1
|
Gruber T, Lechner F, Krieger JP, García-Cáceres C. Neuroendocrine gut-brain signaling in obesity. Trends Endocrinol Metab 2024:S1043-2760(24)00120-6. [PMID: 38821753 DOI: 10.1016/j.tem.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 06/02/2024]
Abstract
The past decades have witnessed the rise and fall of several, largely unsuccessful, therapeutic attempts to bring the escalating obesity pandemic to a halt. Looking back to look ahead, the field has now put its highest hopes in translating insights from how the gastrointestinal (GI) tract communicates with the brain to calibrate behavior, physiology, and metabolism. A major focus of this review is to summarize the latest advances in comprehending the neuroendocrine aspects of this so-called 'gut-brain axis' and to explore novel concepts, cutting-edge technologies, and recent paradigm-shifting experiments. These exciting insights continue to refine our understanding of gut-brain crosstalk and are poised to promote the development of additional therapeutic avenues at the dawn of a new era of antiobesity therapeutics.
Collapse
Affiliation(s)
- Tim Gruber
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49506, USA; Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49506, USA; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Franziska Lechner
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Jean-Philippe Krieger
- Institute of Veterinary Pharmacology and Toxicology, University of Zurich-Vetsuisse, 8057 Zurich, Switzerland; Institute of Neuroscience and Physiology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Cristina García-Cáceres
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| |
Collapse
|
2
|
Migdanis A, Koukoulis GD, Chougias D, Migdanis I, Armeni E, Kanellakis S, Manouras A, Kapsoritakis A, Potamianos S. The Effect of Fat Supplementation on the Appearance of Symptoms Associated With Dumping Syndrome in Patients Having Undergone Gastric Surgery: Preliminary Results. Cureus 2023; 15:e48871. [PMID: 38106774 PMCID: PMC10724605 DOI: 10.7759/cureus.48871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND/OBJECTIVES Data on the effect of dietary fat on dumping syndrome (DS) symptoms are limited. The aim of this study was to assess the effect of the addition of fat to a carbohydrate meal on the appearance of DS symptoms and glycemic response, in patients who had undergone gastric surgery. SUBJECTS/METHODS This was an interventional crossover study. Patients scheduled for gastric surgical procedures related to DS at two surgical units of two public hospitals (General University Hospital of Larissa and General Hospital of Larissa) were considered for study inclusion. Patients presenting symptoms suggestive of diagnosis (n = 12), after the ingestion of a carbohydrate meal, were used as both intervention and control groups. During the intervention process, a fat supplement was added to the carbohydrate meal that was previously used for diagnosis. Glycemic response and the amount and intensity of DS symptoms provoked by the two meals were assessed at both appointments. RESULTS Blood glucose levels were significantly lower in the group that consumed the added fat meal compared with the group that consumed the carbohydrate meal 60 minutes after ingestion (p = 0.028). Furthermore, a significant reduction was noted in the amount of late dumping symptoms (p = 0.021) and the intensity of both early and late dumping symptoms (p = 0.007 and p = 0.012 respectively), after fat addition. Conclusions: Incorporating fat into a carbohydrate meal seems to attenuate postprandial blood glucose rises and reduce the amount and intensity of DS symptoms, in patients who had undergone gastric surgery.
Collapse
Affiliation(s)
- Athanasios Migdanis
- Faculty of Medicine, University of Thessaly, Larissa, GRC
- Department of Nutrition and Dietetics, University of Thessaly, Trikala, GRC
| | | | - Dimitrios Chougias
- Department of Gastroenterology, General University Hospital of Larissa, Larissa, GRC
| | - Ioannis Migdanis
- Faculty of Medicine, University of Thessaly, Larissa, GRC
- Department of Nutrition and Dietetics, University of Thessaly, Trikala, GRC
| | - Eleni Armeni
- Faculty of Medicine, University of Thessaly, Larissa, GRC
| | - Spyridon Kanellakis
- Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, GRC
| | | | - Andreas Kapsoritakis
- Department of Gastroenterology, General University Hospital of Larissa, Larissa, GRC
- Faculty of Medicine, University of Thessaly, Larissa, GRC
| | - Spyridon Potamianos
- Department of Gastroenterology, General University Hospital of Larissa, Larissa, GRC
- Faculty of Medicine, University of Thessaly, Larissa, GRC
| |
Collapse
|
3
|
Factors Affecting the Circulating Levels of Oxyntomodulin in Health and After Acute Pancreatitis. Pancreas 2022; 51:774-783. [PMID: 36395403 DOI: 10.1097/mpa.0000000000002114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To investigate the factors associated with the circulating levels of oxyntomodulin in healthy individuals and individuals after an episode of acute pancreatitis (AP). METHODS Blood samples were collected from all participants after an overnight fast and analyzed for 28 biomarkers. Participants also underwent comprehensive body composition analysis on a 3-T magnetic resonance imaging scanner. Regression analyses were done to investigate the associations between oxyntomodulin and the studied factors. RESULTS The study included 105 individuals who had a primary diagnosis of AP and 58 healthy individuals. Peptide YY (B coefficient, 0.094; 95% confidence interval [95% CI], 0.164-0.123), pancreatic polypeptide (0.048; 95% CI, 0.030-0.066), and leptin (0.394; 95% CI, 0.128-0.661) had significant associations with oxyntomodulin in healthy individuals. Peptide YY was the most prominent factor associated with oxyntomodulin, explaining 60% of its variance in health. Cholecystokinin (0.014; 95% CI, 0.010-0.018), amylin (-0.107; 95% CI, -0.192 to -0.021), and glycated hemoglobin (-0.761; 95% CI, -1.249 to -0.273) had significant associations with oxyntomodulin in individuals after AP. Cholecystokinin was the most prominent factor associated with oxyntomodulin, explaining 44% of its variance after AP. CONCLUSIONS Factors affecting the circulating levels of oxyntomodulin are different in health and after AP. These insights will enable the determination of populations that benefit from oxyntomodulin therapeutics in the future.
Collapse
|
4
|
Hajishafiee M, McVeay C, Lange K, Rehfeld JF, Horowitz M, Feinle-Bisset C. Effects of intraduodenal infusion of lauric acid and L-tryptophan, alone and combined, on glucoregulatory hormones, gastric emptying and glycaemia in healthy men. Metabolism 2022; 129:155140. [PMID: 35065080 DOI: 10.1016/j.metabol.2022.155140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/28/2021] [Accepted: 01/14/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM In healthy men, intraduodenal administration of the fatty acid, lauric acid ('C12') and the amino acid, L-tryptophan ('TRP'), at loads that individually do not affect energy intake, reduce energy intake substantially when combined. C12 and TRP may also stimulate cholecystokinin and glucagon-like peptide-1 (GLP-1), which both slow gastric emptying, a key determinant of postprandial blood glucose. Accordingly, combination of C12 and TRP has the potential to reduce post-meal glycaemia more than either nutrient alone. METHODS Twelve healthy, lean men (age (mean ± SD): 28 ± 7 years) received, on 4 separate occasions, 45-min intraduodenal infusions of C12 (0.3 kcal/min), TRP (0.1 kcal/min), C12 + TRP (0.4 kcal/min), or 0.9% saline (control), in a randomised, double-blind fashion. 30 min after commencement of the infusion a mixed-nutrient drink was consumed and gastric emptying measured (13C breath-test) for 3 h. Blood samples were obtained at baseline, in response to treatments alone, and for 2 h post-drink for measurements of plasma glucose, cholecystokinin, GLP-1, C-peptide, insulin and glucagon. 'Early' (first 30 min) and 'overall' glycaemic and hormone responses were evaluated. RESULTS C12 + TRP and C12 delayed the rise in, but did not affect the overall glycaemic response to the drink, compared with control and TRP (all P < 0.05). C12 + TRP slowed gastric emptying compared with control and TRP (both P < 0.005), and C12 non-significantly slowed gastric emptying compared with control (P = 0.090). C12 + TRP and C12 delayed the rise in C-peptide and insulin, and also stimulated CCK and glucagon, compared with control and TRP (all P < 0.05). Only C12 + TRP stimulated early and overall GLP-1 compared with control (P < 0.05). CONCLUSIONS In healthy men, C12 + TRP and C12, in the loads administered, had comparable effects to delay the rise in glucose following a nutrient drink, probably primarily by slowing of gastric emptying, as a result of CCK and GLP-1 stimulation, while TRP had no effect.
Collapse
Affiliation(s)
- M Hajishafiee
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - C McVeay
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - K Lange
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - J F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - M Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia; Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - C Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
5
|
Abstract
The enteroendocrine system coordinates the physiological response to food intake by regulating rates of digestion, nutrient absorption, insulin secretion, satiation and satiety. Gut hormones with important anorexigenic and/or insulinotropic roles include glucagon-like peptide 1 (GLP-1), peptide YY (PYY3-36), cholecystokinin (CCK) and glucose-dependent insulinotropic peptide (GIP). High BMI or obesogenic diets do not markedly disrupt this enteroendocrine system, which represents a critical target for inducing weight loss and treating co-morbidities in individuals with obesity.
Collapse
|
6
|
Tack J, Verbeure W, Mori H, Schol J, Van den Houte K, Huang IH, Balsiger L, Broeders B, Colomier E, Scarpellini E, Carbone F. The gastrointestinal tract in hunger and satiety signalling. United European Gastroenterol J 2021; 9:727-734. [PMID: 34153172 PMCID: PMC8280794 DOI: 10.1002/ueg2.12097] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Different peripheral pathways are implicated in the regulation of the food ingestion-digestion cycle. METHODS Narrative review on gastrointestinal mechanisms involved in satiety and hunger signalling. RESULTS Combined mechano- and chemoreceptors, peripherally released peptide hormones and neural pathways provide feedback to the brain to determine sensations of hunger (increase energy intake) or satiation (cessation of energy intake) and regulate the human metabolism. The gastric accommodation reflex, which consists of a transient relaxation of the proximal stomach during food intake, has been identified as a major determinant of meal volume, through activation of tension-sensitive gastric mechanoreceptors. Motilin, whose release is the trigger of gastric Phase 3, has been identified as the major determinant of return of hunger after a meal. In addition, the release of several peptide hormones such as glucagon-like peptide 1 (GLP-1), cholecystokinin as well as motilin and ghrelin contributes to gut-brain signalling with relevance to control of hunger and satiety. A number of nutrients, such as bitter tastants, as well as pharmacological agents, such as endocannabinoid receptor antagonists and GLP-1 analogues act on these pathways to influence hunger, satiation and food intake. CONCLUSION Gastrointestinal mechanisms such as gastric accommodation and motilin release are key determinants of satiety and hunger.
