1
|
Luo F, Zhang M, Zhang L, Zhou P. Nutritional and health effects of bovine colostrum in neonates. Nutr Rev 2024; 82:1631-1645. [PMID: 38052234 DOI: 10.1093/nutrit/nuad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
High concentrations of immunoglobulins, bioactive peptides, and growth factors are found in bovine colostrum (BC), the milk produced by cows in the first few days after parturition. Various biological functions make it increasingly used to provide nutritional support and immune protection to the offspring of many species, including humans. These biological functions include cell growth stimulation, anti-infection, and immunomodulation. The primary components and biological functions of colostrum were reviewed in the literature, and the authors also looked at its latent effects on the growth and development of neonates as well as on conditions such as infections, necrotizing enterocolitis, short bowel syndrome, and feeding intolerance. The importance of BC in neonatal nutrition, immune support, growth and development, and gut health has been demonstrated in a number of experimental and animal studies. BC has also been shown to be safe at low doses without adverse effects in newborns. BC supplementation has been shown to be efficient in preventing several disorders, including rotavirus diarrhea, necrotizing enterocolitis, and sepsis in animal models of prematurity and some newborn studies. Therefore, BC supplementation should be considered in cases where maternal milk is insufficient or donor milk is unavailable. The optimal age, timing, dosage, and form of BC administration still require further investigation.
Collapse
Affiliation(s)
- Fangmei Luo
- Department of Neonatology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Min Zhang
- Department of Neonatology, Jinan University-Affiliated Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| | - Lian Zhang
- Department of Neonatology, Jinan University-Affiliated Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| | - Ping Zhou
- Department of Neonatology, Jinan University-Affiliated Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| |
Collapse
|
2
|
Wang G, Yang Y, Zhang S, Lan H, Zheng X. The biological activity and signaling profile of EGF/EGFR were affected under heat stress conditions in IEC6 cells. Gen Comp Endocrinol 2022; 325:114050. [PMID: 35561788 DOI: 10.1016/j.ygcen.2022.114050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/23/2022] [Accepted: 04/29/2022] [Indexed: 02/03/2023]
Abstract
Epidermal growth factor (EGF) is an effective cytoprotective peptide. It is the main nutritional factor involved in the development of the intestinal tract. It has many important biological effects on the intestinal mucosa. After binding to epidermal growth factor receptor (EGFR), it initiates a signal transduction cascade to jointly promote the migration, proliferation, and differentiation of various cell types. Heat stress severely affects the intestinal health of livestock and is becoming increasingly prevalent due to the yearly increase in ambient temperature and intestinal diseases. However, the effect of heat stress on the activity and signaling of EGF/EGFR in intestinal cells is still unclear. Therefore, rat intestinal crypt epithelial cell line (IEC6) was used as a model to explore this issue, and the results showed that EGF/EGFR is internalized into IEC6 cells in a time-dependent manner under physiological conditions. However, the activity of EGF/EGFR was altered under heat stress. Furthermore, we explored the effect of heat stress on EGF/EGFR-activated signaling transduction in IEC6 cells, and the results showed that levels of factors involved in EGFR-mediated intracellular signaling (such as EGFR, signal transducers and activators of transcription 3/protein kinase B, and extracellular regulatory kinase 1/2) were downregulated under heat stress. In summary, this study shows that heat stress could damage the biological activity and intracellular signaling of EGF/EGFR. These findings have scientific importance in the field of animal husbandry; and lay the foundation for the further study of the biological activities of EGF/EGFR in the intestine.
Collapse
Affiliation(s)
- Guoxia Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yu Yang
- Beijing Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences 100193, China
| | - Shuai Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
3
|
Huang H. Proteolytic Cleavage of Receptor Tyrosine Kinases. Biomolecules 2021; 11:biom11050660. [PMID: 33947097 PMCID: PMC8145142 DOI: 10.3390/biom11050660] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 01/18/2023] Open
Abstract
The receptor tyrosine kinases (RTKs) are a large family of cell-surface receptors, which are essential components of signal transduction pathways. There are more than fifty human RTKs that can be grouped into multiple RTK subfamilies. RTKs mediate cellular signaling transduction, and they play important roles in the regulation of numerous cellular processes. The dysregulation of RTK signaling is related to various human diseases, including cancers. The proteolytic cleavage phenomenon has frequently been found among multiple receptor tyrosine kinases. More and more information about proteolytic cleavage in RTKs has been discovered, providing rich insight. In this review, we summarize research about different aspects of RTK cleavage, including its relation to cancer, to better elucidate this phenomenon. This review also presents proteolytic cleavage in various members of the RTKs.
Collapse
Affiliation(s)
- Hao Huang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; or
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Playford RJ, Weiser MJ. Bovine Colostrum: Its Constituents and Uses. Nutrients 2021; 13:265. [PMID: 33477653 PMCID: PMC7831509 DOI: 10.3390/nu13010265] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
Colostrum is the milk produced during the first few days after birth and contains high levels of immunoglobulins, antimicrobial peptides, and growth factors. Colostrum is important for supporting the growth, development, and immunologic defence of neonates. Colostrum is naturally packaged in a combination that helps prevent its destruction and maintain bioactivity until it reaches more distal gut regions and enables synergistic responses between protective and reparative agents present within it. Bovine colostrum been used for hundreds of years as a traditional or complementary therapy for a wide variety of ailments and in veterinary practice. Partly due to concerns about the side effects of standard Western medicines, there is interest in the use of natural-based products of which colostrum is a prime example. Numerous preclinical and clinical studies have demonstrated therapeutic benefits of bovine colostrum for a wide range of indications, including maintenance of wellbeing, treatment of medical conditions and for animal husbandry. Articles within this Special Issue of Nutrients cover the effects and use bovine colostrum and in this introductory article, we describe the main constituents, quality control and an overview of the use of bovine colostrum in health and disease.
Collapse
Affiliation(s)
- Raymond John Playford
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK
- Department of R&D, PanTheryx Inc., Boulder, CO 80301, USA;
| | | |
Collapse
|
5
|
Romano R, Bucci C. Role of EGFR in the Nervous System. Cells 2020; 9:E1887. [PMID: 32806510 PMCID: PMC7464966 DOI: 10.3390/cells9081887] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is the first discovered member of the receptor tyrosine kinase superfamily and plays a fundamental role during embryogenesis and in adult tissues, being involved in growth, differentiation, maintenance and repair of various tissues and organs. The role of EGFR in the regulation of tissue development and homeostasis has been thoroughly investigated and it has also been demonstrated that EGFR is a driver of tumorigenesis. In the nervous system, other growth factors, and thus other receptors, are important for growth, differentiation and repair of the tissue, namely neurotrophins and neurotrophins receptors. For this reason, for a long time, the role of EGFR in the nervous system has been underestimated and poorly investigated. However, EGFR is expressed both in the central and peripheral nervous systems and it has been demonstrated to have specific important neurotrophic functions, in particular in the central nervous system. This review discusses the role of EGFR in regulating differentiation and functions of neurons and neuroglia. Furthermore, its involvement in regeneration after injury and in the onset of neurodegenerative diseases is examined.
Collapse
Affiliation(s)
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy;
| |
Collapse
|
6
|
Kim E, Akhtar N, Li J, Hui Q, Dong B, Yang C, Kiarie EG. In ovo feeding of epidermal growth factor: embryonic expression of intestinal epidermal growth factor receptor and posthatch growth performance and intestinal development in broiler chickens. Poult Sci 2020; 99:5736-5743. [PMID: 33142491 PMCID: PMC7647735 DOI: 10.1016/j.psj.2020.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 11/28/2022] Open
Abstract
We investigated efficacy of in ovo application of epidermal growth factor (EGF) on intestinal expression of EGF receptor (EGFR) during embryogenesis (experiment 1) and posthatch growth performance and gastrointestinal development in broiler chickens (experiment 2). In experiment 1, 450 fertile Ross 708 eggs were allocated to 3 groups (150 eggs/group): 1) control, 2) 160 μg EGF/kg of egg, and 3) 640 μg of EGF/kg of egg. Eggs were candled for live embryos on day 16 and injected with the respective treatment solutions on day 17 and sampled for jejunal tissue from day 17 to hatch for EGFR analyses. There was no effect of EGF (P > 0.05) on EGFR expression on day 17 to 20; however, on day 21, EGF increased (P < 0.05) EGFR expression in EGF birds relative to control birds. In experiment 2, 600 fertile Ross 708 eggs were allocated to 5 treatments: 1) intact, no puncture or injection, 2) punched but not injected, 3) control, no EGF, 4) 80 μg of EGF/kg of egg, and 5) 160 μg of EGF/kg of egg. The eggs were incubated and candled for live embryos on D 19, treated, and subsequently transferred to the hatcher. Upon hatching, chicks were weighed, and 90 chicks per treatment placed in cages (15 birds/cage) and allowed free access to a standard antibiotic-free corn-soybean diet for 21 D. Feed intake and body weight were monitored on a weekly basis. Samples of birds were necropsied on D 0, 7, 14, and 21 for measurements of intestinal weight and jejunal histomorphology and excreta samples taken on D 3 to 5 and 17 to 19 for apparent retention of dry matter. There was no EGF effect (P > 0.05) on any posthatch response criteria. In conclusion, in ovo application of EGF increased EGFR expression but had no effect on posthatch growth performance, DM retention, and intestinal development. The lack of EGF effect on posthatch response was surprising but suggested in ovo application of EGF may not be a viable approach.
Collapse
Affiliation(s)
- Emily Kim
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Nadeem Akhtar
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Qianru Hui
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Bingqi Dong
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Elijah G Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
7
|
Immunohistochemical Studies of Age-Related Changes in Cell Proliferation and Angiogenesis during the Healing of Acetic Acid-Induced Gastric Ulcers in Rats. ScientificWorldJournal 2020; 2020:3506207. [PMID: 32549798 PMCID: PMC7281815 DOI: 10.1155/2020/3506207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/04/2020] [Indexed: 11/23/2022] Open
Abstract
Cell proliferation and angiogenesis are of utmost importance for healing to take place. The KI67 and EGFR proteins are markers of cell proliferation, while CD31 and factor VIII are markers of angiogenesis. To elucidate the mechanism responsible for delayed healing of the gastric injury in old age, we analyzed the expression of these markers in rats of different months during the healing of an acetic acid-induced gastric ulcer. Male Wistar rats (aged 3, 6, 12, and 18 months) divided into four groups, according to their ages, formed the experimental animals. Stomach tissue samples were collected on days 3, 7, 14, and 21 after induction for assessment of ulcer healing. The area of gastric mucosa healed was inversely proportional to age. The expression of markers of proliferation (KI67 and EGFR) and angiogenesis (factor VIII and CD31) decreased significantly (p < 0.05) in older rats when compared with younger ones (3 months > six months > 12 months > 18 months) on days 7, 14, and 21 after induction of gastric ulcer. This study revealed that the slower gastric ulcer healing rate in older rats might be due to reduced epithelial cell proliferation and angiogenic activities.
