1
|
Yuan S, Zhao E. Recent advances of lipid droplet-targeted AIE-active materials for imaging, diagnosis and therapy. Biosens Bioelectron 2025; 267:116802. [PMID: 39332250 DOI: 10.1016/j.bios.2024.116802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/25/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Lipid droplets (LDs) are cellular organelles specialized in the storage and regulating the release of lipids critical for energy metabolism. As investigation on LDs deepens, the complex biological functions of LDs are revealed and their relationships with various diseases such as atherosclerosis, fatty liver, obesity, and cancer are uncovered. Fluorescence-based techniques with simple operations, visible results and high non-invasiveness are ideal tools for investigating LD-related biological processes and diseases. Materials with aggregation-induced emission (AIE) characteristics have emerged as promising candidates for investigating LDs due to their high signal-to-noise ratio (S/N), strong photostability, and large Stokes shift. This review discusses the principles and advantages of LD-targeting AIE probes for imaging LDs, diagnosis of LD-associated diseases including atherosclerotic plaques, liver diseases, acute kidney diseases and cancer, therapies with LD-targeting AIE-active photosensitizers and other relevant fields in the past five years. Through typical examples, we illustrate the status of investigating LD-related imaging, diagnosis of diseases and therapy with AIE materials. This review is expected to attract attentions from scientists with different research backgrounds and contribute to the further development of LD-targeting AIE materials.
Collapse
Affiliation(s)
- Sisi Yuan
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, 518055, China
| | - Engui Zhao
- School of Science, Harbin Institute of Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
2
|
Lindenhahn P, Richter J, Pepelanova I, Seeger B, Volk HA, Hinkel R, Hiebl B, Scheper T, Hinrichs JB, Becker LS, Haverich A, Kaufeld T. A Novel Artificial Coronary Plaque to Model Coronary Heart Disease. Biomimetics (Basel) 2024; 9:197. [PMID: 38667208 PMCID: PMC11048636 DOI: 10.3390/biomimetics9040197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Experimental coronary artery interventions are currently being performed on non-diseased blood vessels in healthy animals. To provide a more realistic pathoanatomical scenario for investigations on novel interventional and surgical therapies, we aimed to fabricate a stenotic lesion, mimicking the morphology and structure of a human atherosclerotic plaque. METHODS In an interdisciplinary setting, we engineered a casting mold to create an atherosclerotic plaque with the dimensions to fit in a porcine coronary artery. Oscillatory rheology experiments took place along with long-term stability tests assessed by microscopic examination and weight monitoring. For the implantability in future in vivo setups, we performed a cytotoxicity assessment, inserted the plaque in resected pig hearts, and performed diagnostic imaging to visualize the plaque in its final position. RESULTS The most promising composition consists of gelatin, cholesterol, phospholipids, hydroxyapatite, and fine-grained calcium carbonate. It can be inserted in the coronary artery of human-sized pig hearts, producing a local partial stenosis and interacting like the atherosclerotic plaque by stretching and shrinking with the vessel wall and surrounding tissue. CONCLUSION This artificial atherosclerotic plaque model works as a simulating tool for future medical testing and could be crucial for further specified research on coronary artery disease and is going to help to provide information about the optimal interventional and surgical care of the disease.
Collapse
Affiliation(s)
- Philipp Lindenhahn
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30559 Hannover, Germany; (A.H.); (T.K.)
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hanover, 30559 Hannover, Germany
| | - Jannik Richter
- Institute of Technical Chemistry, Leibniz University of Hannover, 30167 Hannover, Germany; (J.R.); (T.S.)
| | - Iliyana Pepelanova
- Institute of Technical Chemistry, Leibniz University of Hannover, 30167 Hannover, Germany; (J.R.); (T.S.)
| | - Bettina Seeger
- Institute for Food Quality and Food Safety, University of Veterinary Medicine, 30559 Hannover, Germany;
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hanover, 30559 Hannover, Germany
| | - Rabea Hinkel
- Department of Laboratory Animal Science, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine, 30559 Hannover, Germany;
| | - Bernhard Hiebl
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine, 30559 Hannover, Germany;
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University of Hannover, 30167 Hannover, Germany; (J.R.); (T.S.)
| | - Jan B. Hinrichs
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (J.B.H.); (L.S.B.)
| | - Lena S. Becker
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (J.B.H.); (L.S.B.)
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30559 Hannover, Germany; (A.H.); (T.K.)
| | - Tim Kaufeld
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30559 Hannover, Germany; (A.H.); (T.K.)
| |
Collapse
|
3
|
Zhou S, Zhang D, Li D, Wang H, Ding C, Song J, Huang W, Xia X, Zhou Z, Han S, Jin Z, Yan B, Gonzales J, Via LE, Zhang L, Wang D. Pathogenic mycobacterium upregulates cholesterol 25-hydroxylase to promote granuloma development via foam cell formation. iScience 2024; 27:109204. [PMID: 38420591 PMCID: PMC10901098 DOI: 10.1016/j.isci.2024.109204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/20/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
Pathogenic mycobacteria orchestrate the complex cell populations known as granuloma that is the hallmark of tuberculosis. Foam cells, a lipid-rich cell-type, are considered critical for granuloma formation; however, the causative factor in foam cell formation remains unclear. Atherosclerosis is a chronic inflammatory disease characterized by the abundant accumulation of lipid-laden-macrophage-derived foam cells during which cholesterol 25-hydroxylase (CH25H) is crucial in foam cell formation. Here, we show that M. marinum (Mm), a relative of M. tuberculosis, induces foam cell formation, leading to granuloma development following CH25H upregulation. Moreover, the Mm-driven increase in CH25H expression is associated with the presence of phthiocerol dimycocerosate, a determinant for Mm virulence and integrity. CH25H-null mice showed decreased foam cell formation and attenuated pathology. Atorvastatin, a recommended first-line lipid-lowering drug, promoted the elimination of M. marinum and concomitantly reduced CH25H production. These results define a previously unknown role for CH25H in controlling macrophage-derived foam cell formation and Tuberculosis pathology.
Collapse
Affiliation(s)
- Shuang Zhou
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Ding Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Dan Li
- Department of Tuberculosis, The Third People’s Hospital of Yichang, Yichang 443003, P.R. China
| | - Hankun Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Cairong Ding
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Jingrui Song
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Weifeng Huang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Xuan Xia
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Ziwei Zhou
- State Key Laboratory of Genetic Engineering, Institute of Genetics, MOE Engineering Research Center of Gene Technology, School of Life Science, Fudan University, Shanghai 200433, P.R. China
| | - Shanshan Han
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| | - Zhu Jin
- Department of Tuberculosis, The Third People’s Hospital of Yichang, Yichang 443003, P.R. China
| | - Bo Yan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai China
| | - Jacqueline Gonzales
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20982, USA
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20982, USA
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lu Zhang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, MOE Engineering Research Center of Gene Technology, School of Life Science, Fudan University, Shanghai 200433, P.R. China
| | - Decheng Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University; Institute of Infection and Inflammation, China Three Gorges University; College of Basic Medical Sciences, China Three Gorges University, Yichang 443002, P.R. China
| |
Collapse
|
4
|
Rogers S, Gui L, Kovalenko A, Zoni V, Carpentier M, Ramji K, Ben Mbarek K, Bacle A, Fuchs P, Campomanes P, Reetz E, Speer NO, Reynolds E, Thiam AR, Vanni S, Nicastro D, Henne WM. Triglyceride lipolysis triggers liquid crystalline phases in lipid droplets and alters the LD proteome. J Cell Biol 2022; 221:213472. [PMID: 36112368 PMCID: PMC9485706 DOI: 10.1083/jcb.202205053] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 01/08/2023] Open
Abstract
Lipid droplets (LDs) are reservoirs for triglycerides (TGs) and sterol-esters (SEs), but how these lipids are organized within LDs and influence their proteome remain unclear. Using in situ cryo-electron tomography, we show that glucose restriction triggers lipid phase transitions within LDs generating liquid crystalline lattices inside them. Mechanistically this requires TG lipolysis, which decreases the LD's TG:SE ratio, promoting SE transition to a liquid crystalline phase. Molecular dynamics simulations reveal TG depletion promotes spontaneous TG and SE demixing in LDs, additionally altering the lipid packing of the PL monolayer surface. Fluorescence imaging and proteomics further reveal that liquid crystalline phases are associated with selective remodeling of the LD proteome. Some canonical LD proteins, including Erg6, relocalize to the ER network, whereas others remain LD-associated. Model peptide LiveDrop also redistributes from LDs to the ER, suggesting liquid crystalline phases influence ER-LD interorganelle transport. Our data suggests glucose restriction drives TG mobilization, which alters the phase properties of LD lipids and selectively remodels the LD proteome.
Collapse
Affiliation(s)
- Sean Rogers
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Long Gui
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Anastasiia Kovalenko
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Valeria Zoni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Maxime Carpentier
- Laboratoire de Physique de l'École Normale Supérieure, École normale supérieure, Université Paris Sciences et Lettres, Centre national de la recherche scientifique, Sorbonne Université, Université de Paris, Paris, France
| | - Kamran Ramji
- Laboratoire de Physique de l'École Normale Supérieure, École normale supérieure, Université Paris Sciences et Lettres, Centre national de la recherche scientifique, Sorbonne Université, Université de Paris, Paris, France
| | - Kalthoum Ben Mbarek
- Laboratoire de Physique de l'École Normale Supérieure, École normale supérieure, Université Paris Sciences et Lettres, Centre national de la recherche scientifique, Sorbonne Université, Université de Paris, Paris, France
| | - Amelie Bacle
- Institute Jacques Monod, Centre national de la recherche scientifique, University of Paris, Paris, France
| | - Patrick Fuchs
- Laboratoire des Biomolécules, Paris, France.,Université de Paris, UFR Sciences du Vivant, Paris, France
| | - Pablo Campomanes
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Evan Reetz
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Natalie Ortiz Speer
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Emma Reynolds
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Abdou Rachid Thiam
- Laboratoire de Physique de l'École Normale Supérieure, École normale supérieure, Université Paris Sciences et Lettres, Centre national de la recherche scientifique, Sorbonne Université, Université de Paris, Paris, France
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Daniela Nicastro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - W Mike Henne
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
5
|
Tornifoglio B, Stone AJ, Kerskens C, Lally C. Ex Vivo Study Using Diffusion Tensor Imaging to Identify Biomarkers of Atherosclerotic Disease in Human Cadaveric Carotid Arteries. Arterioscler Thromb Vasc Biol 2022; 42:1398-1412. [PMID: 36172867 PMCID: PMC9592180 DOI: 10.1161/atvbaha.122.318112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND This study aims to address the potential of ex vivo diffusion tensor imaging to provide insight into the microstructural composition and morphological arrangement of aged human atherosclerotic carotid arteries. METHODS In this study, whole human carotid arteries were investigated both anatomically and by comparing healthy and diseased regions. Nonrigid image registration was used with unsupervised segmentation to investigate the influence of elastin, collagen, cell density, glycosaminoglycans, and calcium on diffusion tensor imaging derived metrics (fractional anisotropy and mean diffusivity). Early stage atherosclerotic features were also investigated in terms of microstructural components and diffusion tensor imaging metrics. RESULTS All vessels displayed a dramatic decrease in fractional anisotropy compared with healthy animal arterial tissue, while the mean diffusivity was sensitive to regions of advanced disease. Elastin content strongly correlated with both fractional anisotropy (r>0.7, P<0.001) and mean diffusivity (r>-0.79, P<0.0002), and the thickened intima was also distinguishable from arterial media by these metrics. CONCLUSIONS These different investigations point to the potential of diffusion tensor imaging to identify characteristics of arterial disease progression, at early and late-stage lesion development.