Collapse
Affiliation(s)
- Jan Tack
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Wout Verbeure
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Hideki Mori
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Jolien Schol
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Karen Van den Houte
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - I-Hsuan Huang
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Lukas Balsiger
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Bert Broeders
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Esther Colomier
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Emidio Scarpellini
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Florencia Carbone
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
The Function of Gastrointestinal Hormones in Obesity-Implications for the Regulation of Energy Intake. Nutrients 2021; 13:nu13061839. [PMID: 34072172 PMCID: PMC8226753 DOI: 10.3390/nu13061839] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
The global burden of obesity and the challenges of prevention prompted researchers to investigate the mechanisms that control food intake. Food ingestion triggers several physiological responses in the digestive system, including the release of gastrointestinal hormones from enteroendocrine cells that are involved in appetite signalling. Disturbed regulation of gut hormone release may affect energy homeostasis and contribute to obesity. In this review, we summarize the changes that occur in the gut hormone balance during the pre- and postprandial state in obesity and the alterations in the diurnal dynamics of their plasma levels. We further discuss how obesity may affect nutrient sensors on enteroendocrine cells that sense the luminal content and provoke alterations in their secretory profile. Gastric bypass surgery elicits one of the most favorable metabolic outcomes in obese patients. We summarize the effect of different strategies to induce weight loss on gut enteroendocrine function. Although the mechanisms underlying obesity are not fully understood, restoring the gut hormone balance in obesity by targeting nutrient sensors or by combination therapy with gut peptide mimetics represents a novel strategy to ameliorate obesity.
Collapse
|
8
|
Tian M, Wu Z, Heng J, Chen F, Guan W, Zhang S. Novel advances in understanding fatty acid-binding G protein-coupled receptors and their roles in controlling energy balance. Nutr Rev 2021; 80:187-199. [PMID: 34027989 DOI: 10.1093/nutrit/nuab021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/10/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes, obesity, and other metabolic diseases have been recognized as the main factors that endanger human health worldwide. Most of these metabolic syndromes develop when the energy balance in the body is disrupted. Energy balance depends upon the systemic regulation of food intake, glucose homeostasis, and lipid metabolism. Fatty acid-binding G protein-coupled receptors (GPCRs) are widely expressed in various types of tissues and cells involved in energy homeostasis regulation. In this review, the distribution and biological functions of fatty acid-binding GPCRs are summarized, particularly with respect to the gut, pancreas, and adipose tissue. A systematic understanding of the physiological functions of the fatty acid-binding GPCRs involved in energy homeostasis regulation will help in identifying novel pharmacological targets for metabolic diseases.
Collapse
Affiliation(s)
- Min Tian
- M. Tian, Z. Wu, J. Heng, F. Chen, W. Guan, and S. Zhang are with the Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China. F. Chen, W. Guan, and S. Zhang are with the College of Animal Science and National Engineering Research Center for Breeding Swine Industry, and the Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhihui Wu
- M. Tian, Z. Wu, J. Heng, F. Chen, W. Guan, and S. Zhang are with the Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China. F. Chen, W. Guan, and S. Zhang are with the College of Animal Science and National Engineering Research Center for Breeding Swine Industry, and the Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Jinghui Heng
- M. Tian, Z. Wu, J. Heng, F. Chen, W. Guan, and S. Zhang are with the Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China. F. Chen, W. Guan, and S. Zhang are with the College of Animal Science and National Engineering Research Center for Breeding Swine Industry, and the Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Fang Chen
- M. Tian, Z. Wu, J. Heng, F. Chen, W. Guan, and S. Zhang are with the Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China. F. Chen, W. Guan, and S. Zhang are with the College of Animal Science and National Engineering Research Center for Breeding Swine Industry, and the Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- M. Tian, Z. Wu, J. Heng, F. Chen, W. Guan, and S. Zhang are with the Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China. F. Chen, W. Guan, and S. Zhang are with the College of Animal Science and National Engineering Research Center for Breeding Swine Industry, and the Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | | |
Collapse
|
9
|
Gastric Sensory and Motor Functions and Energy Intake in Health and Obesity-Therapeutic Implications. Nutrients 2021; 13:nu13041158. [PMID: 33915747 PMCID: PMC8065811 DOI: 10.3390/nu13041158] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 01/19/2023] Open
Abstract
Sensory and motor functions of the stomach, including gastric emptying and accommodation, have significant effects on energy consumption and appetite. Obesity is characterized by energy imbalance; altered gastric functions, such as rapid gastric emptying and large fasting gastric volume in obesity, may result in increased food intake prior to reaching usual fullness and increased appetite. Thus, many different interventions for obesity, including different diets, anti-obesity medications, bariatric endoscopy, and surgery, alter gastric functions and gastrointestinal motility. In this review, we focus on the role of the gastric and intestinal functions in food intake, pathophysiology of obesity, and obesity management.
Collapse
|
10
|
Rittig N, Svart M, Thomsen HH, Vestergaard ET, Rehfeld JF, Hartmann B, Holst JJ, Johannsen M, Møller N, Jessen N. Oral D/L-3-Hydroxybutyrate Stimulates Cholecystokinin and Insulin Secretion and Slows Gastric Emptying in Healthy Males. J Clin Endocrinol Metab 2020; 105:5876925. [PMID: 32717058 DOI: 10.1210/clinem/dgaa483] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/20/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND D-3-hydroxybutyrate (D-3-OHB) is a ketone body that serves as an alternative nutritional fuel but also as an important signaling metabolite. Oral ketone supplements containing D/L-3-OHB are becoming a popular approach to achieve ketosis. AIM To explore the gut-derived effects of ketone supplements. METHODS Eight healthy lean male volunteers were investigated on 2 separate occasions:An acetaminophen test was performed to evaluate gastric emptying and blood samples were obtained consecutively throughout the study period. RESULTS We show that oral consumption of D/L-3-OHB stimulates cholecystokinin release (P = 0.02), elevates insulin (P = 0.03) and C-peptide (P < 0.001) concentrations, and slows gastric emptying (P = 0.01) compared with matched intravenous D/L-3-OHB administration. Measures of appetite and plasma concentrations of glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) were unaffected by interventions. CONCLUSION Our findings show that D/L-3-OHB exert incretin effects and indicate luminal sensing in the gut endothelium. This adds to our understanding of ketones as signaling metabolites and displays the important difference between physiological ketosis and oral ketone supplements.
Collapse
Affiliation(s)
- Nikolaj Rittig
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
- Department and laboratories of Diabetes and Hormone diseases, Aarhus University Hospital, Aarhus N, Denmark
| | - Mads Svart
- Department and laboratories of Diabetes and Hormone diseases, Aarhus University Hospital, Aarhus N, Denmark
| | | | | | - Jens Frederik Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences and Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences and Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Mogens Johannsen
- Department of Forensic Medicine, Aarhus University, Aarhus C, Denmark
| | - Niels Møller
- Department and laboratories of Diabetes and Hormone diseases, Aarhus University Hospital, Aarhus N, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
11
|
Fitzgerald PCE, Manoliu B, Herbillon B, Steinert RE, Horowitz M, Feinle-Bisset C. Effects of L-Phenylalanine on Energy Intake and Glycaemia-Impacts on Appetite Perceptions, Gastrointestinal Hormones and Gastric Emptying in Healthy Males. Nutrients 2020; 12:nu12061788. [PMID: 32560181 PMCID: PMC7353198 DOI: 10.3390/nu12061788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
In humans, phenylalanine stimulates plasma cholecystokinin (CCK) and pyloric pressures, both of which are important in the regulation of energy intake and gastric emptying. Gastric emptying is a key determinant of postprandial blood glucose. We evaluated the effects of intragastric phenylalanine on appetite perceptions and subsequent energy intake, and the glycaemic response to, and gastric emptying of, a mixed-nutrient drink. The study consisted of two parts, each including 16 healthy, lean males (age: 23 ± 1 years). In each part, participants received on three separate occasions, in randomised, double-blind fashion, 5 g (Phe-5 g) or 10g ('Phe-10 g) L-phenylalanine, or control, intragastrically, 30 min before a standardised buffet-meal (part A), or a standardised mixed-nutrient drink (part B). In part A, plasma CCK and peptide-YY (PYY), and appetite perceptions, were measured at baseline, after phenylalanine alone, and following the buffet-meal, from which energy intake was assessed. In part B, plasma glucose, glucagon-like peptide-1 (GLP-1), insulin and glucagon were measured at baseline, after phenylalanine alone, and for 2 h following the drink. Gastric emptying of the drink was also measured by 13C-acetate breath-test. Phe-10 g, but not Phe-5 g, stimulated plasma CCK (p = 0.01) and suppressed energy intake (p = 0.012); energy intake was correlated with stimulation of CCK (r = -0.4, p = 0.027), and tended to be associated with stimulation of PYY (r = -0.31, p = 0.082). Both Phe-10 g and Phe-5 g stimulated insulin and glucagon (all p < 0.05), but not GLP-1. Phe-10 g, but not Phe-5 g, reduced overall plasma glucose (p = 0.043) and peak plasma glucose (p = 0.017) in response to the mixed-nutrient drink. Phenylalanine had no effect on gastric emptying of the drink. In conclusion, our observations indicate that the energy intake-suppressant effect of phenylalanine is related to the stimulation of CCK and PYY, while the glucoregulatory effect may be independent of stimulation of plasma GLP-1 or slowing of gastric emptying.
Collapse
Affiliation(s)
- Penelope C. E. Fitzgerald
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, Level 5 Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia; (P.C.E.F.); (B.M.); (B.H.); (M.H.)
| | - Benoit Manoliu
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, Level 5 Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia; (P.C.E.F.); (B.M.); (B.H.); (M.H.)
| | - Benjamin Herbillon
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, Level 5 Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia; (P.C.E.F.); (B.M.); (B.H.); (M.H.)
| | - Robert E. Steinert
- Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zürich, 8091 Zürich, Switzerland;
| | - Michael Horowitz
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, Level 5 Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia; (P.C.E.F.); (B.M.); (B.H.); (M.H.)
| | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, Level 5 Adelaide Health and Medical Sciences Building, Corner North Terrace and George Street, Adelaide 5005, Australia; (P.C.E.F.); (B.M.); (B.H.); (M.H.)