Collapse
|
8
|
Zhan S, Li J, Ge W. Multifaceted Roles of Asporin in Cancer: Current Understanding. Front Oncol 2019; 9:948. [PMID: 31608236 PMCID: PMC6771297 DOI: 10.3389/fonc.2019.00948] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
The small leucine-rich proteoglycan (SLRP) family consists of 18 members categorized into five distinct classes, the traditional classes I–III, and the non-canonical classes IV–V. Unlike the other class I SLRPs (decorin and biglycan), asporin contains a unique and conserved stretch of aspartate (D) residues in its N terminus, and germline polymorphisms in the D-repeat-length are associated with osteoarthritis and prostate cancer progression. Since the first discovery of asporin in 2001, previous studies have focused mainly on its roles in bone and joint diseases, including osteoarthritis, intervertebral disc degeneration and periodontal ligament mineralization. Recently, asporin gene expression was also reported to be dysregulated in tumor tissues of different types of cancer, and to act as oncogene in pancreatic, colorectal, gastric, and prostate cancers, and some types of breast cancer, though it is also reported to function as a tumor suppressor gene in triple-negative breast cancer. Furthermore, asporin is also positively or negatively correlated with tumor proliferation, migration, invasion, and patient prognosis through its regulation of different signaling pathways, including the TGF-β, EGFR, and CD44 pathways. In this review, we seek to elucidate the signaling pathways and functions regulated by asporin in different types of cancer and to highlight some important issues that require investigation in future research.
Collapse
Affiliation(s)
- Shaohua Zhan
- National Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.,National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Wei Ge
- National Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.,Affiliated Hospital of Hebei University, Baoding, China
| |
Collapse
|
9
|
DeStefanis RA, Kratz JD, Emmerich PB, Deming DA. Targeted Therapy in Metastatic Colorectal Cancer: Current Standards and Novel Agents in Review. CURRENT COLORECTAL CANCER REPORTS 2019; 15:61-69. [PMID: 31130830 PMCID: PMC6528813 DOI: 10.1007/s11888-019-00430-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Treatment options for patients with metastatic colorectal cancer continue to advance as the therapeutic implications of the molecular subtypes of this disease are becoming better understood. DNA sequencing and mismatch repair assessment are now standard of care analyses for patients with metastatic colorectal cancer Thi review describes important aspects of the biology of the clinically relevant molecular subtypes of colorectal cancer based on the current standard of care testing. In addition, the clinical treatment strategies available now and potentially in the future for these colorectal cancer subtypes are discussed. RECENT FINDINGS Currently for metastatic colorectal cancer, standard of care molecular testing is done for mutations in exons 2, 3, and 4 of KRAS and NRAS, and BRAF V600E. Testing for mismatch repair (MMR) deficiency/microsatellite instability (MSI) status is also done. These aberrations are well known to change the clinical prognosis and guide patients' treatment strategies. Additionally, three new subtypes have emerged: PIK3CAmut, HER2 amplified, and NTRK fusions. With the addition of these emerging subtypes, tumor heterogeneity further validates the need to examine mCRC as a heterogeneous disease. Here we present recent exciting data from translational research and clinical trials exhibiting possible distinct treatment strategies for these different subtypes. SUMMARY Altogether these data show promising treatment strategies for many of these well-known and emerging subtypes of mCRC. In addition, these also give better clinical prognostic and predictive information. We believe that as molecular testing expands PIK3CA mutation, HER2 amplification, and NTRK fusion molecular testing will be included in standard of care analyses. This incorporation of testing in clinical practice will generate further information regarding prognostic and therapeutic options for these and other CRC subtypes in the future.
Collapse
Affiliation(s)
- Rebecca A DeStefanis
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison
| | - Jeremy D Kratz
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison
| | - Philip B Emmerich
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison
| | - Dustin A Deming
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin-Madison
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison
| |
Collapse
|
10
|
Vass RA, Kemeny A, Dergez T, Ertl T, Reglodi D, Jungling A, Tamas A. Distribution of bioactive factors in human milk samples. Int Breastfeed J 2019; 14:9. [PMID: 30792750 PMCID: PMC6371541 DOI: 10.1186/s13006-019-0203-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/29/2019] [Indexed: 01/01/2023] Open
Abstract
Background Breast milk provides nutrition for infants and also contains a variety of bioactive factors that influence the development of the newborn. Human milk is a complex biological fluid that can be separated into different layers (water phase and lipid phase with its component water and lipid fractions). It can affect the developing human body along the whole length of the gastrointestinal tract, and through the circulation, its factors may reach every organ. Methods In the present study, we analyzed milk samples collected monthly for 6 months from 16 mothers from the 4th week postpartum between 2014 and 2016 in Baranya County, Hungary. The 96 samples provided us information about the fluctuation of certain bioactive factors during the first 6 months of lactation. We investigated with Luminex technology the concentrations of several cytokines (CD40, Flt-3L), chemokines (MCP-1, RANTES, GRO, MIP-1ß, MDC, eotaxin, fractalkine), and epidermal growth factor (EGF). Paired t-tests and one-way ANOVA followed by Bonferroni post-hoc tests were used to compare the data. Results We detected the presence of each bioactive factor in every layer of the milk samples during the first 6 months of breastfeeding in widespread concentration ranges. In the case of GRO, MIP-1ß, MDC, Flt-3L, fractalkine, and eotaxin, the concentrations were constant during the first 6 months of lactation. The water phase of human milk contained higher factor concentrations compared to both fractions of the lipid phase for most factors (except eotaxin and MIP-1ß). The concentrations of CD40, EGF, MCP-1, and RANTES in the first 3 months were significantly different compared to the values detected between 4th and 6th months. In the water phase, the level of MCP-1 was significantly decreased, while all of the other factors increased during the 4th through 6th months. We found significantly higher EGF, GRO, and RANTES levels in the water fraction compared to the lipid fraction of the lipid phase. Conclusions The novel findings of this investigation were the presence of Flt-3L and MDC in all layers of breast milk, and nearly all bioactive factors in the lipid phase. Due to their widespread physiological effects these factors may have an essential role in organogenesis.
Collapse
Affiliation(s)
- Reka A Vass
- 1Department of Anatomy, MTA-PTE PACAP Research Group, Centre for Neuroscience, Medical School, University of Pécs, Pécs, Hungary
| | - Agnes Kemeny
- 2Department of Pharmacology and Pharmacotherapy; Medical School, University of Pécs, Pécs, Hungary.,3Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, Pécs, Hungary
| | - Timea Dergez
- 4Institute of Bioanalysis, Medical School, University of Pécs, Pécs, Hungary
| | - Tibor Ertl
- 5Department of Obstetrics and Gynaecology, Medical School, University of Pécs, Pécs, Hungary
| | - Dora Reglodi
- 1Department of Anatomy, MTA-PTE PACAP Research Group, Centre for Neuroscience, Medical School, University of Pécs, Pécs, Hungary
| | - Adel Jungling
- 1Department of Anatomy, MTA-PTE PACAP Research Group, Centre for Neuroscience, Medical School, University of Pécs, Pécs, Hungary
| | - Andrea Tamas
- 1Department of Anatomy, MTA-PTE PACAP Research Group, Centre for Neuroscience, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
11
|
Pedersen A, Sørensen CE, Proctor GB, Carpenter GH. Salivary functions in mastication, taste and textural perception, swallowing and initial digestion. Oral Dis 2018; 24:1399-1416. [PMID: 29645367 DOI: 10.1111/odi.12867] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022]
Abstract
Saliva exerts multiple functions in relation to the initial digestive processes taking place in the upper parts of the gastrointestinal tract. Ingestion of food and beverages, in turn, is a strong stimulus for secretion of saliva with a differential composition depending on the neuronal stimulation pattern. This review paper provides insight into the mechanisms by which saliva acts in relation to taste, mastication, bolus formation, enzymatic digestion and swallowing. Also, the protective functions of saliva including maintenance of dental and mucosal integrity will be discussed as they indirectly influence the digestive process. The final part of this study focuses on the implications of xerostomia and salivary gland dysfunction on gastrointestinal functions.
Collapse
Affiliation(s)
- Aml Pedersen
- Section 1, Oral Medicine, Oral Pathology & Clinical Oral Physiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - C E Sørensen
- Section of Oral Biochemistry, Cariology & Endodontics, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - G B Proctor
- Mucosal & Salivary Biology Division, King's College London Dental Institute, Guy's & St Thomas' Hospitals, London, UK
| | - G H Carpenter
- Mucosal & Salivary Biology Division, King's College London Dental Institute, Guy's & St Thomas' Hospitals, London, UK
| |
Collapse
|
12
|
Crystal structure and mechanism of human carboxypeptidase O: Insights into its specific activity for acidic residues. Proc Natl Acad Sci U S A 2018; 115:E3932-E3939. [PMID: 29636417 DOI: 10.1073/pnas.1803685115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Human metallocarboxypeptidase O (hCPO) is a recently discovered digestive enzyme localized to the apical membrane of intestinal epithelial cells. Unlike pancreatic metallocarboxypeptidases, hCPO is glycosylated and produced as an active enzyme with distinctive substrate specificity toward C-terminal (C-t) acidic residues. Here we present the crystal structure of hCPO at 1.85-Å resolution, both alone and in complex with a carboxypeptidase inhibitor (NvCI) from the marine snail Nerita versicolor The structure provides detailed information regarding determinants of enzyme specificity, in particular Arg275, placed at the bottom of the substrate-binding pocket. This residue, located at "canonical" position 255, where it is Ile in human pancreatic carboxypeptidases A1 (hCPA1) and A2 (hCPA2) and Asp in B (hCPB), plays a dominant role in determining the preference of hCPO for acidic C-t residues. Site-directed mutagenesis to Asp and Ala changes the specificity to C-t basic and hydrophobic residues, respectively. The single-site mutants thus faithfully mimic the enzymatic properties of CPB and CPA, respectively. hCPO also shows a preference for Glu over Asp, probably as a consequence of a tighter fitting of the Glu side chain in its S1' substrate-binding pocket. This unique preference of hCPO, together with hCPA1, hCPA2, and hCPB, completes the array of C-t cleavages enabling the digestion of the dietary proteins within the intestine. Finally, in addition to activity toward small synthetic substrates and peptides, hCPO can also trim C-t extensions of proteins, such as epidermal growth factor, suggesting a role in the maturation and degradation of growth factors and bioactive peptides.
