deficiency. Hearts of mice with global ATGL knockout were compared to those of mice with cardiomyocyte-restricted overexpression of ATGL and to those of wildtype littermates. Our results demonstrate that oxidative stress, measured as lucigenin chemiluminescence, was increased ~ 6-fold in ATGL-deficient hearts. In parallel, cytosolic NADPH oxidase subunits p67phox and p47phox were upregulated 4–5-fold at the protein level. Moreover, a prominent upregulation of different inflammatory markers (tumor necrosis factor α, monocyte chemotactant protein-1, interleukin 6, and galectin-3) was observed in those hearts. Both the oxidative and inflammatory responses were abolished upon cardiomyocyte-restricted overexpression of ATGL. Investigating the effect of oxidative and inflammatory stress on nitric oxide/cGMP signal transduction we observed a ~ 2.5-fold upregulation of soluble guanylate cyclase activity and a ~ 2-fold increase in cardiac tetrahydrobiopterin levels. Systemic treatment of ATGL-deficient mice with the superoxide dismutase mimetic Mn(III)tetrakis (4-benzoic acid) porphyrin did not ameliorate but rather aggravated cardiac oxidative stress. Our data suggest that oxidative and inflammatory stress seems involved in lipotoxic heart disease. Upregulation of soluble guanylate cyclase and cardiac tetrahydrobiopterin might be regarded as counterregulatory mechanisms in cardiac ATGL deficiency. ATGL(−/−) mice suffer from severe cardiac oxidative stress originating from upregulation of NOX2-dependent NADPH oxidase. Inflammation markers TNFα, MCP-1, IL-6, and Mac-2 are increased in cardiac ATGL deficiency. Activity of sGC and cardiac BH4 levels are elevated in ATGL(−/−) hearts. Systemic treatment of ATGL(−/−) mice with the SOD mimetic MnTBAP did not ameliorate oxidative stress.
Collapse
Key Words
- (s)GC
- (soluble) guanylate cyclase
- 2,2-diethyl-1-nitroso-oxyhydrazine
- ATGL
- ATGL(−/−)
- Adipose triglyceride lipase
- BH(2)
- BH(4)
- Cardiac hypertrophy
- DAG
- DEA/NO
- FFA
- GAPDH
- IL-6
- Inflammation
- MCP-1
- Mac-2
- Mn(III)tetrakis (4-benzoic acid) porphyrin chloride
- MnTBAP
- NADPH
- NADPH oxidase
- NO
- NOX
- ONOO(−)
- Oxidative stress
- PBS
- PKC
- PPARα
- SOD
- TG
- TNFα
- VASP
- adipose triglyceride lipase
- adipose triglyceride lipase knockout
- diacylglycerol
- dihydrobiopterin, [2-amino-6-(1,2-dihydroxypropyl)-7,8-dihydro-1H-pteridin-4-one]
- eNOS
- endothelial nitric oxide synthase
- free fatty acid
- galectin-3
- glyceraldehyde-3-phosphate dehydrogenase
- iNOS
- inducible nitric oxide synthase
- interleukin 6
- monocyte chemotactic protein-1
- nNOS
- neuronal nitric oxide synthase
- nicotinamide adenine dinucleotide phosphate
- nitric oxide
- pVASP
- peroxisome proliferator receptor α
- peroxynitrite
- phosphate-buffered saline
- phosphorylated vasodilator-stimulated phosphoprotein
- protein kinase C
- superoxide dismutase
- tetrahydrobiopterin, [(6R)-2-amino-6-[(1R,2S)-1,2-dihydroxypropyl]-5,6,7,8-tetrahydropteridin-4(1H)-one]
- triacylglycerol
- tumor necrosis factor α
- vasodilator-stimulated phosphoprotein
Collapse
Affiliation(s)
- Astrid Schrammel
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
- Corresponding author. Tel.: + 43 316 380 5559; fax: + 43 316 380 9890.
| | - Marion Mussbacher
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Sarah Winkler
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Guenter Haemmerle
- Department of Molecular Biosciences, University of Graz, Heinrichstraße 31, 8010 Graz, Austria
| | - Heike Stessel
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Gerald Wölkart
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| | - Rudolf Zechner
- Department of Molecular Biosciences, University of Graz, Heinrichstraße 31, 8010 Graz, Austria
| | - Bernd Mayer
- Department of Pharmacology and Toxicology, Institute of Pharmaceutical Sciences, University of Graz, Universitätsplatz 2, 8010 Graz, Austria
| |
Collapse
|
18
|
Role of peroxynitrite in sepsis-induced acute kidney injury in an experimental model of sepsis in rats. Shock 2013; 38:403-10. [PMID: 22777123 DOI: 10.1097/shk.0b013e31826660f2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mechanisms involved in sepsis-induced acute kidney injury (AKI) are unknown. We investigated the role of nitrosative stress in sepsis-induced AKI by studying the effects of manganese (III) tetrakis-(1-methyl-4-pyridyl) porphyrin pentachloride (MnTMPyP), a peroxynitrite decomposition catalyst, and aminoguanidine (AG), a selective nitric oxide synthase 2 (NOS2) inhibitor and peroxynitrite scavenger, on kidney function of rats subjected to cecal ligation and puncture (CLP). Sprague-Dawley rats (weighing 350 [SD, 50] g) were treated with MnTMPyP (6 mg/kg i.p.) or AG (50 mg/kg i.p.) at t = 12 and 24 h after CLP or sham procedure. At t = 36 h, mean arterial pressure and aortic blood flow were measured, and blood and urine samples were obtained for biochemical determinations, including creatinine clearance, fractional excretion of sodium, and neutrophil gelatinase-associated lipocalin concentration in the urine. Kidney tissue samples were obtained for (i) light microscopy, (ii) immunofluorescence and Western blot for 3-nitrotyrosine and NOS2, (iii) gene expression (quantitative real-time polymerase chain reaction) studies (NOS1, NOS2, NOS3, and superoxide dismutase 1), and (iv) matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Mean arterial pressure was unchanged and aortic blood flow decreased 25% in CLP animals. The sepsis-induced (i) decreased urine output and creatinine clearance and increased fractional excretion of sodium and urinary neutrophil gelatinase-associated lipocalin concentration, (ii) increased protein nitration and NOS2 protein, and (iii) NOS1 and NOS2 upregulation were all significantly attenuated by treatment with MnTMPyP or AG. Nitrated proteins in renal tissue from CLP animals (matrix-assisted laser desorption ionization time-of-flight mass spectrometry) were glutamate dehydrogenase, methylmalonate-semialdehyde dehydrogenase, and aldehyde dehydrogenase, mitochondrial proteins involved in energy metabolism or antioxidant defense. Nitro-oxidative stress is involved in sepsis-induced AKI, and protein nitration seems to be one mechanism involved.
Collapse
|
19
|
Contestabile A, Monti B, Polazzi E. Neuronal-glial Interactions Define the Role of Nitric Oxide in Neural Functional Processes. Curr Neuropharmacol 2012; 10:303-10. [PMID: 23730254 PMCID: PMC3520040 DOI: 10.2174/157015912804143522] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/07/2012] [Accepted: 06/24/2012] [Indexed: 01/01/2023] Open
Abstract
Nitric oxide (NO) is a versatile cellular messenger performing a variety of physiologic and pathologic actions in most tissues. It is particularly important in the nervous system, where it is involved in multiple functions, as well as in neuropathology, when produced in excess. Several of these functions are based on interactions between NO produced by neurons and NO produced by glial cells, mainly astrocytes and microglia. The present paper briefly reviews some of these interactions, in particular those involved in metabolic regulation, control of cerebral blood flow, axonogenesis, synaptic function and neurogenesis. Aim of the paper is mainly to underline the physiologic aspects of these interactions rather than the pathologic ones.