- Correspondence: ; Tel.: +61-8-8313-6053
| |
Collapse
|
12
|
Rajan L, Palaniswamy D, Mohankumar SK. Targeting obesity with plant-derived pancreatic lipase inhibitors: A comprehensive review. Pharmacol Res 2020; 155:104681. [PMID: 32045666 DOI: 10.1016/j.phrs.2020.104681] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/19/2022]
Abstract
The prevalence of obesity is alarmingly increasing in the last few decades and leading to many serious public health concerns worldwide. The dysregulated lipid homeostasis due to various genetic, environmental and lifestyle factors is considered one of the critical putative pathways mediating obesity. Nonetheless, the scientific advancements unleashing the molecular dynamics of lipid metabolism have provided deeper insights on the emerging roles of lipid hydrolysing enzymes, including pancreatic lipase. It is hypothesized that inhibiting pancreatic lipase would prevent the breakdown of triglyceride and delays the absorption of fatty acids into the systemic circulation and adipocytes. Whilst, orlistat is the only conventional pancreatic lipase enzyme inhibitor available in clinics, identifying the safe clinical alternatives from plants to inhibit pancreatic lipase has been considered a significant advancement. Consequently, plants which have shown significant potential to combat obesity are now revisited for its abilities to inhibit pancreatic lipase. In this regard, our review surveyed the potential of medicinal plants and its phytoconstituents to inhibit pancreatic lipase and to elicit anti-obesity effects. Thus, the review collate and critically appraise the potential of medicinal plants and phyto-molecules inhibiting pancreatic lipase enzyme and consequently modulating triglyceride absorption in gut, and discuss its implications in the development of novel therapeutic strategies to combat obesity.
Collapse
Affiliation(s)
- Logesh Rajan
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rockland's, Ooty, 643001, Tamil Nadu, India
| | - Dhanabal Palaniswamy
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rockland's, Ooty, 643001, Tamil Nadu, India
| | - Suresh Kumar Mohankumar
- TIFAC CORE in Herbal Drugs, Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Rockland's, Ooty, 643001, Tamil Nadu, India.
| |
Collapse
|
13
|
Ohki J, Sakashita A, Aihara E, Inaba A, Uchiyama H, Matsumoto M, Ninomiya Y, Yamane T, Oishi Y, Iwatsuki K. Comparative analysis of enteroendocrine cells and their hormones between mouse intestinal organoids and native tissues. Biosci Biotechnol Biochem 2020; 84:936-942. [PMID: 31916916 DOI: 10.1080/09168451.2020.1713043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endocrine cells in the gastrointestinal tract secrete multiple hormones to maintain homeostasis in the body. In the present study, we generated intestinal organoids from the duodenum, jejunum, and ileum of Neurogenin 3 (Ngn3)-EGFP mice and examined how enteroendocrine cells (EECs) within organoid cultures resemble native epithelial cells in the gut. Transcriptome analysis of EGFP-positive cells from Ngn3-EGFP organoids showed gene expression pattern comparable to EECs in vivo. We also compared mRNAs of five major hormones, namely, ghrelin (Ghrl), cholecystokinin (Cck), Gip, secretin (Sct), and glucagon (Gcg) in organoids and small intestine along the longitudinal axis and found that expression patterns of these hormones in organoids were similar to those in native tissues. These findings suggest that an intestinal organoid culture system can be utilized as a suitable model to study enteroendocrine cell functions in vitro.
Collapse
Affiliation(s)
- Junko Ohki
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan.,Department of Health and Nutrition, Tsukuba International University, Ibaraki, Japan
| | - Akihiko Sakashita
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Eitaro Aihara
- Department of Pharmacology and System Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Akihiko Inaba
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Hironobu Uchiyama
- Genome Research Center, Tokyo University of Agriculture, Tokyo, Japan
| | | | - Yuzo Ninomiya
- Division of Sensory Physiology, Research & Development Center for Taste and Odor Sensing, Kyushu University, Fukuoka, Japan.,Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Takumi Yamane
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yuichi Oishi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Ken Iwatsuki
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
14
|
Adriaenssens AE, Reimann F, Gribble FM. Distribution and Stimulus Secretion Coupling of Enteroendocrine Cells along the Intestinal Tract. Compr Physiol 2018; 8:1603-1638. [DOI: 10.1002/cphy.c170047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Giezenaar C, Luscombe-Marsh ND, Hutchison AT, Lange K, Hausken T, Jones KL, Horowitz M, Chapman I, Soenen S. Effect of gender on the acute effects of whey protein ingestion on energy intake, appetite, gastric emptying and gut hormone responses in healthy young adults. Nutr Diabetes 2018; 8:40. [PMID: 30006513 PMCID: PMC6045591 DOI: 10.1038/s41387-018-0048-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/21/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/OBJECTIVES Protein supplements, usually drinks rich in whey protein, are used widely for weight loss purposes in overweight adults. Information comparing the effects of whey protein on appetite and energy intake in men and women is limited. The objective was to compare the acute effects of whey-protein intake on energy intake, appetite, gastric emptying and gut hormones in healthy young men and women. SUBJECTS/METHODS Gastric emptying (3D-ultrasonography), blood glucose and plasma insulin, glucagon, ghrelin, cholecystokinin (CCK), gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) concentrations (0-180 min), appetite (visual analogue scales), and ad libitum energy intake from a buffet meal (180-210 min) were determined after ingestion of 30 g (120 kcal) or 70 g (280 kcal) whey protein, or a flavoured-water control drink (~2 kcal) in 8 healthy young men (25 ± 2 y, 72 ± 3 kg, 23 ± 1 kg/m2) and 8 women (23 ± 1 y, 64 ± 2 kg, 24 ± 0.4 kg/m2). RESULTS There was a protein-load effect on gastric emptying, blood glucose, plasma insulin, glucagon, ghrelin, CCK, GIP and GLP-1 concentrations, and perceptions of hunger, desire to eat and prospective food consumption (P < 0.05). Ad libitum energy intake (average decrease of 206 ± 39 kcal (15 ± 2%) for men and of 46 ± 54 kcal (0 ± 26%) for women for the mean of the intakes after the 30 and 70 g whey-protein loads) and hunger were suppressed more by whey-protein ingestion in men than women (P = 0.046). There was no difference in suppression of energy intake between the 30 and 70 g protein loads (P = 0.75, interaction effect P = 0.19). Consequently, total energy intake (protein drink plus buffet meal) increased more compared to control in women than men (P = 0.010). The drinks emptied more slowly, and plasma glucagon, CCK and GLP-1 increased less after the protein drinks, in women than men (P < 0.05). CONCLUSION The acute effects of whey protein ingestion on appetite, energy intake, gastric emptying and gut hormone responses are influenced by gender in healthy young adults.
Collapse
Affiliation(s)
- Caroline Giezenaar
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
| | - Natalie D Luscombe-Marsh
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
- CSIRO Animal, Food and Health Sciences, Adelaide, Australia
| | - Amy T Hutchison
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
| | - Kylie Lange
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
| | - Trygve Hausken
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Karen L Jones
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
| | - Michael Horowitz
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
| | - Ian Chapman
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia
| | - Stijn Soenen
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
16
|
Meyer-Gerspach AC, Biesiekierski JR, Deloose E, Clevers E, Rotondo A, Rehfeld JF, Depoortere I, Van Oudenhove L, Tack J. Effects of caloric and noncaloric sweeteners on antroduodenal motility, gastrointestinal hormone secretion and appetite-related sensations in healthy subjects. Am J Clin Nutr 2018; 107:707-716. [DOI: 10.1093/ajcn/nqy004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/26/2017] [Indexed: 12/11/2022] Open
Affiliation(s)
- Anne Christin Meyer-Gerspach
- Translational Research Center for Gastrointestinal Disorders, Catholic University of Leuven, Leuven, Belgium
- Department of Research, Clara Hospital, Basel, Switzerland
| | - Jessica R Biesiekierski
- Translational Research Center for Gastrointestinal Disorders, Catholic University of Leuven, Leuven, Belgium
| | - Eveline Deloose
- Translational Research Center for Gastrointestinal Disorders, Catholic University of Leuven, Leuven, Belgium
| | - Egbert Clevers
- Translational Research Center for Gastrointestinal Disorders, Catholic University of Leuven, Leuven, Belgium
| | - Alessandra Rotondo
- Translational Research Center for Gastrointestinal Disorders, Catholic University of Leuven, Leuven, Belgium
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Inge Depoortere
- Translational Research Center for Gastrointestinal Disorders, Catholic University of Leuven, Leuven, Belgium
| | - Lukas Van Oudenhove
- Translational Research Center for Gastrointestinal Disorders, Catholic University of Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, Catholic University of Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Plaza A, Merino B, Cano V, Domínguez G, Pérez-Castells J, Fernández-Alfonso MS, Sengenès C, Chowen JA, Ruiz-Gayo M. Cholecystokinin is involved in triglyceride fatty acid uptake by rat adipose tissue. J Endocrinol 2018; 236:137-150. [PMID: 29339381 DOI: 10.1530/joe-17-0580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/16/2018] [Indexed: 11/08/2022]
Abstract
The incorporation of plasma triglyceride (TG) fatty acids to white adipose tissue (WAT) depends on lipoprotein lipase (LPL), which is regulated by angiopoietin-like protein-4 (ANGPTL-4), an unfolding molecular chaperone that converts active LPL dimers into inactive monomers. The production of ANGPTL-4 is promoted by fasting and repressed by feeding. We hypothesized that the postprandial hormone cholecystokinin (CCK) facilitates the storage of dietary TG fatty acids in WAT by regulating the activity of the LPL/ANGPTL-4 axis and that it does so by acting directly on CCK receptors in adipocytes. We report that administration of CCK-8 (a bioactive fragment of CCK) to rats: (i) reduces plasma ANGTPL-4 levels; (ii) represses Angptl-4 expression in WAT and (iii) simultaneously enhances LPL activity in this tissue without inducing Lpl expression. In vivo CCK-8 effects are specifically antagonized by the CCK-2 receptor (CCK-2R) antagonist, L-365,260. Moreover, CCK-8 downregulates Angptl-4 expression in wild-type pre-adipocytes, an effect that is not observed in engineered pre-adipocytes lacking CCK-2R. These effects have functional consequences as CCK-8 was found to promote the uptake of dietary fatty acids by WAT, as demonstrated by means of proton nuclear magnetic resonance (1H-NMR). The efficacy of acute CCK-8 administration was not reduced after chronic CCK-8 treatment. Moreover, the effects of CCK-8 on WAT were not associated to the increase of circulating insulin. Our results show that cholecystokinin promotes lipid storage in WAT by acting on adipocyte CCK-2R, suggesting a pivotal role for CCK in TG homeostasis.