Collapse
|
13
|
García I, Vizoso F, Andicoechea A, Raigoso P, Vérez P, Alexandre E, García-Muñiz JL, Allende MT. Clinical Significance of Epidermal Growth Factor Receptor Content in Gastric Cancer. Int J Biol Markers 2018; 16:183-8. [PMID: 11605731 DOI: 10.1177/172460080101600305] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The objective of this work was to evaluate the epidermal growth factor receptor (EGFR) content in gastric cancer, its possible relationship with clinicopathological parameters of tumors and its prognostic significance. Membranous EGFR levels were examined by radioligand binding assays in 110 patients with gastric cancer. The mean follow-up period was 30.7 months. EGFR levels of tumors ranged widely, from 0.3 to 510 fmol/mg protein. EGFR levels were significantly higher (p<0.0005) in neoplastic tissue than in paired adjacent mucosa samples (median) (n= 84; 8.7 vs. 3.9 fmol/mg protein). Intratumoral EGFR levels were significantly correlated with tumor stage (p<0.05), and were higher in patients with stage III tumors (median) (7.6, 6.4, 12.3 and 7.5 fmol/mg protein for stages I, II, III and IV, respectively). In addition, the tumor/mucosa ratios of the EGFR content were significantly higher (p<0.05) in patients with stage III tumors (1, 1.8, 3.9, and 0.92, respectively). Although there was no significant relationship between EGFR levels of tumors and overall survival, the results suggest a role for EGFR in tumor progression of gastric cancer.
Collapse
Affiliation(s)
- I García
- Servicio de Cirugía General, Hospital Central de Asturias, Oviedo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Growth Factor Delivery Systems for Tissue Engineering and Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:245-269. [PMID: 30357627 DOI: 10.1007/978-981-13-0950-2_13] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Growth factors (GFs) are often a key component in tissue engineering and regenerative medicine approaches. In order to fully exploit the therapeutic potential of GFs, GF delivery vehicles have to meet a number of key design criteria such as providing localized delivery and mimicking the dynamic native GF expression levels and patterns. The use of biomaterials as delivery systems is the most successful strategy for controlled delivery and has been translated into different commercially available systems. However, the risk of side effects remains an issue, which is mainly attributed to insufficient control over the release profile. This book chapter reviews the current strategies, chemistries, materials and delivery vehicles employed to overcome the current limitations associated with GF therapies.
Collapse
|
16
|
Kim E, Leung H, Akhtar N, Li J, Barta JR, Wang Y, Yang C, Kiarie E. Growth performance and gastrointestinal responses of broiler chickens fed corn-soybean meal diet without or with exogenous epidermal growth factor upon challenge with Eimeria. Poult Sci 2017; 96:3676-3686. [PMID: 28938785 PMCID: PMC5850350 DOI: 10.3382/ps/pex192] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/13/2017] [Indexed: 01/23/2023] Open
Abstract
Epidermal growth factor (EGF), a protein known for its mitogenic and anti-apoptotic effects was fed to broiler chickens to evaluate growth performance, gastrointestinal measurements, and apparent retention (AR) of components upon challenge with Eimeria. A total of 216, d old male broiler chicks (Ross 708) were placed in cages (6 birds/cage) and allocated to treatments. The treatments were: 1) control (Lactotobacilli lactis fermentation supernatant without EGF), 2) 80 μg of EGF/kg BW/d, and 3) 160 μg of EGF/kg BW/d. A basal antibiotic-free corn-soybean diet containing TiO2 was used. Birds were offered fresh feed with respective treatments on daily basis and had free access to drinking water for 14 d. On d 5, birds (6 replicates per treatment) were challenged with 1 mL of E. acervulina and E. maxima mixture via oral gavage and the other 6 replicates were given sham. Growth performance was measured in pre- (d 0 to 5) and post- (d 6 to 14) challenge periods. Two birds per cage were necropsied on d 10 for intestinal lesion scores and tissue samples for histomorphology and expression of select intestinal genes. Excreta samples for AR of components and oocyst shedding were taken d 10 to 13 and all birds were necropsied on d 14 for gastrointestinal weight. The EGF linearly (P < 0.05) increased BWG before challenge. There was no EGF and Eimeria interaction (P > 0.05) on growth performance, AR of GE, and intestinal histomorphology; the main effects were such that Eimeria depressed (P < 0.01) BWG, FCR, AR of DM, crude fat, and GE, and villi height to crypt depth ratio. An interaction between EGF and Eimeria (P < 0.05) on indices of gut function was such that EGF improved expression of genes for nutrient transporters and tight junction proteins in Eimeria challenged birds whilst no effect in non-challenged control. In conclusion, Eimeria challenge reduced growth performance and impaired gut function; EGF showed beneficial effects on growth pre-challenge and improved indices of gut function upon Eimeria challenge.
Collapse
Affiliation(s)
- E. Kim
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1
| | - H. Leung
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1
| | - N. Akhtar
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1
| | - J. Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1
| | - J. R. Barta
- Department of Pathobiology, University of Guelph, Guelph, ON, N1G 2W1
| | - Y. Wang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - C. Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - E. Kiarie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1
| |
Collapse
|
17
|
Lim DW, Levesque CL, Vine DF, Muto M, Koepke JR, Nation PN, Wizzard PR, Li J, Bigam DL, Brubaker PL, Turner JM, Wales PW. Synergy of glucagon-like peptide-2 and epidermal growth factor coadministration on intestinal adaptation in neonatal piglets with short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2017; 312:G390-G404. [PMID: 28104586 DOI: 10.1152/ajpgi.00281.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 01/06/2017] [Accepted: 01/16/2017] [Indexed: 01/31/2023]
Abstract
Glucagon-like peptide-2 (GLP-2) and epidermal growth factor (EGF) treatment enhance intestinal adaptation. To determine whether these growth factors exert synergistic effects on intestinal growth and function, GLP-2 and EGF-containing media (EGF-cm) were administered, alone and in combination, in neonatal piglet models of short bowel syndrome (SBS). Neonatal Landrace-Large White piglets were block randomized to 75% midintestinal [jejunoileal (JI) group] or distal intestinal [jejunocolic (JC) group] resection or sham control, with 7-day infusion of saline (control), intravenous human GLP-2 (11 nmol·kg-1·day-1) alone, enteral EGF-cm (80 μg·kg-1·day-1) alone, or GLP-2 and EGF-cm in combination. Adaptation was assessed by intestinal length, histopathology, Üssing chamber analysis, and real-time quantitative PCR of intestinal growth factors. Combined EGF-cm and GLP-2 treatment increased intestinal length in all three surgical models (P < 0.01). EGF-cm alone selectively increased bowel weight per length and jejunal villus height in the JI group only. The JC group demonstrated increased intestinal weight and villus height (P < 0.01) when given either GLP-2 alone or in combination with EGF-cm, with no effect of EGF-cm alone. Jejunal permeability of mannitol and polyethylene glycol decreased with combination therapy in both SBS groups (P < 0.05). No difference was observed in fat absorption or body weight gain. IGF-1 mRNA was differentially expressed in JI vs. JC piglets with treatment. Combined treatment with GLP-2 and EGF-cm induced intestinal lengthening and decreased permeability, in addition to the trophic effects of GLP-2 alone. Our findings demonstrate the benefits of novel combination GLP-2 and EGF treatment for neonatal SBS, especially in the JC model representing most human infants with SBS.NEW & NOTEWORTHY Glucagon-like peptide-2 (GLP-2) and epidermal growth factor (EGF) are intestinotrophic, with demonstrated benefit in both animal models and human studies of short bowel syndrome (SBS). The current research shows that over and above known trophic effects, the combination of GLP-2 and EGF synergistically lengthens the bowel in neonatal piglet models of SBS. Most notable benefit occurred with resection of the terminal ileum, the common clinical anatomy seen in neonatal SBS and associated with least de novo lengthening postsurgery.
Collapse
Affiliation(s)
- David W Lim
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Crystal L Levesque
- Department of Animal Science, South Dakota State University, Brookings, South Dakota
| | - Donna F Vine
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Mitsuru Muto
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Jacob R Koepke
- Department of Animal Science, South Dakota State University, Brookings, South Dakota
| | - Patrick N Nation
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Pamela R Wizzard
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Julang Li
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - David L Bigam
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Patricia L Brubaker
- Departments of Physiology and Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Justine M Turner
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada; .,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Paul W Wales
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Department of Surgery and Group for the Improvement of Intestinal Function and Treatment, Hospital for Sick Children, Toronto, Ontario, Canada; and
| |
Collapse
|
18
|
Shi XQ, Xue WH, Zhao SF, Zhang XJ, Sun W. Dynamic tracing for epidermal growth factor receptor mutations in urinary circulating DNA in gastric cancer patients. Tumour Biol 2017; 39:1010428317691681. [PMID: 28222666 DOI: 10.1177/1010428317691681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The mutations of epidermal growth factor receptor are detected in gastric cancer, indicating its suitability as a target for receptor tyrosine kinase inhibitors, as well as a marker for clinical outcome of chemotherapeutic treatments. However, extraction of quality tumor tissue for molecular processes remains challenging. Here, we aimed to examine the clinical relevance of urinary cell-free DNA as an alternative tumor material source used specifically for monitoring epidermal growth factor receptor mutations. Therefore, 120 gastric cancer patients with epidermal growth factor receptor mutations and 100 healthy controls were recruited for the study. The gastric patients also received epidermal growth factor receptor inhibitor treatment for a serial monitoring study. Paired primary tumor specimens were obtained with blood and urine samples, which were taken at a 1-month interval for a duration of 12 months. We found that urinary cell-free DNA yielded a close agreement of 92% on epidermal growth factor receptor mutation status when compared to primary tissue at baseline, and of 99% epidermal growth factor receptor mutation status when compared to plasma samples at different time points. Thus, our data suggest that urinary cell-free DNA may be a reliable source for screening and monitoring epidermal growth factor receptor mutations in the primary gastric cancer.