Collapse
|
20
|
Witman MAH, Fjeldstad AS, McDaniel J, Ives SJ, Zhao J, Barrett-O'Keefe Z, Nativi JN, Stehlik J, Wray DW, Richardson RS. Vascular function and the role of oxidative stress in heart failure, heart transplant, and beyond. Hypertension 2012; 60:659-68. [PMID: 22753215 PMCID: PMC3421053 DOI: 10.1161/hypertensionaha.112.193318] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Using flow-mediated vasodilation (FMD), reactive hyperemia, and an acute oral antioxidant cocktail (AOC; vitamins C and E and α-lipoic acid), this study aimed to provide greater insight into altered vascular function and the role of oxidative stress in chronic heart failure patients with reduced ejection fraction (HFrEF) and at several time points beyond heart transplantation (HTx). A total of 61 age-matched subjects (12 healthy controls, 14 New York Heart Association class II and III HFrEF, and 35 HTx recipients [<3 years post-HTx, 5-10 years post-HTx, and >14 years post-HTx]) ingested either placebo (PL) or an AOC before FMD and reactive hyperemia testing of the brachial artery. Vascular function, as measured by FMD, was not different among the controls (6.8±1.9%), recent <3-year post-HTx group (8.1±1.2%), and the 5- to 10-year post-HTx group (5.5±1.0%). However, PL FMD was lower in the HFrEF (4.5±0.7%) and in the >14-year post-HTx group (2.9±0.8%). The AOC increased plasma ascorbate levels in all of the groups but only increased FMD in the controls (PL, 6.8±1.9%; AOC, 9.2±1.0%) and >14-year post-HTx recipients (PL, 2.9±0.8%; AOC, 4.5±1.3%). There were no differences in reactive hyperemia in any of the groups with PL or AOC. This cross-sectional study reveals that, compared with controls, vascular function is blunted in HFrEF, is similar soon after HTx, but is decreased with greater time post-HTx with free radicals implicated in this progression.
Collapse
Affiliation(s)
- Melissa A H Witman
- Geriatric Research Education and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Angelico F, Loffredo L, Pignatelli P, Augelletti T, Carnevale R, Pacella A, Albanese F, Mancini I, Di Santo S, Del Ben M, Violi F. Weight loss is associated with improved endothelial dysfunction via NOX2-generated oxidative stress down-regulation in patients with the metabolic syndrome. Intern Emerg Med 2012; 7:219-27. [PMID: 21512794 DOI: 10.1007/s11739-011-0591-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 03/17/2011] [Indexed: 12/17/2022]
Abstract
The aim of this study was to assess whether adherence to a restricted-calorie, Mediterranean-type diet improves endothelial dysfunction and markers of oxidative stress in patients with metabolic syndrome. A moderately low-calorie (600 calories/day negative energy balance), low-fat, high-carbohydrate diet (<30% energy from fat, <10% from saturated fat and 55% from carbohydrate) was prescribed to 53 outpatients with the metabolic syndrome. Participants were divided into two groups according to body weight loss > or < 5% after 6 months. Group A (n = 23) showed a remarkable decrease in body weight (-6.8%), body-mass-index (-4.6%), waist circumference (-4.8%), HOMA-IR (-27.2%), plasma glucose, glycosylated haemoglobin, total and LDL-cholesterol, blood pressure, serum NOX2 (the catalytic core of NADPH oxidase) (-22.2%) and urinary8-isoprostanes (-39.0%) and an increase of serum NOx (Nitrite/Nitrate) (+116.8%) and adiponectine (+125.5%) as compared with those in group B (n = 30). A statistically significant increase in brachial artery flow-mediated dilatation was observed in group A (+24.7%; p < 0.001), while no changes were present in group B. Variations of flow-mediated dilatation were statistically and negatively correlated with changes of serum NOX2 levels (p = 0.04), body-mass-index (p < 0.01), waist circumference (0.01), glycosylated haemoglobin (p < 0.01), LDL-cholesterol (p < 0.01) and triglycerides (p < 0.05) and positively correlated with changes of serum NOx (p < 0.001) and adiponectin (p = 0.01). The results show that moderate weight loss is able to improve endothelial dysfunction in patients with the metabolic syndrome. The coexistent decrease of NOX2 activation suggests a role for oxidative stress in eliciting artery dysfunction.
Collapse
Affiliation(s)
- Francesco Angelico
- Dipartimento di Medicina Interna e Specialità Mediche, La Sapienza Università di Roma, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Myers CR. The effects of chromium(VI) on the thioredoxin system: implications for redox regulation. Free Radic Biol Med 2012; 52:2091-107. [PMID: 22542445 PMCID: PMC3955998 DOI: 10.1016/j.freeradbiomed.2012.03.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/09/2012] [Accepted: 03/09/2012] [Indexed: 01/01/2023]
Abstract
Hexavalent chromium [Cr(VI)] compounds are highly redox active and have long been recognized as potent cytotoxins and carcinogens. The intracellular reduction of Cr(VI) generates reactive Cr intermediates, which are themselves strong oxidants, as well as superoxide, hydrogen peroxide, and hydroxyl radical. These probably contribute to the oxidative damage and effects on redox-sensitive transcription factors that have been reported. However, the identification of events that initiate these signaling changes has been elusive. More recent studies show that Cr(VI) causes irreversible inhibition of thioredoxin reductase (TrxR) and oxidation of thioredoxin (Trx) and peroxiredoxin (Prx). Mitochondrial Trx2/Prx3 are more sensitive to Cr(VI) treatment than cytosolic Trx1/Prx1, although both compartments show thiol oxidation with higher doses or longer treatments. Thiol redox proteomics demonstrate that Trx2, Prx3, and Trx1 are among the most sensitive proteins in cells to Cr(VI) treatment. Their oxidation could therefore represent initiating events that have widespread implications for protein thiol redox control and for multiple aspects of redox signaling. This review summarizes the effects of Cr(VI) on the TrxR/Trx system and how these events could influence a number of downstream redox signaling systems that are influenced by Cr(VI) exposure. Some of the signaling events discussed include the activation of apoptosis signal regulating kinase and MAP kinases (p38 and JNK) and the modulation of a number of redox-sensitive transcription factors including AP-1, NF-κB, p53, and Nrf2.
Collapse
Affiliation(s)
- Charles R Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
23
|
Katakam PVG, Snipes JA, Steed MM, Busija DW. Insulin-induced generation of reactive oxygen species and uncoupling of nitric oxide synthase underlie the cerebrovascular insulin resistance in obese rats. J Cereb Blood Flow Metab 2012; 32:792-804. [PMID: 22234336 PMCID: PMC3345912 DOI: 10.1038/jcbfm.2011.181] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 09/30/2011] [Accepted: 11/03/2011] [Indexed: 02/07/2023]
Abstract
Hyperinsulinemia accompanying insulin resistance (IR) is an independent risk factor for stroke. The objective is to examine the cerebrovascular actions of insulin in Zucker obese (ZO) rats with IR and Zucker lean (ZL) control rats. Diameter measurements of cerebral arteries showed diminished insulin-induced vasodilation in ZO compared with ZL. Endothelial denudation revealed vasoconstriction to insulin that was greater in ZO compared with ZL. Nonspecific inhibition of nitric oxide synthase (NOS) paradoxically improved vasodilation in ZO. Scavenging of reactive oxygen species (ROS), supplementation of tetrahydrobiopterin (BH(4)) precursor, and inhibition of neuronal NOS or NADPH oxidase or cyclooxygenase (COX) improved insulin-induced vasodilation in ZO. Immunoblot experiments revealed that insulin-induced phosphorylation of Akt, endothelial NOS, and expression of GTP cyclohydrolase-I (GTP-CH) were diminished, but phosphorylation of PKC and ERK was enhanced in ZO arteries. Fluorescence studies showed increased ROS in ZO arteries in response to insulin that was sensitive to NOS inhibition and BH(4) supplementation. Thus, a vicious cycle of abnormal insulin-induced ROS generation instigating NOS uncoupling leading to further ROS production underlies the cerebrovascular IR in ZO rats. In addition, decreased bioavailability and impaired synthesis of BH(4) by GTP-CH induced by insulin promoted NOS uncoupling.