Collapse
Affiliation(s)
- Brooke Tornifoglio
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute (B.T., A.J.S., C.K., C.L.), Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering (B.T., A.J.S., C.L.), Ireland
| | - Alan J. Stone
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute (B.T., A.J.S., C.K., C.L.), Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering (B.T., A.J.S., C.L.), Ireland.,Department of Medical Physics and Clinical Engineering, St. Vincent’s University Hospital, Dublin, Ireland (A.J.S.)
| | - Christian Kerskens
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute (B.T., A.J.S., C.K., C.L.), Ireland.,Trinity College Institute of Neuroscience (C.K.), Ireland
| | - Caitríona Lally
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute (B.T., A.J.S., C.K., C.L.), Ireland.,Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering (B.T., A.J.S., C.L.), Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin (C.L.), Ireland
| |
Collapse
|
6
|
Shepelenko M, Hirsch A, Varsano N, Beghi F, Addadi L, Kronik L, Leiserowitz L. Polymorphism, Structure, and Nucleation of Cholesterol·H 2O at Aqueous Interfaces and in Pathological Media: Revisited from a Computational Perspective. J Am Chem Soc 2022; 144:5304-5314. [PMID: 35293741 PMCID: PMC8972249 DOI: 10.1021/jacs.1c10563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We
revisit the important issues of polymorphism, structure, and
nucleation of cholesterol·H2O using first-principles
calculations based on dispersion-augmented density functional theory.
For the lesser known monoclinic polymorph, we obtain a fully extended
H-bonded network in a structure akin to that of hexagonal ice. We
show that the energy of the monoclinic and triclinic polymorphs is
similar, strongly suggesting that kinetic and environmental effects
play a significant role in determining polymorph nucleation. Furthermore,
we find evidence in support of various O–H···O
bonding motifs in both polymorphs that may result in hydroxyl disorder.
We have been able to explain, via computation, why a single cholesterol
bilayer in hydrated membranes always crystallizes in the monoclinic
polymorph. We rationalize what we believe is a single-crystal to single-crystal
transformation of the monoclinic form on increased interlayer growth
beyond that of a single cholesterol bilayer, interleaved by a water
bilayer. We show that the ice-like structure is also relevant to the
related cholestanol·2H2O and stigmasterol·H2O crystals. The structure of stigmasterol hydrate both as
a trilayer film at the air–water interface and as a macroscopic
crystal further assists us in understanding the polymorphic and thermal
behavior of cholesterol·H2O. Finally, we posit a possible
role for one of the sterol esters in the crystallization of cholesterol·H2O in pathological environments, based on a composite of a
crystalline bilayer of cholesteryl palmitate bound epitaxially as
a nucleating agent to the monoclinic cholesterol·H2O form.
Collapse
Affiliation(s)
- Margarita Shepelenko
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 7610001, Israel
| | - Anna Hirsch
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 7610001, Israel
| | - Neta Varsano
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovoth 7610001, Israel
| | - Fabio Beghi
- Department of Chemistry, Università degli Studi di Milano, Milano I-20122, Italy
| | - Lia Addadi
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovoth 7610001, Israel
| | - Leeor Kronik
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 7610001, Israel
| | - Leslie Leiserowitz
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth 7610001, Israel
| |
Collapse
|
7
|
Abstract
Paraoxonase 2 (PON2) is a ubiquitously expressed intracellular enzyme that is known to have a protective role from oxidative stress. Clinical studies have also demonstrated the significance of PON2 in the manifestation of cardiovascular and several other diseases, and hence, it is considered an important biomarker. Recent findings of its expression in brain tissue suggest its potential protective effect on oxidative stress and neuroinflammation. Polymorphisms of PON2 in humans are a risk factor in many pathological conditions, suggesting a possible mechanism of its anti-oxidative property probably through lactonase activity. However, exogenous factors may also modulate the expression and activity of PON2. Hence, this review aims to report the mechanism by which PON2 expression is regulated and its role in oxidative stress disorders such as neurodegeneration and tumor formation. The role of PON2 owing to its lactonase activity in bacterial infectious diseases and association of PON2 polymorphism with pathological conditions are also highlighted.
Collapse
Affiliation(s)
- Fauzia Parween
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Rinkoo Devi Gupta
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
8
|
Impact of myeloid RIPK1 gene deletion on atherogenesis in ApoE-deficient mice. Atherosclerosis 2021; 322:51-60. [PMID: 33706083 DOI: 10.1016/j.atherosclerosis.2021.02.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/23/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Targeting macrophage death is a promising strategy for stabilizing atherosclerotic plaques. Recently, necroptosis was identified as a form of regulated necrosis in atherosclerosis. Receptor-interacting serine/threonine-protein kinase (RIPK)1 is an upstream regulator of RIPK3, which is a crucial kinase for necroptosis induction. We aimed to investigate the impact of myeloid-specific RIPK1 gene deletion on atherogenesis. METHODS RIPK1F/FLysM-Cre+ApoE-/- and RIPK1+/+LysM-Cre+ApoE-/- mice were fed a western-type diet (WD) for 16 or 24 weeks to induce plaque formation. RESULTS After 16 weeks WD, plaque area and percentage necrosis in RIPK1F/FLysM-Cre+ApoE-/- mice were significantly decreased as compared to plaques of RIPK1+/+LysM-Cre+ApoE-/- mice. Moreover, plaques of RIPK1F/FLysM-Cre+ApoE-/- mice showed more apoptosis and a decreased macrophage content. After 24 weeks WD, plaque size and percentage necrosis were no longer different between the two groups. Free apoptotic cells strongly accumulated in plaques of RIPK1F/FLysM-Cre+ApoE-/- mice. In addition to apoptosis, necroptosis was upregulated in plaques of RIPK1F/FLysM-Cre+ApoE-/- mice. In vitro, TNF-α triggered apoptosis in RIPK1F/FLysM-Cre+ApoE-/-, but not in RIPK1+/+LysM-Cre+ApoE-/- macrophages. Moreover, RIPK1F/FLysM-Cre+ApoE-/- macrophages were not protected against RIPK3-dependent necroptosis. CONCLUSIONS The impact of myeloid RIPK1 gene deletion depends on the stage of atherogenesis. At 16 weeks WD, myeloid RIPK1 gene deletion resulted in increased apoptosis, thereby slowing down plaque progression. However, despite decreased macrophage content, plaque and necrotic core size were no longer reduced after 24 weeks of WD, most likely due to the accumulation of free apoptotic and necroptotic cells.
Collapse
|
9
|
Acidic extracellular pH promotes accumulation of free cholesterol in human monocyte-derived macrophages via inhibition of ACAT1 activity. Atherosclerosis 2020; 312:1-7. [PMID: 32942042 DOI: 10.1016/j.atherosclerosis.2020.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/14/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS In focal areas of advanced human atherosclerotic lesions, the intimal fluid is acidic. An acidic medium impairs the ABCA1-mediated cholesterol efflux from macrophages, so tending to increase their content of free cholesterol, which is then available for esterification by the macrophage enzyme ACAT1. Here we investigated whether low extracellular pH would affect the activity of ACAT1. METHODS - Human monocyte-derived macrophages were first incubated with acetyl-LDL at neutral and acidic conditions (pH 7.5, 6.5, and 5.5) to generate foam cells, and then the foam cells were incubated with [3H]oleate-BSA complexes, and the formation of [3H]oleate-labeled cholesteryl esters was measured. ACAT1 activity was also measured in cell-free macrophage extracts. RESULTS - In acidic media, ACAT1-dependent cholesteryl [3H]oleate generation became compromised in the developing foam cells and their content of free cholesterol increased. In line with this finding, ACAT1 activity in the soluble cell-free fraction derived from macrophage foam cells peaked at pH 7, and gradually decreased under acidic pH with a rapid drop below pH 6.5. Incubation of macrophages under progressively more acidic conditions (until pH 5.5) lowered the cytosolic pH of macrophages (down to pH 6.0). Such intracellular acidification did not affect macrophage gene expression of ACAT1 or the neutral CEH. CONCLUSIONS Exposure of human macrophage foam cells to acidic conditions lowers their intracellular pH with simultaneous decrease in ACAT1 activity. This reduces cholesterol esterification and thus leads to accumulation of potentially toxic levels of free cholesterol, a contributing factor to macrophage foam cell death.
Collapse
|
10
|
Jeries H, Volkova N, Grajeda-Iglesias C, Najjar M, Rosenblat M, Aviram M, Hayek T. Prednisone and Its Active Metabolite Prednisolone Attenuate Lipid Accumulation in Macrophages. J Cardiovasc Pharmacol Ther 2019; 25:174-186. [PMID: 31648564 DOI: 10.1177/1074248419883591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Synthetic forms of glucocorticoids (GCs; eg, prednisone, prednisolone) are anti-inflammatory drugs that are widely used in clinical practice. The role of GCs in cardiovascular diseases, including atherosclerosis, is highly controversial, and their impact on macrophage foam cell formation is still unknown. We investigated the effects of prednisone and prednisolone on macrophage oxidative stress and lipid metabolism. METHODS AND RESULTS C57BL/6 mice were intraperitoneally injected with prednisone or prednisolone (5 mg/kg) for 4 weeks, followed by lipid metabolism analyses in the aorta and peritoneal macrophages. We also analyzed the effect of serum samples obtained from 9 healthy human volunteers before and after oral administration of prednisone (20 mg for 5 days) on J774A.1 macrophage atherogenicity. Finally, J774A.1 macrophages, human monocyte-derived macrophages, and fibroblasts were incubated with increasing concentrations (0-200 ng/mL) of prednisone or prednisolone, followed by determination of cellular oxidative status, and triglyceride and cholesterol metabolism. Prednisone and prednisolone treatment resulted in a significant reduction in triglyceride and cholesterol accumulation in macrophages, as observed in vivo, ex vivo, and in vitro. These effects were associated with GCs' inhibitory effect on triglyceride- and cholesterol-biosynthesis rates, through downregulation of diacylglycerol acyltransferase 1 and HMG-CoA reductase expression. Glucocorticoid-induced reduction of cellular lipid accumulation was mediated by the GC receptors on the macrophages, because the GC-receptor antagonist (RU486) abolished these effects. In fibroblasts, unlike macrophages, GCs showed no effects. CONCLUSION Prednisone and prednisolone exhibit antiatherogenic activity by protecting macrophages from lipid accumulation and foam cell formation.