Collapse
Affiliation(s)
- Xiu-Qin Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wen-Hua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Song-Feng Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Jian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wukong Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Lim DW, Wales PW, Turner JM, Bigam DL, Brubaker PL. On the horizon: trophic peptide growth factors as therapy for neonatal short bowel syndrome. Expert Opin Ther Targets 2016; 20:819-30. [DOI: 10.1517/14728222.2016.1146695] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- David W. Lim
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Paul W. Wales
- Department of Surgery, University of Toronto & Hospital for Sick Children, Toronto, ON, Canada
| | - Justine M. Turner
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - David L. Bigam
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Patricia L. Brubaker
- Departments of Physiology and Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Han J, Xu Y, Yang D, Yu N, Bai Z, Bian L. Effect of Polysaccharides from Acanthopanax senticosus on Intestinal Mucosal Barrier of Escherichia coli Lipopolysaccharide Challenged Mice. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:134-41. [PMID: 26732337 PMCID: PMC4698680 DOI: 10.5713/ajas.15.0534] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/02/2015] [Accepted: 08/16/2015] [Indexed: 12/26/2022]
Abstract
To investigate the role of polysaccharide from Acanthopanax senticosus (ASPS) in preventing lipopolysaccharide (LPS)-induced intestinal injury, 18 mice (at 5 wk of age) were assigned to three groups with 6 replicates of one mouse each. Mice were administrated by oral gavage with or without ASPS (300 mg/kg body weight) for 14 days and were injected with saline or LPS at 15 days. Intestinal samples were collected at 4 h post-challenge. The results showed that ASPS ameliorated LPS-induced deterioration of digestive ability of LPS-challenged mice, indicated by an increase in intestinal lactase activity (45%, p<0.05), and the intestinal morphology, as proved by improved villus height (20.84%, p<0.05) and villus height:crypt depth ratio (42%, p<0.05), and lower crypt depth in jejunum (15.55%, p<0.05), as well as enhanced intestinal tight junction proteins expression involving occludin-1 (71.43%, p<0.05). ASPS also prevented intestinal inflammation response, supported by decrease in intestinal inflammatory mediators including tumor necrosis factor α (22.28%, p<0.05) and heat shock protein (HSP70) (77.42%, p<0.05). In addition, intestinal mucus layers were also improved by ASPS, as indicated by the increase in number of goblet cells (24.89%, p<0.05) and intestinal trefoil peptide (17.75%, p<0.05). Finally, ASPS facilitated mRNA expression of epidermal growth factor (100%, p<0.05) and its receptor (200%, p<0.05) gene. These results indicate that ASPS can prevent intestinal mucosal barrier injury under inflammatory conditions, which may be associated with up-regulating gene mRNA expression of epidermal growth factor and its receptor.
Collapse
Affiliation(s)
- Jie Han
- College of Animal Husbandry and Veterinary, Liaoning Medical University, Jinzhou 121-001, China
| | - Yunhe Xu
- College of Animal Husbandry and Veterinary, Liaoning Medical University, Jinzhou 121-001, China
| | - Di Yang
- College of Animal Husbandry and Veterinary, Liaoning Medical University, Jinzhou 121-001, China
| | - Ning Yu
- Institute of Biotechnology Research, Liaoning Academy of Agricultural Sciences, Shenyang 1108-66, China
| | - Zishan Bai
- College of Animal Husbandry and Veterinary, Liaoning Medical University, Jinzhou 121-001, China
| | - Lianquan Bian
- College of Animal Husbandry and Veterinary, Liaoning Medical University, Jinzhou 121-001, China
| |
Collapse
|
21
|
Lee JB, Shin B, Lee SH, Lee BY, Kim TH, Kim MG, Yoo SD. Exposure assessment of epidermal growth factor to various tissues in mice after intravenous and subcutaneous administration. ACTA ACUST UNITED AC 2015; 67:1519-27. [PMID: 26255780 DOI: 10.1111/jphp.12464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 06/15/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVES This study was conducted to examine the tissue distribution of human recombinant epidermal growth factor (EGF) after multiple intravenous and subcutaneous injections in mice. METHODS Male BALB/c mice were divided into (1) EGF 1 mg/kg intravenous dose, (2) EGF 5 mg/kg intravenous dose, (3) drug-free intravenous control, (4) EGF 1 mg/kg subcutaneous dose, (5) EGF 5 mg/kg subcutaneous dose and (6) drug-free subcutaneous control groups. EGF and drug-free dosing solutions were injected by intravenous and subcutaneous injections once a day for 3 days. EGF concentrations in serum and tissues of kidney, liver, lung, small intestine and tongue were determined by ELISA. KEY FINDINGS As the intravenous and subcutaneous doses were increased from 1 to 5 mg/kg, serum Cmax and area under the concentration-time curve (AUC) values were increased dose-proportionally. In lung, tongue and small intestine, increases in AUC were dose-proportional after intravenous injections, but greater than dose-proportional after subcutaneous injections. The fold-increases in Cmax and AUC values were lowest in liver and highest in kidney. CONCLUSION Based on Cmax and AUC data, the systemic exposure achieved by subcutaneous injections was comparable with that achieved by intravenous injections.
Collapse
Affiliation(s)
- Jong Bong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Beomsoo Shin
- College of Pharmacy, Catholic University of Daegu, Gyeongbuk, South Korea
| | - Sang Ho Lee
- Pharmaceutical Research Institute, Daewoong Pharmaceutical Corporation, Yongin, South Korea
| | - Bong Yong Lee
- Pharmaceutical Research Institute, Daewoong Pharmaceutical Corporation, Yongin, South Korea
| | - Tae Hwan Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Min Gi Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sun Dong Yoo
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
22
|
Sangild PT, Ney DM, Sigalet DL, Vegge A, Burrin D. Animal models of gastrointestinal and liver diseases. Animal models of infant short bowel syndrome: translational relevance and challenges. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1147-68. [PMID: 25342047 PMCID: PMC4269678 DOI: 10.1152/ajpgi.00088.2014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intestinal failure (IF), due to short bowel syndrome (SBS), results from surgical resection of a major portion of the intestine, leading to reduced nutrient absorption and need for parenteral nutrition (PN). The incidence is highest in infants and relates to preterm birth, necrotizing enterocolitis, atresia, gastroschisis, volvulus, and aganglionosis. Patient outcomes have improved, but there is a need to develop new therapies for SBS and to understand intestinal adaptation after different diseases, resection types, and nutritional and pharmacological interventions. Animal studies are needed to carefully evaluate the cellular mechanisms, safety, and translational relevance of new procedures. Distal intestinal resection, without a functioning colon, results in the most severe complications and adaptation may depend on the age at resection (preterm, term, young, adult). Clinically relevant therapies have recently been suggested from studies in preterm and term PN-dependent SBS piglets, with or without a functional colon. Studies in rats and mice have specifically addressed the fundamental physiological processes underlying adaptation at the cellular level, such as regulation of mucosal proliferation, apoptosis, transport, and digestive enzyme expression, and easily allow exogenous or genetic manipulation of growth factors and their receptors (e.g., glucagon-like peptide 2, growth hormone, insulin-like growth factor 1, epidermal growth factor, keratinocyte growth factor). The greater size of rats, and especially young pigs, is an advantage for testing surgical procedures and nutritional interventions (e.g., PN, milk diets, long-/short-chain lipids, pre- and probiotics). Conversely, newborn pigs (preterm or term) and weanling rats provide better insights into the developmental aspects of treatment for SBS in infants owing to their immature intestines. The review shows that a balance among practical, economical, experimental, and ethical constraints will determine the choice of SBS model for each clinical or basic research question.
Collapse
Affiliation(s)
- Per T. Sangild
- 1Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark; ,2Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark;
| | - Denise M. Ney
- 3Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin;
| | | | - Andreas Vegge
- 1Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark; ,5Diabetes Pharmacology, Novo Nordisk, Måløv, Denmark; and
| | - Douglas Burrin
- 6USDA-ARS Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
23
|
Wang S, Zhou L, Chen H, Cao Y, Zhang Z, Yang J, Huang Y, Guo C. Analysis of the biological activities of Saccharomyces cerevisiae expressing intracellular EGF, extracellular EGF, and tagged EGF in early-weaned rats. Appl Microbiol Biotechnol 2014; 99:2179-89. [DOI: 10.1007/s00253-014-6044-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/15/2014] [Accepted: 08/21/2014] [Indexed: 01/29/2023]
|
24
|
Sato T, Amano H, Ito Y, Eshima K, Minamino T, Ae T, Katada C, Ohno T, Hosono K, Suzuki T, Shibuya M, Koizumi W, Majima M. Vascular endothelial growth factor receptor 1 signaling facilitates gastric ulcer healing and angiogenesis through the upregulation of epidermal growth factor expression on VEGFR1+CXCR4 + cells recruited from bone marrow. J Gastroenterol 2014; 49:455-69. [PMID: 23982810 DOI: 10.1007/s00535-013-0869-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 08/01/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Angiogenesis is essential for gastric ulcer healing. Recent results suggest that vascular endothelial growth factor receptor 1 (VEGFR1), which binds to VEGF, promotes angiogenesis. In the present study, we investigated the role of VEGFR1 signaling in gastric ulcer healing and angiogenesis. METHODS Gastric ulcers were induced by serosal application of 100 % acetic acid in wild-type (WT) and tyrosine kinase-deficient VEGFR1 mice (VEGFR1 TK(-/-)). Bone marrow transplantation into irradiated WT mice was carried out using bone marrow cells isolated from WT and VEGFR1 TK(-/-) mice. RESULTS Ulcer healing was delayed in VEGFR1 TK(-/-) mice compared to WT mice and this was accompanied by decreased angiogenesis, as evidenced by reduced mRNA levels of CD31 and decreased microvessel density. Recruitment of cells expressing VEGFR1 and C-X-C chemokine receptor type 4 (CXCR4) was suppressed and epidermal growth factor (EGF) expression in ulcer granulation tissue was attenuated. Treatment of WT mice with neutralizing antibodies against VEGF or CXCR4 also delayed ulcer healing. In WT mice transplanted with bone marrow cells from VEGFR1 TK(-/-) mice, ulcer healing and angiogenesis were suppressed, and this was associated with reduced recruitment of bone marrow cells to ulcer granulation tissue. VEGFR1 TK(-/-) bone marrow chimeras also exhibited downregulation of EGF expression on CXCR4(+)VEGFR1(+) cells recruited from the bone marrow into ulcer lesions. CONCLUSION VEGFR1-mediated signaling plays a critical role in gastric ulcer healing and angiogenesis through enhanced EGF expression on VEGFR1(+)CXCR4(+) cells recruited from the bone marrow into ulcer granulation tissue.
Collapse
Affiliation(s)
- Takehito Sato
- Department of Pharmacology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Coelho ED, Arrais JP, Matos S, Pereira C, Rosa N, Correia MJ, Barros M, Oliveira JL. Computational prediction of the human-microbial oral interactome. BMC SYSTEMS BIOLOGY 2014; 8:24. [PMID: 24576332 PMCID: PMC3975954 DOI: 10.1186/1752-0509-8-24] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 02/17/2014] [Indexed: 11/12/2022]
Abstract
BACKGROUND The oral cavity is a complex ecosystem where human chemical compounds coexist with a particular microbiota. However, shifts in the normal composition of this microbiota may result in the onset of oral ailments, such as periodontitis and dental caries. In addition, it is known that the microbial colonization of the oral cavity is mediated by protein-protein interactions (PPIs) between the host and microorganisms. Nevertheless, this kind of PPIs is still largely undisclosed. To elucidate these interactions, we have created a computational prediction method that allows us to obtain a first model of the Human-Microbial oral interactome. RESULTS We collected high-quality experimental PPIs from five major human databases. The obtained PPIs were used to create our positive dataset and, indirectly, our negative dataset. The positive and negative datasets were merged and used for training and validation of a naïve Bayes classifier. For the final prediction model, we used an ensemble methodology combining five distinct PPI prediction techniques, namely: literature mining, primary protein sequences, orthologous profiles, biological process similarity, and domain interactions. Performance evaluation of our method revealed an area under the ROC-curve (AUC) value greater than 0.926, supporting our primary hypothesis, as no single set of features reached an AUC greater than 0.877. After subjecting our dataset to the prediction model, the classified result was filtered for very high confidence PPIs (probability ≥ 1-10-7), leading to a set of 46,579 PPIs to be further explored. CONCLUSIONS We believe this dataset holds not only important pathways involved in the onset of infectious oral diseases, but also potential drug-targets and biomarkers. The dataset used for training and validation, the predictions obtained and the network final network are available at http://bioinformatics.ua.pt/software/oralint.
