1
|
Tsujino S, Sadamitsu S, Nosaka N, Fushimi T, Kishimoto Y, Kondo K. Age-Related Effects of Olive Oil Polyphenol Ingestion on Oxidation of Low-Density Lipoprotein in Healthy Japanese Men: A Randomized Controlled Double-Blind Crossover Trial. Nutrients 2024; 16:3342. [PMID: 39408309 PMCID: PMC11478568 DOI: 10.3390/nu16193342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND The function of olive oil polyphenols in suppressing the oxidation of low-density lipoprotein (LDL) is well-known in Europeans. However, it remains unclear whether olive oil polyphenols exert antioxidant effects in Japanese people. OBJECTIVES The objective of this study was to determine whether the ingestion of olive oil polyphenols suppresses LDL oxidation in the Japanese population and whether this effect depends on age. METHODS This randomized controlled double-blind crossover trial with a 2-week washout enrolled 80 healthy Japanese men aged 35-64 years. Participants ingested either 14 g of extra virgin olive oil containing 5.0 mg of olive oil polyphenols (test food) or 14 g of refined olive oil containing 0.3 mg of olive oil polyphenols (control food) for 3 weeks. The primary outcome was oxidized LDL (malondialdehyde-modified LDL; MDA-LDL). Subgroup analyses based on age (35-50 and 51-64 years) were also performed. RESULTS In all of the participants (35-64 years), there were no significant differences in MDA-LDL between the control and test groups. However, in the 35-50 years subgroup, ingestion of olive oil polyphenols led to a significantly larger reduction in MDA-LDL as compared with the control group (p < 0.025). CONCLUSIONS The significantly lower dietary total polyphenol intake of the 35-50 years subgroup compared to the 51-64 years subgroup suggests that the suppressive function of olive oil polyphenol intake on LDL oxidation in Japanese men is influenced by dietary habits and is more clearly demonstrated in the younger age population with a relatively low total polyphenol intake.
Collapse
Affiliation(s)
- Shogo Tsujino
- Strategic Invention R & D, The Nisshin OilliO Group, Ltd., Yokohama 235-8558, Japan; (S.S.); (N.N.); (T.F.)
| | - Shohei Sadamitsu
- Strategic Invention R & D, The Nisshin OilliO Group, Ltd., Yokohama 235-8558, Japan; (S.S.); (N.N.); (T.F.)
| | - Naohisa Nosaka
- Strategic Invention R & D, The Nisshin OilliO Group, Ltd., Yokohama 235-8558, Japan; (S.S.); (N.N.); (T.F.)
| | - Tatsuya Fushimi
- Strategic Invention R & D, The Nisshin OilliO Group, Ltd., Yokohama 235-8558, Japan; (S.S.); (N.N.); (T.F.)
| | - Yoshimi Kishimoto
- Department of Food Science and Human Nutrition, Setsunan University, Osaka 573-0101, Japan;
| | - Kazuo Kondo
- Ochanomizu University, Tokyo 112-8610, Japan
| |
Collapse
|
2
|
Matsuo K, Inoue I, Matsuda T, Arai T, Nakano S. Relative increase in production ratio of small dense low-density lipoprotein in acute coronary syndrome with high coronary plaque burden: an ex-vivo analysis. Heart Vessels 2024:10.1007/s00380-024-02440-3. [PMID: 39017677 DOI: 10.1007/s00380-024-02440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
The absolute value of small dense low-density lipoprotein (sd-LDL) including small LDL (s-LDL) and very small LDL (vs-LDL) has been shown to be associated with increased incidence of atherosclerosis. However, the impact of short-timeframe increases in sd-LDL on arteriosclerosis has not yet been elucidated. Therefore, we investigated the clinical roles of ex-vivo induced sd-LDL in acute coronary syndrome (ACS) using a novel method. This is a prospective, single-blind, and observational study that screened patients who underwent coronary angiography (CAG) for the treatment of ACS or investigation of heart-failure etiology between June 2020 and April 2022 (n = 247). After excluding patients with known diabetes mellitus and advanced renal disease, the patients were further divided into the ACS (n = 34) and control (non-obstructive coronary artery, n = 34) groups. The proportion of sd-LDL (s-LDL + vs-LDL) in total lipoproteins was observed before and after 2-h incubation at 37 ℃ (to approximate physiologic conditions) using 