Collapse
Affiliation(s)
- Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | | | | | |
Collapse
|
24
|
Williams JP, Jackson IL, Shah JR, Czarniecki CW, Maidment BW, DiCarlo AL. Animal models and medical countermeasures development for radiation-induced lung damage: report from an NIAID Workshop. Radiat Res 2012; 177:e0025-39. [PMID: 22468702 DOI: 10.1667/rrol04.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since 9/11, there have been concerns that terrorists may detonate a radiological or nuclear device in an American city. Aside from several decorporation and blocking agents for use against internal radionuclide contamination, there are currently no medications within the Strategic National Stockpile that are approved to treat the immediate or delayed complications resulting from accidental exposure to radiation. Although the majority of research attention has focused on developing countermeasures that target the bone marrow and gastrointestinal tract, since they represent the most acutely radiosensitive organs, individuals who survive early radiation syndromes will likely suffer late effects in the months that follow. Of particular concern are the delayed effects seen in the lung that play a major role in late mortality seen in radiation-exposed patients and accident victims. To address these concerns, the National Institute of Allergy and Infectious Diseases convened a workshop to discuss pulmonary model development, mechanisms of radiation-induced lung injury, targets for medical countermeasures development, and end points to evaluate treatment efficacy. Other topics covered included guidance on the challenges of developing and licensing drugs and treatments specific to a radiation lung damage indication. This report reviews the data presented, as well as key points from the ensuing discussion.
Collapse
|
25
|
Haber A, Aviram M, Gross Z. Variables that influence cellular uptake and cytotoxic/cytoprotective effects of macrocyclic iron complexes. Inorg Chem 2011; 51:28-30. [PMID: 22148393 DOI: 10.1021/ic202204u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Determination of the cellular uptake of macrocyclic iron(III) complexes by a facile method, accompanied by cell viability tests under both basal and induced oxidative stress, demonstrates that protection against intracellular oxidative stress requires reasonably high internalization and favorable anti/prooxidant profiles. Of the four tested complexes, only amphipolar iron(III) corrole met these criteria.
Collapse
Affiliation(s)
- Adi Haber
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | | | | |
Collapse
|
26
|
Dalgaard LT. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets. Biochem Biophys Res Commun 2011; 417:495-500. [PMID: 22177951 DOI: 10.1016/j.bbrc.2011.11.148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 11/30/2011] [Indexed: 01/07/2023]
Abstract
Uncoupling Protein 2 (UCP2) is expressed in the pancreatic β-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was to examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/- islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2-/- and GK+/- islets compared with GK+/- islets and UCP2 deficiency improved glucose tolerance of GK+/- mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/- mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.
Collapse
Affiliation(s)
- Louise T Dalgaard
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Kim JH, Arkalgud JR, Boghossian AA, Zhang J, Han JH, Reuel NF, Ahn JH, Mukhopadhyay D, Strano MS. Single-molecule detection of H₂O₂ mediating angiogenic redox signaling on fluorescent single-walled carbon nanotube array. ACS NANO 2011; 5:7848-57. [PMID: 21899329 PMCID: PMC3850173 DOI: 10.1021/nn201904t] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Reactive oxygen species, specifically hydrogen peroxide (H(2)O(2)), activate signal transduction pathways during angiogenesis and therefore play an important role in physiological development as well as various pathophysiologies. Herein, we utilize a near-infrared fluorescent single-walled carbon nanotube (SWNT) sensor array to measure the single-molecule efflux of H(2)O(2) from human umbilical vein endothelial cells (HUVEC) in response to angiogenic stimulation. Two angiogenic agents were investigated: the pro-angiogenic cytokine, vascular endothelial growth factor A (VEGF-A) and the recently identified inorganic pro-angiogenic factor, europium(III) hydroxide in nanorod form. The nanosensor array consists ofa SWNT embedded within a collagen matrix that exhibits high selectivity and sensitivity to single molecules of H(2)O(2). A calibration from 12.5 to 400 nM quantifies the production of H(2)O(2) at nanomolar concentration in HUVEC with 1 s temporal and 300 nm spatial resolutions. We find that the production of H(2)O(2) following VEGF stimulation is elevated outside of HUVEC, but not for stimulation via nanorods, while increased generation is observed in the cytoplasm for both cases, suggesting two distinct signaling pathways.
Collapse
Affiliation(s)
- Jong-Ho Kim
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jyoti R. Arkalgud
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ardemis A. Boghossian
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jingqing Zhang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jae-Hee Han
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nigel F. Reuel
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jin-Ho Ahn
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Debabrata Mukhopadhyay
- Department of Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55950, USA
| | - Michael S. Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- To whom correspondence should be addressed.
| |
Collapse
|
28
|
Hume PS, Anseth KS. Polymerizable superoxide dismutase mimetic protects cells encapsulated in poly(ethylene glycol) hydrogels from reactive oxygen species-mediated damage. J Biomed Mater Res A 2011; 99:29-37. [PMID: 21793194 DOI: 10.1002/jbm.a.33160] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/01/2011] [Accepted: 05/06/2011] [Indexed: 01/18/2023]
Abstract
A polymerizable superoxide dismutase mimetic (SODm) was incorporated into poly(ethylene glycol) (PEG) hydrogels to protect encapsulated cells from superoxide-mediated damage. Superoxide and other small reactive oxygen species (ROS) can cause oxidative damage to donor tissue encapsulated within size exclusion barrier materials. To enzymatically breakdown ROS within biomaterial cell encapsulation systems, Mn(III) Tetrakis[1-(3-acryloxy-propyl)-4-pyridyl] porphyrin (MnTTPyP-acryl), a polymerizable manganese metalloporphyrin SOD mimetic, was photopolymerized with PEG diacrylate (PEGDA) to create functional gels. In unmodified PEG hydrogels, a significant reduction in metabolic activity was observed when encapsulated Min6 β-cells were challenged with chemically generated superoxide. Cells encapsulated within MnTPPyP-co-PEG hydrogels, however, demonstrated greatly improved metabolic activity following various superoxide challenges. Further, cells were encapsulated and cultured for 10 days within MnTPPyP-co-PEG hydrogels and challenged with superoxide on days 4, 6, and 8. At the conclusion of this study, cells in blank PEG hydrogels had no observable metabolic activity but when encapsulated in MnTPPyP-functionalized hydrogels, cells retained 60 ± 5% of the metabolic activity compared to untreated controls.