Collapse
Affiliation(s)
- Helana Jeries
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nina Volkova
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Claudia Grajeda-Iglesias
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Mahmoud Najjar
- Department of Internal Medicine E, Rambam Health Care Campus, Haifa, Israel
| | - Mira Rosenblat
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Michael Aviram
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tony Hayek
- Department of Internal Medicine E, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
11
|
Nimri L, Grajeda-Iglesias C, Volkova N, Aviram M. Pro-atherogenic and pro-oxidant crosstalk between adipocytes and macrophages. Eur J Nutr 2018; 58:879-893. [PMID: 29804185 DOI: 10.1007/s00394-018-1729-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE Obesity, which is characterized by triglyceride accumulation mainly in adipocytes but also in arterial wall cells such as macrophages, is a major risk factor for developing atherosclerosis. We aimed to identify the crosstalk related to lipid metabolism and oxidation status between adipocytes and macrophages. METHODS We used a co-culture model system with J477A.1 cultured macrophages and 3T3L1 cultured adipocytes. For an in-vivo co-culture system, we used C57BL/6 mouse peritoneal macrophages and visceral or subcutaneous adipose tissue. RESULTS Adipocytes significantly increased reactive oxygen species generation, up to twofold, and decreased cholesterol content by 22% in the co-cultured macrophages. Macrophages significantly increased triglyceride-biosynthesis rate by twofold and decreased triglyceride-degradation rate by 30%, resulting in increased triglyceride accumulation in the co-cultured adipocytes by up to 72%. In the in-vivo mouse model, visceral adipose tissue crosstalk with macrophages resulted in a significant pro-atherogenic phenotype with respect to cellular cholesterol metabolism. In contrast, the interaction between subcutaneous adipose tissue and macrophages mostly affected cellular triglyceride metabolism. There were no significant effects on mitochondrial respiration capacity in the macrophages. Upon oxidative-stress reduction in the co-cultured cells using the polyphenol-rich antioxidant, pomegranate juice, the expression of genes related to cellular lipid accumulation was significantly reduced. CONCLUSIONS We reveal, for the first time, that paracrine interactions between adipocytes and macrophages result in oxidative stress and lipids metabolic alterations in both cells, toward increased atherogenicity which can be reversed by phenolic antioxidants.
Collapse
Affiliation(s)
- Lili Nimri
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Efron 1, Bat Galim, 31096, Haifa, Israel.
| | - Claudia Grajeda-Iglesias
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Efron 1, Bat Galim, 31096, Haifa, Israel
| | - Nina Volkova
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Efron 1, Bat Galim, 31096, Haifa, Israel
| | - Michael Aviram
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Efron 1, Bat Galim, 31096, Haifa, Israel
| |
Collapse
|
12
|
Pervaiz MH, Durga S, Janoudi A, Berger K, Abela GS. PET/CTA detection of muscle inflammation related to cholesterol crystal emboli without arterial obstruction. J Nucl Cardiol 2018; 25:433-440. [PMID: 28224451 DOI: 10.1007/s12350-017-0826-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/06/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND PET/CTA was used to evaluate the effect of cholesterol crystal emboli (CCE) on muscle injury. Cholesterol crystals (CCs) released during plaque rupture travel downstream and lodge in muscle triggering inflammation and tissue injury. METHODS Thigh muscles in three groups of rabbits (n = 22) were studied after intra-arterial injection of CCs, Group I (n = 10); polystyrene microspheres, Group II (n = 5); or normal saline, Group III (n = 7). After 48 hours, muscle inflammation and injury were measured by fluorodeoxy-glucose uptake using PET/CTA, serum tissue factor (TF), and creatinine phosphokinase (CPK). Macrophages were stained with RAM11 and CCs with Bodipy. RESULTS SUVmax of thigh muscles was greater for Group I vs Group II and III (0.40 ± 0.16 vs 0.21 ± 0.11, P = .038 and 0.23 ± 0.06, P = .036). CPK levels rose significantly in Group I vs Group II and III (6.7 ± 6.0 vs 0.6 ± 0.4, P = .007 and 0.9 ± 0.4 mg·dL-1, P = .023). No arterial thrombosis was detected by CTA or histology of embolized arteries and TF did not rise significantly. There were extensive macrophage infiltrates surrounding muscle necrosis in Group I only. CONCLUSIONS Cholesterol crystal emboli triggered muscle inflammation and necrosis with an intact circulation. PET/CTA may help in the early detection of inflammation caused by CCs.
Collapse
Affiliation(s)
- M Hassan Pervaiz
- Division of Cardiology, Department of Medicine, Michigan State University, East Lansing, MI, USA
| | - Sridevi Durga
- Division of Cardiology, Department of Medicine, Michigan State University, East Lansing, MI, USA
| | - Abed Janoudi
- Division of Cardiology, Department of Medicine, Michigan State University, East Lansing, MI, USA
| | - Kevin Berger
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - George S Abela
- Division of Cardiology, Department of Medicine, Michigan State University, East Lansing, MI, USA.
- Division of Pathology, Department of Physiology, Michigan State University, East Lansing, MI, USA.
- Michigan State University, B208 Clinical Center, East Lansing, MI, 48824, USA.
| |
Collapse
|
13
|
Coornaert I, Hofmans S, Devisscher L, Augustyns K, Van Der Veken P, De Meyer GRY, Martinet W. Novel drug discovery strategies for atherosclerosis that target necrosis and necroptosis. Expert Opin Drug Discov 2018; 13:477-488. [PMID: 29598451 DOI: 10.1080/17460441.2018.1457644] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Formation and enlargement of a necrotic core play a pivotal role in atherogenesis. Since the discovery of necroptosis, which is a regulated form of necrosis, prevention of necrotic cell death has become an attractive therapeutic goal to reduce plaque formation. Areas covered: This review highlights the triggers and consequences of (unregulated) necrosis and necroptosis in atherosclerosis. The authors discuss different pharmacological strategies to inhibit necrotic cell death in advanced atherosclerotic plaques. Expert opinion: Addition of a necrosis or necroptosis inhibitor to standard statin therapy could be a promising strategy for primary prevention of cardiovascular disease. However, a necrosis inhibitor cannot block all necrosis stimuli in atherosclerotic plaques. A necroptosis inhibitor could be more effective, because necroptosis is mediated by specific proteins, termed receptor-interacting serine/threonine-protein kinases (RIPK) and mixed lineage kinase domain-like pseudokinase (MLKL). Currently, only RIPK1 inhibitors have been successfully used in atherosclerotic mouse models to inhibit necroptosis. However, because RIPK1 is involved in both necroptosis and apoptosis, and also RIPK1-independent necroptosis can occur, we feel that targeting RIPK3 and MLKL could be a more attractive therapeutic approach to inhibit necroptosis. Therefore, future challenges will consist of developing RIPK3 and MLKL inhibitors applicable in both preclinical and clinical settings.
Collapse
Affiliation(s)
- Isabelle Coornaert
- a Laboratory of Physiopharmacology , University of Antwerp , Wilrijk , Belgium
| | - Sam Hofmans
- b Laboratory of Medicinal Chemistry , University of Antwerp , Wilrijk , Belgium
| | - Lars Devisscher
- b Laboratory of Medicinal Chemistry , University of Antwerp , Wilrijk , Belgium
| | - Koen Augustyns
- b Laboratory of Medicinal Chemistry , University of Antwerp , Wilrijk , Belgium
| | | | - Guido R Y De Meyer
- a Laboratory of Physiopharmacology , University of Antwerp , Wilrijk , Belgium
| | - Wim Martinet
- a Laboratory of Physiopharmacology , University of Antwerp , Wilrijk , Belgium
| |
Collapse
|
14
|
Cao Y, Kole A, Lan L, Wang P, Hui J, Sturek M, Cheng JX. Spectral analysis assisted photoacoustic imaging for lipid composition differentiation. PHOTOACOUSTICS 2017. [PMID: 28649497 PMCID: PMC5472148 DOI: 10.1016/j.pacs.2017.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recent advances in atherosclerotic plaque detection have shown that not only does lipid core size and depth play important roles in plaque rupture and thrombi formation, but lipid composition, especially cholesterol deposition, is equally important in determining lesion vulnerability. Here, we demonstrate a spectral analysis assisted photoacoustic imaging approach to differentiate and map lipid compositions within an artery wall. The approach is based on the classification of spectral curves obtained from the sliding windows along time-of-flight photoacoustic signals via a numerical k-means clustering method. The evaluation result on a vessel-mimicking phantom containing cholesterol and olive oil shows accuracy and efficiency of this method, suggesting the potential to apply this approach in assessment of atherosclerotic plaques.
Collapse
Affiliation(s)
- Yingchun Cao
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Ayeeshik Kole
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lu Lan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Pu Wang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jie Hui
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Michael Sturek
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- Corresponding author at: Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
15
|
Kohlgrüber S, Upadhye A, Dyballa-Rukes N, McNamara CA, Altschmied J. Regulation of Transcription Factors by Reactive Oxygen Species and Nitric Oxide in Vascular Physiology and Pathology. Antioxid Redox Signal 2017; 26:679-699. [PMID: 27841660 PMCID: PMC5421514 DOI: 10.1089/ars.2016.6946] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Cardiovascular diseases are the main cause of death worldwide and pose an immense economical burden. In most cases, the underlying problem is vascular occlusion by atherosclerotic plaques. Importantly, different cell types of the vascular wall and the immune system play crucial roles in atherosclerosis at different stages of the disease. Furthermore, atherosclerosis and conditions recognized as risk factors are characterized by a reduced availability of the vasoprotective molecule nitric oxide and an increase in reactive oxygen species, so-called oxidative stress. Transcription factors function as intracellular signal integrators and relays and thus, play a central role in cellular responses to changing conditions. Recent Advances: Work on specific transcriptional regulators has uncovered many of their functions and the upstream pathways modulating their activity in response to reactive oxygen and nitrogen species. Here, we have reviewed for a few selected examples how this can contribute not only to protection against atherosclerosis development but also to disease progression and the occurrence of clinical manifestations, such as plaque rupture. CRITICAL ISSUES Transcription factors have pleiotropic outputs and often also divergent functions in different cell types and tissues. Thus, in light of potential severe adverse side effects, a global activation or inhibition of particular transcriptions factors does not seem a feasible therapeutic option. FUTURE DIRECTIONS A further in-depth characterization of the cell- and stage-specific actions and regulation of transcription factors in atherosclerosis with respect to protein-protein interactions and target genes could open up new avenues for prevention or therapeutic interventions in this vascular disease. Antioxid. Redox Signal. 26, 679-699.