3% polyacrylamide gel electrophoresis. The coronary plaque burden was quantified upon CAG in the ACS group. There were no significant differences between the ACS and control groups in terms of clinical coronary risk factors. The baseline of large, medium, small, and very small LDL were comparable between the two groups. Following a 2-h incubation period, significant increases were observed in the ratios of s-LDL and vs-LDL in both the ACS and control groups (ACS, p = 0.01*; control, p = 0.01*). Notably, the magnitude of increase in sd-LDL was more pronounced in the ACS group compared to the control group, with s-LDL showing a significant difference (p = 0.03*) and vs-LDL showing a tread toward significance (p = 0.08). In addition, in both groups, there was a decrease in IDL and L-LDL, while M-LDL remained unchanged. The plaque burden index and rate of short-timeframe changes in both s-LDL (p = 0.01*) and vs-LDL (p = 0.04*) before and after incubation were significantly correlated in the ACS group. The enhanced production rate of sd-LDL induced under short-term physiologic culture in an ex-vivo model was greater in patients with ACS than in the control group. The increase in sd-LDL is positively correlated with coronary plaque burden. Short-timeframe changes in sd-LDL may serve as markers for the severity of coronary artery disease.
Collapse
Affiliation(s)
- Keisuke Matsuo
- Department of Cardiology, International Medical Center, Saitama Medical University, 1397-1 Yamane, Hidaka-Shi, Saitama, 350-1298, Japan.
| | - Ikuo Inoue
- Department of Endocrine Diabetology, Saitama Medical University Hospital, Saitama, Japan
| | | | - Takahide Arai
- Department of Cardiology, International Medical Center, Saitama Medical University, 1397-1 Yamane, Hidaka-Shi, Saitama, 350-1298, Japan
| | - Shintaro Nakano
- Department of Cardiology, International Medical Center, Saitama Medical University, 1397-1 Yamane, Hidaka-Shi, Saitama, 350-1298, Japan
| |
Collapse
|
3
|
Machado VA, Santisteban ARN, Martins CM, Damasceno NRT, Fonseca FA, Neto AMF, Izar MC. Effects of phytosterol supplementation on lipoprotein subfractions and LDL particle quality. Sci Rep 2024; 14:11108. [PMID: 38750162 PMCID: PMC11096344 DOI: 10.1038/s41598-024-61897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Phytosterols are natural components of plant-based foods used as supplements because of their known cholesterol-lowering effect. However, their effects on lipoprotein subfractions and the quality of the LDL particle have not been studied in greater detail. We aimed to evaluate the effects of phytosterols supplements on lipids, lipoproteins subfractions, and on the quality of LDL. A prospective, pilot-type, open label, cross-over study, randomized 23 males in primary prevention of hypercholesterolemia to receive diet or diet plus phytosterol (2.6 g in 2 doses, with meals) for 12 weeks, when treatments were switched for another 12 weeks. Lipoprotein subfractions were analyzed by electrophoresis in polyacrylamide gel (Lipoprint System®). The Sampson equation estimated the small and dense (sd) and large and buoyant (lb) LDL subfractions from the lipid profile. Quality of LDL particle was analyzed by Z-scan and UV-vis spectroscopy. Primary outcome was the comparison of diet vs. diet plus phytosterols. Secondary outcomes assessed differences between baseline, diet and diet plus phytosterol. Non-parametric statistics were performed with p < 0.05. There was a trend to reduction on HDL-7 (p = 0.05) in diet plus phytosterol arm, with no effects on the quality of LDL particles. Heatmap showed strong correlations (ρ > 0.7) between particle size by different methods with both interventions. Diet plus phytosterol reduced TC, increased HDL-c, and reduced IDL-B, whereas diet increased HDL7, and reduced IDL-B vs. baseline (p < 0.05, for all). Phytosterol supplementation demonstrated small beneficial effects on HDL-7 subfraction, compared with diet alone, without effects on the quality of LDL particles.This trial is registered in Clinical Trials (NCT06127732) and can be accessed at https://clinicaltrials.gov .