Collapse
Affiliation(s)
- Patrick S Hume
- Department of Chemical and Biological Engineering, University of Colorado, 424 UCB, Boulder, Colorado 80309, USA
| | | |
Collapse
|
29
|
O'Neill HC, Orlicky DJ, Hendry-Hofer TB, Loader JE, Day BJ, White CW. Role of reactive oxygen and nitrogen species in olfactory epithelial injury by the sulfur mustard analogue 2-chloroethyl ethyl sulfide. Am J Respir Cell Mol Biol 2011; 45:323-31. [PMID: 21642592 DOI: 10.1165/rcmb.2010-0214oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The inhalation of sulfur mustard (SM) causes substantial deposition in the nasal region. However, specific injury has not been characterized. 2-chloroethyl ethyl sulfide (CEES) is an SM analogue used to model injury and screen potential therapeutics. After the inhalation of CEES, damage to the olfactory epithelium (OE) was extensive. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells were present by 4 hours, and maximal at 18-72 hours. Cleaved caspase 3 immunohistochemistry (IHC) was maximal at 18 hours after the inhalation of 5% CEES. Olfactory marker protein (OMP)-positive olfactory neurons were markedly decreased at 18 hours. IHC-positive cells for 3-nitrotyrosine (3-NT) within epithelium were elevated by 8 hours, waning by 18 hours, and absent by 72 hours. AEOL 10150, a catalytic manganoporphyrin antioxidant, administered both subcutaneously (5 mg/kg) and intranasally (50 μM, "combined treatment"), decreased OE injury. CEES-induced increases in markers of cell death were decreased by combined treatment involving AEOL 10150. CEES-induced changes in OMP and 3-NT immunostaining were markedly improved by combined treatment involving AEOL 10150. The selective inducible nitric oxide synthase inhibitor 1400W (5 mg/kg, subcutaneous), administered 1 hour after inhalation and thereafter every 4 hours (five doses), also reduced OE damage with improved OMP and 3-NT staining. Taken together, these data indicate that reactive oxygen and nitrogen species are important mediators in CEES-induced nasal injury.
Collapse
Affiliation(s)
- Heidi C O'Neill
- Department of Pharmaceutical Sciences, University of Colorado at Denver Health Sciences Center, Denver, USA
| | | | | | | | | | | |
Collapse
|
30
|
Myers JM, Antholine WE, Myers CR. The intracellular redox stress caused by hexavalent chromium is selective for proteins that have key roles in cell survival and thiol redox control. Toxicology 2011; 281:37-47. [PMID: 21237240 DOI: 10.1016/j.tox.2011.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/22/2010] [Accepted: 01/04/2011] [Indexed: 01/14/2023]
Abstract
Hexavalent chromium [Cr(VI)] compounds (e.g. chromates) are strong oxidants that readily enter cells where they are reduced to reactive Cr intermediates that can directly oxidize some cell components and can promote the generation of reactive oxygen and nitrogen species. Inhalation is a major route of exposure which directly exposes the bronchial epithelium. Previous studies with non-cancerous human bronchial epithelial cells (BEAS-2B) demonstrated that Cr(VI) treatment results in the irreversible inhibition of thioredoxin reductase (TrxR) and the oxidation of thioredoxins (Trx) and peroxiredoxins (Prx). The mitochondrial Trx/Prx system is somewhat more sensitive to Cr(VI) than the cytosolic Trx/Prx system, and other redox-sensitive mitochondrial functions are subsequently affected including electron transport complexes I and II. Studies reported here show that Cr(VI) does not cause indiscriminant thiol oxidation, and that the Trx/Prx system is among the most sensitive of cellular protein thiols. Trx/Prx oxidation is not unique to BEAS-2B cells, as it was also observed in primary human bronchial epithelial cells. Increasing the intracellular levels of ascorbate, an endogenous Cr(VI) reductant, did not alter the effects on TrxR, Trx, or Prx. The peroxynitrite scavenger MnTBAP did not protect TrxR, Trx, Prx, or the electron transport chain from the effects of Cr(VI), implying that peroxynitrite is not required for these effects. Nitration of tyrosine residues of TrxR was not observed following Cr(VI) treatment, further ruling out peroxynitrite as a significant contributor to the irreversible inhibition of TrxR. Cr(VI) treatments that disrupt the TrxR/Trx/Prx system did not cause detectable mitochondrial DNA damage. Overall, the redox stress that results from Cr(VI) exposure shows selectivity for key proteins which are known to be important for redox signaling, antioxidant defense, and cell survival.
Collapse
Affiliation(s)
- Judith M Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
31
|
Abstract
Peroxynitrite is a reactive oxidant produced from nitric oxide and superoxide, which reacts with proteins, lipids, and DNA, and promotes cytotoxic and proinflammatory responses. Here, we overview the role of peroxynitrite in various forms of circulatory shock. Immunohistochemical and biochemical evidences demonstrate the production of peroxynitrite in various experimental models of endotoxic and hemorrhagic shock both in rodents and in large animals. In addition, biological markers of peroxynitrite have been identified in human tissues after circulatory shock. Peroxynitrite can initiate toxic oxidative reactions in vitro and in vivo. Initiation of lipid peroxidation, direct inhibition of mitochondrial respiratory chain enzymes, inactivation of glyceraldehyde-3-phosphate dehydrogenase, inhibition of membrane Na+/K+ ATPase activity, inactivation of membrane sodium channels, and other oxidative protein modifications contribute to the cytotoxic effect of peroxynitrite. In addition, peroxynitrite is a potent trigger of DNA strand breakage, with subsequent activation of the nuclear enzyme poly(ADP-ribose) polymerase, which promotes cellular energetic collapse and cellular necrosis. Additional actions of peroxynitrite that contribute to the pathogenesis of shock include inactivation of catecholamines and catecholamine receptors (leading to vascular failure) and endothelial and epithelial injury (leading to endothelial and epithelial hyperpermeability and barrier dysfunction), as well as myocyte injury (contributing to loss of cardiac contractile function). Neutralization of peroxynitrite with potent peroxynitrite decomposition catalysts provides cytoprotective and beneficial effects in rodent and large-animal models of circulatory shock.
Collapse
|
32
|
Combined superoxide dismutase mimetic and peroxynitrite scavenger protects against neointima formation after endarterectomy in association with decreased proliferation and nitro-oxidative stress. Eur J Vasc Endovasc Surg 2010; 40:168-75. [PMID: 20434373 DOI: 10.1016/j.ejvs.2010.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 03/24/2010] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Reactive oxygen and nitrogen species (e.g., peroxynitrite) may trigger neointima formation leading to restenosis. In a rat carotid endarterectomy (CEA) model, we investigated the effects of the manganese(III)tetrakis(4-benzoic acid)porphyrin (MnTBAP), a superoxide dismutase (SOD) mimetic and peroxynitrite scavenger on neointima formation. METHODS CEA was performed in male Sprague-Dawley rats. Animals received either vehicle (control group; n=15) or 15 mg kg(-1) day(-1) MnTBAP intraperitoneally for 3 weeks (treatment group; n=13). Four groups of carotids were analysed: the left, uninjured carotids (sham) and the right, injured carotids (control CEA) from the control group, the right, injured carotids from the treatment group (CEA+MnTBAP) and an additional group of carotids that were harvested 1h following endarterectomy. The analysis of carotid arteries was performed by histology, immunohistochemistry and real-time polymerase chain reaction (PCR). Plasma malondialdehyde (MDA) levels were measured by lipid hydroperoxidase assay. RESULTS Stenosis rate (10.5+/-8.1% vs. 45.4+/-28.3%), the percentage of proliferating cell nuclear antigen-positive cells (13.4+/-7.1% vs. 23.3+/-11.0%) and nitrotyrosine immunoreactivity (5.8+/-1.9 vs. 8.0+/-2.0) were significantly reduced in the vascular wall of the CEA+MnTBAP group compared with control CEA group. Ratio of Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling (TUNEL)-positive nuclei was significantly lower after antioxidant therapy (41.7+/-26.7% vs. 64.9+/-18.5%). Plasma MDA levels increased after endarterectomy (11.7+/-4.8 vs. 4.1+/-2.0 micromol l(-1)) and reduced in the treatment group (3.2+/-2.1 micromol l(-1)). No significant gene regulation after MnTBAP treatment could be noted. CONCLUSIONS MnTBAP decreased neointima formation, which was associated with reduced vascular smooth muscle cell proliferation and attenuated local and systemic nitro-oxidative stress.