Collapse
Affiliation(s)
- Stefanie Kohlgrüber
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Düsseldorf, Germany
| | - Aditi Upadhye
- 2 Department of Microbiology, Immunology, Cancer Biology, University of Virginia , Charlottesville, Virginia
| | - Nadine Dyballa-Rukes
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Düsseldorf, Germany
| | - Coleen A McNamara
- 3 Cardiovascular Division, Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine , Charlottesville, Virginia
| | - Joachim Altschmied
- 1 IUF-Leibniz Research Institute for Environmental Medicine , Düsseldorf, Germany
| |
Collapse
|
16
|
Kalavakunta JK, Mittal MK, Janoudi A, Abela OG, Alreefi F, Abela GS. Role of Cholesterol Crystals During Acute Myocardial Infarction and Cerebrovascular Accident. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2017. [DOI: 10.15212/cvia.2017.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Rom O, Jeries H, Hayek T, Aviram M. Supplementation with linoleic acid-rich soybean oil stimulates macrophage foam cell formation via increased oxidative stress and diacylglycerol acyltransferase1-mediated triglyceride biosynthesis. Biofactors 2017; 43:100-116. [PMID: 27517171 DOI: 10.1002/biof.1319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/16/2016] [Indexed: 11/06/2022]
Abstract
During the last decades there has been a staggering rise in human consumption of soybean oil (SO) and its major polyunsaturated fatty acid linoleic acid (LA). The role of SO or LA in cardiovascular diseases is highly controversial, and their impact on macrophage foam cell formation, the hallmark of early atherogenesis, is unclear. To investigate the effects of high SO or LA intake on macrophage lipid metabolism and the related mechanisms of action, C57BL/6 mice were orally supplemented with increasing levels of SO-based emulsion or equivalent levels of purified LA for 1 month, followed by analyses of lipid accumulation and peroxidation in aortas, serum and in peritoneal macrophages (MPM) of the mice. Lipid peroxidation and triglyceride mass in aortas from SO or LA supplemented mice were dose-dependently and significantly increased. In MPM from SO or LA supplemented mice, lipid peroxides were significantly increased and a marked accumulation of cellular triglycerides was found in accordance with enhanced triglyceride biosynthesis rate and overexpression of diacylglycerol acyltransferase1 (DGAT1), the key enzyme in triglyceride biosynthesis. In cultured J774A.1 macrophages treated with SO or LA, triglyceride accumulated via increased oxidative stress and a p38 mitogen-activated protein kinase (MAPK)-mediated overexpression of DGAT1. Accordingly, anti-oxidants (pomegranate polyphenols), inhibition of p38 MAPK (by SB202190) or DGAT1 (by oleanolic acid), all significantly attenuated SO or LA-induced macrophage triglyceride accumulation. These findings reveal novel mechanisms by which supplementation with SO or LA stimulate macrophage foam cell formation, suggesting a pro-atherogenic role for overconsumption of SO or LA. © 2016 BioFactors, 43(1):100-116, 2017.
Collapse
Affiliation(s)
- Oren Rom
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Helana Jeries
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Department of Internal Medicine E, Rambam Health Care Campus, Haifa, Israel
| | - Tony Hayek
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Department of Internal Medicine E, Rambam Health Care Campus, Haifa, Israel
| | - Michael Aviram
- The Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
18
|
Abela OG, Ahsan CH, Alreefi F, Salehi N, Baig I, Janoudi A, Abela GS. Plaque Rupture and Thrombosis: the Value of the Atherosclerotic Rabbit Model in Defining the Mechanism. Curr Atheroscler Rep 2016; 18:29. [PMID: 27091328 DOI: 10.1007/s11883-016-0587-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Persistent inflammation and mechanical injury associated with cholesterol crystal accretion within atherosclerotic plaques typically precedes plaque disruption (rupture and/or erosion) and thrombosis--often the terminal events of atherosclerotic cardiovascular disease. To elucidate the mechanisms of these events, the atherosclerotic rabbit model provides a unique and powerful tool that facilitates studies of atherogenesis starting with plaque buildup to eventual disruption. Examination of human coronary arteries obtained from patients who died with myocardial infarction demonstrates evidence of cholesterol crystals perforating the plaque cap and intimal surface of the arterial wall that can lead to rupture. These observations were made possible by omitting ethanol, an avid lipid solvent, from the tissue processing steps. Importantly, the atherosclerotic rabbit model exhibits a similar pathology of cholesterol crystals perforating the intimal surface as seen in ruptured human plaques. Local and systemic inflammatory responses in the model are also similar to those observed in humans. The strong parallel between the rabbit and human pathology validates the atherosclerotic rabbit model as a predictor of human pathophysiology of atherosclerosis. Thus, the atherosclerotic rabbit model can be used with confidence to evaluate diagnostic imaging and efficacy of novel anti-atherosclerotic therapy.
Collapse
Affiliation(s)
- Oliver G Abela
- Department of Medicine, Division of Cardiovascular Medicine, University of Nevada, Las Vegas, NV, USA
| | - Chowdhury H Ahsan
- Department of Medicine, Division of Cardiovascular Medicine, University of Nevada, Las Vegas, NV, USA
| | - Fadi Alreefi
- Division of Cardiovascular Medicine, Michigan State University, East Lansing, MI, USA
| | - Negar Salehi
- Department of Medicine, Michigan State University, East Lansing, MI, USA
| | - Imran Baig
- Division of Cardiovascular Medicine, Michigan State University, East Lansing, MI, USA
| | - Abed Janoudi
- Division of Cardiovascular Medicine, Michigan State University, East Lansing, MI, USA
| | - George S Abela
- Division of Cardiovascular Medicine, Michigan State University, East Lansing, MI, USA.
- Department of Physiology, Division of Pathology, Michigan State University, East Lansing, MI, USA.
- Michigan State University, B208 Clinical Center, East Lansing, MI, 48824, USA.
| |
Collapse
|
19
|
Varsano N, Dadosh T, Kapishnikov S, Pereiro E, Shimoni E, Jin X, Kruth HS, Leiserowitz L, Addadi L. Development of Correlative Cryo-soft X-ray Tomography and Stochastic Reconstruction Microscopy. A Study of Cholesterol Crystal Early Formation in Cells. J Am Chem Soc 2016; 138:14931-14940. [PMID: 27934213 DOI: 10.1021/jacs.6b07584] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have developed a high resolution correlative method involving cryo-soft X-ray tomography (cryo-SXT) and stochastic optical reconstruction microscopy (STORM), which provides information in three dimensions on large cellular volumes at 70 nm resolution. Cryo-SXT morphologically identified and localized aggregations of carbon-rich materials. STORM identified specific markers on the desired epitopes, enabling colocalization between the identified objects, in this case cholesterol crystals, and the cellular environment. The samples were studied under ambient and cryogenic conditions without dehydration or heavy metal staining. The early events of cholesterol crystal development were investigated in relation to atherosclerosis, using as model macrophage cell cultures enriched with LDL particles. Atherosclerotic plaques build up in arteries in a slow process involving cholesterol crystal accumulation. Cholesterol crystal deposition is a crucial stage in the pathological cascade. Our results show that cholesterol crystals can be identified and imaged at a very early stage on the cell plasma membrane and in intracellular locations. This technique can in principle be applied to other biological samples where specific molecular identification is required in conjunction with high resolution 3D-imaging.
Collapse
Affiliation(s)
| | | | - Sergey Kapishnikov
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin , Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - Eva Pereiro
- ALBA Synchrotron Light Source, MISTRAL Beamline-Experiments Division, 08290 Cerdanyola del Valles, Barcelona, Spain
| | | | - Xueting Jin
- Experimental Atherosclerosis Section, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892-1422, United States
| | - Howard S Kruth
- Experimental Atherosclerosis Section, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland 20892-1422, United States
| | | | | |
Collapse
|
20
|
Czernuszewicz TJ, Gallippi CM. On the Feasibility of Quantifying Fibrous Cap Thickness With Acoustic Radiation Force Impulse (ARFI) Ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1262-75. [PMID: 26955026 PMCID: PMC5084842 DOI: 10.1109/tuffc.2016.2535440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Acute cerebrovascular accidents are associated with the rupture of vulnerable atherosclerotic plaques in the carotid arteries. Fibrous cap (FC) thickness has been shown to be an important predictor of plaque rupture but has been challenging to measure accurately with clinical noninvasive imaging modalities. The goals of this investigation were first, to evaluate the feasibility of using transcutaneous acoustic radiation force impulse (ARFI) ultrasound to quantify FC thickness and second, to optimize both imaging and motion-tracking parameters to support such measurements. FCs with varying thickness (0.1-1.0 mm) were simulated using a simple-layered geometry, and their mechanical response to an impulse of radiation force was solved using finite-element method (FEM) modeling. Ultrasound tracking of FEM displacements was performed in Field II utilizing three center frequencies (6, 9, and 12 MHz) and eight motion-tracking kernel lengths ( 0.5λ-4λ). Additionally, FC thickness in two carotid plaques imaged in vivo was measured with ARFI and compared to matched histology. The results of this study demonstrate that 1) tracking pulse frequencies around 12 MHz are necessary to resolve caps around 0.2 mm; 2) large motion-tracking kernel sizes introduce bias into thickness measurements and overestimate the true cap thickness; and 3) color saturation settings on ARFI peak displacement images can impact thickness measurement accuracy substantially.
Collapse
Affiliation(s)
- Tomasz J. Czernuszewicz
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, USA
| | - Caterina M. Gallippi
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, USA. Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
21
|
Daeichin V, Wu M, De Jong N, van der Steen AFW, van Soest G. Frequency Analysis of the Photoacoustic Signal Generated by Coronary Atherosclerotic Plaque. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2017-25. [PMID: 27181689 DOI: 10.1016/j.ultrasmedbio.2016.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 03/10/2016] [Accepted: 03/20/2016] [Indexed: 05/11/2023]
Abstract
The identification of unstable atherosclerotic plaques in the coronary arteries is emerging as an important tool for guiding percutaneous coronary interventions and may enable preventive treatment of such plaques in the future. Assessment of plaque stability requires imaging of both structure and composition. Spectroscopic photoacoustic (sPA) imaging can visualize atherosclerotic plaque composition on the basis of the optical absorption contrast. It is an established fact that the frequency content of the photoacoustic (PA) signal is correlated with structural tissue properties. As PA signals can be weak, it is important to match the transducer bandwidth to the signal frequency content for in vivo imaging. In this ex vivo study on human coronary arteries, we combined sPA imaging and analysis of frequency content of the PA signals. Using a broadband transducer (-3-dB one-way bandwidth of 10-35 MHz) and a 1-mm needle hydrophone (calibrated for 1-20 MHz), we covered a large frequency range of 1-35 MHz for receiving the PA signals. Spectroscopic PA imaging was performed at wavelengths ranging from 1125 to 1275 nm with a step of 2 nm, allowing discrimination between plaque lipids and adventitial tissue. Under sPA imaging guidance, the frequency content of the PA signals from the plaque lipids was quantified. Our data indicate that more than 80% of the PA energy of the coronary plaque lipids lies in the frequency band below 8 MHz. This frequency information can guide the choice of the transducer element used for PA catheter fabrication.