Collapse
Affiliation(s)
- Adrián Plaza
- Departamento de Ciencias Farmacéuticas y de la SaludFacultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Beatriz Merino
- Departamento de Ciencias Farmacéuticas y de la SaludFacultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Victoria Cano
- Departamento de Ciencias Farmacéuticas y de la SaludFacultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Gema Domínguez
- Departamento de Química y BioquímicaFacultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Javier Pérez-Castells
- Departamento de Química y BioquímicaFacultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | | | - Coralie Sengenès
- STROMALabUniversité de Toulouse, CNRS ERL5311, EFS, INP-ENVT, Inserm U1031, UPS, Toulouse, France
| | - Julie A Chowen
- Departamento de EndocrinologíaHospital Infantil Universitario Niño Jesús, Instituto de Investigación Sanitaria Princesa, CIBEROBN Instituto Carlos III, Madrid, Spain
| | - Mariano Ruiz-Gayo
- Departamento de Ciencias Farmacéuticas y de la SaludFacultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| |
Collapse
|
18
|
Giezenaar C, Hutchison AT, Luscombe-Marsh ND, Chapman I, Horowitz M, Soenen S. Effect of Age on Blood Glucose and Plasma Insulin, Glucagon, Ghrelin, CCK, GIP, and GLP-1 Responses to Whey Protein Ingestion. Nutrients 2017; 10:nu10010002. [PMID: 29267221 PMCID: PMC5793230 DOI: 10.3390/nu10010002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023] Open
Abstract
Protein-rich supplements are used widely to prevent and manage undernutrition in older people. We have previously shown that healthy older, compared to younger, adults have less suppression of energy intake by whey protein-although the effects of age on appetite-related gut hormones are largely unknown. The aim of this study was to determine and compare the acute effects of whey protein loads on blood glucose and plasma gut hormone concentrations in older and younger adults. Sixteen healthy older (eight men, eight women; mean ± SEM: age: 72 ± 1 years; body mass index: 25 ± 1 kg/m²) and 16 younger (eight men, eight women; 24 ± 1 years; 23 ± 0.4 kg/m²) adults were studied on three occasions in which they ingested 30 g (120 kcal) or 70 g (280 kcal) whey protein, or a flavored-water control drink (~2 kcal). At regular intervals over 180 min, blood glucose and plasma insulin, glucagon, ghrelin, cholecystokinin (CCK), gastric inhibitory peptide (GIP), and glucagon-like peptide-1 (GLP-1) concentrations were measured. Plasma ghrelin was dose-dependently suppressed and insulin, glucagon, CCK, GIP, and GLP-1 concentrations were dose-dependently increased by the whey protein ingestion, while blood glucose concentrations were comparable during all study days. The stimulation of plasma CCK and GIP concentrations was greater in older than younger adults. In conclusion, orally ingested whey protein resulted in load-dependent gut hormone responses, which were greater for plasma CCK and GIP in older compared to younger adults.
Collapse
Affiliation(s)
- Caroline Giezenaar
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, 5000 Adelaide, Australia.
| | - Amy T Hutchison
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, 5000 Adelaide, Australia.
| | - Natalie D Luscombe-Marsh
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, 5000 Adelaide, Australia.
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Food and Nutrition, 5000 Adelaide, Australia.
| | - Ian Chapman
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, 5000 Adelaide, Australia.
| | - Michael Horowitz
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, 5000 Adelaide, Australia.
| | - Stijn Soenen
- Discipline of Medicine and National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide Medical School, 5000 Adelaide, Australia.
| |
Collapse
|
19
|
Kim HY, Kim K, Lee YM, Cho H. Aster pseudoglehni extract stimulates cholecystokinin and serotonin secretion in vitro and reduces gastric emptying in vivo. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
20
|
Steinert RE, Feinle-Bisset C, Asarian L, Horowitz M, Beglinger C, Geary N. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB. Physiol Rev 2017; 97:411-463. [PMID: 28003328 PMCID: PMC6151490 DOI: 10.1152/physrev.00031.2014] [Citation(s) in RCA: 367] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The efficacy of Roux-en-Y gastric-bypass (RYGB) and other bariatric surgeries in the management of obesity and type 2 diabetes mellitus and novel developments in gastrointestinal (GI) endocrinology have renewed interest in the roles of GI hormones in the control of eating, meal-related glycemia, and obesity. Here we review the nutrient-sensing mechanisms that control the secretion of four of these hormones, ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide tyrosine tyrosine [PYY(3-36)], and their contributions to the controls of GI motor function, food intake, and meal-related increases in glycemia in healthy-weight and obese persons, as well as in RYGB patients. Their physiological roles as classical endocrine and as locally acting signals are discussed. Gastric emptying, the detection of specific digestive products by small intestinal enteroendocrine cells, and synergistic interactions among different GI loci all contribute to the secretion of ghrelin, CCK, GLP-1, and PYY(3-36). While CCK has been fully established as an endogenous endocrine control of eating in healthy-weight persons, the roles of all four hormones in eating in obese persons and following RYGB are uncertain. Similarly, only GLP-1 clearly contributes to the endocrine control of meal-related glycemia. It is likely that local signaling is involved in these hormones' actions, but methods to determine the physiological status of local signaling effects are lacking. Further research and fresh approaches are required to better understand ghrelin, CCK, GLP-1, and PYY(3-36) physiology; their roles in obesity and bariatric surgery; and their therapeutic potentials.
Collapse
Affiliation(s)
- Robert E Steinert
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Lori Asarian
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Michael Horowitz
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christoph Beglinger
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Nori Geary
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
21
|
Zhang G, Hasek LY, Lee BH, Hamaker BR. Gut feedback mechanisms and food intake: a physiological approach to slow carbohydrate bioavailability. Food Funct 2016; 6:1072-89. [PMID: 25686469 DOI: 10.1039/c4fo00803k] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glycemic carbohydrates in foods are an important macronutrient providing the biological fuel of glucose for a variety of physiological processes. A classification of glycemic carbohydrates into rapidly digestible carbohydrate (RDC) and slowly digestible carbohydrate (SDC) has been used to specify their nutritional quality related to glucose homeostasis that is essential to normal functioning of the brain and critical to life. Although there have been many studies and reviews on slowly digestible starch (SDS) and SDC, the mechanisms of their slow digestion and absorption were mostly investigated from the material side without considering the physiological processes of their in vivo digestion, absorption, and most importantly interactions with other food components and the gastrointestinal tract. In this article, the physiological processes modulating the bioavailability of carbohydrates, specifically the rate and extent of their digestion and absorption as well as the related locations, in a whole food context, will be discussed by focusing on the activities of the gastrointestinal tract including glycolytic enzymes and glucose release, sugar sensing, gut hormones, and neurohormonal negative feedback mechanisms. It is hoped that a deep understanding of these physiological processes will facilitate the development of innovative dietary approaches to achieve desired carbohydrate or glucose bioavailability for improved health.
Collapse
Affiliation(s)
- Genyi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | | | | | | |
Collapse
|
22
|
Hutchison AT, Piscitelli D, Horowitz M, Jones KL, Clifton PM, Standfield S, Hausken T, Feinle-Bisset C, Luscombe-Marsh ND. Acute load-dependent effects of oral whey protein on gastric emptying, gut hormone release, glycemia, appetite, and energy intake in healthy men. Am J Clin Nutr 2015; 102:1574-84. [PMID: 26537944 DOI: 10.3945/ajcn.115.117556] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/16/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND In healthy individuals, intraduodenal whey protein load-dependently modulates gastrointestinal motor and hormonal functions and suppresses energy intake. The effect of oral whey, particularly the impact of load, has not been evaluated. OBJECTIVE The purpose of this study was to quantify gastric emptying of 30 and 70 g of oral whey protein loads and their relation to gastrointestinal hormone, glycemic, and appetitive responses. DESIGN On 3 separate occasions in a randomized, double-blind order, 18 lean men [mean ± SEM age: 24.8 ± 1.4 y; body mass index (in kg/m(2)): 21.6 ± 0.5] received iso-osmolar, equally palatable drinks (∼450 mL) containing 30 g pure whey protein isolate (L), 70 g pure whey protein isolate (H), or saline (control). Gastric emptying (with the use of 3-dimensional ultrasound), plasma cholecystokinin, glucagon-like peptide 1, glucose-dependent insulinotropic peptide, insulin, glucagon, total amino acids, and blood glucose were measured for 180 min after consumption of the drinks, and energy intake at a buffet-style lunch was quantified. RESULTS Gastric emptying of the L and H drinks was comparable when expressed in kilocalories per minute (L: 2.6 ± 0.2 kcal/min; H: 2.9 ± 0.3 kcal/min) and related between individuals (r = 0.54, P < 0.01). Gastrointestinal hormone, insulin, and glucagon responses to the L and H drinks were comparable until ∼45-60 min after ingestion, after which time the responses became more differentiated. Blood glucose was modestly reduced after the H drink between t = 45 and 150 min when compared with the L drink (all P < 0.05). Energy intake was suppressed by both L and H drinks compared with control (P < 0.05) (control: 1174 ± 91 kcal; L: 1027 ± 81 kcal; and H: 997 ± 71 kcal). CONCLUSION These findings indicate that, in healthy lean men, the rate of gastric emptying of whey protein is independent of load and determines the initial gastrointestinal hormone response. This study was registered at www.anzctr.org.au as 12611000706976.
Collapse
Affiliation(s)
- Amy T Hutchison
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, Australia; National Health and Medical Research Council Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Diana Piscitelli
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, Australia; School of Health Sciences and
| | - Michael Horowitz
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, Australia; National Health and Medical Research Council Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Karen L Jones
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, Australia; National Health and Medical Research Council Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Peter M Clifton
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, Australia; National Health and Medical Research Council Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia; School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Scott Standfield
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, Australia; National Health and Medical Research Council Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Trygve Hausken
- Institute of Medicine, University of Bergen, and National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway; and
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, Australia; National Health and Medical Research Council Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Natalie D Luscombe-Marsh
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, Adelaide, Australia; National Health and Medical Research Council Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia; Food and Nutrition Flagship, Commonwealth Science and Industrial Research Organization, Adelaide, Australia
| |
Collapse
|
23
|
Altered gut and adipose tissue hormones in overweight and obese individuals: cause or consequence? Int J Obes (Lond) 2015; 40:622-32. [PMID: 26499438 PMCID: PMC4827002 DOI: 10.1038/ijo.2015.220] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/07/2015] [Accepted: 09/02/2015] [Indexed: 12/11/2022]
Abstract
The aim of this article is to review the research into the main peripheral appetite signals altered in human obesity, together with their modifications after body weight loss with diet and exercise and after bariatric surgery, which may be relevant to strategies for obesity treatment. Body weight homeostasis involves the gut–brain axis, a complex and highly coordinated system of peripheral appetite hormones and centrally mediated neuronal regulation. The list of peripheral anorexigenic and orexigenic physiological factors in both animals and humans is intimidating and expanding, but anorexigenic glucagon-like peptide 1 (GLP-1), cholecystokinin (CCK), peptide YY (PYY) and orexigenic ghrelin from the gastrointestinal tract, pancreatic polypeptide (PP) from the pancreas and anorexigenic leptin from adiposites remain the most widely studied hormones. Homeostatic control of food intake occurs in humans, although its relative importance for eating behaviour is uncertain, compared with social and environmental influences. There are perturbations in the gut–brain axis in obese compared with lean individuals, as well as in weight-reduced obese individuals. Fasting and postprandial levels of gut hormones change when obese individuals lose weight, either with surgical or with dietary and/or exercise interventions. Diet-induced weight loss results in long-term changes in appetite gut hormones, postulated to favour increased appetite and weight regain while exercise programmes modify responses in a direction expected to enhance satiety and permit weight loss and/or maintenance. Sustained weight loss achieved by bariatric surgery may in part be mediated via favourable changes to gut hormones. Future work will be necessary to fully elucidate the role of each element of the axis, and whether modifying these signals can reduce the risk of obesity.