Collapse
Affiliation(s)
- Edgar D Coelho
- Department of Electronics, Telecommunications and Informatics (DETI), Institute of Electronics and Telematics Engineering of Aveiro (IEETA), University of Aveiro, Aveiro, Portugal
| | - Joel P Arrais
- Department of Informatics Engineering (DEI), University of Coimbra, Coimbra, Portugal
- Centre for Informatics and Systems of the University at Coimbra (CISUC), University of Coimbra, Coimbra, Portugal
| | - Sérgio Matos
- Department of Electronics, Telecommunications and Informatics (DETI), Institute of Electronics and Telematics Engineering of Aveiro (IEETA), University of Aveiro, Aveiro, Portugal
| | - Carlos Pereira
- Centre for Informatics and Systems of the University at Coimbra (CISUC), University of Coimbra, Coimbra, Portugal
- Department of Informatics Engineering and Systems, Polytechnic Institute of Coimbra, Engineering Institute of Coimbra (IPC-ISEC), Coimbra, Portugal
| | - Nuno Rosa
- Department of Health Sciences, Institute of Health Sciences, The Catholic University of Portugal, Viseu, Portugal
| | - Maria José Correia
- Department of Health Sciences, Institute of Health Sciences, The Catholic University of Portugal, Viseu, Portugal
| | - Marlene Barros
- Department of Health Sciences, Institute of Health Sciences, The Catholic University of Portugal, Viseu, Portugal
- Centre for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - José Luís Oliveira
- Department of Electronics, Telecommunications and Informatics (DETI), Institute of Electronics and Telematics Engineering of Aveiro (IEETA), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
26
|
Jiang L, Chen Y, Li Y, Lan T, Wu M, Wang Y, Qian H. Type II cGMP-dependent protein kinase inhibits ligand‑induced activation of EGFR in gastric cancer cells. Mol Med Rep 2014; 9:1405-9. [PMID: 24534906 DOI: 10.3892/mmr.2014.1942] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 01/30/2014] [Indexed: 11/05/2022] Open
Abstract
Our previous data demonstrated that type II cGMP‑dependent protein kinase (PKG II) inhibited epidermal growth factor (EGF)-induced MAPK/ERK/JNK‑mediated signal transduction through inhibiting the phosphorylation/activation of the epidermal growth factor receptor (EGFR). Since the EGFR also binds with several other ligands as well as EGF, the present study was designed to investigate whether PKG II inhibited transforming growth factor-α (TGF-α), betacellulin (BTC) and epiregulin (EPR) induced phosphorylation/activation of the EGFR and consequent MAPK/ERK‑mediated signaling. The human gastric cancer cell line AGS, was infected with adenoviral constructs encoding cDNA of PKG II (Ad-PKG II) to increase the expression of PKG II and was treated with 8-pCPT-cGMP to activate the kinase. Western blotting was applied to detect the phosphorylation of EGFR and MAPK/ERK. The results demonstrated that treatment with EGF (100 ng/ml, 5 min), TGF-α (100 ng/ml, 5 min), BTC (100 ng/ml, 5 min) and EPR (100 ng/ml, 5 min) increased the tyrosine (tyr) 1068 phosphorylation of the EGFR and the threonine (thr) 202/tyr 204 phosphorylation of MAPK/ERK. Infecting the cells with Ad-PKG II and stimulating the kinase with 8-pCPT-cGMP efficiently inhibited the phosphorylation of the EGFR and MAPK/ERK induced by EGF, TGF-α, BTC and EPR. The results indicated that PKG II also inhibits the activation of the EGFR caused by diverse ligands of the receptor.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Physiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yongchang Chen
- Department of Physiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yueying Li
- Department of Physiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Ting Lan
- Department of Physiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Min Wu
- Department of Physiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Ying Wang
- Department of Physiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Hai Qian
- Department of Physiology, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
27
|
Costello CM, Hongpeng J, Shaffiey S, Yu J, Jain NK, Hackam D, March JC. Synthetic small intestinal scaffolds for improved studies of intestinal differentiation. Biotechnol Bioeng 2014; 111:1222-32. [PMID: 24390638 DOI: 10.1002/bit.25180] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/11/2013] [Accepted: 12/23/2013] [Indexed: 12/11/2022]
Abstract
In vitro intestinal models can provide new insights into small intestinal function, including cellular growth and proliferation mechanisms, drug absorption capabilities, and host-microbial interactions. These models are typically formed with cells cultured on 2D scaffolds or transwell inserts, but it is widely understood that epithelial cells cultured in 3D environments exhibit different phenotypes that are more reflective of native tissue. Our focus was to develop a porous, synthetic 3D tissue scaffold with villous features that could support the culture of epithelial cell types to mimic the natural microenvironment of the small intestine. We demonstrated that our scaffold could support the co-culture of Caco-2 cells with a mucus-producing cell line, HT29-MTX, as well as small intestinal crypts from mice for extended periods. By recreating the surface topography with accurately sized intestinal villi, we enable cellular differentiation along the villous axis in a similar manner to native intestines. In addition, we show that the biochemical microenvironments of the intestine can be further simulated via a combination of apical and basolateral feeding of intestinal cell types cultured on the 3D models.
Collapse
Affiliation(s)
- Cait M Costello
- Biological and Environmental Engineering, Cornell University, Ithaca, New York
| | | | | | | | | | | | | |
Collapse
|
28
|
Rowland KJ, Choi PM, Warner BW. The role of growth factors in intestinal regeneration and repair in necrotizing enterocolitis. Semin Pediatr Surg 2013; 22:101-11. [PMID: 23611614 PMCID: PMC3635039 DOI: 10.1053/j.sempedsurg.2013.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Necrotizing enterocolitis (NEC) is a devastating intestinal disease resulting in major neonatal morbidity and mortality. The pathology is poorly understood, and the means of preventing and treating NEC are limited. Several endogenous growth factors have been identified as having important roles in intestinal growth as well as aiding intestinal repair from injury or inflammation. In this review, we will discuss several growth factors as mediators of intestinal regeneration and repair as well as potential therapeutic agents for NEC.
Collapse
Affiliation(s)
| | | | - Brad W. Warner
- Correspondence: Brad W. Warner, M.D. St. Louis Children's Hospital One Children's Place; Suite 5S40 St. Louis MO 63110 (314) 454-6022 - Phone (314) 454-2442 – Fax
| |
Collapse
|
29
|
Maya S, Kumar LG, Sarmento B, Sanoj Rejinold N, Menon D, Nair SV, Jayakumar R. Cetuximab conjugated O-carboxymethyl chitosan nanoparticles for targeting EGFR overexpressing cancer cells. Carbohydr Polym 2013; 93:661-9. [DOI: 10.1016/j.carbpol.2012.12.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 12/10/2012] [Accepted: 12/14/2012] [Indexed: 12/23/2022]
|
30
|
SHEN LI, LI XING, SHAN BAOEN, ZHANG LI, GONG YANJUN, DONG ZHIMING, WANG ZHIYU. Therapeutic effect of compound of White Peony Root Oral Liquids on radiation-induced esophageal toxicity via the expression of EGF and TGF-β1. Biomed Rep 2013; 1:308-314. [PMID: 24648940 PMCID: PMC3956250 DOI: 10.3892/br.2012.51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/11/2012] [Indexed: 11/06/2022] Open
Abstract
The predominant pathological processes of radiation-induced esophageal toxicity include inflammatory reactions in the early stage and the fibrotic process in the late stage. An increased expression of the epidermal growth factor (EGF) and transforming growth factor β1 (TGF-β1) is capable of reducing inflammatory reactions and TGF-β1 is considered responsible for the initiation, development and persistence of fibrosis. In the present study, we investigated in vivo the therapeutic effect of the compound of white peony root oral liquids (cWPROL) on reducing the toxicity via modulating the expression levels of EGF and TGF-β1. Adult male Wistar rats were treated and tissue sections were obtained. The tissue sections were stained using histological, Masson and immunohistochemical staining. The results revealed that cWPROL had a higher rate of repairing damaged structures compared with the control group. In addition, immunohistochemistry showed that although cWPROL and the mixture of lidocaine, dexamethasone and gentamycin (mLDG) induced levels of EGF and TGF-β1 expression, there were differences between the two types of intervention. These results are significant for understanding that the mechanism of therapeutic effect of cWPROL varied to some extent from that of mLDG.
Collapse
Affiliation(s)
- LI SHEN
- Department of Internal Medicine, The First Hospital of the Hebei Medical University, Shijiazhuang, Hebei 050031
| | - XING LI
- Department of Biotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011
| | - BAOEN SHAN
- Centre of Scientific Research, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011
| | - LI ZHANG
- Centre of Scientific Research, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011
| | - YANJUN GONG
- Centre of HMO Administrator of Shijiazhuang, The First Hospital of the Hebei Medical University, Shijiazhuang, Hebei 050031,
P.R. China
| | - ZHIMING DONG
- Centre of Scientific Research, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011
| | - ZHIYU WANG
- Department of Biotherapy, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011
| |
Collapse
|
31
|
Sakamoto N, Oue N, Sentani K, Anami K, Uraoka N, Naito Y, Oo HZ, Hinoi T, Ohdan H, Yanagihara K, Aoyagi K, Sasaki H, Yasui W. Liver-intestine cadherin induction by epidermal growth factor receptor is associated with intestinal differentiation of gastric cancer. Cancer Sci 2012; 103:1744-50. [PMID: 22676223 PMCID: PMC7659384 DOI: 10.1111/j.1349-7006.2012.02353.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 05/17/2012] [Accepted: 05/23/2012] [Indexed: 12/21/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies worldwide. The epidermal growth factor receptor (EGFR) molecule is very important in GC progression. To examine the correlation between EGFR and GC-related genes, we analyzed gene expression profiles of HT-29 cells treated with EGFR ligands and identified six genes upregulated by epidermal growth factor (EGF) and transforming growth factor (TGF)-α treatment. Among these, we focused on cadherin 17 (CDH17) encoding liver-intestine cadherin (LI-cadherin). Expression of LI-cadherin was induced by both EGF and TGF-α, as detected by quantitative RT-PCR and Western blot analysis. A luciferase assay showed that LI-cadherin promoter activity was enhanced by EGF or TGF-α in both HT-29 cells and MKN-74 GC cells. Immunohistochemical analysis of 152 GC cases showed that out of 58 LI-cadherin-positive cases, 24 (41%) cases were also positive for EGFR, whereas out of 94 LI-cadherin-negative cases, only 9 (10%) cases were positive for EGFR (P < 0.0001). Double-immunofluorescence staining revealed that EGFR and LI-cadherin were coexpressed. Significant correlation was found between LI-cadherin expression and advanced T grade and N grade. Both EGFR and LI-cadherin expression were more frequently found in GC cases with an intestinal mucin phenotype than in cases with a gastric mucin phenotype. These results indicate that, in addition to the known intestinal transcription factor caudal type homeobox 2, EGFR activation induces LI-cadherin expression and participates in intestinal differentiation of GC.