Collapse
|
33
|
O’Neill HC, White CW, Veress LA, Hendry-Hofer TB, Loader JE, Min E, Huang J, Rancourt RC, Day BJ. Treatment with the catalytic metalloporphyrin AEOL 10150 reduces inflammation and oxidative stress due to inhalation of the sulfur mustard analog 2-chloroethyl ethyl sulfide. Free Radic Biol Med 2010; 48:1188-96. [PMID: 20138141 PMCID: PMC2847650 DOI: 10.1016/j.freeradbiomed.2010.01.039] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 12/23/2009] [Accepted: 01/28/2010] [Indexed: 11/20/2022]
Abstract
Sulfur mustard (bis-2-(chloroethyl) sulfide; SM) is a highly reactive vesicating and alkylating chemical warfare agent. A SM analog, 2-chloroethyl ethyl sulfide (CEES), has been utilized to elucidate mechanisms of toxicity and as a screen for therapeutics. Previous studies with SM and CEES have demonstrated a role for oxidative stress as well as decreased injury with antioxidant treatment. We tested whether posttreatment with the metalloporphyrin catalytic antioxidant AEOL 10150 would improve outcome in CEES-induced lung injury. Anesthetized rats inhaled 5% CEES for 15 min via a nose-only inhalation system. At 1 and 9 h after CEES exposure, rats were given AEOL 10150 (5 mg/kg, sc). At 18 h post-CEES exposure BALF lactate dehydrogenase activity, protein, IgM, red blood cells, and neutrophils were elevated but were decreased by AEOL 10150 treatment. Lung myeloperoxidase activity was increased after CEES inhalation and was ameliorated by AEOL 10150. The lung oxidative stress markers 8-OHdG and 4-HNE were elevated after CEES exposure and significantly decreased by AEOL 10150 treatment. These findings demonstrate that CEES inhalation increased lung injury, inflammation, and oxidative stress, and AEOL 10150 was an effective rescue agent. Further investigation utilizing catalytic antioxidants as treatment for SM inhalation injury is warranted.
Collapse
Affiliation(s)
- Heidi C. O’Neill
- Department of Pharmaceutical Sciences, University of Colorado at Denver
| | - Carl W. White
- Department of Pediatrics National Jewish Health, University of Colorado at Denver
- Department of Pharmaceutical Sciences, University of Colorado at Denver
| | - Livia A. Veress
- Health Sciences Center and The Children’s Hospital Denver Aurora, CO USA
| | - Tara B. Hendry-Hofer
- Department of Pediatrics National Jewish Health, University of Colorado at Denver
| | - Joan E. Loader
- Department of Pediatrics National Jewish Health, University of Colorado at Denver
| | - Elysia Min
- Department of Medicine, University of Colorado at Denver
| | - Jie Huang
- Department of Medicine, University of Colorado at Denver
| | - Raymond C. Rancourt
- Department of Pediatrics National Jewish Health, University of Colorado at Denver
| | - Brian J. Day
- Department of Medicine, University of Colorado at Denver
- Department of Pharmaceutical Sciences, University of Colorado at Denver
| |
Collapse
|
34
|
Klaus V, Hartmann T, Gambini J, Graf P, Stahl W, Hartwig A, Klotz LO. 1,4-Naphthoquinones as inducers of oxidative damage and stress signaling in HaCaT human keratinocytes. Arch Biochem Biophys 2010; 496:93-100. [DOI: 10.1016/j.abb.2010.02.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 02/05/2010] [Accepted: 02/09/2010] [Indexed: 10/19/2022]
|
35
|
Tofighi R, Johansson C, Goldoni M, Ibrahim WNW, Gogvadze V, Mutti A, Ceccatelli S. Hippocampal Neurons Exposed to the Environmental Contaminants Methylmercury and Polychlorinated Biphenyls Undergo Cell Death via Parallel Activation of Calpains and Lysosomal Proteases. Neurotox Res 2010; 19:183-94. [DOI: 10.1007/s12640-010-9159-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/21/2010] [Accepted: 02/01/2010] [Indexed: 11/24/2022]
|
36
|
Clark CB, Rane MJ, Mehdi DE, Miller CJ, Sachleben LR, Gozal E. Role of oxidative stress in geldanamycin-induced cytotoxicity and disruption of Hsp90 signaling complex. Free Radic Biol Med 2009; 47:1440-9. [PMID: 19703551 PMCID: PMC2767391 DOI: 10.1016/j.freeradbiomed.2009.08.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 08/05/2009] [Accepted: 08/17/2009] [Indexed: 12/21/2022]
Abstract
Heat shock protein 90 (Hsp90) is a chaperone protein regulating PC-12 cell survival by binding and stabilizing Akt, Raf-1, and Cdc37. Hsp90 inhibitor geldanamycin (GA) cytotoxicity has been attributed to the disruption of Hsp90 binding, and the contribution of oxidative stress generated by its quinone group has not been studied in this context. Reactive oxygen species (ROS) and cell survival were assessed in PC-12 cells exposed to GA or menadione (MEN), and Akt, Raf-1, and Cdc37 expression and binding to Hsp90 were determined. GA disrupted Hsp90 binding and increased ROS production starting at 1 h, and cell death occurred at 6 h, inhibited by N-acetylcysteine (NAC) without preventing dissociation of proteins. At 24 h, NAC prevented cytotoxicity and Hsp90 complex disruption. However, MnTBAP antioxidant treatment failed to inhibit GA cytotoxicity, suggesting that NAC acts by restoring glutathione. In contrast, 24 h MEN treatment induced cytotoxicity without disrupting Hsp90 binding. GA and MEN decreased Hsp90-binding protein expression, and proteasomal inhibition prevented MEN-, but not GA-induced degradation. In conclusion, whereas MEN cytotoxicity is mediated by ROS and proteasomal degradation, GA-induced cytotoxicity requires ROS but induces Hsp90 complex dissociation and proteasome-independent protein degradation. These differences between MEN- and GA-induced cytotoxicity may allow more specific targeting of cancer cells.