Collapse
|
24
|
Steinert RE, Landrock MF, Horowitz M, Feinle-Bisset C. Effects of Intraduodenal Infusions of L-phenylalanine and L-glutamine on Antropyloroduodenal Motility and Plasma Cholecystokinin in Healthy Men. J Neurogastroenterol Motil 2015; 21:404-13. [PMID: 26130636 PMCID: PMC4496893 DOI: 10.5056/jnm14143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND/AIMS Dietary proteins have potent eating-inhibitory and glucose-lowering effects, which may be mediated via effects of amino acids on gastrointestinal hormone and motor function, although little information is available. We have now evaluated the effects of L-phenylalanine (L-Phe) and L-glutamine (L-Gln) on antropyloroduodenal motility and plasma cholecystokinin (CCK) concen-trations. METHODS Two double-blind, 3-way cross-over studies were performed, each including 10 healthy, normal-weight men. We determined the antropyloroduodenal motor and plasma CCK responses to 90-minute intraduodenal infusions of L-Phe (study A) or L-Gln (study B), each at 0.15 kcal/min (total 13.5 kcal), or 0.45 kcal/min (total 40.5 kcal), or saline (control), in randomized fashion. RESULTS Intraduodenal L-Phe at 0.45 kcal/min, but not at 0.15 kcal/min, suppressed antral (P < 0.01), and stimulated phasic (P < 0.01), but not tonic, pyloric, or duodenal pressures, while L-Phe at both 0.15 kcal/min and 0.45 kcal/min stimulated plasma CCK. In contrast, L-Gln had no effect on antral, duodenal or pyloric pressures, or plasma CCK. CONCLUSIONS Intraduodenal infusions of L-Phe and L-Gln, in doses of 0.15 kcal/min and 0.45 kcal/min for 90 minutes, have different effects on antropyloroduodenal motility and CCK in normal-weight men. The modulation of antral and pyloric pressures and CCK may contribute to the eating-inhibitory effects of oral L-Phe, possibly through the slowing of gastric emptying.
Collapse
Affiliation(s)
- Robert E Steinert
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide,
Australia
- Correspondence: Robert E Steinert, PhD, Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide 5005, Australia, Tel: +61-8-8222-5247, Fax: +61-8-8223-3870, E-mail:
| | - Maria F Landrock
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide,
Australia
| | - Michael Horowitz
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide,
Australia
- NHMRC Center of Research Excellence in Translating Nutritional Science to Good Health, Adelaide,
Australia
| | - Christine Feinle-Bisset
- Discipline of Medicine, The University of Adelaide, Royal Adelaide Hospital, Adelaide,
Australia
- NHMRC Center of Research Excellence in Translating Nutritional Science to Good Health, Adelaide,
Australia
| |
Collapse
|
25
|
Mapping glucose-mediated gut-to-brain signalling pathways in humans. Neuroimage 2014; 96:1-11. [PMID: 24685436 PMCID: PMC4075342 DOI: 10.1016/j.neuroimage.2014.03.059] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 02/17/2014] [Accepted: 03/22/2014] [Indexed: 12/28/2022] Open
Abstract
Objectives Previous fMRI studies have demonstrated that glucose decreases the hypothalamic BOLD response in humans. However, the mechanisms underlying the CNS response to glucose have not been defined. We recently demonstrated that the slowing of gastric emptying by glucose is dependent on activation of the gut peptide cholecystokinin (CCK1) receptor. Using physiological functional magnetic resonance imaging this study aimed to determine the whole brain response to glucose, and whether CCK plays a central role. Experimental design Changes in blood oxygenation level-dependent (BOLD) signal were monitored using fMRI in 12 healthy subjects following intragastric infusion (250 ml) of: 1 M glucose + predosing with dexloxiglumide (CCK1 receptor antagonist), 1 M glucose + placebo, or 0.9% saline (control) + placebo, in a single-blind, randomised fashion. Gallbladder volume, blood glucose, insulin, and GLP-1 and CCK concentrations were determined. Hunger, fullness and nausea scores were also recorded. Principal observations Intragastric glucose elevated plasma glucose, insulin, and GLP-1, and reduced gall bladder volume (an in vivo assay for CCK secretion). Glucose decreased BOLD signal, relative to saline, in the brainstem and hypothalamus as well as the cerebellum, right occipital cortex, putamen and thalamus. The timing of the BOLD signal decrease was negatively correlated with the rise in blood glucose and insulin levels. The glucose + dex arm highlighted a CCK1-receptor dependent increase in BOLD signal only in the motor cortex. Conclusions Glucose induces site-specific differences in BOLD response in the human brain; the brainstem and hypothalamus show a CCK1 receptor-independent reduction which is likely to be mediated by a circulatory effect of glucose and insulin, whereas the motor cortex shows an early dexloxiglumide-reversible increase in signal, suggesting a CCK1 receptor-dependent neural pathway. We have identified two distinct CNS responses to glucose in man. A CCK1 receptor (CCK1R)-dependent BOLD signal increase in the motor cortex. A CCK1R-independent BOLD signal decrease in the brainstem and hypothalamus. The BOLD signal decrease was mediated by changes in blood glucose and insulin,
Collapse
|
26
|
Luttikhold J, de Ruijter FM, van Norren K, Diamant M, Witkamp RF, van Leeuwen PAM, Vermeulen MAR. Review article: the role of gastrointestinal hormones in the treatment of delayed gastric emptying in critically ill patients. Aliment Pharmacol Ther 2013; 38:573-83. [PMID: 23879699 DOI: 10.1111/apt.12421] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 12/27/2012] [Accepted: 07/01/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Delayed gastric emptying limits the administration of enteral nutrition, leading to malnutrition, which is associated with higher mortality and morbidity. Currently available prokinetics have limitations in terms of sustained efficacy and side effects. AIM To summarise the mechanisms of action and to discuss the possible utility of gastrointestinal hormones to prevent or treat delayed gastric emptying in critically ill patients. METHODS We searched PubMed for articles discussing 'delayed gastric emptying', 'enteral nutrition', 'treatment', 'gastrointestinal hormones', 'prokinetic', 'agonist', 'antagonist' and 'critically ill patients'. RESULTS Motilin and ghrelin receptor agonists initiate the migrating motor complex in the stomach, which accelerates gastric emptying. Cholecystokinin, glucagon-like peptide-1 and peptide YY have an inhibiting effect on gastric emptying; therefore, antagonising these gastrointestinal hormones may have therapeutic potential. Other gastrointestinal hormones appear less promising. CONCLUSIONS Manipulation of endogenous secretion, physiological replacement and administration of gastrointestinal hormones in pharmacological doses is likely to have therapeutic potential in the treatment of delayed gastric emptying. Future challenges in this field will include the search for candidates with improved selectivity and favourable kinetic properties.
Collapse
Affiliation(s)
- J Luttikhold
- Department of Surgery, VU University Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | | | |
Collapse
|
27
|
Ryan AT, Luscombe-Marsh ND, Saies AA, Little TJ, Standfield S, Horowitz M, Feinle-Bisset C. Effects of intraduodenal lipid and protein on gut motility and hormone release, glycemia, appetite, and energy intake in lean men. Am J Clin Nutr 2013; 98:300-11. [PMID: 23803895 DOI: 10.3945/ajcn.113.061333] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Intraduodenal lipid modulates gastrointestinal motility and hormone release and suppresses energy intake (EI) more than does intraduodenal glucose. Oral protein is the most satiating macronutrient and modulates postprandial glycemia; the comparative effects of intraduodenal protein and lipid and their combined effects are unclear. OBJECTIVE We investigated the effects of intraduodenal protein and lipid, alone or in combination, on antropyloroduodenal motility, gastrointestinal hormone release, glycemia, and EI. DESIGN Twenty lean men were studied on 5 randomized, double-blind occasions. Antropyloroduodenal motility, cholecystokinin, glucagon-like peptide-1 (GLP-1), insulin, glucagon, blood glucose, appetite, and nausea were measured during 90-min isocaloric (3 kcal/min) intraduodenal infusions of lipid [pure lipid condition (L3)], protein [pure protein condition (P3)], a 2:1 combination of lipid and protein [2:1 lipid:protein condition (L2P1)], a 1:2 combination of lipid and protein [1:2 lipid:protein condition (L1P2)], or a control. Immediately after the infusion, EI from a buffet lunch was quantified. RESULTS In comparison with the control, all nutrient infusions suppressed antral and duodenal and stimulated pyloric pressures (P < 0.05). Cholecystokinin and GLP-1 release and pyloric stimulation were lipid-load dependent (r ≥ 0.39, P < 0.01), insulin and glucagon releases were protein-load dependent (r = 0.83, P < 0.001), and normoglycemia was maintained. L3 but not P3 increased nausea (P < 0.05). Compared with the control, L3 and P3 but not L2P1 or L1P2 suppressed EI (P < 0.05) without major effects on appetite. CONCLUSIONS In lean men, despite differing effects on gut function, intraduodenal lipid and protein produce comparable reductions in energy intake. The effects of lipid may be a result of nausea. Protein also regulates blood glucose by stimulating insulin and glucagon. In contrast, at the loads selected, lipid:protein combinations did not suppress energy intake, suggesting that a threshold load is required to elicit effects. This trial was registered at Australia and New Zealand Clinical Trial Registry (http://www.anzctr.org.au) as 12609000949280.