Collapse
Affiliation(s)
- Naoya Sakamoto
- Department of Molecular Pathology, Hiroshima University Graduate School of Biomedical Sciences, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Son KH, Kwak JJ, Park JO. A case of cytomegalovirus-negative Ménétrier's disease with eosinophilia in a child. KOREAN JOURNAL OF PEDIATRICS 2012; 55:293-6. [PMID: 22977442 PMCID: PMC3433566 DOI: 10.3345/kjp.2012.55.8.293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 10/06/2011] [Accepted: 04/16/2012] [Indexed: 01/02/2023]
Abstract
Ménétrier's disease is a rare form of acquired gastropathy characterized by giant rugal folds in the stomach and protein-losing gastropathy. Children with Ménétrier's disease tend to follow a benign self-limited course with symptoms typically completely resolving within 2 to 10 weeks in contrast to the chronic course in adults. A 9-year-old girl presented with a history of gradually worsening abdominal distension, increasing body weight, and abdominal pain for 2 weeks. Physical examination on admission indicated periorbital swelling, pitting edema in both the legs, and abdominal distension with mild diffuse tenderness and shifting dullness. Laboratory tests on admission showed hypoalbuminemia, hypoproteinemia, and peripheral eosinophilia. The test result for anticytomegalovirus immunoglobulin M was negative. Increased fecal alpha 1 anti-trypsin excretion was observed. Radiological findings showed massive ascites and pleural effusion in both the lungs. On gastroscopy, large gastric folds, erythema, erosion, and exudation were noted in the body and fundus of the stomach. Microscopic findings showed infiltration of eosinophils and neutrophils in the gastric mucosa. Her symptoms improved with conservative treatment from day 7 of hospitalization and resolved completely.
Collapse
Affiliation(s)
- Keun Hyung Son
- Department of Pediatrics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | | | | |
Collapse
|
33
|
Mustafi R, Dougherty U, Shah H, Dehghan H, Gliksberg A, Wu J, Zhu H, Joseph L, Hart J, Dive C, Fichera A, Threadgill D, Bissonnette M. Both stromal cell and colonocyte epidermal growth factor receptors control HCT116 colon cancer cell growth in tumor xenografts. Carcinogenesis 2012; 33:1930-9. [PMID: 22791816 DOI: 10.1093/carcin/bgs231] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Colon cancer growth requires growth-promoting interactions between malignant colonocytes and stromal cells. Epidermal growth factor receptors (EGFR) are expressed on colonocytes and many stromal cells. Furthermore, EGFR is required for efficient tumorigenesis in experimental colon cancer models. To dissect the cell-specific role of EGFR, we manipulated receptor function on stromal cells and cancer cells. To assess the role of stromal EGFR, HCT116 human colon cancer cells were implanted into immunodeficient mice expressing dominant negative (DN) Egfr(Velvet/+) or Egfr(+/+). To assess the role of cancer cell EGFR, HCT116 transfectants expressing inducible DN-Egfr were implanted into immunodeficient mice. To dissect EGFR signals in vitro, we examined colon cancer cells in monoculture or in cocultures with fibroblasts for EGFR transactivation and prostaglandin synthase 2 (PTGS2) induction. EGFR signals were determined by blotting, immunostaining and real-time PCR. Tumor xenografts in Egfr(Velvet/+) mice were significantly smaller than tumors in Egfr(+/+) mice, with decreased proliferation (Ki67) and increased apoptosis (cleaved caspase-3) in cancer cells and decreased stromal blood vessels. Mouse stromal transforming growth factor alpha (TGFA), amphiregulin (AREG), PTGS2 and Il1b and interleukin-1 receptor 1 (Il1r1) transcripts and cancer cell beta catenin (CTNNB1) and cyclin D1 (CCND1) were significantly lower in tumors obtained from Egfr(Velvet/+) mice. DN-EGFR HCT116 transfectants also formed significantly smaller tumors with reduced mouse Areg, Ptgs2, Il1b and Il1r1 transcripts. Coculture increased Caco-2 phospho-active ERBB (pERBB2), whereas DN-EGFR in Caco-2 cells suppressed fibroblast PTGS2 and prostaglandin E2 (PGE2). In monoculture, interleukin 1 beta (IL1B) transactivated EGFR in HCT116 cells. Stromal cell and colonocyte EGFRs are required for robust EGFR signals and efficient tumor growth, which involve EGFR-interleukin-1 crosstalk.
Collapse
Affiliation(s)
- Reba Mustafi
- Department of Paterson Institute, Manchester, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
LIN BIYUN, XIAO CHUANXING, ZHAO WENXIU, XIAO LI, CHEN XU, LI PING, WANG XIAOMIN. Enoyl-coenzyme A hydratase short chain 1 silencing attenuates the proliferation of hepatocellular carcinoma by inhibiting epidermal growth factor signaling in vitro and in vivo. Mol Med Rep 2012; 12:1421-8. [DOI: 10.3892/mmr.2015.3453] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 02/17/2015] [Indexed: 11/06/2022] Open
|
35
|
Kopansky E, Shamay Y, David A. Peptide-directed HPMA copolymer-doxorubicin conjugates as targeted therapeutics for colorectal cancer. J Drug Target 2011; 19:933-43. [PMID: 22074249 DOI: 10.3109/1061186x.2011.632011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Synthetic oligopeptides have emerged as a promising class of targeting ligands, providing a variety of choices for the construction of conjugates for desired ligand functionality. To explore the potential of short peptides as ligands for targeted delivery of macromolecular therapeutics for colorectal cancer (CRC), fluorescently labelled HPMA copolymers--bearing either G3-C12 or GE11 for targeting galectin-3 and epidermal growth factor receptor (EGFR), respectively--were synthesised and the mechanisms of their internalisation and subcellular fate in CRC cells were studied. The targetability of the G3-C12 bearing copolymers towards galectin-3 was further compared to that of galactose-containing copolymers. The resulting G3-C12-bearing conjugate actively and selectively targets CRC tumour cells over-expressing galectin-3 and exhibits superior targetability to galectin-3 when compared to the galactose-bearing copolymer. GE11 copolymer conjugate binds specifically and efficiently to EGFR over-expressing cells, thus mediating internalisation to a significantly higher extent relative the copolymer conjugated to a scrambled sequence peptide. We further incorporated doxorubicin (DOX) into GE11 bearing copolymer via an acid-labile hydrazone bond. The GE11-DOX copolymer conjugate demonstrated higher cytotoxicity toward EGFR over-expressing cells relative to the control non-targeted DOX conjugate. Altogether, our results show a proof of principle for the selective delivery of DOX to the target CRC cells.
Collapse
Affiliation(s)
- Eva Kopansky
- Department of Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | |
Collapse
|
36
|
Oyagi A, Moriguchi S, Nitta A, Murata K, Oida Y, Tsuruma K, Shimazawa M, Fukunaga K, Hara H. Heparin-binding EGF-like growth factor is required for synaptic plasticity and memory formation. Brain Res 2011; 1419:97-104. [DOI: 10.1016/j.brainres.2011.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 08/15/2011] [Accepted: 09/01/2011] [Indexed: 10/17/2022]
|
37
|
Nautiyal J, Kanwar SS, Majumdar APN. EGFR(s) in aging and carcinogenesis of the gastrointestinal tract. Curr Protein Pept Sci 2011; 11:436-50. [PMID: 20491625 DOI: 10.2174/138920310791824110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 05/20/2010] [Indexed: 12/24/2022]
Abstract
Cells of the gastrointestinal (GI) mucosa are subject to a constant process of renewal which, in normal adults, reflects a balance between the rates of cell production and cell loss. Detailed knowledge of these events is, therefore, essential for a better understanding of the normal aging processes as well as many GI diseases, particularly malignancy, that represent disorders of tissue growth. In general, many GI dysfunctions, including malignancy, increase with advancing age, and aging itself is associated with alterations in structural and functional integrity of the GI tract. Although the regulatory mechanisms for age-related increase in the incidence of GI-cancers are yet to be fully delineated, recent evidence suggests a role for epidermal growth family receptors and its family members {referred to as EGFR(s)} in the development and progression of carcinogenesis during aging. The present communication discusses the involvement of EGFR(s) in regulating events of GI cancers during advancing age and summarizes the current available therapeutics targeting these receptors. The current review also describes the effectiveness of ErbB inhibitors as well as combination therapies. Additionally, the involvement of GI stem cells in the development of the age-related rise in GI cancers is emphasized.
Collapse
Affiliation(s)
- Jyoti Nautiyal
- Veterans Affairs Medical Center, Wayne State University, Detroit, MI 48201, USA
| | | | | |
Collapse
|
38
|
Myogenic lineage differentiated mesenchymal stem cells enhance recovery from dextran sulfate sodium-induced colitis in the rat. J Gastroenterol 2011; 46:143-52. [PMID: 20848145 DOI: 10.1007/s00535-010-0320-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 08/13/2010] [Indexed: 02/04/2023]
Abstract
BACKGROUND Although mounting evidence implicates mesenchymal stem cells (MSCs) in intestinal tissue repair, uncertainty remains concerning the distribution, function, and fate of repopulating MSCs in recipient colonic tissues. Therefore, we investigated the role of transplanted MSCs in the repair phase of DSS colitis. METHODS LacZ-labeled rat MSCs were transplanted into rats with colitis induced by 4% DSS on day 2. Regular water replaced the DSS solution on day 6. Therapeutic effect was evaluated on day 9 by clinicopathologic and growth factor/cytokine expression profiles. We analyzed the Notch signaling pathway by Western blotting and characterized immunofluorescence of lacZ-labeled MSCs with confocal laser microscopy. In vivo differentiation of MSC was confirmed by transmission electron microscopy (TEM). RESULTS Recovery of colitis was modestly but significantly promoted by MSC transplantation due to proceeding cell cycle and inhibiting apoptosis in the epithelia. Tgfa mRNA expression increased significantly, while Notch signaling was inhibited in the colonic tissues with MSC transplantation. β-Galactosidase-positive cells, which expressed α-SMA, desmin, and vimentin, were infrequently detected in the lamina propria stroma. DSS exposure in vitro proved to be the most potent inducer for α-SMA in MSCs where TEM demonstrated myogenic lineage differentiation. CONCLUSIONS We found that MSCs transplantation modestly promoted the repair of DSS colitis. The donor-derived MSCs were likely reprogrammed to differentiate to myogenic lineage cells by cues from the micro milieu. Further characterization of these cells is warranted as a basis for applying cell-based therapy for inflammatory bowel disease.