Collapse
Affiliation(s)
- Christina B. Clark
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY
| | - Madhavi J. Rane
- Department of Medicine, University of Louisville, Louisville, KY
- Department of, Biochemistry & Molecular Biology, University of Louisville, Louisville, KY
| | - Delphine El Mehdi
- Department of Pediatrics, KCHRI, University of Louisville, Louisville, KY
| | - Cynthia J. Miller
- Department of Physiology & Biophysics, University of Louisville, Louisville, KY
| | - Leroy R. Sachleben
- Department of Pediatrics, KCHRI, University of Louisville, Louisville, KY
| | - Evelyne Gozal
- Department of Pediatrics, KCHRI, University of Louisville, Louisville, KY
- Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY
- Department of Physiology & Biophysics, University of Louisville, Louisville, KY
| |
Collapse
|
37
|
Esposito E, Cuzzocrea S. Role of nitroso radicals as drug targets in circulatory shock. Br J Pharmacol 2009; 157:494-508. [PMID: 19630831 DOI: 10.1111/j.1476-5381.2009.00255.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A vast amount of circumstantial evidence implicates oxygen-derived free radicals (especially, superoxide and hydroxyl radical) and high-energy oxidants [such as peroxynitrite (OONO(-))] as mediators of shock and ischaemia/reperfusion injury. Reactive oxygen species can initiate a wide range of toxic oxidative reactions. These include initiation of lipid peroxidation, direct inhibition of mitochondrial respiratory chain enzymes, inactivation of glyceraldehyde-3 phosphate dehydrogenase, inhibition of membrane sodium/potassium adenosine 5'-triphosphate-ase activity, inactivation of membrane sodium channels and other oxidative modifications of proteins. All these toxicities are likely to play a role in the pathophysiology of shock and ischaemia and reperfusion. Moreover, various studies have clearly shown that treatment with either OONO(-) decomposition catalysts, which selectively inhibit OONO(-), or with superoxide dismutase (SOD) mimetics, which selectively mimic the catalytic activity of the human SOD enzymes, have been shown to prevent in vivo the delayed vascular decompensation and the cellular energetic failure associated with shock and ischaemia/reperfusion injury.
Collapse
|
38
|
The in vitro effects of superoxide, some commercially available antioxidants and red palm oil on sperm motility. Asian J Androl 2009; 11:695-702. [PMID: 19802000 DOI: 10.1038/aja.2009.55] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In this study, two commercially available superoxide scavengers, tetrakis (1-methyl-4-pyridyl) porphyrin (Mn[III]TMPyP) and superoxide dismutase (SOD), as well as red palm oil (RPO), a natural vegetable oil, had been used to investigate their possible in vitro effects against the toxic effects of superoxide (O(2).) on human sperm motility. Semen samples were obtained from 12 normozoospermic healthy volunteer donors aged between 19 and 23 years. The O(2). donor 2,3-dimetoxyl-1,4-naphthoquinone (DMNQ) (2.5 micromol L(-1)-100 micromol L(-1)) was added to normozoospermic post-swim-up sperm in the presence or absence of Mn(III)TMPyP (50 micromol L(-1)), SOD (50 IU) or RPO (0.1% or 0.5%). Computer-assisted semen analysis was used to analyze various motility parameters. The parameters of interest were percentage of motile cells, progressive motility, rapid cells and static cells. Concentrations of higher than 25 micromol L(-1) DMNQ were detrimental to sperm motility. Mn(III)TMPyP was able to attenuate the effect of O(2). on the motility parameters. In vitro addition of SOD and RPO showed harmful effects on sperm motility.
Collapse
|
39
|
Violi F, Sanguigni V, Carnevale R, Plebani A, Rossi P, Finocchi A, Pignata C, De Mattia D, Martire B, Pietrogrande MC, Martino S, Gambineri E, Soresina AR, Pignatelli P, Martino F, Basili S, Loffredo L. Hereditary deficiency of gp91(phox) is associated with enhanced arterial dilatation: results of a multicenter study. Circulation 2009; 120:1616-22. [PMID: 19805647 DOI: 10.1161/circulationaha.109.877191] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND NADPH oxidase is believed to modulate arterial tone, but its role in humans is still unclear. The objective of this study was to evaluate whether NADPH oxidase is involved in flow-mediated arterial dilation (FMD). METHODS AND RESULTS Twenty-five patients with hereditary deficiency of gp91(phox), the catalytic core of NADPH oxidase, (X-CGD), 25 healthy subjects, and 25 obese patients matched for sex and age were recruited. FMD, platelet gp91(phox), serum levels of nitrite and nitrate as markers of nitric oxide generation, oxidized low-density lipoprotein, and urinary excretion of isoprostanes as markers of oxidative stress were determined. Platelet gp91(phox) expression was downregulated in X-CGD patients (1.0+/-0.8 mean fluorescence; P<0.001) and upregulated in obese patients (4.1+/-2.2 mean fluorescence; P=0.01) compared with healthy subjects (2.9+/-1.7 mean fluorescence). Urinary excretion of isoprostanes was reduced in X-CGD patients (41.7+/-33.3 pg/mg creatinine; P=0.04) and increased in obese patients (154.4+/-91 pg/mg creatinine; P<0.001) compared with healthy subjects (69.5+/-52.4 pg/mg creatinine). Obese patients had higher serum oxidized low-density lipoprotein than healthy subjects (35.3+/-6.7 versus 24.8+/-9.8 U/L; P<0.001) and X-CGD patients (28.5+/-7.2 U/L; P<0.001). X-CGD patients had significantly higher FMD (14.7+/-5.9%) compared with healthy subjects (7.9+/-2.5%; P<0.001); obese patients had lower FMD (5.3+/-3.0%; P=0.028) compared with healthy subjects. Serum nitrite and nitrate levels were significantly higher in patients with X-CGD (36.0+/-10.8 micromol/L; P=0.016) and lower in obese patients (9.3+/-11.0 micromol/L; P=0.001) compared with healthy subjects (27.1+/-19.1 micromol/L). Serum nitrite and nitrate levels significantly correlated with FMD (R(s)=0.403, P<0.001) and platelet gp91(phox) (R(s)=-0.515, P<0.001). FMD inversely correlated with platelet gp91(phox) (R(s)=-0.502, P<0.001) and isoprostanes (R(s)=-0.513, P<0.001). CONCLUSIONS This study provides the first evidence that, in humans, gp91(phox) is implicated in the modulation of arterial tone.
Collapse
Affiliation(s)
- Francesco Violi
- Department of Experimental Medicine, Divisione I Clinica Medica, University of Rome La Sapienza, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yin W, Park JI, Loeser RF. Oxidative stress inhibits insulin-like growth factor-I induction of chondrocyte proteoglycan synthesis through differential regulation of phosphatidylinositol 3-Kinase-Akt and MEK-ERK MAPK signaling pathways. J Biol Chem 2009; 284:31972-81. [PMID: 19762915 DOI: 10.1074/jbc.m109.056838] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of insulin-like growth factor I (IGF-I) to stimulate cartilage matrix synthesis is reduced in aged and osteoarthritic cartilage. Aging and osteoarthritis are associated with an increase in reactive oxygen species, which we hypothesized would interfere with normal IGF-I signaling. We compared IGF-I signaling in normal and osteoarthritic human articular chondrocytes and investigated the effects of oxidative stress induced by tert-butylhydroperoxide (tBHP). In normal human chondrocytes, IGF-I initiated a strong and sustained phosphorylation of IRS-1 (Tyr-612) and Akt (Ser-473) and transient ERK phosphorylation. In contrast, in osteoarthritic chondrocytes, which possessed elevated basal IRS-1 (Ser-312) and ERK phosphorylation, IGF-I failed to stimulate IRS-1 (Tyr-612) or Akt phosphorylation. In normal human chondrocytes, tBHP triggered strong IRS-1 (Ser-312 and Ser-616) and ERK phosphorylation and inhibited IGF-I-induced IRS-1 (Tyr-612) and Akt phosphorylation. Lentivirus-mediated overexpression of constitutively active (CA) Akt significantly enhanced proteoglycan synthesis, whereas both dominant negative Akt and CA MEK inhibited proteoglycan synthesis. CA Akt also promoted type II collagen and Sox9 expression, whereas tBHP treatment and CA MEK inhibited aggrecan, collagen II, and Sox9 mRNA expression. In osteoarthritic chondrocytes, the antioxidants Mn(III) tetrakis(4-benzoic acid)porphyrin and N-acetylcysteine increased the ratio of Akt to ERK phosphorylation and promoted IGF-I-mediated proteoglycan synthesis. Chemical inhibition of ERK significantly enhanced IGF-I phosphorylation of Akt and alleviated tBHP inhibition of Akt phosphorylation. These results demonstrate opposing roles for phosphatidylinositol 3-kinase-Akt and MEK-ERK in cartilage matrix synthesis and suggest that elevated levels of reactive oxygen species cause chondrocyte IGF-I resistance by altering the balance of Akt to ERK activity.