Collapse
Affiliation(s)
- Amy T Ryan
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | | | | | | | | | | | | |
Collapse
|
28
|
Gamble J, Kenny S, Dockray GJ. Plasminogen activator inhibitor (PAI)-1 suppresses inhibition of gastric emptying by cholecystokinin (CCK) in mice. ACTA ACUST UNITED AC 2013; 185:9-13. [PMID: 23816469 PMCID: PMC3819999 DOI: 10.1016/j.regpep.2013.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/05/2013] [Accepted: 06/19/2013] [Indexed: 12/26/2022]
Abstract
The intestinal hormone cholecystokinin (CCK) delays gastric emptying and inhibits food intake by actions on vagal afferent neurons. Recent studies suggest plasminogen activator inhibitor (PAI)-1 suppresses the effect of CCK on food intake. In this study we asked whether PAI-1 also modulated CCK effects on gastric emptying. Five minute gastric emptying of liquid test meals was studied in conscious wild type mice (C57BL/6) and in transgenic mice over-expressing PAI-1 in gastric parietal cells (PAI-1H/Kβ mice), or null for PAI-1. The effects of exogenous PAI-1 and CCK8s on gastric emptying were studied after ip administration. Intragastric peptone delayed gastric emptying in C57BL/6 mice by a mechanism sensitive to the CCK-1 receptor antagonist lorglumide. Peptone did not delay gastric emptying in PAI-1-H/Kβ mice. Exogenous CCK delayed gastric emptying of a control test meal in C57BL/6 mice and this was attenuated by administration of PAI-1; exogenous CCK had no effect on emptying in PAI-1-H/Kβ mice. Prior administration of gastrin to increase gastric PAI-1 inhibited CCK-dependent effects on gastric emptying in C57BL/6 mice but not in PAI-1 null mice. Thus, both endogenous and exogenous PAI-1 inhibit the effects of CCK (whether exogenous or endogenous) on gastric emptying. The data are compatible with emerging evidence that gastric PAI-1 modulates vagal effects of CCK. Cholecystokinin (CCK) inhibits gastric emptying and food intake. PAI-1 inhibits effects of CCK on food intake. We hypothesised that PAI-1 also modulates gastric emptying. Both endogenous and exogenous PAI-1 attenuated the effect of CCK on gastric emptying. Gastric PAI-1 is therefore a modulator of CCK inhibition of gastric emptying.
Collapse
Affiliation(s)
- Joanne Gamble
- Physiological Laboratory, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | | | |
Collapse
|
29
|
Abstract
There is convincing evidence that patients with functional gastrointestinal disorders (FGIDs) exhibit dysfunctions of the gut involving hypersensitivity and abnormal reflexes, so that physiological, normally unperceived, stimuli induce symptoms. The type of symptoms depends on the specific sensory-reflex pathways and region(s) affected. Fat modulates the responses of the gut to various stimuli, and some of these modulatory mechanisms are abnormal in patients with FGIDs. Indeed, laboratory-based studies have shown that the symptoms experienced by these patients can be induced, or exacerbated, by administration of lipids in amounts that are well tolerated by healthy controls, and, thus, demonstrate a hypersensitivity to lipid. Very few studies have evaluated dietary patterns and eating behavior in these patients, with often-conflicting outcomes, and no studies have been performed to evaluate the role of targeted dietary interventions for the relief of symptoms. Given the evidence from laboratory studies, as well as patient experience, such studies, in large cohorts of patients, are needed with the view to develop personalized, cost-effective treatment approaches.
Collapse
|
30
|
Kuyumcu S, Goetze O, Menne D, Treier R, Boesiger P, Fox M, Fried M, Schwizer W, Steingoetter A. Gastric secretion does not affect the reliability of the 13C-acetate breath test: A validation of the 13C-acetate breath test by magnetic resonance imaging. Neurogastroenterol Motil 2013; 25:176-e87. [PMID: 23066987 DOI: 10.1111/nmo.12025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND (13)C-Acetate labeled meals are widely used to determine meal emptying by means of analyzing resulting (13)CO(2) exhalation dynamics. In contrast to the underlying metabolic processes, only few (13)C breath test meal emptying studies have focused on intragastric processes that may alter (13)CO(2) exhalation. This work assessed the effect of enhanced gastric secretion on the reliability of half emptying time (t50) measurements by (13)C-acetate breath test. METHODS (13)CO(2) exhalation data were acquired in a double-blind, randomized, cross-over gastric emptying study in 12 healthy volunteers receiving either pentagastrin or placebo intravenously. The standard method proposed by Ghoos et al. was applied to calculate t50 (t50_Ghoos) from (13)CO(2) exhalation data, which were compared and tested for agreement to meal half emptying times (t50_MV) from concurrent recorded MRI (magnetic resonance imaging) volume data. In addition, the accumulated gastric secretion volumes during infusion as detected by MRI (AUC_SV(60)) were correlated with the corresponding cumulative percent (13)C doses recovered (cPDR(60)). KEY RESULTS t50_Ghoos and t50_MV showed a linear correlation with a slope of 1.1 ± 0.3 (r(2) = 0.67), however, a positive offset of 136 min for t50_Ghoos. No correlation was detected between AUC_SV(60) and cPDR(60) (r(2) = 0.11). Both, breath test and MRI, revealed a prolonged t50 under pentagastrin infusion with median differences in t50_Ghoos of 45[28-84] min (P = 0.002) and t50_MV of 39[28-52] min (P = 0.002). CONCLUSIONS & INFERENCES This study suggests that (13)CO(2) exhalation after ingestion of a (13) C-labeled liquid test meal is not affected by stimulated gastric secretion, but is rather reflecting the dynamics of meal or caloric emptying from the stomach.
Collapse
Affiliation(s)
- S Kuyumcu
- Division of Gastroenterology & Hepatology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jones RB, Dockray GJ, Thompson DG. The effects of fasting duration on gastric emptying in man, an exploration of the role of the endocannabinoid system and inter-individual responsiveness. Neurogastroenterol Motil 2012; 24:928-e461. [PMID: 22726634 DOI: 10.1111/j.1365-2982.2012.01954.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND In animal studies, gut vagal afferent neurons express cannabinoid (CB1) receptors, whose expression is increased by fasting. We aimed to explore the possibility that similar effects might be relevant in man in controlling gastric emptying. METHODS Fourteen healthy volunteers underwent measurements of gastric emptying using the (13) C acetate breath test, after either a nutrient (skimmed milk) or non-nutrient (water) meal following both a 12 and 24 h fast. Further gastric emptying studies were performed with and without the CB1 receptor antagonist Rimonabant (20 mg or 80 mg). Because of the inter-individual variations observed, two subjects underwent additional studies with and without Rimonabant to determine intra-individual consistency. Gastric emptying was evaluated as cumulative C13 : C12 ratio values, measured at 5 min intervals for 30 min. KEY RESULTS In the group as a whole, fasting duration slowed gastric emptying for both the nutrient [120 ± 30 (mean ± SD) vs 101 ± 34, P < 0.05] and non-nutrient [226 ± 62 vs 177 ± 47, P < 0.05] meals, but there was no effect of Rimonabant. However, there was consistent inter individual variation; thus while 12 subjects showed a slowing, two (14%) exhibited accelerated gastric emptying for both the nutrient and the non-nutrient meal after 24 h fasting and in one of whom, Rimonabant consistently reversed the fasting effect on the non-nutrient meal. CONCLUSIONS & INFERENCES Extended fasting alters the gastric emptying of liquid meals but there are consistent differences between individuals. Where there is an accelerated response to fasting, Rimonabant appears to reverse the effect.
Collapse
Affiliation(s)
- R B Jones
- Gastrointestinal Sciences, University of Manchester, Manchester Academic Health Sciences Centre, Hope Hospital, Salford, UK
| | | | | |
Collapse
|
32
|
Addition of different fats to a carbohydrate food: Impact on gastric emptying, glycaemic and satiety responses and comparison with in vitro digestion. Food Res Int 2012. [DOI: 10.1016/j.foodres.2012.02.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Page AJ, Symonds E, Peiris M, Blackshaw LA, Young RL. Peripheral neural targets in obesity. Br J Pharmacol 2012; 166:1537-58. [PMID: 22432806 PMCID: PMC3419899 DOI: 10.1111/j.1476-5381.2012.01951.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 12/15/2022] Open
Abstract
Interest in pharmacological treatments for obesity that act in the brain to reduce appetite has increased exponentially over recent years, but failures of clinical trials and withdrawals due to adverse effects have so far precluded any success. Treatments that do not act within the brain are, in contrast, a neglected area of research and development. This is despite the fact that a vast wealth of molecular mechanisms exists within the gut epithelium and vagal afferent system that could be manipulated to increase satiety. Here we discuss mechano- and chemosensory pathways from the gut involved in appetite suppression, and distinguish between gastric and intestinal vagal afferent pathways in terms of their basic physiology and activation by enteroendocrine factors. Gastric bypass surgery makes use of this system by exposing areas of the intestine to greater nutrient loads resulting in greater satiety hormone release and reduced food intake. A non-surgical approach to this system is preferable for many reasons. This review details where the opportunities may lie for such approaches by describing nutrient-sensing mechanisms throughout the gastrointestinal tract.
Collapse
Affiliation(s)
- Amanda J Page
- Nerve-Gut Research Laboratory, Discipline of Medicine, South Australia, Australia
| | | | | | | | | |
Collapse
|
34
|
Chapman MJ, Nguyen NQ, Deane AM. Gastrointestinal dysmotility: clinical consequences and management of the critically ill patient. Gastroenterol Clin North Am 2011; 40:725-39. [PMID: 22100114 DOI: 10.1016/j.gtc.2011.09.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Gastrointestinal dysmotility is a common feature of critical illness, with a number of significant implications that include malnutrition secondary to reduced feed tolerance and absorption, reflux and aspiration resulting in reduced lung function and ventilator-associated pneumonia, bacterial overgrowth and possible translocation causing nosocomial sepsis. Prokinetic agent administration can improve gastric emptying and caloric delivery, but its effect on nutrient absorption and clinical outcomes is, as yet, unclear. Postpyloric delivery of nutrition has not yet been demonstrated to increase caloric intake or improve clinical outcomes.