Collapse
Affiliation(s)
- Verya Daeichin
- Thoraxcenter Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands.
| | - Min Wu
- Thoraxcenter Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands
| | - Nico De Jong
- Thoraxcenter Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands; Acoustic Wavefield Imaging, Delft University of Technology, Delft, The Netherlands
| | - Antonius F W van der Steen
- Thoraxcenter Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands; Acoustic Wavefield Imaging, Delft University of Technology, Delft, The Netherlands
| | - Gijs van Soest
- Thoraxcenter Biomedical Engineering, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
22
|
Rosenblat M, Rom O, Volkova N, Aviram M. Nitro-Oleic Acid Reduces J774A.1 Macrophage Oxidative Status and Triglyceride Mass: Involvement of Paraoxonase2 and Triglyceride Metabolizing Enzymes. Lipids 2016; 51:941-53. [DOI: 10.1007/s11745-016-4169-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/15/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Mira Rosenblat
- ; The Lipid Research Laboratory, Rappaport Faculty of Medicine; Technion-Israel Institute of Technology; 1 Efron St., Bat-Galim Haifa 31096 Israel
| | - Oren Rom
- ; The Lipid Research Laboratory, Rappaport Faculty of Medicine; Technion-Israel Institute of Technology; 1 Efron St., Bat-Galim Haifa 31096 Israel
| | - Nina Volkova
- ; The Lipid Research Laboratory, Rappaport Faculty of Medicine; Technion-Israel Institute of Technology; 1 Efron St., Bat-Galim Haifa 31096 Israel
| | - Michael Aviram
- ; The Lipid Research Laboratory, Rappaport Faculty of Medicine; Technion-Israel Institute of Technology; 1 Efron St., Bat-Galim Haifa 31096 Israel
| |
Collapse
|
23
|
Harteveld AA, Denswil NP, Siero JCW, Zwanenburg JJM, Vink A, Pouran B, Spliet WGM, Klomp DWJ, Luijten PR, Daemen MJ, Hendrikse J, van der Kolk AG. Quantitative Intracranial Atherosclerotic Plaque Characterization at 7T MRI: An Ex Vivo Study with Histologic Validation. AJNR Am J Neuroradiol 2016; 37:802-10. [PMID: 26705320 DOI: 10.3174/ajnr.a4628] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/27/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE In recent years, several high-resolution vessel wall MR imaging techniques have emerged for the characterization of intracranial atherosclerotic vessel wall lesions in vivo. However, a thorough validation of MR imaging results of intracranial plaques with histopathology is still lacking. The aim of this study was to characterize atherosclerotic plaque components in a quantitative manner by obtaining the MR signal characteristics (T1, T2, T2*, and proton density) at 7T in ex vivo circle of Willis specimens and using histopathology for validation. MATERIALS AND METHODS A multiparametric ultra-high-resolution quantitative MR imaging protocol was performed at 7T to identify the MR signal characteristics of different intracranial atherosclerotic plaque components, and using histopathology for validation. In total, 38 advanced plaques were matched between MR imaging and histology, and ROI analysis was performed on the identified tissue components. RESULTS Mean T1, T2, and T2* relaxation times and proton density values were significantly different between different tissue components. The quantitative T1 map showed the most differences among individual tissue components of intracranial plaques with significant differences in T1 values between lipid accumulation (T1 = 838 ± 167 ms), fibrous tissue (T1 = 583 ± 161 ms), fibrous cap (T1 = 481 ± 98 ms), calcifications (T1 = 314 ± 39 ms), and the intracranial arterial vessel wall (T1 = 436 ± 122 ms). CONCLUSIONS Different tissue components of advanced intracranial plaques have distinguishable imaging characteristics with ultra-high-resolution quantitative MR imaging at 7T. Based on this study, the most promising method for distinguishing intracranial plaque components is T1-weighted imaging.
Collapse
Affiliation(s)
- A A Harteveld
- From the Departments of Radiology (A.A.H., J.C.W.S., J.J.M.Z., D.W.J.K., P.R.L., J.H., A.G.v.d.K.)
| | - N P Denswil
- Department of Pathology (N.P.D., M.J.D.), Academic Medical Center, Amsterdam, the Netherlands
| | - J C W Siero
- From the Departments of Radiology (A.A.H., J.C.W.S., J.J.M.Z., D.W.J.K., P.R.L., J.H., A.G.v.d.K.)
| | - J J M Zwanenburg
- From the Departments of Radiology (A.A.H., J.C.W.S., J.J.M.Z., D.W.J.K., P.R.L., J.H., A.G.v.d.K.) Image Sciences Institute (J.J.M.Z.), University Medical Center Utrecht, Utrecht, the Netherlands
| | - A Vink
- Pathology (A.V., W.G.M.S.)
| | - B Pouran
- Orthopedics (B.P.) Rheumatology (B.P.) Department of Biomedical Engineering (B.P.), Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Delft, the Netherlands
| | | | - D W J Klomp
- From the Departments of Radiology (A.A.H., J.C.W.S., J.J.M.Z., D.W.J.K., P.R.L., J.H., A.G.v.d.K.)
| | - P R Luijten
- From the Departments of Radiology (A.A.H., J.C.W.S., J.J.M.Z., D.W.J.K., P.R.L., J.H., A.G.v.d.K.)
| | - M J Daemen
- Department of Pathology (N.P.D., M.J.D.), Academic Medical Center, Amsterdam, the Netherlands
| | - J Hendrikse
- From the Departments of Radiology (A.A.H., J.C.W.S., J.J.M.Z., D.W.J.K., P.R.L., J.H., A.G.v.d.K.)
| | - A G van der Kolk
- From the Departments of Radiology (A.A.H., J.C.W.S., J.J.M.Z., D.W.J.K., P.R.L., J.H., A.G.v.d.K.)
| |
Collapse
|
24
|
Wu M, Fw van der Steen A, Regar E, van Soest G. Emerging Technology Update Intravascular Photoacoustic Imaging of Vulnerable Atherosclerotic Plaque. Interv Cardiol 2016; 11:120-123. [PMID: 29588718 DOI: 10.15420/icr.2016:13:3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The identification of vulnerable atherosclerotic plaques in the coronary arteries is emerging as an important tool for guiding atherosclerosis diagnosis and interventions. Assessment of plaque vulnerability requires knowledge of both the structure and composition of the plaque. Intravascular photoacoustic (IVPA) imaging is able to show the morphology and composition of atherosclerotic plaque. With imminent improvements in IVPA imaging, it is becoming possible to assess human coronary artery disease in vivo. Although some challenges remain, IVPA imaging is on its way to being a powerful tool for visualising coronary atherosclerotic features that have been specifically associated with plaque vulnerability and clinical syndromes, and thus such imaging might become valuable for clinical risk assessment in the catheterisation laboratory.
Collapse
Affiliation(s)
- Min Wu
- Department of Biomedical Engineering, Thorax Centre, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Antonius Fw van der Steen
- Department of Biomedical Engineering, Thorax Centre, Erasmus Medical Center, Rotterdam, The Netherlands.,Interuniversity Cardiology Institute of The Netherlands, Netherlands Heart Institute, Utrecht, The Netherlands.,Department of Imaging Science and Technology, Delft University of Technology, Delft, The Netherlands.,Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Evelyn Regar
- Department of interventional cardiology, Thorax Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gijs van Soest
- Department of Biomedical Engineering, Thorax Centre, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
25
|
Janoudi A, Shamoun FE, Kalavakunta JK, Abela GS. Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque. Eur Heart J 2015; 37:1959-67. [PMID: 26705388 DOI: 10.1093/eurheartj/ehv653] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/16/2015] [Indexed: 01/14/2023] Open
Abstract
Evolution of plaque that is prone to rupture is characterized by inflammation and physical changes. Accumulation of low-density lipoprotein in the sub-intima provides esterified cholesterol (ESC) to macrophages and smooth muscle cells that convert it into free cholesterol (FRC) by cholesteryl ester hydrolases (CEHs). Membrane-bound cholesterol carriers transport FRC to high-density lipoprotein (HDL). Impaired HDL transport function and altered composition can lead to extracellular accumulation of FRC, whereas impaired membrane carrier activity can lead to intracellular FRC accumulation. Saturation of FRC can result in cholesterol crystallization with cell death and intimal injury. Disequilibrium between ESC and FRC can impact foam cell and cholesterol crystal (CC) formation. Cholesterol crystals initiate inflammation via NLRP3 inflammasome leading to interleukin-1β (IL-1β) production inducing C-reactive protein. Eventually, crystals growing from within the plaque and associated inflammation destabilize the plaque. Thus, inhibition of inflammation by antagonists to IL-1β or agents that dissolve or prevent CC formation may stabilize vulnerable plaques.
Collapse
Affiliation(s)
- Abed Janoudi
- Department of Medicine, Division of Cardiology, Michigan State University, East Lansing, MI, USA
| | - Fadi E Shamoun
- Division of Cardiovascular Diseases, Mayo Clinic, Phoenix, AZ, USA
| | - Jagadeesh K Kalavakunta
- Department of Medicine, Division of Cardiology, Michigan State University, East Lansing, MI, USA Borgess Hospital, Kalamazoo, MI, USA
| | - George S Abela
- Department of Medicine, Division of Cardiology, Michigan State University, East Lansing, MI, USA Department of Physiology, Division of Pathology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
26
|
Wu M, Jansen K, van der Steen AFW, van Soest G. Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics. BIOMEDICAL OPTICS EXPRESS 2015; 6:3276-86. [PMID: 26417500 PMCID: PMC4574656 DOI: 10.1364/boe.6.003276] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/02/2015] [Accepted: 07/03/2015] [Indexed: 05/11/2023]
Abstract
The lipid content in plaques is an important marker for identifying atherosclerotic lesions and disease states. Intravascular photoacoustic (IVPA) imaging can be used to visualize lipids in the artery. In this study, we further investigated lipid detection in the 1.7-µm spectral range. By exploiting the relative difference between the IVPA signal strengths at 1718 and 1734 nm, we could successfully detect and differentiate between the plaque lipids and peri-adventitial fat in human coronary arteries ex vivo. Our study demonstrates that IVPA imaging can positively identify atherosclerotic plaques using only two wavelengths, which could enable rapid data acquisition in vivo.