Collapse
|
39
|
Nautiyal J, Banerjee S, Kanwar SS, Yu Y, Patel BB, Sarkar FH, Majumdar APN. Curcumin enhances dasatinib-induced inhibition of growth and transformation of colon cancer cells. Int J Cancer 2011; 128:951-61. [PMID: 20473900 DOI: 10.1002/ijc.25410] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Colorectal cancer is the third most common form of malignancy, behind prostate and lung cancers. Despite recent advances in medicine, mortality from colorectal cancer remains high, highlighting the need for improved therapies. Numerous studies have demonstrated increased activation of EGFR and its family members (EGFRs), IGF-1R as well as c-Src in colorectal cancer. The current study was undertaken to examine the effectiveness of combination therapy of dasatinib (BMS-354825; Bristol-Myers Squibb), a highly specific inhibitor of Src family kinases (SFK) and a nontoxic dietary agent; curcumin (diferuloylmethane), in colorectal cancer in in vitro and in vivo experimental models. For the latter, we utilized C57BL/6 APC(Min+/-) mice. Initial in vitro studies revealed synergistic interactions between the two agents. Additionally, we have observed that combination treatment causes a much greater inhibition of the following metastatic processes than either agent alone: (i) colony formation, (ii) invasion through extracellular matrix and (iii) tubule formation by endothelial cells. Dasatinib affects the cell adhesion phenotype of colon cancer HCT-116 cells whereas the combination therapy enhances this effect to a greater extent. Preclinical investigation revealed that the combination therapy to be highly effective causing an over 95% regression of intestinal adenomas in Apc(Min+/-) mice, which could be attributed to decreased proliferation and increased apoptosis. In conclusion, our data suggest that combination treatment of dasatinib and curcumin could be a potential therapeutic strategy for colorectal cancer.
Collapse
|
40
|
Spence JR, Lauf R, Shroyer NF. Vertebrate intestinal endoderm development. Dev Dyn 2011; 240:501-20. [PMID: 21246663 DOI: 10.1002/dvdy.22540] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2010] [Indexed: 12/12/2022] Open
Abstract
The endoderm gives rise to the lining of the esophagus, stomach and intestines, as well as associated organs. To generate a functional intestine, a series of highly orchestrated developmental processes must occur. In this review, we attempt to cover major events during intestinal development from gastrulation to birth, including endoderm formation, gut tube growth and patterning, intestinal morphogenesis, epithelial reorganization, villus emergence, as well as proliferation and cytodifferentiation. Our discussion includes morphological and anatomical changes during intestinal development as well as molecular mechanisms regulating these processes.
Collapse
|
41
|
Dias A, Garcia C, Majewski M, Wallner G, McCallum RW, Poplawski C, Sarosiek J. Gastric juice prostaglandins and peptide growth factors as potential markers of chronic atrophic gastritis, intestinal metaplasia and gastric cancer: their potential clinical implications based on this pilot study. Dig Dis Sci 2011; 56:3220-5. [PMID: 21695403 PMCID: PMC3208809 DOI: 10.1007/s10620-011-1758-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 05/14/2011] [Indexed: 12/23/2022]
Abstract
BACKGROUND Gastric secretion can provide valuable information especially when Helicobacter pylori (Hp) infection results in chronic atrophic gastritis (CAG) and intestinal metaplasia (IM) preceding adenocarcinoma (AdCa). AIMS Looking for a potential biomarker of malignant transformation in the setting of chronic inflammation we studied the levels of prostaglandin E2 (PGE(2)), as well as peptide growth factors [epidermal growth factor (EGF) and transforming growth factor α (TGFα)], harbingers of injury and repair, in gastric juice aspirated at endoscopy from patients with CAG, CAG/IM, AdCa, and controls. METHODS The PGE(2), EGF and TGFα concentrations in the gastric juice were measured using radioimmunoassays (RIAs). RESULTS In patients with AdCa gastric juice PGE(2) increased fivefold versus controls (P < 0.01) and almost threefold versus patients with CAG (P < 0.05). The EGF levels in patients with AdCa were fourfold higher versus controls (P < 0.001) and almost threefold higher versus CAG (P < 0.05). In patients with CAG/IM the EGF levels were also almost 3 times higher versus controls. The TGFα levels in patients with AdCa were half the value of controls and CAG (P < 0.05). In patients with CAG/IM the levels were as low as 1/5 of controls or CAG (P < 0.05). CONCLUSIONS Testing the gastric juice for PGE(2), EGF, and TGFα in patients with endoscopy and biopsy proven CAG, may be helpful in follow up of patients who may potentially progress to IM and ultimately AdCa. This could be considered as an adjunct to histologic assessment especially that even the best surveillance biopsy specimen regimens are inherited with sampling errors.
Collapse
Affiliation(s)
- Ajoy Dias
- Department of Internal Medicine, TTUHSC Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 4800 Alberta Avenue, El Paso, TX 79905-2709 USA
| | - Cesar Garcia
- Department of Internal Medicine, TTUHSC Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 4800 Alberta Avenue, El Paso, TX 79905-2709 USA
| | | | | | - Richard W. McCallum
- Department of Internal Medicine, TTUHSC Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 4800 Alberta Avenue, El Paso, TX 79905-2709 USA
| | | | - Jerzy Sarosiek
- Department of Internal Medicine, TTUHSC Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 4800 Alberta Avenue, El Paso, TX 79905-2709 USA
| |
Collapse
|
42
|
Hsu D, Fukata M, Hernandez YG, Sotolongo JP, Goo T, Maki J, Hayes LA, Ungaro RC, Chen A, Breglio KJ, Xu R, Abreu MT. Toll-like receptor 4 differentially regulates epidermal growth factor-related growth factors in response to intestinal mucosal injury. J Transl Med 2010; 90:1295-305. [PMID: 20498653 PMCID: PMC10631458 DOI: 10.1038/labinvest.2010.100] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epiregulin (EPI) and amphiregulin (AR) are epidermal growth factor receptor (EGFR) ligands implicated in mucosal repair and tumorigenesis. We have shown that Toll-like receptor 4 (TLR4) induces intestinal epithelial cell (IEC) proliferation by activating EGFR through AR expression. We examined whether TLR4 differentially regulates expression of EGFR ligands in response to mucosal injury. The human IEC line SW480 was examined expression of EGFR ligands, EGFR phosphorylation, and proliferation in response to lipopolysaccharide (LPS). Small-interfering RNA (siRNA) was used to block TLR4. Neutralizing antibodies to EGFR ligands were used to examine inhibition of LPS-dependent EGFR activation. Acute colitis and recovery were examined in the mice given 2.5% dextran sodium sulfate (DSS). Colonic secretion of EPI and AR was analyzed by enzyme-linked immunosorbent assay. LPS selectively induces EPI and AR but not other EGFR ligands. LPS induced early EPI mRNA expression between 30 min and 24 h. The neutralizing antibodies to EPI and AR prevented activation of EGFR by LPS. LPS induces IEC proliferation (200%, P=0.01) in 24 h but blocking EPI and AR significantly decreased proliferation. In vivo, mucosal EPI and AR expression are significantly decreased in TLR4(-/-) mice (P=0.02) compared to wild-type mice during acute colitis. EPI and AR exhibit different kinetics in response to mucosal damage: EPI expression is upregulated acutely at day 7 of DSS, but falls during recovery at day 14. By contrast, a sustained upregulation of AR expression is seen during mucosal injury and repair. We show that TLR4 regulates EPI and AR expression and that both these EGFR ligands are necessary for optimal proliferation of IEC. The diverse kinetics of EPI and AR expression suggest that they function in distinct roles with respect to acute injury vs repair. Our results highlight the role of bacterial sensing for IEC homeostasis and may lead to targeted therapy for mucosal healing and prevention of tumorigenesis.
Collapse
Affiliation(s)
- David Hsu
- Division of Gastroenterology, Department of Medicine, Inflammatory Bowel Disease Center, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Heparin-binding epidermal growth factor expression in KATO-III cells after Helicobacter pylori stimulation under the influence of strychnos Nux vomica and Calendula officinalis. HOMEOPATHY 2010; 99:177-82. [DOI: 10.1016/j.homp.2010.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 03/31/2010] [Accepted: 05/17/2010] [Indexed: 11/20/2022]
|
44
|
Taqi E, Wallace LE, de Heuvel E, Chelikani PK, Zheng H, Berthoud HR, Holst JJ, Sigalet DL. The influence of nutrients, biliary-pancreatic secretions, and systemic trophic hormones on intestinal adaptation in a Roux-en-Y bypass model. J Pediatr Surg 2010; 45:987-95. [PMID: 20438940 DOI: 10.1016/j.jpedsurg.2010.02.036] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Accepted: 02/03/2010] [Indexed: 01/04/2023]
Abstract
PURPOSE The signals that govern the upregulation of nutrient absorption (adaptation) after intestinal resection are not well understood. A Gastric Roux-en-Y bypass (GRYB) model was used to isolate the relative contributions of direct mucosal stimulation by nutrients, biliary-pancreatic secretions, and systemic enteric hormones on intestinal adaptation in short bowel syndrome. METHODS Male rats (350-400 g; n = 8/group) underwent sham or GRYB with pair feeding and were observed for 14 days. Weight and serum hormonal levels (glucagon-like peptide-2 [GLP-2], PYY) were quantified. Adaptation was assessed by intestinal morphology and crypt cell kinetics in each intestinal limb of the bypass and the equivalent points in the sham intestine. Mucosal growth factors and expression of transporter proteins were measured in each limb of the model. RESULTS The GRYB animals lost weight compared to controls and exhibited significant adaptive changes with increased bowel width, villus height, crypt depth, and proliferation indices in the alimentary and common intestinal limbs. Although the biliary limb did not adapt at the mucosa, it did show an increased bowel width and crypt cell proliferation rate. The bypass animals had elevated levels of systemic PYY and GLP-2. At the mucosal level, insulin-like growth factor-1 (IGF-1) and basic fibroblast growth factor (bFGF) increased in all limbs of the bypass animals, whereas keratinocyte growth factor (KGF) and epidermal growth factor (EGF) had variable responses. The expression of the passive transporter of glucose, GLUT-2, expression was increased, whereas GLUT-5 was unchanged in all limbs of the bypass groups. Expression of the active mucosal transporter of glucose, SGLT-1 was decreased in the alimentary limb. CONCLUSIONS Adaptation occurred maximally in intestinal segments stimulated by nutrients. Partial adaptation in the biliary limb may reflect the effects of systemic hormones. Mucosal content of IGF-1, bFGF, and EGF appear to be stimulated by systemic hormones, potentially GLP-2, whereas KGF may be locally regulated. Further studies to examine the relationships between the factors controlling nutrient-induced adaptation are suggested. Direct contact with nutrients appears to be the most potent factor in inducing mucosal adaptation.