Collapse
Affiliation(s)
- Marianne J Chapman
- Department of Critical Care Services, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia.
| | | | | |
Collapse
|
35
|
Bagger JI, Christensen M, Knop FK, Vilsbøll T. Therapy for obesity based on gastrointestinal hormones. Rev Diabet Stud 2011; 8:339-47. [PMID: 22262071 DOI: 10.1900/rds.2011.8.339] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
It has long been known that peptide hormones from the gastrointestinal tract have significant impact on the regulation of nutrient metabolism. Among these hormones, incretins have been found to increase insulin secretion, and thus incretin-based therapies have emerged as new modalities for the treatment of type 2 diabetes. In contrast to other antidiabetic treatments, these agents have a positive outcome profile on body weight. Worldwide there are 500 million obese people, and 3 million are dying every year from obesity-related diseases. Recently, incretin-based therapy was proposed for the treatment of obesity. Currently two different incretin therapies are widely used in the treatment of type 2 diabetes: 1) the GLP-1 receptor agonists which cause significant and sustained weight loss in overweight patients, and 2) dipeptidyl peptidase 4 (DPP-4) inhibitors being weight neutral. These findings have led to a greater interest in the physiology of intestinal peptides with potential weight-reducing properties. This review discusses the effects of the incretin-based therapies in obesity, and provides an overview of intestinal peptides with promising effects as potential new treatments for obesity.
Collapse
Affiliation(s)
- Jonatan I Bagger
- Diabetes Research Division, Department of Internal Medicine F, Gentofte Hospital, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
36
|
Sam AH, Troke RC, Tan TM, Bewick GA. The role of the gut/brain axis in modulating food intake. Neuropharmacology 2011; 63:46-56. [PMID: 22037149 DOI: 10.1016/j.neuropharm.2011.10.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/28/2011] [Accepted: 10/13/2011] [Indexed: 12/12/2022]
Abstract
Peptide hormones released from the gastrointestinal tract communicate information about the current state of energy balance to the brain. These hormones regulate appetite and energy expenditure via the vagus nerve or by acting on key brain regions implicated in energy homeostasis such as the hypothalamus and brainstem. This review gives an overview of the main gut hormones implicated in the regulation of food intake. Research in this area has provided novel targets for the pharmacological treatment of obesity. This article is part of a Special Issue entitled 'Central Control Food Intake'
Collapse
Affiliation(s)
- Amir H Sam
- Section of Investigative Medicine, Imperial College London, London W12 0NN, UK
| | | | | | | |
Collapse
|
37
|
Lacy BE, Carter J, Weiss JE, Crowell MD. The effects of intraduodenal nutrient infusion on serum CCK, LES pressure, and gastroesophageal reflux. Neurogastroenterol Motil 2011; 23:631-e256. [PMID: 21435103 DOI: 10.1111/j.1365-2982.2011.01701.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Fats cause reflux symptoms in many patients and cholecystokinin (CCK) may play a role. This study was designed to evaluate the effects of intraduodenal nutrient infusion on serum CCK levels, lower esophageal sphincter (LES) pressure, and gastroesophageal reflux (GER). METHODS Twenty-four asymptomatic volunteers were studied. A Dent sleeve catheter assessed LES function while an impedance-pH catheter measured reflux events. Participants were randomized to fat (F), carbohydrate (C) or protein (P) infusion. Serum CCK and LES pressures were measured at baseline and after nutrient infusion. KEY RESULTS Baseline LES pressures and CCK levels were similar in all three groups. A significant linear decrease was found in LES pressure during F, but not C or P, infusion (P=0.004). A significant interaction effect was noted between the infusion groups and CCK levels (P=0.002). A significant linear increase was noted in CCK levels during F but not during C or P infusion (P=0.02). A significant inverse correlation was found between CCK levels and LES pressure (ρ=-0.43; P=0.04). Esophageal acid exposure was significantly increased in the F infusion group (median; interquartile range: 1.10%; 0.25-4.7%) compared to both the C (0.03%; 0.00-0.39%) and P infusion (0.03%; 0.00-0.39%) groups (P=0.04). CONCLUSIONS & INFERENCES Intraduodenal F infusion was associated with an increase in CCK levels, while P and C were not. LES pressure decreased significantly after fat infusion and reflux events were more frequent. Fat-induced CCK release is another mechanism that contributes to GER.
Collapse
Affiliation(s)
- B E Lacy
- Section of Gastroenterology & Hepatology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA.
| | | | | | | |
Collapse
|
38
|
Abstract
Diabetic gastroparesis was once thought to be rare, associated with a poor prognosis, and to affect only patients with type 1 diabetes and irreversible autonomic neuropathy. A landmark study conducted by Horowitz et al. and published in JGH in 1986 paved the way for further studies to examine the pathophysiology, natural history and prognosis of diabetic gastroparesis, as well as its optimal management. This review summarizes the developments in knowledge gained over the last ∼25 years that have led to understanding about normal and disordered gastric emptying in diabetes, with a particular emphasis on the inter-relationship between the rate of gastric emptying and the regulation of blood glucose.
Collapse
Affiliation(s)
- Jessica Chang
- University of Adelaide Discipline of Medicine, Royal Adelaide Hospital, South Australia, Australia
| | | | | | | |
Collapse
|
39
|
Chang J, Rayner CK, Jones KL, Horowitz M. Diabetic gastroparesis and its impact on glycemia. Endocrinol Metab Clin North Am 2010; 39:745-62. [PMID: 21095542 DOI: 10.1016/j.ecl.2010.08.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetes is the most common cause of gastroparesis and it is now recognized that the relationship between gastric emptying and glycemia is complex and intertwined. Postprandial blood glucose levels influence, and are influenced by, the rate of gastric emptying, highlighting the difficulty in determining which is the cause and which is the effect. Novel diagnostic techniques and therapeutic strategies have been developed for the management of diabetic gastroparesis. This article highlights recent advances in knowledge about diabetic gastroparesis, with an emphasis on the inter-relationships between disordered gastric motor function on glycemia and vice versa, as well as therapeutic strategies for optimizing glycemic control using modulation of gastric emptying.
Collapse
Affiliation(s)
- Jessica Chang
- Discipline of Medicine, Royal Adelaide Hospital, University of Adelaide, South Australia 5000, Australia
| | | | | | | |
Collapse
|
40
|
Little TJ, Gopinath A, Patel E, McGlone A, Lassman DJ, D'Amato M, McLaughlin JT, Thompson DG. Gastric emptying of hexose sugars: role of osmolality, molecular structure and the CCK₁ receptor. Neurogastroenterol Motil 2010; 22:1183-90, e314. [PMID: 20584263 DOI: 10.1111/j.1365-2982.2010.01552.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND It is widely reported that hexose sugars slow gastric emptying (GE) via osmoreceptor stimulation but this remains uncertain. We evaluated the effects of a panel of hexoses of differing molecular structure, assessing the effects of osmolality, intra-individual reproducibility and the role of the CCK(1) receptor, in the regulation of GE by hexoses. METHODS Thirty one healthy non-obese male and female subjects were studied in a series of protocols, using a (13) C-acetate breath test to evaluate GE of varying concentrations of glucose, galactose, fructose and tagatose, with water, NaCl and lactulose as controls. GE was further evaluated following the administration of a CCK(1) receptor antagonist. Three subjects underwent repeated studies to evaluate intra-individual reproducibility. KEY RESULTS At 250 mOsmol, a hexose-specific effect was apparent: tagatose slowed GE more potently than water, glucose and fructose (P < 0.05). Fructose (P < 0.05) also slowed GE, but with substantial inter-, but not intra-, individual differences. As osmolality increased further the hexose-specific differences were lost. At 500 mOsmol, all hexoses slowed GE compared with water (P < 0.05), whereas lactulose and saline did not. The slowing of GE by hexose sugars appeared to be CCK(1) receptor-dependent. CONCLUSIONS & INFERENCES The effects of hexose sugars on GE appear related to their molecular structure rather than osmolality per se, and are, at least in part, CCK(1) receptor-dependent.
Collapse
Affiliation(s)
- T J Little
- Section of Gastrointestinal Sciences, Manchester Academic Health Sciences Centre, Salford Royal NHS Foundation Trust, The University of Manchester, Salford, UK.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Komarnytsky S, Cook A, Raskin I. Potato protease inhibitors inhibit food intake and increase circulating cholecystokinin levels by a trypsin-dependent mechanism. Int J Obes (Lond) 2010; 35:236-43. [PMID: 20820171 PMCID: PMC3033477 DOI: 10.1038/ijo.2010.192] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective To investigate the mechanisms underlying the satiety-promoting effects of a novel protease inhibitors concentrate derived from potato (PPIC). Methods Acute and prolonged effects of oral PPIC administration (100 mg/kg per day) on food intake, body weight, and gastric emptying were evaluated in healthy rats. Parameters of body weight, food intake, plasma glucose, insulin, and cholecystokinin (CCK) were measured. Duodenal proteolytic activity and CCK expression were determined in tissue extracts. Intestinal STC-1 cell culture model was used to investigate the direct effect of PPIC on CCK transcript level and secretion. Results Acute oral administration of PPIC reduced immediate food intake during the first two hours following the treatment, delayed gastric emptying, and decreased proteolytic activity in the duodenum. Repeated oral ingestion of PPIC reduced weight gain in male rats and significantly elevated the plasma CCK levels. Although duodenal mucosal CCK mRNA levels increased in response to PPIC administration, the concentrate failed to elevate CCK expression or release in STC-1 cells. The 14-day ascending dose range study (33 to 266 mg/kg PPIC per day) showed no adverse side effects associated with PPIC administration. Conclusion These findings provided evidence that PPIC is effective in reducing food intake and body weight gain in healthy rats when administered orally by increasing circulating CCK levels through a trypsin-dependent mechanism.
Collapse
Affiliation(s)
- S Komarnytsky
- Biotech Center, SEBS, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | | | | |
Collapse
|
42
|
Abstract
Food intake and energy expenditure are tightly regulated by the brain, in a homeostatic process that integrates diverse hormonal, neuronal and metabolic signals. The gastrointestinal tract is an important source of such signals, which include several hormones released by specialized enteroendocrine cells. These hormones exert powerful effects on appetite and energy expenditure. This Review addresses the physiological roles of peptide YY, pancreatic polypeptide, islet amyloid polypeptide, glucagon-like peptide 1, glucagon, oxyntomodulin, cholecystokinin and ghrelin and discusses their potential as targets for the development of novel treatments for obesity.