Collapse
Affiliation(s)
- Valeria Arruda Machado
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, 340 - Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Celma Muniz Martins
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, 340 - Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Francisco A Fonseca
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, 340 - Sao Paulo, Sao Paulo, SP, Brazil
- Institute of Physics, National Institute of Complex Fluids, University of São Paulo, São Paulo, SP, Brazil
| | - Antonio M Figueiredo Neto
- Institute of Physics, National Institute of Complex Fluids, University of São Paulo, São Paulo, SP, Brazil
| | - Maria Cristina Izar
- Cardiology Division, Department of Medicine, Federal University of Sao Paulo, 340 - Sao Paulo, Sao Paulo, SP, Brazil.
- Institute of Physics, National Institute of Complex Fluids, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Griffin BA, Lovegrove JA. Saturated fat and CVD: importance of inter-individual variation in the response of serum low-density lipoprotein cholesterol. Proc Nutr Soc 2024:1-11. [PMID: 38282001 DOI: 10.1017/s0029665124000107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The aim of this review is to provide an overview of the history in support of the role of dietary saturated fatty acids (SFA) in the development of cardiovascular disease (CVD), and the controversy and consensus for the evidence in support of guidelines to remove and replace SFA with unsaturated fatty acids. The review will also examine the existence, origins, and implications for CVD risk of variability in serum LDL-cholesterol in response to these guidelines. While the quality of supporting evidence for the efficacy of restricting SFA on CVD risk has attracted controversy, this has helped to increase understanding of the inter-relationships between SFA, LDL-cholesterol and CVD, and reinforce confidence in this dietary recommendation. Nevertheless, there is significant inter-individual variation in serum LDL-C in response to this dietary change. The origins of this variation are multi-factorial and involve both dietary and metabolic traits. If serum biomarkers of more complex metabolic traits underlying LDL-responsiveness can be identified, this would have major implications for the targeting of these dietary guidelines to LDL-responders, to maximise the benefit to their cardiovascular health.
Collapse
Affiliation(s)
- Bruce A Griffin
- Department of Nutrition, Food & Exercise Sciences, University of Surrey, GuildfordGU2 7XH, UK
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular & Metabolic Research, Department of Food and Nutritional Sciences, University of Reading, ReadingRG6 6DZ, UK
| |
Collapse
|
5
|
Reed RM, Whyte MB, Goff LM. Cardiometabolic disease in Black African and Caribbean populations: an ethnic divergence in pathophysiology? Proc Nutr Soc 2023:1-11. [PMID: 38230432 DOI: 10.1017/s0029665123004895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
In the UK, populations of Black African and Caribbean (BAC) ethnicity suffer higher rates of cardiometabolic disease than White Europeans (WE). Obesity, leading to increased visceral adipose tissue (VAT) and intrahepatic lipid (IHL), has long been associated with cardiometabolic risk, driving insulin resistance and defective fatty acid/lipoprotein metabolism. These defects are compounded by a state of chronic low-grade inflammation, driven by dysfunctional adipose tissue. Emerging evidence has highlighted associations between central complement system components and adipose tissue, fatty acid metabolism and inflammation; it may therefore sit at the intersection of various cardiometabolic disease risk factors. However, increasing evidence suggests an ethnic divergence in pathophysiology, whereby current theories fail to explain the high rates of cardiometabolic disease in BAC populations. Lower fasting and postprandial TAG has been reported in BAC, alongside lower VAT and IHL deposition, which are paradoxical to the high rates of cardiometabolic disease exhibited by this ethnic group. Furthermore, BAC have been shown to exhibit a more anti-inflammatory profile, with lower TNF-α and greater IL-10. In contrast, recent evidence has revealed greater complement activation in BAC compared to WE, suggesting its dysregulation may play a greater role in the high rates of cardiometabolic disease experienced by this population. This review outlines the current theories of how obesity is proposed to drive cardiometabolic disease, before discussing evidence for ethnic differences in disease pathophysiology between BAC and WE populations.