Collapse
Affiliation(s)
- Min Wu
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Krista Jansen
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- Interuniversity Cardiology Institute of The Netherlands–Netherlands Heart Institute, PO Box 19258, 3501 DG Utrecht, The Netherlands
- Section Audiology, Department of Otolaryngology–Head and Neck Surgery, and EMGO Institute of Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Antonius F. W. van der Steen
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- Interuniversity Cardiology Institute of The Netherlands–Netherlands Heart Institute, PO Box 19258, 3501 DG Utrecht, The Netherlands
- Department of Imaging Science and Technology, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Gijs van Soest
- Department of Biomedical Engineering, Thorax Center, Erasmus University Medical Center, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
27
|
Xu X, Zhang A, Li N, Li PL, Zhang F. Concentration-Dependent Diversifcation Effects of Free Cholesterol Loading on Macrophage Viability and Polarization. Cell Physiol Biochem 2015; 37:419-431. [PMID: 26314949 DOI: 10.1159/000430365] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND/AIMS The accumulation of free cholesterol in atherosclerotic lesions has been well documented in both animals and humans. In studying the relevance of free cholesterol buildup in atherosclerosis, contradictory results have been generated, indicating that free cholesterol produces both pro- and anti-atherosclerosis effects in macrophages. This inconsistency might stem from the examination of only select concentrations of free cholesterol. In the present study, we sought to investigate the implication of excess free cholesterol loading in the pathophysiology of atherosclerosis across a broad concentration range from (in µg/ml) 0 to 60. METHODS Macrophage viability was determined by measuring formazan formation and flow cytometry viable cell counting. The polarization of M1 and M2 macrophages was differentiated by FACS (Fluorescence-Activated Cell Sorting) assay. The secretion of IL-1β in macrophage culture medium was measured by ELISA kit. Macrophage apoptosis was detected by flow cytometry using a TUNEL kit. RESULTS Macrophage viability was increased at the treatment of lower concentrations of free cholesterol from (in µg/ml) 0 to 20, but gradually decreased at higher concentrations from 20 to 60. Lower free cholesterol loading induced anti-inflammatory M2 macrophage polarization. The activation of the PPARx03B3; (Peroxisome Proliferator-Activated Receptor gamma) nuclear factor underscored the stimulation of this M2 phenotype. Nevertheless, higher levels of free cholesterol resulted in pro-inflammatory M1 activation. Moreover, with the application of higher free cholesterol concentrations, macrophage apoptosis and secretion of the inflammatory cytokine IL-1β increased significantly. CONCLUSION These results for the first time demonstrate that free cholesterol could render concentration-dependent diversification effects on macrophage viability, polarization, apoptosis and inflammatory cytokine secretions, thereby reconciling the pros and cons of free cholesterol buildup in macrophages to the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoyang Xu
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, VA 23298
| | - Aolin Zhang
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, VA 23298
| | - Ningjun Li
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, VA 23298
| | - Pin-Lan Li
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, VA 23298
| | - Fan Zhang
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, VA 23298
| |
Collapse
|
28
|
Nasiri M, Janoudi A, Vanderberg A, Frame M, Flegler C, Flegler S, Abela GS. Role of cholesterol crystals in atherosclerosis is unmasked by altering tissue preparation methods. Microsc Res Tech 2015; 78:969-74. [DOI: 10.1002/jemt.22560] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/23/2015] [Accepted: 07/25/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Mojdeh Nasiri
- Department of Medicine; Division of Cardiology; Michigan State University; East Lansing Michigan
| | - Abed Janoudi
- Department of Medicine; Division of Cardiology; Michigan State University; East Lansing Michigan
| | - Abigail Vanderberg
- Center for Advanced Microscopy, Michigan State University; East Lansing Michigan
| | - Melinda Frame
- Center for Advanced Microscopy, Michigan State University; East Lansing Michigan
| | | | - Stanley Flegler
- Center for Advanced Microscopy, Michigan State University; East Lansing Michigan
| | - George S. Abela
- Department of Medicine; Division of Cardiology; Michigan State University; East Lansing Michigan
- Department of Physiology; Division of Pathology; Michigan State University; East Lansing Michigan
| |
Collapse
|
29
|
Spatial Distributions of Lipids in Atherosclerosis of Human Coronary Arteries Studied by Time-of-Flight Secondary Ion Mass Spectrometry. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1216-33. [DOI: 10.1016/j.ajpath.2015.01.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/26/2014] [Accepted: 01/27/2015] [Indexed: 11/15/2022]
|
30
|
Abstract
Cholesterol and components of the cholesterol biosynthetic pathway have fundamental roles in all mammalian cells. Hydroxylated forms of cholesterol are now emerging as important regulators of immune function. This involves effects on the cholesterol biosynthetic pathway and cell membrane properties, which can have antiviral and anti-inflammatory influences. In addition, a dihydroxylated form of cholesterol functions as an immune cell guidance cue by engaging the G protein-coupled receptor EBI2, and it is required for mounting adaptive immune responses. In this Review, we summarize the current understanding of the closely related oxysterols 25-hydroxycholesterol and 7α,25-dihydroxycholesterol, and the growing evidence that they have wide-ranging influences on innate and adaptive immunity.
Collapse
|
31
|
Jansen K, Wu M, van der Steen AF, van Soest G. Photoacoustic imaging of human coronary atherosclerosis in two spectral bands. PHOTOACOUSTICS 2014; 2:12-20. [PMID: 25302152 PMCID: PMC4182816 DOI: 10.1016/j.pacs.2013.11.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/29/2013] [Accepted: 11/16/2013] [Indexed: 05/03/2023]
Abstract
Spectroscopic intravascular photoacoustic imaging (sIVPA) has shown promise to detect and distinguish lipids in atherosclerotic plaques. sIVPA generally utilizes one of the two high absorption bands in the lipid absorption spectrum at 1.2 μm and 1.7 μm. Specific absorption signatures of various lipid compounds within the bands in either wavelength range can potentially be used to differentiate between plaque lipids and peri-adventitial lipids. With the aim to quantify any differences between the two bands, we performed combined sIVPA imaging in both absorption bands on a vessel phantom and an atherosclerotic human coronary artery ex vivo. Lipid detection in a human atherosclerotic lesion with sIVPA required lower pulse energy at 1.7 μm than at 1.2 μm (0.4 mJ versus 1.2 mJ). The imaging depth was twice as large at 1.2 μm compared to 1.7 μm. Adequate differentiation between plaque and peri-adventitial lipids was achieved at 1.2 μm only.
Collapse
Affiliation(s)
- Krista Jansen
- Department of Biomedical Engineering, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
- Interuniversity Cardiology Institute of The Netherlands – Netherlands Heart Institute, P.O. Box 19258, 3501 DG Utrecht, The Netherlands
| | - Min Wu
- Department of Biomedical Engineering, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Antonius F.W. van der Steen
- Department of Biomedical Engineering, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
- Interuniversity Cardiology Institute of The Netherlands – Netherlands Heart Institute, P.O. Box 19258, 3501 DG Utrecht, The Netherlands
- Department of Imaging Science and Technology, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Gijs van Soest
- Department of Biomedical Engineering, Erasmus MC, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
- Corresponding author. Tel.: +31 10 70 44638; fax: +31 10 70 44720.
| |
Collapse
|
32
|
Chellan B, Yan L, Sontag TJ, Reardon CA, Hofmann Bowman MA. IL-22 is induced by S100/calgranulin and impairs cholesterol efflux in macrophages by downregulating ABCG1. J Lipid Res 2014; 55:443-54. [PMID: 24367046 PMCID: PMC3934729 DOI: 10.1194/jlr.m044305] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/22/2013] [Indexed: 11/20/2022] Open
Abstract
S100A8/9 and S100A12 are emerging biomarkers for disease activity of autoimmune and cardiovascular diseases. We demonstrated previously that S100A12 accelerates atherosclerosis accompanied by large cholesterol deposits in atherosclerotic lesions of apoE-null mice. The objective of this study was to ascertain whether S100/calgranulin influences cholesterol homeostasis in macrophages. Peritoneal macrophages from transgenic mice expressing human S100A8/9 and S100A12 in myeloid cells [human bacterial artificial chromosome (hBAC)/S100] have increased lipid content and reduced ABCG1 expression and [(3)H]cholesterol efflux compared with WT littermates. This was associated with a 6-fold increase in plasma interleukin (IL)-22 and increased IL-22 mRNA in splenic T cells. These findings are mediated by the receptor for advanced glycation endproducts (RAGE), because hBAC/S100 mice lacking RAGE had normal IL-22 expression and normal cholesterol efflux. In vitro, recombinant IL-22 reduced ABCG1 expression and [(3)H]cholesterol efflux in THP-1 macrophages, while recombinant S100A12 had no effect on ABCG1 expression. In conclusion, S100/calgranulin has no direct effect on cholesterol efflux in macrophages, but rather promotes the secretion of IL-22, which then directly reduces cholesterol efflux in macrophages by decreasing the expression of ABCG1.
Collapse
Affiliation(s)
- Bijoy Chellan
- Departments of Medicine University of Chicago, Chicago, IL
| | - Ling Yan
- Departments of Medicine University of Chicago, Chicago, IL
| | | | | | | |
Collapse
|
33
|
Detection of Liquid Phase Cholesteryl Ester in Carotid Atherosclerosis by 1H-MR Spectroscopy in Humans. JACC Cardiovasc Imaging 2013; 6:1277-84. [DOI: 10.1016/j.jcmg.2013.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 02/20/2013] [Accepted: 03/21/2013] [Indexed: 11/17/2022]
|
34
|
Behler RH, Czernuszewicz TJ, Wu CD, Nichols TC, Zhu H, Homeister JW, Merricks EP, Gallippi CM. Acoustic radiation force beam sequence performance for detection and material characterization of atherosclerotic plaques: preclinical, ex vivo results. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2013; 60:2471-87. [PMID: 24297014 PMCID: PMC4097991 DOI: 10.1109/tuffc.2013.2847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This work presents preclinical data demonstrating performance of acoustic radiation force (ARF)-based elasticity imaging with five different beam sequences for atherosclerotic plaque detection and material characterization. Twelve trained, blinded readers evaluated parametric images taken ex vivo under simulated in vivo conditions of 22 porcine femoral arterial segments. Receiver operating characteristic (ROC) curve analysis was carried out to quantify reader performance using spatially-matched immunohistochemistry for validation. The beam sequences employed had high sensitivity (sens) and specificity (spec) for detecting Type III+ plaques (sens: 85%, spec: 79%), lipid pools (sens: 80%, spec: 86%), fibrous caps (sens: 86%, spec: 82%), calcium (sens: 96%, spec: 85%), collagen (sens: 78%, spec: 77%), and disrupted internal elastic lamina (sens: 92%, spec: 75%). 1:1 single-receive tracking yielded the highest median areas under the ROC curve (AUC), but was not statistically significantly higher than 4:1 parallel-receive tracking. Excitation focal configuration did not result in statistically different AUCs. Overall, these results suggest ARF-based imaging is relevant to detecting and characterizing plaques and support its use for diagnosing and monitoring atherosclerosis.
Collapse
|
35
|
Jansen K, Wu M, van der Steen AFW, van Soest G. Lipid detection in atherosclerotic human coronaries by spectroscopic intravascular photoacoustic imaging. OPTICS EXPRESS 2013; 21:21472-84. [PMID: 24104022 DOI: 10.1364/oe.21.021472] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The presence of lipids in atherosclerotic coronary lesions is an important determinant of their potential to trigger acute coronary events. Spectroscopic intravascular photoacoustic imaging (sIVPA) has the potential to automatically detect lipids in atherosclerotic lesions. For real-time in vivo imaging, limiting the number of excitation wavelengths is crucial. We explored methods for plaque lipid detection using sIVPA, with the aim to minimize the number of laser pulses per image line. A combined intravascular ultrasound (IVUS) and photoacoustic imaging system was used to image a vessel phantom and human coronary arteries ex vivo. We acquired co-registered cross-sectional images at several wavelengths near 1200 nm, a lipid-specific absorption band. Correlating the photoacoustic spectra at 6 or 3 wavelengths from 1185 to 1235 nm with the absorption spectrum of cholesterol and peri-adventitial tissue, we could detect and differentiate the lipids in the atherosclerotic plaque and peri-adventitial lipids, respectively. With two wavelengths, both plaque and peri-adventitial lipids were detected but could not be distinguished.
Collapse
|
36
|
Guo J, Saylor DM, Glaser EP, Patwardhan DV. Impact of artificial plaque composition on drug transport. J Pharm Sci 2013; 102:1905-1914. [PMID: 23568279 DOI: 10.1002/jps.23537] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/28/2013] [Accepted: 03/18/2013] [Indexed: 11/07/2022]
Abstract
Drug-eluting stent (DES) implantation is a common treatment for atherosclerosis. The safety and efficacy of these devices will depend on the uptake and distribution of drug into the vessel wall. It is established that the composition of atherosclerotic vessels can vary dramatically with patients' age and gender. However, studies focused on elucidating and quantifying the impact of these variations on important drug transport properties, such as diffusion (D) and partition (k) coefficients, are limited. We have developed an improved tissue mimic or artificial plaque to probe the effect of varying concentrations of plaque constituents on drug transport in vitro. Based on these artificial plaques, we have quantified the impact of gelatin (hydrolyzed collagen) and lipid (cholesterol) concentration on D and k using two model drugs, tetracycline and fluvastatin. We found that for tetracycline, increasing the collagen concentration from 0.025 to 0.100 (w/w) resulted in a fivefold decrease in diffusivity, whereas there was no discernible impact on solubility. Increasing the lipid concentration up to 0.034 (w/w) resulted in only minor changes to transport properties of tetracycline. However, fluvastatin exhibited nearly a fivefold increase in k and 10-fold decrease in D with increased lipid concentration. These results were in reasonable agreement with existing models and exhibited behavior consistent with previous observations on drugs commonly used in DES applications. These observations suggest that variations in the chemical characteristics of atherosclerotic plaque can significantly alter the release rate and distribution of drug following DES implantation.