Collapse
Affiliation(s)
- Weihong Yin
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | |
Collapse
|
41
|
Yu D, Neeley WL, Pritchard CD, Slotkin JR, Woodard EJ, Langer R, Teng YD. Blockade of peroxynitrite-induced neural stem cell death in the acutely injured spinal cord by drug-releasing polymer. Stem Cells 2009; 27:1212-22. [PMID: 19418456 DOI: 10.1002/stem.26] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Therapeutic impact of neural stem cells (NSCs) for acute spinal cord injury (SCI) has been limited by the rapid loss of donor cells. Neuroinflammation is likely the cause. As there are close temporal-spatial correlations between the inducible nitric oxide (NO) synthase expression and the donor NSC death after neurotrauma, we reasoned that NO-associated radical species might be the inflammatory effectors which eliminate NSC grafts and kill host neurons. To test this hypothesis, human NSCs (hNSCs: 5 x 10(4) to 2 x 10(6) per milliliter) were treated in vitro with "plain" medium, 20 microM glutamate, or donors of NO and peroxynitrite (ONOO(-); 100 and 400 microM of spermine or DETA NONOate, and SIN-1, respectively). hNSC apoptosis primarily resulted from SIN-1 treatment, showing ONOO(-)-triggered protein nitration and the activation of p38 MAPK, cytochrome c release, and caspases. Therefore, cell death following post-SCI (p.i.) NO surge may be mediated through conversion of NO into ONOO(-). We subsequently examined such causal relationship in a rat model of dual penetrating SCI using a retrievable design of poly-lactic-co-glycolic acid (PLGA) scaffold seeded with hNSCs that was shielded by drug-releasing polymer. Besides confirming the ONOO(-)-induced cell death signaling, we demonstrated that cotransplantation of PLGA film embedded with ONOO(-) scavenger, manganese (III) tetrakis (4-benzoic acid) porphyrin, or uric acid (1 micromol per film), markedly protected hNSCs 24 hours p.i. (total: n = 10). Our findings may provide a bioengineering approach for investigating mechanisms underlying the host microenvironment and donor NSC interaction and help formulate strategies for enhancing graft and host cell survival after SCI.
Collapse
Affiliation(s)
- Dou Yu
- Department of Neurosurgery, Harvard Medical School, The Brigham and Women's Hospital and Children's Hospital Boston, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Jackson IL, Batinic-Haberle I, Sonveaux P, Dewhirst MW, Vujaskovic Z. ROS production and angiogenic regulation by macrophages in response to heat therapy. Int J Hyperthermia 2009; 22:263-73. [PMID: 16754348 DOI: 10.1080/02656730600594027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PURPOSE It has been well established that inadequate blood supply combined with high metabolic rates of oxygen consumption results in areas of low oxygen tension (<1%) within malignant tumours and that elevating tumour temperatures above 39 degrees Celsius results in significant improvement in tumour oxygenation. Macrophages play a dual role in tumour initiation and progression having both pro-tumour and anti-tumour effects. However, the response of macrophages to heat within a hypoxic environment has not yet been clearly defined. METHODS Raw 264.7 murine macrophages were incubated under normoxia and chronic hypoxia at temperatures ranging from 37-43 degrees Celsius. Under normoxia at 41 degrees Celsius, macrophages start to release significant levels of superoxide. The combination of heat with hypoxia constitutes an additional stimulus leading to increased respiratory burst of macrophages. RESULTS The high levels of superoxide were found to be associated with changes in macrophage production of pro-angiogenic cytokines. While hypoxia alone (37 degrees Celsius) increased levels of hypoxia inducible factor-1alpha (HIF-1alpha) in macrophages, the combination of hypoxia and mild hyperthermia (39-41 degrees Celsius) induced a strong reduction in HIF-1alpha expression. The HIF-regulated vascular endothelial growth factor (VEGF) decreased simultaneously, revealing that heat inhibits both HIF-1alpha stabilization and transcriptional activity. CONCLUSION The data suggest that temperatures which are readily achievable in the clinic (39-41 degrees Celsius) might be optimal for maximizing hyperthermic response. At higher temperatures, these effects are reversed, thereby limiting the therapeutic benefits of more severe hyperthermic exposure.
Collapse
Affiliation(s)
- I L Jackson
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
43
|
Kim J, Seok YM, Jung KJ, Park KM. Reactive oxygen species/oxidative stress contributes to progression of kidney fibrosis following transient ischemic injury in mice. Am J Physiol Renal Physiol 2009; 297:F461-70. [PMID: 19458120 DOI: 10.1152/ajprenal.90735.2008] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recently, kidney fibrosis following transplantation has become recognized as a main contributor of chronic allograft nephropathy. In transplantation, transient ischemia is an inescapable event. Reactive oxygen species (ROS) play a critical role in ischemia and reperfusion (I/R)-induced acute kidney injury, as well as progression of fibrosis in various diseases such as hypertension, diabetes, and ureteral obstruction. However, a role of ROS/oxidative stress in chronic kidney fibrosis following I/R injury remains to be defined. In this study, we investigated the involvement of ROS/oxidative stress in kidney fibrosis following kidney I/R in mice. Mice were subjected to 30 min of bilateral kidney ischemia followed by reperfusion on day 0 and then administered with either manganese (III) tetrakis(1-methyl-4-pyridyl) porphyrin (MnTMPyP, 5 mg/kg body wt ip), a cell permeable superoxide dismutase (SOD) mimetic, or 0.9% saline (vehicle) beginning at 48 h after I/R for 14 days. I/R significantly increased interstitial extension, collagen deposition, apoptosis of tubular epithelial cells, nitrotyrosine expression, hydrogen peroxide production, and lipid peroxidation and decreased copper-zinc SOD, manganese SOD, and glucose 6-phosphate dehydrogenase activities in the kidneys 16 days after the procedure. MnTMPyP administration minimized these postischemic changes. In addition, MnTMPyP administration significantly attenuated the increases of alpha-smooth muscle actin, PCNA, S100A4, CD68, and heat shock protein 47 expression following I/R. We concluded that kidney fibrosis develops chronically following I/R injury, and this process is associated with the increase of ROS/oxidative stress.