Collapse
Affiliation(s)
- Reuben M Reed
- Department of Nutritional Sciences, Faculty of Life Sciences & Medicine, King's College London, London SE1 9NH, UK
| | - Martin B Whyte
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7WG, UK
| | - Louise M Goff
- Leicester Diabetes Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
6
|
Cisse A, Desfosses A, Stainer S, Kandiah E, Traore DAK, Bezault A, Schachner-Nedherer AL, Leitinger G, Hoerl G, Hinterdorfer P, Gutsche I, Prassl R, Peters J, Kornmueller K. Targeting structural flexibility in low density lipoprotein by integrating cryo-electron microscopy and high-speed atomic force microscopy. Int J Biol Macromol 2023; 252:126345. [PMID: 37619685 DOI: 10.1016/j.ijbiomac.2023.126345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023]
Abstract
Low-density lipoprotein (LDL) plays a crucial role in cholesterol metabolism. Responsible for cholesterol transport from the liver to the organs, LDL accumulation in the arteries is a primary cause of cardiovascular diseases, such as atherosclerosis. This work focuses on the fundamental question of the LDL molecular structure, as well as the topology and molecular motions of apolipoprotein B-100 (apo B-100), which is addressed by single-particle cryo-electron microscopy (cryo-EM) and high-speed atomic force microscopy (HS-AFM). Our results suggest a revised model of the LDL core organization with respect to the cholesterol ester (CE) arrangement. In addition, a high-density region close to the flattened poles could be identified, likely enriched in free cholesterol. The most remarkable new details are two protrusions on the LDL surface, attributed to the protein apo B-100. HS-AFM adds the dimension of time and reveals for the first time a highly dynamic direct description of LDL, where we could follow large domain fluctuations of the protrusions in real time. To tackle the inherent flexibility and heterogeneity of LDL, the cryo-EM maps are further assessed by 3D variability analysis. Our study gives a detailed explanation how to approach the intrinsic flexibility of a complex system comprising lipids and protein.
Collapse
Affiliation(s)
- Aline Cisse
- Université Grenoble Alpes, CNRS, LiPhy, Grenoble, France; Institut Laue-Langevin, Grenoble, France
| | - Ambroise Desfosses
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Sarah Stainer
- Department of Experimental Applied Biophysics, Johannes Kepler University Linz, Linz, Austria
| | | | - Daouda A K Traore
- Institut Laue-Langevin, Grenoble, France; Faculté de Pharmacie, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali; Faculty of Natural Sciences, School of Life Sciences, Keele University, Staffordshire, UK
| | - Armel Bezault
- Institut Européen de Chimie et Biologie, UAR3033/US001, Université de Bordeaux, CNRS, INSERM 2, Pessac, France; Structural Image Analysis Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3528, Paris, France
| | - Anna-Laurence Schachner-Nedherer
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical Physics and Biophysics Division, Medical University of Graz, Graz, Austria
| | - Gerd Leitinger
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Gerd Hoerl
- Otto Loewi Research Center, Physiological Chemistry, Medical University of Graz, Graz, Austria
| | - Peter Hinterdorfer
- Department of Experimental Applied Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Irina Gutsche
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, Grenoble, France
| | - Ruth Prassl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical Physics and Biophysics Division, Medical University of Graz, Graz, Austria
| | - Judith Peters
- Université Grenoble Alpes, CNRS, LiPhy, Grenoble, France; Institut Laue-Langevin, Grenoble, France; Institut Universitaire de France, France.
| | - Karin Kornmueller
- Institut Laue-Langevin, Grenoble, France; Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical Physics and Biophysics Division, Medical University of Graz, Graz, Austria.