Collapse
Affiliation(s)
- Ji Guo
- Division of Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland 20993.
| | - David M Saylor
- Division of Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland 20993
| | - Ethan P Glaser
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland 21250
| | - Dinesh V Patwardhan
- Division of Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland 20993
| |
Collapse
|
37
|
Pomegranate Protection against Cardiovascular Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:382763. [PMID: 23243442 PMCID: PMC3514854 DOI: 10.1155/2012/382763] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/10/2012] [Indexed: 02/02/2023]
Abstract
The current paper summarizes the antioxidative and antiatherogenic effects of pomegranate polyphenols on serum lipoproteins and on arterial macrophages (two major components of the atherosclerotic lesion), using both in vitro and in vivo humans and mice models. Pomegranate juice and its by-products substantially reduced macrophage cholesterol and oxidized lipids accumulation, and foam cell formation (the hallmark of early atherogenesis), leading to attenuation of atherosclerosis development, and its consequent cardiovascular events.
Collapse
|
38
|
Rosenblat M, Volkova N, Paland N, Aviram M. Triglyceride accumulation in macrophages upregulates paraoxonase 2 (PON2) expression via ROS-mediated JNK/c-Jun signaling pathway activation. Biofactors 2012; 38:458-69. [PMID: 23047827 DOI: 10.1002/biof.1052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/31/2012] [Indexed: 01/16/2023]
Abstract
The aim of this study was to analyze the effect and mechanism of action of macrophage triglyceride accumulation on cellular PON2 expression. Incubation of J774A.1 (murine macrophages) with VLDL (0-75 μg protein/mL) significantly and dose-dependently increased cellular triglyceride mass, and reactive oxygen species (ROS) formation, by up to 3.3- or 1.8-fold, respectively. PON2 expression (mRNA, protein, activity) in cells treated with VLDL (50 μg protein/mL) was higher by 2- to 3-fold, as compared with control cells. Similar effects were noted upon using THP-1 (human macrophages). Incubation of macrophages with synthetic triglyceride or triglyceride fraction from carotid lesion resulted in similar effects, as shown for VLDL. Upon using specific inhibitors of MEK1/2 (UO126, 10 μM), p38 (SB203580, 10 μM), or JNK (SP600125, 20 μM), we demonstrated that MEK, as well as JNK, but not p38, are involved in VLDL-induced macrophage PON2 upregulation. VLDL activated JNK (but not ERK), which resulted in c-Jun phosphorylation. This signaling pathway is probably activated by ROS, since the antioxidant reduced glutathione (GSH), significantly decreased VLDL-induced macrophage ROS formation, c-Jun phosphorylation and PON2 overexpression. We conclude that macrophage triglyceride accumulation upregulates PON2 expression via MEK/ JNK/c-Jun pathway, and these effects could be related, at least in part, to cellular triglycerides-induced ROS formation. ©
Collapse
Affiliation(s)
- Mira Rosenblat
- The Lipid Research Laboratory, Technion Faculty of Medicine, the Rappaport Family Institute for Research in the Medical Sciences, Rambam Medical Center, Haifa, Israel
| | | | | | | |
Collapse
|
39
|
Rosenblat M, Volkova N, Aviram M. Pomegranate phytosterol (β-sitosterol) and polyphenolic antioxidant (punicalagin) addition to statin, significantly protected against macrophage foam cells formation. Atherosclerosis 2012; 226:110-7. [PMID: 23141585 DOI: 10.1016/j.atherosclerosis.2012.10.054] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 10/18/2012] [Accepted: 10/18/2012] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To assess the anti-atherogenic effects on macrophage cholesterol biosynthesis rate, and on cellular oxidative stress by the combination of simvastatin with a potent polyphenolic antioxidant (punicalagin), or with a phytosterol (β-sitosterol), or with pomegranate juice (POM, that contains both of them). METHODS AND RESULTS Simvastatin (15 μg/ml) decreased J774A.1 macrophage cholesterol biosynthesis rate by 42% as compared to control cells. The addition to the statin of either punicalagin (15 or 30 μM), or β-sitosterol (50 or 100 μM), increased the inhibitory effect of the statin up to 62% or 57%, respectively. Similarly, the combination of POM and simvastatin, resulted in an inhibitory effect up to 59%. While simvastatin inhibited the rate limiting enzyme HMGCoA-reductase, punicalagin, β-sitosterol or POM inhibited macrophage cholesterol biosynthesis downstream to mevalonate. Simvastatin (15 μg/ml) also modestly decreased macrophage reactive oxygen species (ROS) formation by 11%. In the presence of punicalagin (15 or 30 μM) however, a remarkable further inhibition was noted (by 61% or 79%, respectively). Although β-sitosterol alone showed some pro-oxidant activity, the combination of simvastatin, β-sitosterol and punicalagin, clearly demonstrated a remarkable 73% reduction in ROS production. Similarly, simvastatin + POM decreased the extent of ROS formation by up to 63%. These improved antioxidant effects of the combinations could be related to various anti-oxidative properties of the different compounds, including free radicals scavenging capacity, upregulation of paraoxonase 2, and stimulation of reduced glutathione. CONCLUSION The combination of simvastatin with potent antioxidant and phytosterol (such as present in pomegranate) could lead to attenuation of macrophage foam cell formation and atherogenesis.
Collapse
Affiliation(s)
- Mira Rosenblat
- The Lipid Research Laboratory, Technion-Israel Institute of Technology, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, and Rambam Medical Center, Haifa 31096, Israel
| | | | | |
Collapse
|
40
|
Free cholesterol-induced cytotoxicity a possible contributing factor to macrophage foam cell necrosis in advanced atherosclerotic lesions. Trends Cardiovasc Med 2012; 7:256-63. [PMID: 21235894 DOI: 10.1016/s1050-1738(97)00086-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A major characteristic of advanced atherosclerotic lesions is the necrotic, or lipid, core, which likely plays an important role in the clinical progression of these lesions. Recent data suggest that the necrotic core forms primarily as a consequence of macrophage foam cell necrosis. Lesional macrophages initially accumulate mostly cholesteryl esters, but macrophages in advanced lesions contain large amounts of unesterified, or free, cholesterol (FC). Although there are many theories as to why macrophage foam cells die in advanced lesions, the fact that a high FC:phospholipid (PL) ratio in cellular membranes can be toxic to cells suggests that FC-induced cytotoxicity may contribute to foam cell necrosis. The mechanism of FC cytotoxicity can be explained by disturbances in membrane protein function as a result of "stiffening" of the bilayer and by formation of intracellular FC crystals that can cause physical damage to cellular organelles. Macrophages appear to respond to FC loading by a fascinating adaptive response, namely the induction of PL biosynthesis, which initially keeps the cellular FC:PL ratio below toxic levels. Studies with cultured macrophages have demonstrated that a failure of this adaptive response leads to FC-induced foam cell cytotoxicity and necrosis, and thus a similar series of events in advanced atherosclerotic lesions could provide an explanation for the development of the necrotic core. (Trends Cardiovasc Med 1997;7: 256-263). © 1997, Elsevier Science Inc.
Collapse
|
41
|
Liu ML, Scalia R, Mehta JL, Williams KJ. Cholesterol-induced membrane microvesicles as novel carriers of damage-associated molecular patterns: mechanisms of formation, action, and detoxification. Arterioscler Thromb Vasc Biol 2012; 32:2113-21. [PMID: 22814745 DOI: 10.1161/atvbaha.112.255471] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Cholesterol enrichment occurs in vivo when phagocytes ingest retained and aggregated lipoproteins, damaged or senescent cells, and related debris. We previously reported that enrichment of human monocyte/macrophages with unesterified cholesterol (UC) triggers the release of highly procoagulant microvesicles ([MVs], also called microparticles) through induction of apoptosis. We determined whether UC-induced MVs (UCMVs) might transmit endogenous danger signals and, if so, what molecular processes might be responsible for their production, recognition, and detoxification. METHODS AND RESULTS Injection of UCMVs into rats provoked extensive leukocyte rolling and adherence to postcapillary venules in vivo. Likewise, exposure of mouse aortic explants or cultured human endothelial cells to UCMVs augmented the adhesion of human monocytes by several fold and increased endothelial cell intercellular adhesion molecule-1 via nuclear factor-κB activation. To explore molecular mechanisms, we found that UC enrichment of human monocytes, in the absence of other stimuli, induced mitochondrial complex II-dependent accumulation of superoxide and peroxides. A subset of these moieties was exported on UCMVs and mediated endothelial activation. Strikingly, aortic explants from mice lacking lectin-like oxidized low-density lipoprotein receptor-1, a pattern-recognition receptor, were essentially unable to respond to UCMVs, whereas simultaneously treated explants from wild-type mice responded robustly by increasing monocyte recruitment. Moreover, high-density lipoprotein and its associated enzyme paraoxonase-1 exerted unexpected roles in the detoxification of UCMVs. CONCLUSIONS Overall, our study implicates MVs from cholesterol-loaded human cells as novel carriers of danger signals. By promoting maladaptive immunologic and thrombotic responses, these particles may contribute to atherothrombosis and other conditions in vivo.
Collapse
Affiliation(s)
- Ming-Lin Liu
- Section of Endocrinology, Diabetes and Metabolism, Temple University School of Medicine, 3322 North Broad Street, Medical Office Building, room 212, Philadelphia, PA 19140, USA.
| | | | | | | |
Collapse
|
42
|
Gold ES, Ramsey SA, Sartain MJ, Selinummi J, Podolsky I, Rodriguez DJ, Moritz RL, Aderem A. ATF3 protects against atherosclerosis by suppressing 25-hydroxycholesterol-induced lipid body formation. ACTA ACUST UNITED AC 2012; 209:807-17. [PMID: 22473958 PMCID: PMC3328364 DOI: 10.1084/jem.20111202] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The transcription factor ATF3 inhibits lipid body formation in macrophages during atherosclerosis in part by dampening the expression of cholesterol 25-hydroxylase. Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of lipid-loaded macrophages in the arterial wall. We demonstrate that macrophage lipid body formation can be induced by modified lipoproteins or by inflammatory Toll-like receptor agonists. We used an unbiased approach to study the overlap in these pathways to identify regulators that control foam cell formation and atherogenesis. An analysis method integrating epigenomic and transcriptomic datasets with a transcription factor (TF) binding site prediction algorithm suggested that the TF ATF3 may regulate macrophage foam cell formation. Indeed, we found that deletion of this TF results in increased lipid body accumulation, and that ATF3 directly regulates transcription of the gene encoding cholesterol 25-hydroxylase. We further showed that production of 25-hydroxycholesterol (25-HC) promotes macrophage foam cell formation. Finally, deletion of ATF3 in Apoe−/− mice led to in vivo increases in foam cell formation, aortic 25-HC levels, and disease progression. These results define a previously unknown role for ATF3 in controlling macrophage lipid metabolism and demonstrate that ATF3 is a key intersection point for lipid metabolic and inflammatory pathways in these cells.