Collapse
Affiliation(s)
- Jinu Kim
- Department of Anatomy and BK 21 Project, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | | | | | | |
Collapse
|
44
|
Day BJ. Catalase and glutathione peroxidase mimics. Biochem Pharmacol 2008; 77:285-96. [PMID: 18948086 DOI: 10.1016/j.bcp.2008.09.029] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 09/18/2008] [Accepted: 09/19/2008] [Indexed: 12/14/2022]
Abstract
Overproduction of the reactive oxygen species (ROS) superoxide (O(2)(-)) and hydrogen peroxide (H(2)O(2)) are increasingly implicated in human disease and aging. ROS are also being explored as important modulating agents in a number of cell signaling pathways. Earlier work has focused on development of small catalytic scavengers of O(2)(-), commonly referred to as superoxide dismutase (SOD) mimetics. Many of these compounds also have substantial abilities to catalytically scavenge H(2)O(2) and peroxynitrite (ONOO(-)). Peroxides have been increasingly shown to disrupt cell signaling cascades associated with excessive inflammation associated with a wide variety of human diseases. Early studies with enzymatic scavengers like SOD frequently reported little or no beneficial effect in biologic models unless SOD was combined with catalase or a peroxidase. Increasing attention has been devoted to developing catalase or peroxidase mimetics as a way to treat overt inflammation associated with the pathophysiology of many human disorders. This review will focus on recent development of catalytic scavengers of peroxides and their potential use as therapeutic agents for pulmonary, cardiovascular, neurodegenerative and inflammatory disorders.
Collapse
Affiliation(s)
- Brian J Day
- Department of Medicine, National Jewish Health, Departments of Medicine, Immunology & Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, CO 80206, USA.
| |
Collapse
|
45
|
Lau ATY, Wang Y, Chiu JF. Reactive oxygen species: current knowledge and applications in cancer research and therapeutic. J Cell Biochem 2008; 104:657-67. [PMID: 18172854 DOI: 10.1002/jcb.21655] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Reactive oxygen species (ROS) are natural products inevitably generated along cellular metabolism. Due to their highly reactive nature, which can damage DNA, proteins and lipids, cells utilize antioxidative or defense systems to balance these toxic products to keep the cells in a state of redox homeostasis. However, under the situation of imbalance in redox status, depending on the magnitude of ROS encountered, high levels of ROS can induce apoptosis, whereas chronic low levels of ROS promote vascular diseases such as arteriosclerosis. Although ROS seem to be catastrophic to life, accumulating evidence points to the beneficial roles of ROS by virtue of the ability as chemotherapeutic agents to cure human diseases. Many anti-cancer drugs have been developed in this way which can generate ROS and cause oxidative stress-induced apoptosis in cancer cells. The effects of ROS are paradoxical because they can act as both disease culprits and chemotherapeutic agents. In this review, the current knowledge of ROS and the potential applications of ROS in cancer therapeutic will be discussed.
Collapse
Affiliation(s)
- Andy T Y Lau
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | | | | |
Collapse
|
46
|
Abstract
Interstitial lung disease encompasses a large group of chronic lung disorders associated with excessive tissue remodeling, scarring, and fibrosis. The evidence of a redox imbalance in lung fibrosis is substantial, and the rationale for testing antioxidants as potential new therapeutics for lung fibrosis is appealing. Current animal models of lung fibrosis have clear involvement of ROS in their pathogenesis. New classes of antioxidant agents divided into catalytic antioxidant mimetics and antioxidant scavengers are being developed. The catalytic antioxidant class is based on endogenous antioxidant enzymes and includes the manganese-containing macrocyclics, porphyrins, salens, and the non-metal-containing nitroxides. The antioxidant scavenging class is based on endogenous antioxidant molecules and includes the vitamin E analogues, thiols, lazaroids, and polyphenolic agents. Numerous studies have shown oxidative stress to be associated with many interstitial lung diseases and that these agents are effective in attenuating fibroproliferative responses in the lung of animals and humans.
Collapse
Affiliation(s)
- Brian J Day
- Division of Environmental and Occupational Health Sciences, Department of Medicine, National Jewish Medical and Research Center, Denver, Colorado 80206, USA.
| |
Collapse
|
47
|
Ishizuka Y, Abe H, Nakane H, Kannan H, Ishida Y. Different response between production of free radicals induced by central and peripheral administration of interleukin-1β in conscious rats. Neurosci Res 2008; 60:10-4. [DOI: 10.1016/j.neures.2007.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 08/06/2007] [Accepted: 09/06/2007] [Indexed: 11/26/2022]
|
48
|
Isoda K, Kagaya N, Akamatsu S, Hayashi S, Tamesada M, Watanabe A, Kobayashi M, Tagawa YI, Kondoh M, Kawase M, Yagi K. Hepatoprotective Effect of Vitamin B12 on Dimethylnitrosamine-Induced Liver Injury. Biol Pharm Bull 2008; 31:309-11. [DOI: 10.1248/bpb.31.309] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Katsuhiro Isoda
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Noritaka Kagaya
- Graduate School of Pharmaceutical Sciences, Osaka University
| | | | - Shinji Hayashi
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Makoto Tamesada
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Aiko Watanabe
- Research and Development Center, Kobayashi Pharmaceutical Co., Ltd
| | | | - Yoh-ichi Tagawa
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology
| | - Masuo Kondoh
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Masaya Kawase
- Faculty of Pharmaceutical Sciences, Osaka-Ohtani University
| | - Kiyohito Yagi
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
49
|
Dopamine selectively sensitizes dopaminergic neurons to rotenone-induced apoptosis. Neurochem Res 2007; 33:886-901. [PMID: 17992568 DOI: 10.1007/s11064-007-9532-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 10/18/2007] [Indexed: 12/21/2022]
Abstract
Among various types of neurons affected in Parkinson's disease, dopamine (DA) neurons of the substantia nigra undergo the most pronounced degeneration. Products of DA oxidation and consequent cellular damage have been hypothesized to contribute to neuronal death. To examine whether elevated intracellular DA will selectively predispose the dopaminergic subpopulation of nigral neurons to damage by an oxidative insult, we first cultured rat primary mesencephalic cells in the presence of rotenone to elevate reactive oxygen species. Although MAP2(+) neurons were more sensitive to rotenone-induced toxicity than type 1 astrocytes, rotenone affected equally both DA (TH(+)) neurons and MAP2(+) neurons. In contrast, when intracellular DA concentration was elevated, DA neurons became selectively sensitized to rotenone. Raising intracellular DA levels in primary DA neurons resulted in dopaminergic neuron death in the presence of subtoxic concentrations of rotenone. Furthermore, mitochondrial superoxide dismutase mimetic, manganese (III) meso-tetrakis (4-benzoic acid) porphyrin, blocked activation of caspase-3, and consequent cell death. Our results demonstrate that an inhibitor of mitochondrial complex I and increased cytosolic DA may cooperatively lead to conditions of elevated oxidative stress and thereby promote selective demise of dopaminergic neurons.
Collapse
|
50
|
Szabó C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 2007; 6:662-80. [PMID: 17667957 DOI: 10.1038/nrd2222] [Citation(s) in RCA: 1639] [Impact Index Per Article: 96.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peroxynitrite--the product of the diffusion-controlled reaction of nitric oxide with superoxide radical--is a short-lived oxidant species that is a potent inducer of cell death. Conditions in which the reaction products of peroxynitrite have been detected and in which pharmacological inhibition of its formation or its decomposition have been shown to be of benefit include vascular diseases, ischaemia-reperfusion injury, circulatory shock, inflammation, pain and neurodegeneration. In this Review, we first discuss the biochemistry and pathophysiology of peroxynitrite and then focus on pharmacological strategies to attenuate the toxic effects of peroxynitrite. These include its catalytic reduction to nitrite and its isomerization to nitrate by metalloporphyrins, which have led to potential candidates for drug development for cardiovascular, inflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Csaba Szabó
- Department of Surgery, University of Medicine and Dentistry of New Jersey, 185 South Orange Avenue, University Heights, Newark, New Jersey 07103-2714, USA.
| | | | | |
Collapse
|