| |
Collapse
|
7
|
De Marco D, Pencina K, Pencina M, Dufresne L, Thanassoulis G, Sniderman AD. Is hypertriglyceridemia a reliable indicator of cholesterol-depleted Apo B particles? J Clin Lipidol 2023; 17:452-457. [PMID: 37225542 DOI: 10.1016/j.jacl.2023.05.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
OBJECTIVES Because cholesterol-depleted Apo B particles are thought to be a hallmark of hypertriglyceridemia, American, Canadian and European Lipid Guidelines suggest screening for Apo B only in patients with hypertriglyceridemia. Accordingly, this study examines the relationship of triglycerides to the LDL-C/Apo B and non-HDL-C/Apo B ratios. METHODS The study cohort consisted of 6272 NHANES subjects adjusted for a weighted sample size of 150 million subjects without previously diagnosed cardiac disease. Data was reported by LDL-C/Apo B tertiles as weighted frequencies and percent. Sensitivity, specificity, negative predictive and positive predictive values were calculated for triglycerides thresholds of >150 mg/dL and >200 mg/dL. The range of values of Apo B for decisional levels of LDL-C and non-HDL-C were also determined RESULTS: Among patients with triglycerides >200 mg/dL, 75.9% were amongst the lowest LDL-C/Apo B tertile. However, this represents only 7.5% of the total population. Of patients with the lowest LDL-C/Apo B ratio, 59.8% had triglycerides <150 mg/dL. Moreover, there was an inverse relationship between non-HDL-C/Apo B such that elevated triglycerides were associated with the highest tertile of non-HDL-C/Apo B. Finally, the range of values of Apo B for decisional levels of LDL-C and non-HDL-C was determined and is so broad- 30.3-40.6 mg/dl Apo B for different levels of LDL-C and 19.5 to 27.6 mg/dl Apo B for different levels of non-HDL-C- that neither is an adequate clinical surrogate for Apo B. CONCLUSION Plasma triglycerides should not be used to restrict the measurement of Apo B since cholesterol-depleted Apo B particles may be present at any level of triglyceride.
Collapse
Affiliation(s)
- Davide De Marco
- Mike and Valeria Rosenbloom Centre for Cardiovascular Prevention, Department of Medicine, McGill University Health Centre, Royal Victoria Hospital, Glen Site - C04.4180, 1001 Boulevard Décarie, Montreal, Quebec H4A 3J1, Canada
| | - Karol Pencina
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Michael Pencina
- Duke University School of Medicine, Biostatistics and Bioinformatics, DCRI, Durham, NC, United Kingdom
| | - Line Dufresne
- Mike and Valeria Rosenbloom Centre for Cardiovascular Prevention, Department of Medicine, McGill University Health Centre, Royal Victoria Hospital, Glen Site - C04.4180, 1001 Boulevard Décarie, Montreal, Quebec H4A 3J1, Canada
| | - George Thanassoulis
- Mike and Valeria Rosenbloom Centre for Cardiovascular Prevention, Department of Medicine, McGill University Health Centre, Royal Victoria Hospital, Glen Site - C04.4180, 1001 Boulevard Décarie, Montreal, Quebec H4A 3J1, Canada
| | - Allan D Sniderman
- Mike and Valeria Rosenbloom Centre for Cardiovascular Prevention, Department of Medicine, McGill University Health Centre, Royal Victoria Hospital, Glen Site - C04.4180, 1001 Boulevard Décarie, Montreal, Quebec H4A 3J1, Canada.