Collapse
Affiliation(s)
- Benjamin C T Field
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | | | | |
Collapse
|
43
|
van Boxel OS, ter Linde JJM, Siersema PD, Smout AJPM. Role of chemical stimulation of the duodenum in dyspeptic symptom generation. Am J Gastroenterol 2010; 105:803-11; quiz 802, 812. [PMID: 20234343 DOI: 10.1038/ajg.2010.100] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The response to chemical stimuli such as acid, nutrients, and capsaicin at the level of the duodenum is increasingly recognized as important in the etiology of dyspeptic symptoms. Increased duodenal acid exposure has been reported for patients with dyspeptic symptoms. Duodenal hypersensitivity to acid and the enhancing effect of duodenal acid on gastroduodenal mechanosensitivity may also contribute to dyspeptic symptom generation. Serotonergic signaling pathways may be involved in acid-induced dyspeptic symptoms. As for nutrients, lipid has been unequivocally shown to have a function in the pathogenesis of dyspeptic symptoms. Cholecystokinin (CCK) is an important mediator of the effects of duodenal lipid on gastroduodenal sensorimotor activities. It is unclear whether CCK hypersecretion or hypersensitivity to CCK is responsible for symptoms in dyspeptic patients. The presence of capsaicin in the duodenum evokes symptoms and affects gastric sensorimotor function. In patients with dyspepsia, capsaicin-induced symptoms appeared to occur earlier and to be more severe, however the effects of duodenal infusion and putative consequent gastric sensorimotor abnormalities have not been examined. Capsaicin activates transient receptor potential ion channel of the vanilloid type I, which can also be activated and sensitized by acid. The interaction between the different chemical stimuli is complex and has not yet been studied in patients with dyspeptic symptoms. In conclusion, the mechanisms underlying an enhanced response to duodenal chemical stimulation in patients with dyspeptic symptoms are partially understood. At the level of the duodenum, abnormalities may exist in stimulus intensity, mucosal mRNA expression, biosynthesis, release, or inactivation of mucosal mediators, or receptor expression on afferent nerve endings. Elucidation of the abnormalities involved will provide a basis for rational treatment of dyspeptic symptoms.
Collapse
Affiliation(s)
- O S van Boxel
- Department of Gastroenterology and Hepatology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
44
|
Copps J, Murphy RF, Lovas S. The production and role of gastrin-17 and gastrin-17-gly in gastrointestinal cancers. Protein Pept Lett 2010; 16:1504-18. [PMID: 20001914 DOI: 10.2174/092986609789839269] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The gastrointestinal peptide hormone gastrin is responsible for initiating the release of gastric acid in the stomach in response to the presence of food and/or humoral factors such as gastrin releasing peptide. However, it has a role in the growth and maintenance of the gastric epithelium, and has been implicated in the formation and growth of gastric cancers. Hypergastrinemia resulting from atrophic gastritis and pernicious anemia leads to hyperplasia and carcinoid formation in rats, and contributes to tumor formation in humans. Additionally, gastrin has been suspected to play a role in the formation and growth of cancers of the colon, but recent studies have instead implicated gastrin processing intermediates, such as gastrin-17-Gly, acting upon a putative, non-cholecystokinin receptor. This review summarizes the production and chemical structures of gastrin and of the processing intermediate gastrin-17-Gly, as well as their activities in the gastrointestinal tract, particularly the promotion of colon cancers.
Collapse
Affiliation(s)
- Jeffrey Copps
- Department of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | | | | |
Collapse
|
45
|
Deane A, Chapman MJ, Fraser RJL, Horowitz M. Bench-to-bedside review: the gut as an endocrine organ in the critically ill. Crit Care 2010; 14:228. [PMID: 20887636 PMCID: PMC3219235 DOI: 10.1186/cc9039] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In health, hormones secreted from the gastrointestinal tract have an important role in regulating gastrointestinal motility, glucose metabolism and immune function. Recent studies in the critically ill have established that the secretion of a number of these hormones is abnormal, which probably contributes to disordered gastrointestinal and metabolic function. Furthermore, manipulation of endogenous secretion, physiological replacement and supra-physiological treatment (pharmacological dosing) of these hormones are likely to be novel therapeutic targets in this group. Fasting ghrelin concentrations are reduced in the early phase of critical illness, and exogenous ghrelin is a potential therapy that could be used to accelerate gastric emptying and/or stimulate appetite. Motilin agonists, such as erythromycin, are effective gastrokinetic drugs in the critically ill. Cholecystokinin and peptide YY concentrations are elevated in both the fasting and postprandial states, and are likely to contribute to slow gastric emptying. Accordingly, there is a rationale for the therapeutic use of their antagonists. So-called incretin therapies (glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide) warrant evaluation in the management of hyperglycaemia in the critically ill. Exogenous glucagon-like peptide-2 (or its analogues) may be a potential therapy because of its intestinotropic properties.
Collapse
Affiliation(s)
- Adam Deane
- Royal Adelaide Hospital, Department of Intensive Care, North Terrace, Adelaide 5000, South Australia
- University of Adelaide, Discipline of Acute Care Medicine, North Terrace, Adelaide 5000, South Australia
- NationalHealth and Medical Research Council Centre for Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, Level 6, Eleanor Harrald Building, Frome St, Adelaide 5000, South Australia
| | - Marianne J Chapman
- Royal Adelaide Hospital, Department of Intensive Care, North Terrace, Adelaide 5000, South Australia
- University of Adelaide, Discipline of Acute Care Medicine, North Terrace, Adelaide 5000, South Australia
- NationalHealth and Medical Research Council Centre for Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, Level 6, Eleanor Harrald Building, Frome St, Adelaide 5000, South Australia
| | - Robert JL Fraser
- NationalHealth and Medical Research Council Centre for Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, Level 6, Eleanor Harrald Building, Frome St, Adelaide 5000, South Australia
- Investigation and Procedures Unit, Repatriation General Hospital, Daws Road, Daw Park 5041, South Australia
- University of Adelaide, Discipline of Medicine, North Terrace, Adelaide 5000, Australia
| | - Michael Horowitz
- NationalHealth and Medical Research Council Centre for Clinical Research Excellence in Nutritional Physiology, Interventions and Outcomes, Level 6, Eleanor Harrald Building, Frome St, Adelaide 5000, South Australia
- University of Adelaide, Discipline of Medicine, North Terrace, Adelaide 5000, Australia
| |
Collapse
|
46
|
Abstract
Studies on the control of pancreatic secretion in humans of all ages have been a difficult task over the years because of patients' availability and ethic committee rules. Nevertheless, studies were performed and the objectives of this review are to summarize our knowledge on the development of secretory process in newborns, on the different phases of the pancreatic responses to a meal, on the pancreatic responses to the different components of the diet, on the mechanisms involved in the control of the pancreatic responses, and finally on the receptors involved in these controls.
Collapse
|
47
|
Cawston EE, Miller LJ. Therapeutic potential for novel drugs targeting the type 1 cholecystokinin receptor. Br J Pharmacol 2009; 159:1009-21. [PMID: 19922535 DOI: 10.1111/j.1476-5381.2009.00489.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cholecystokinin (CCK) is a physiologically important gastrointestinal and neuronal peptide hormone, with roles in stimulating gallbladder contraction, pancreatic secretion, gastrointestinal motility and satiety. CCK exerts its effects via interactions with two structurally related class I guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs), the CCK(1) receptor and the CCK(2) receptor. Here, we focus on the CCK(1) receptor, with particular relevance to the broad spectrum of signalling initiated by activation with the natural full agonist peptide ligand, CCK. Distinct ligand-binding pockets have been defined for the natural peptide ligand and for some non-peptidyl small molecule ligands. While many CCK(1) receptor ligands have been developed and have had their pharmacology well described, their clinical potential has not yet been fully explored. The case is built for the potential importance of developing more selective partial agonists and allosteric modulators of this receptor that could have important roles in the treatment of common clinical syndromes.
Collapse
Affiliation(s)
- Erin E Cawston
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ, USA
| | | |
Collapse
|
48
|
Khoo J, Rayner CK, Jones KL, Horowitz M. Pathophysiology and management of gastroparesis. Expert Rev Gastroenterol Hepatol 2009; 3:167-81. [PMID: 19351287 DOI: 10.1586/egh.09.10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gastroparesis is characterized by upper gastrointestinal symptoms associated with delayed gastric emptying, without mechanical obstruction. However, symptoms do not correlate well with the magnitude of delay in gastric emptying. Diabetes mellitus and surgery are the most common causes, although more than 30% of cases are idiopathic. Coordination of insulin action with nutrient delivery is important in diabetics, as postprandial blood glucose levels and gastric emptying are interdependent, and gastroparesis probably represents a major cause of poor glycemic control. Scintigraphy is the gold standard for measuring gastric emptying. Current treatment mainly involves the use of prokinetic drugs. Pyloric botulinum toxin injection and gastric electrical stimulation require more evidence from controlled studies before their use can be recommended. Surgical options remain inadequately studied.
Collapse
Affiliation(s)
- Joan Khoo
- Discipline of Medicine, University of Adelaide, Royal Adelaide Hospital, South Australia, Australia
| | | | | | | |
Collapse
|
49
|
Enç FY, Ones T, Akin HL, Dede F, Turoğlu HT, Ulfer G, Bekiroğlu N, Haklar G, Rehfeld JF, Holst JJ, Ulusoy NB, Imeryüz N. Orlistat accelerates gastric emptying and attenuates GIP release in healthy subjects. Am J Physiol Gastrointest Liver Physiol 2009; 296:G482-9. [PMID: 19109408 DOI: 10.1152/ajpgi.90209.2008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Orlistat, an inhibitor of digestive lipases, is widely used for the treatment of obesity. Previous reports on the effect of orally ingested orlistat together with a meal on gastric emptying and secretion of gut peptides that modulate postprandial responses are controversial. We investigated the effect of ingested orlistat on gastric emptying and plasma responses of gut peptides in response to a solid mixed meal with a moderate energy load. In healthy subjects, gastric emptying was determined using scintigraphy and studies were performed without and with 120 mg of orlistat in pellet form in random order. Orlistat shortened t lag and t half and decreased the area under the gastric emptying curve. Orlistat significantly attenuated the secretion of glucose-dependent insulinotropic polypeptide (GIP) but did not alter the plasma responses of cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), pancreatic polypeptide (PP), and insulin. There was no peptide YY (PYY) response. Area under the curve of gastric emptying was positively correlated with integrated secretion of GIP (r=0.786) in orlistat and was negatively correlated with integrated plasma response of GLP-1 (r=-0.75) in control experiments, implying that inhibition of fat absorption modifies determinants of gastric emptying of a meal. Orlistat administered similar to its use in obesity treatment accelerates gastric emptying of a solid mixed meal with a moderate energy load and profoundly attenuates release of GIP without appreciably altering plasma responses of CCK, GLP-1, and PP. Since GIP is being implemented in the development of obesity, its role in weight control attained by orlistat awaits further investigation.
Collapse
Affiliation(s)
- Feruze Yilmaz Enç
- Department of Gastroenterology, Marmara University School of Medicine, Boğaziçi University, Istanbul, Turkey
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
The effects on diet, anastomotic type, and loxiglumide on gastric emptying following gastrojejunostomy. Int J Surg 2009; 7:163-7. [DOI: 10.1016/j.ijsu.2009.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 12/25/2008] [Accepted: 01/27/2009] [Indexed: 12/31/2022]
|