Collapse
|
43
|
Dillard A, Matthan NR, Lichtenstein AH. Tamm-Horsfall protein 1 macrophage lipid accumulation unaffected by fatty acid double-bond geometric or positional configuration. Nutr Res 2012; 31:625-30. [PMID: 21925348 DOI: 10.1016/j.nutres.2011.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 07/29/2011] [Accepted: 08/02/2011] [Indexed: 12/16/2022]
Abstract
Dietary fatty acid type alters atherosclerotic lesion progression and macrophage lipid accumulation. Incompletely elucidated are the mechanisms by which fatty acids differing in double-bond geometric or positional configuration alter arterial lipid accumulation. The objective of this study was to evaluate the suitability of using Tamm-Horsfall protein 1 (THP-1) macrophages as a model for human monocytes/macrophages to address this issue. Our hypothesis was that THP-1 macrophages pretreated with ω-3 polyunsaturated fatty acids (PUFA) or fatty acid containing a cis double bond would accumulate less lipid, particularly cholesteryl ester, compared with ω-6 polyunsaturated fatty acids or a fatty acid containing a trans double bond, respectively. THP-1 monocytes were differentiated into macrophages and then incubated with fatty acids for 48 hours. There was an increase in intracellular lipid in response to all the fatty acids assessed, and by response was similar among the fatty acids. The increase in lipid accumulation was contributed to triglyceride and to a lesser extent cholesterol, primarily free cholesterol. These data suggest that free fatty acids bound to bovine serum albumin, regardless of double-bond geometric or positional configuration, induce triglyceride accumulation but had only a modest effect on cholesterol accumulation in THP-1 macrophages. The cells appeared to respond similarly to the assessed fatty acids in terms of amount and type of lipid accumulated. Hence, the THP-1 cell line was not appropriate to test the hypotheses of interest.
Collapse
Affiliation(s)
- Alice Dillard
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA.
| | | | | |
Collapse
|
44
|
Pomegranate Protection against Cardiovascular Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012. [DOI: 10.1155/2012/382763 pmid: 23243442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The current paper summarizes the antioxidative and antiatherogenic effects of pomegranate polyphenols on serum lipoproteins and on arterial macrophages (two major components of the atherosclerotic lesion), using bothin vitroandin vivohumans and mice models. Pomegranate juice and its by-products substantially reduced macrophage cholesterol and oxidized lipids accumulation, and foam cell formation (the hallmark of early atherogenesis), leading to attenuation of atherosclerosis development, and its consequent cardiovascular events.
Collapse
|
45
|
Necrotic cell death in atherosclerosis. Basic Res Cardiol 2011; 106:749-60. [DOI: 10.1007/s00395-011-0192-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/10/2011] [Accepted: 05/11/2011] [Indexed: 02/06/2023]
|
46
|
Liang M, Puri A, Devlin G. The vulnerable plaque: the real villain in acute coronary syndromes. Open Cardiovasc Med J 2011; 5:123-9. [PMID: 21673834 PMCID: PMC3111722 DOI: 10.2174/1874192401105010123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 04/09/2011] [Accepted: 04/12/2011] [Indexed: 01/13/2023] Open
Abstract
The term "vulnerable plaque" refers to a vascular lesion that is prone to rupture and may result in life-threatening events which include myocardial infarction. It consists of thin-cap fibroatheroma and a large lipid core which is highly thrombogenic. Acute coronary syndromes often result from rupture of vulnerable plaques which frequently are only moderately stenosed and not visible by conventional angiography. Several invasive and non-invasive strategies have been developed to assess the burden of vulnerable plaques. Intravascular ultrasound provides a two-dimensional cross-sectional image of the arterial wall and can help assess the plaque burden and composition. Optical coherent tomography offers superior resolution over intravascular ultrasound. High-resolution magnetic resonance imaging provides non-invasive imaging for visualizing fibrous cap thickness and rupture in plaques. In addition, it may be of value in assessing the effects of treatments, such as lipid-lowering therapy. Technical issues however limit its clinical applicability. The role of multi-slice computed tomography, a well established screening tool for coronary artery disease, remains to be determined. Fractional flow reserve (FFR) may provide physiological functional assessment of plaque vulnerability; however, its role in the management of vulnerable plaque requires further studies. Treatment of the vulnerable patient may involve systemic therapy which currently include statins, ACE inhibitors, beta-blockers, aspirin, and calcium-channel blockers and in the future local therapeutic options such as drug-eluting stents or photodynamic therapy.
Collapse
Affiliation(s)
- Michael Liang
- Department of Cardiology, Waikato Hospital, New Zealand
| | | | | |
Collapse
|
47
|
Meilin E, Aviram M, Hayek T. Insulin increases macrophage triglyceride accumulation under diabetic conditions through the down regulation of hormone sensitive lipase and adipose triglyceride lipase. Biofactors 2011; 37:95-103. [PMID: 21344529 DOI: 10.1002/biof.144] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 12/19/2010] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus (DM) is a major risk factor for the development of atherosclerosis, and high-serum levels of insulin are strongly associated with type 2 DM. Atherosclerosis is characterized by lipid-laden macrophage foam cell formations, which contain substantial amount of cholesterol and triglycerides (TG). This study analyzed for the first time, the effects of insulin on TG metabolism in macrophages under normal and diabetic conditions. Mouse peritoneal macrophages from C57BL6 mice were cultured under normal (5 mM) or high (diabetic condition, 25 mM) glucose concentration, with or without insulin, followed by the assessment of TGs metabolism in these cells. Under diabetic condition, insulin increased TG accumulation in macrophages by 100%, decreased cellular TG degradation by 21%, and increased C-reactive protein levels in macrophages by 83%. Insulin decreased hormone-sensitive lipase mRNA and protein expression by 28 and 60%, respectively, and adipose TG lipase (ATGL) protein expression by 36%, with no significant reduction in ATGL mRNA levels. The inhibition of insulin-mediated phosphorylation, and the addition of cyclic adenosine 3'5'-monoposphate, abolished the insulin-mediated inhibition of TGs degradation in cells. Insulin increases macrophage TGs accumulation only under diabetic conditions, suggesting that impaired glycemic control in diabetic patients treated with insulin may contribute to foam cell formations and enhanced inflammation in macrophages.
Collapse
Affiliation(s)
- Edna Meilin
- The Lipid Research Laboratory, Technion, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Science, Rambam Medical Center, Haifa, Israel
| | | | | |
Collapse
|
48
|
Kim SH, Lee ES, Lee JY, Lee ES, Lee BS, Park JE, Moon DW. Multiplex coherent anti-stokes Raman spectroscopy images intact atheromatous lesions and concomitantly identifies distinct chemical profiles of atherosclerotic lipids. Circ Res 2010; 106:1332-41. [PMID: 20299664 DOI: 10.1161/circresaha.109.208678] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Lipids are a key component of atherogenesis. However, their physiological role on the progression of atherosclerosis including plaque vulnerability has not been clearly understood, because of the lack of appropriate tools for chemical assessment. OBJECTIVE We aimed to develop a label-free chemical imaging platform based on multiplex coherent anti-Stokes Raman scattering (CARS) for the correlative study of the morphology and chemical profile of atherosclerotic lipids. METHODS AND RESULTS Whole aortas from atherosclerotic apolipoprotein E knock-out mice were en face examined by multiplex CARS imaging and 4 distinctive morphologies of the lipids (intra/extracellular lipid droplets and needle-/plate-shaped lipid crystals) were classified. The chemical profiles of atherosclerotic lipids depending on morphologies were firstly identified from intact atheromatous tissue by multiplex CARS. We demonstrated that needle-/plate-shaped lipid crystals in advanced plaques had undergone a phase shift to the solid state with increased protein contents, implying that lipid modification had occurred beforehand. The validity of lipid-selective multiplex CARS imaging was supported by comparative results from oil red O staining and whole-mount immunohistochemistry. By spatial CARS analysis of atherosclerosis progression, we found greater accumulation of lipid crystals in both the lesser curvature of the aortic arch and the innominate artery. Furthermore, multiplex CARS measurement successfully demonstrated the effect of a drug, statin, on atherosclerotic lipids by showing the change of their chemical profiles. CONCLUSIONS Multiplex CARS imaging directly provides intact morphologies of atherosclerotic lipids with correlative chemical information, thereby suggesting its potential applications in the investigation of lipid-associated disorders and the preclinical drug screening.
Collapse
Affiliation(s)
- Se-Hwa Kim
- Center for Nano-Bio Technology, Korea Research Institute of Standards and Science, 1 Doryong-Dong, Yuseong-Gu, Daejeon 305-340, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Zhou J, Chew M, Ravn HB, Falk E. Plaque pathology and coronary thrombosis in the pathogenesis of acute coronary syndromes. Scandinavian Journal of Clinical and Laboratory Investigation 2010. [DOI: 10.1080/00365519909168321] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
50
|
Cholesterol crystals piercing the arterial plaque and intima trigger local and systemic inflammation. J Clin Lipidol 2010; 4:156-64. [PMID: 21122648 DOI: 10.1016/j.jacl.2010.03.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/03/2010] [Accepted: 03/05/2010] [Indexed: 11/20/2022]
Abstract
The response to arterial wall injury is an inflammatory process, which over time becomes integral to the development of atherosclerosis and subsequent plaque instability. However, the underlying injurious agent, critical to this process, has not received much attention. In this review, a model of plaque rupture is hypothesized with two stages of inflammatory activity. In stage I (cholesterol crystal-induced cell injury and apoptosis), intracellular cholesterol crystals induce foam cell apoptosis, setting up a vicious cycle by signaling more macrophages, resulting in accumulation of extra cellular lipids. This local inflammation eventually leads to the formation of a semi-liquid, lipid-rich necrotic core of a vulnerable plaque. In stage II (cholesterol crystal-induced arterial wall injury), the saturated lipid core is now primed for crystallization, which can manifest as a clinical syndrome with a systemic inflammation response. Cholesterol crystallization is the trigger that causes core expansion, leading to intimal injury. We recently demonstrated that when cholesterol crystallizes from a liquid to a solid state, it undergoes volume expansion, which can tear the plaque cap. This observation of cholesterol crystals perforating the cap and intimal surface was made in the plaques of patients who died with acute coronary syndrome. We have also demonstrated that several agents (ie, statins, aspirin, and ethanol) can dissolve cholesterol crystals and may be exerting their immediate benefits by this direct mechanism. Also, because recent studies have demonstrated that high-sensitivity C-reactive protein may be a reliable marker in selecting patients for statin therapy, it could reflect the presence of intimal injury by cholesterol crystals. This was demonstrated in an atherosclerotic rabbit model. Therefore, we propose that cholesterol crystallization could help explain in part both local and systemic inflammation associated with atherosclerosis.
Collapse
|