| |
Collapse
|
8
|
Glavinovic T, Thanassoulis G, de Graaf J, Couture P, Hegele RA, Sniderman AD. Physiological Bases for the Superiority of Apolipoprotein B Over Low-Density Lipoprotein Cholesterol and Non-High-Density Lipoprotein Cholesterol as a Marker of Cardiovascular Risk. J Am Heart Assoc 2022; 11:e025858. [PMID: 36216435 PMCID: PMC9673669 DOI: 10.1161/jaha.122.025858] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In 2019, the European Society of Cardiology/European Atherosclerosis Society stated that apolipoprotein B (apoB) was a more accurate marker of cardiovascular risk than low-density lipoprotein cholesterol (LDL-C) and non-high-density lipoprotein cholesterol. Since then, the evidence has continued to mount in favor of apoB. This review explicates the physiological mechanisms responsible for the superiority of apoB as a marker of the cardiovascular risk attributable to the atherogenic apoB lipoprotein particles chylomicron remnants, very low-density lipoprotein, and low-density lipoprotein particles. First, the nature and relative numbers of these different apoB particles will be outlined. This will make clear why low-density lipoprotein particles are almost always the major determinants of cardiovascular risk and why the concentrations of triglycerides and LDL-C may obscure this relation. Next, the mechanisms that govern the number of very low-density lipoprotein and low-density lipoprotein particles will be outlined because, except for dysbetalipoproteinemia, the total number of apoB particles determines cardiovascular risk, Then, the mechanisms that govern the cholesterol mass within very low-density lipoprotein and low-density lipoprotein particles will be reviewed because these are responsible for the discordance between the mass of cholesterol within apoB particles, measured either as LDL-C or non-high-density lipoprotein cholesterol, and the number of apoB particles measured as apoB, which creates the superior predictive power of apoB over LDL-C and non-high-density lipoprotein cholesterol. Finally, the major apoB dyslipoproteinemias will be briefly outlined. Our objective is to provide a physiological framework for health care givers to understand why apoB is a more accurate marker of cardiovascular risk than LDL-C or non-high-density lipoprotein cholesterol.
Collapse
Affiliation(s)
- Tamara Glavinovic
- Division of Nephrology, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| | - George Thanassoulis
- Mike and Valeria Centre for Cardiovascular Prevention, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| | - Jacqueline de Graaf
- University of Nijmegen Radboud University Medical CenterDepartment of General Internal MedicineNijmegenthe Netherlands
| | - Patrick Couture
- Université LavalCentre Hospitalier Universitaire de QuébecQuebecCanada
| | - Robert A. Hegele
- Robarts Research Institute and Department of Medicine, Schulich School of Medicine and DentistryWestern UniversityLondonOntarioCanada
| | - Allan D. Sniderman
- Mike and Valeria Centre for Cardiovascular Prevention, Department of MedicineMcGill University Health CentreMontrealQuebecCanada
| |
Collapse
|
9
|
Macri E, Azhar Y. Prevention of Neurologic Disease with Fasting. Semin Neurol 2022; 42:549-557. [PMID: 36216359 DOI: 10.1055/a-1957-8449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Fasting has been widely studied in both prevention and treatment of many neurologic disorders. Some conditions may be prevented with any type of fasting, while some may require a stricter regimen. Fasting reduces weight, fasting blood glucose, and insulin resistance, and favorably alters the gut biome and the immune system. This article discusses various versions of fasting that have been studied as well as the known and theoretical mechanisms of how fasting effects the body and the brain. This article will then review evidence supporting the potential preventive and treatment effects of fasting in specific neurologic disorders including ameliorating the symptoms of Parkinson's disease, improving cognition in Alzheimer's disease, reducing migraine frequency and intensity, and reducing seizure frequency in epilepsy.