Collapse
Affiliation(s)
- Esmaeel Taqi
- Faculty of Medicine, Division of Pediatric General Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada AB T3B 6A8
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kang P, Toms D, Yin Y, Cheung Q, Gong J, De Lange K, Li J. Epidermal growth factor-expressing Lactococcus lactis enhances intestinal development of early-weaned pigs. J Nutr 2010; 140:806-11. [PMID: 20147464 DOI: 10.3945/jn.109.114173] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Stress and incomplete gastrointestinal development in early-weaned piglets represent significant challenges in commercial swine farming. Orally ingested recombinant epidermal growth factor (EGF) has been shown to remain biologically active in the gastrointestinal tract as well as stimulate intestinal development, reducing the incidence of pathogen infection and diarrhea. We have previously shown that the food-grade bacterium Lactococcus lactis can be genetically altered to express biologically active EGF when fed to early-weaned mice. In this study, we assigned 8 pigs to each of 4 groups that were given EGF-expressing L. lactis (EGF-LL), empty vector-expressing L. lactis (EV-LL), recombinant human EGF, or unsupplemented bacterial media, all of which were delivered as 50-mL i.g. doses twice per day. All pigs were killed after 14 d to examine intestinal morphology. Pigs in the EGF-LL group had greater jejunal and duodenal villus heights (P < 0.0001) and intestinal length (P = 0.049) than pigs in the control group. Immunohistochemistry with antibodies against proliferating cell nuclear antigen (PCNA) revealed that the proliferation of intestinal cells was significantly greater in the EGF-LL group than in the control group. PCNA expression and intestinal length also were greater in the EV-LL group, which received L. lactis that did not express EGF, than in the control group (P = 0.049), further supporting the use of naturally occurring intestinal microbes as desirable vectors for recombinant protein delivery. Our data demonstrates the feasibility of delivering a growth factor using common probiotic bacteria to farm animals for commercial practice.
Collapse
Affiliation(s)
- Ping Kang
- Department of Animal and Poultry Science, University of Guelph, Guelph, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
PURPOSE Epidermal growth factor receptor (EGFR) modulates balance between proliferation and apoptosis in gastric mucosa of the gastrointestinal tract. The aim of the study was to evaluate immunohistochemically the EGFR expression in epithelial and gland cells of antral mucosa in children infected with Helicobacter pylori (H. pylori). MATERIAL/METHODS The study included 44 children, aged from 5 to 18 years (mean age 13+/-3.4 years) with dyspeptic symptoms, of whom 30 (68.2%) children were infected with H. pylori, 14 (31.8%) children constituted controls. Endoscopic and histopathological assessment of antral mucosa samples was performed according to the Sydney System. Samples taken from gastroscopy were prepared to evaluate EGFR expression in epithelial and gland cells of antrum mucosa according to the manual of a detection kit of EnVision+System-HRP (DAKO). RESULTS In children H. pylori infected, the EGFR expression in epithelial cells of antral mucosa equaled on average 82.5+/-15 cells/mm2 and ranged from 45.0 to 98.0 cells/mm2 as well as differed statistically significantly when compared to controls (10.2+/-5.0 cells/mm2) (p<0.001). In children with H. pylori infection, the EGFR expression in gland cells of antral mucosa ranged from 2.0 to 85.0 cells/mm2 (mean 25.7+/-22.6 cells/mm2); was lower and differed statistically significantly from controls (54.2 +/- 29.6 cells/mm2) (p<0.001). In children H. pylori infected, there was a statistically significant difference (p<0.001) between the EGFR expression in epithelial and in gland cells of antral mucosa. CONCLUSION The increased EGFR expression in epithelial cells in comparison with gland cells of antral mucosa in children with H. pylori infection may suggest its role in regeneration processes of gastric mucosa.
Collapse
|
47
|
Kalischuk LD, Buret AG. A role for Campylobacter jejuni-induced enteritis in inflammatory bowel disease? Am J Physiol Gastrointest Liver Physiol 2010; 298:G1-9. [PMID: 19875702 DOI: 10.1152/ajpgi.00193.2009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The inflammatory bowel diseases (IBD), Crohn's disease and ulcerative colitis, are T cell-mediated diseases that are characterized by chronic, relapsing inflammation of the intestinal tract. The pathogenesis of IBD involves the complex interaction between the intestinal microflora, host genetic and immune factors, and environmental stimuli. Epidemiological analyses have implicated acute bacterial enteritis as one of the factors that may incite or exacerbate IBD in susceptible individuals. In this review, we examine how interactions between the common enteric pathogen Campylobacter jejuni (C. jejuni), the host intestinal epithelium, and resident intestinal microflora may contribute to the pathogenesis of IBD. Recent experimental evidence indicates that C. jejuni may permit the translocation of normal, noninvasive microflora via novel processes that implicate epithelial lipid rafts. This breach in intestinal barrier function may, in turn, prime the intestine for chronic inflammatory responses in susceptible individuals. Insights into the interactions between enteric pathogens, the host epithelia, and intestinal microflora will improve our understanding of disease processes that may initiate and/or exacerbate intestinal inflammation in patients with IBD and provide impetus for the development of new therapeutic approaches for the treatment of IBD.
Collapse
|
48
|
Zhao R, Macdonald K, Casson AG. Insulin-like growth factor type I receptor gene expression and obesity in esophageal adenocarcinoma. Mol Carcinog 2009; 48:982-8. [PMID: 19582762 DOI: 10.1002/mc.20562] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The objective of this exploratory study was to evaluate the role of the insulin-like growth factor I receptor (IGF-IR) in esophageal adenocarcinoma (EADC). Using quantitative PCR, we studied IGF-IR mRNA expression in 52 well-characterized surgically resected EADC and matched histologically normal esophageal tissues, and examined IGF-IR expression levels in relation to clinicopathologic characteristics, body mass index (BMI), and the common IGF-IR polymorphism (G1013A), recently proposed to modify risk of obesity for EADC. Expression levels of IGF-IR mRNA were not significantly different between EADC and matched histologically normal esophageal epithelia. Although no significant associations were found between IGF-IR expression and BMI, tumor differentiation, stage or survival, when stratified by genotype, patients with the polymorphic A variant had significantly higher IGF-IR expression in EADC tissues compared with matched normal epithelia. These findings suggest that G1013A most likely modulates IGF-IR function, possibly by influencing gene transcription or mRNA stability, and represents a plausible mechanistic link underlying the association between obesity and esophageal malignancy.
Collapse
Affiliation(s)
- Ronghua Zhao
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | |
Collapse
|
49
|
Oyagi A, Oida Y, Kakefuda K, Shimazawa M, Shioda N, Moriguchi S, Kitaichi K, Nanba D, Yamaguchi K, Furuta Y, Fukunaga K, Higashiyama S, Hara H. Generation and characterization of conditional heparin-binding EGF-like growth factor knockout mice. PLoS One 2009; 4:e7461. [PMID: 19829704 PMCID: PMC2759290 DOI: 10.1371/journal.pone.0007461] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 09/15/2009] [Indexed: 11/18/2022] Open
Abstract
Recently, neurotrophic factors and cytokines have been shown to be associated in psychiatric disorders, such as schizophrenia, bipolar disorder, and depression. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the EGF family, serves as a neurotrophic molecular and plays a significant role in the brain. We generated mice in which HB-EGF activity is disrupted specifically in the ventral forebrain. These knockout mice showed (a) behavioral abnormalities similar to those described in psychiatric disorders, which were ameliorated by typical or atypical antipsychotics, (b) altered dopamine and serotonin levels in the brain, (c) decreases in spine density in neurons of the prefrontal cortex, (d) reductions in the protein levels of the NR1 subunit of the N-methyl-D-aspartate (NMDA) receptor and post-synaptic protein-95 (PSD-95), (e) decreases in the EGF receptor, and in the calcium/calmodulin-dependent protein kinase II (CaMK II) signal cascade. These results suggest the alterations affecting HB-EGF signaling could comprise a contributing factor in psychiatric disorder.
Collapse
Affiliation(s)
- Atsushi Oyagi
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Yasuhisa Oida
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Kenichi Kakefuda
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | - Norifumi Shioda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shigeki Moriguchi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kiyoyuki Kitaichi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, Japan
| | - Daisuke Nanba
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | | | - Yasuhide Furuta
- Department of Biochemistry and Molecular Biology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shigeki Higashiyama
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Hideaki Hara
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
- * E-mail:
| |
Collapse
|
50
|
Balbuena L, Casson AG. Physical activity, obesity and risk for esophageal adenocarcinoma. Future Oncol 2009; 5:1051-63. [DOI: 10.2217/fon.09.65] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Over the past three decades, an increasing incidence of esophageal adenocarcinoma (EADC) has been reported throughout North America and Europe at a rate exceeding that of any other human solid tumor. Recent studies have clearly implicated chronic gastroesophageal reflux disease and several lifestyle risk factors, including tobacco consumption, diet and obesity, to be associated with increased risk of EADC. Although physical inactivity is now recognized as a risk factor for several chronic diseases including cancer, only a very limited number of studies have specifically evaluated the association between physical activity and esophageal malignancy. Furthermore, the precise biological mechanisms underlying the association between physical activity, obesity and cancer risk remain unclear. Since successful promotion of healthy body weight and exercise may substantially reduce the future incidence of cancer in the population, the purpose of this review is to explore current evidence linking physical activity, obesity and risk of malignancy – specifically EADC.
Collapse
Affiliation(s)
- Lloyd Balbuena
- Department of Surgery, University of Saskatchewan, Royal University Hospital, 103 Hospital Drive, Suite 2646, Saskatoon SK, S7N 0W8, Canada
| | - Alan G Casson
- Professor and Head, Department of Surgery, University of Saskatchewan, Royal University Hospital, 103 Hospital Drive, Suite 2646, Saskatoon SK, S7N 0W8, Canada
| |
Collapse
|