Collapse
Affiliation(s)
- Elizabeth Macri
- Department of Neurology, The University of New Mexico, Albuquerque, New Mexico
| | - Yusra Azhar
- Department of Neurology, The University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
10
|
Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. BIOLOGY 2022; 11:biology11020239. [PMID: 35205105 PMCID: PMC8869745 DOI: 10.3390/biology11020239] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary The research outlined in this review paper discusses potential health benefits associated with a diet enriched with tomatoes and tomato products. This includes details of previous studies investigating the anticancer properties of tomatoes, protection against cardiovascular and neurodegenerative diseases and diabetes, maintenance of a healthy gut microbiome, and improved skin health, fertility, immune response, and exercise recovery. The specific parts of a tomato fruit that contribute these health benefits are also outlined. The potential disadvantages to a tomato-rich diet are detailed, especially the consumption of supplements that contain compounds found in tomatoes, such as lycopene. This review also discusses how the cultivation of tomato plants can affect the nutritional value of the fruit harvested. Different environmental growing conditions such as light intensity, growing media, and temperature are explained in terms of the impact they have on the quality of fruit, its nutrient content, and hence the potential health benefits acquired from eating the fruit. Abstract This review outlines the health benefits associated with the regular consumption of tomatoes and tomato products. The first section provides a detailed account of the horticultural techniques that can impact the quality of the fruit and its nutritional properties, including water availability, light intensity, temperature, and growing media. The next section provides information on the components of tomato that are likely to contribute to its health effects. The review then details some of the health benefits associated with tomato consumption, including anticancer properties, cardiovascular and neurodegenerative diseases and skin health. This review also discusses the impact tomatoes can have on the gut microbiome and associated health benefits, including reducing the risk of inflammatory bowel diseases. Other health benefits of eating tomatoes are also discussed in relation to effects on diabetes, the immune response, exercise recovery, and fertility. Finally, this review also addresses the negative effects that can occur as a result of overconsumption of tomato products and lycopene supplements.
Collapse
|
11
|
HAND2-AS1 targeting miR-1208/SIRT1 axis alleviates foam cell formation in atherosclerosis. Int J Cardiol 2022; 346:53-61. [PMID: 34780888 DOI: 10.1016/j.ijcard.2021.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/17/2021] [Accepted: 11/07/2021] [Indexed: 01/10/2023]
Abstract
The abnormally expressed long non-coding RNAs (lncRNAs) exert an important part in the occurrence and development of cardiovascular disease, however, their roles in atherosclerosis (AS) remains unknown. This work focused on investigating the role of HAND2 Antisense RNA 1 (HAND2-AS1) and the related mechanism. As a result, SIRT1 and HAND2-AS1 expression significantly decreased in plasma from patients with atherosclerotic plaques and macrophages originating from THP-1 induced by ox-LDL. Lentivirus mediated HAND2-AS1 overexpression markedly inhibited lipid absorption and deposition within foam cells originating from THP-1 macrophages. HAND2-AS1 endogenously sponged miR-128 and suppressed its activity via sequence complementation. Furthermore, HAND2-AS1 enhanced the expression of SIRT1 via binding to miR-128, thereby promoting ABCA1/G1 expression. Altogether, HAND2-AS1 targeting miR-1208/SIRT1 axis alleviates the formation of foam cells within AS. Besides, HAND2-AS1 may be used to be the possible anti-AS therapeutic target.
Collapse
|
12
|
Fukami H, Morinaga J, Nakagami H, Hayashi H, Okadome Y, Matsunaga E, Kadomatsu T, Horiguchi H, Sato M, Sugizaki T, Kuwabara T, Miyata K, Mukoyama M, Morishita R, Oike Y. Vaccine targeting ANGPTL3 ameliorates dyslipidemia and associated diseases in mouse models of obese dyslipidemia and familial hypercholesterolemia. Cell Rep Med 2021; 2:100446. [PMID: 34841293 PMCID: PMC8606905 DOI: 10.1016/j.xcrm.2021.100446] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/04/2021] [Accepted: 10/19/2021] [Indexed: 01/22/2023]
Abstract
Dyslipidemia is a risk factor for cardiovascular disease (CVD), a major cause of death worldwide. Angiopoietin-like protein 3 (ANGPTL3), recognized as a new therapeutic target for dyslipidemia, regulates the metabolism of low-density lipoprotein-cholesterol (LDL-C) and triglycerides. Here, we design 3 epitopes (E1-E3) for use in development of a peptide vaccine targeting ANGPTL3 and estimate effects of each on obesity-associated dyslipidemia in B6.Cg-Lepob /J (ob/ob) mice. Vaccination with the E3 (32EPKSRFAMLD41) peptide significantly reduces circulating levels of triglycerides, LDL-C, and small dense (sd)-LDL-C in ob/ob mice and decreases obese-induced fatty liver. Moreover, E3 vaccination does not induce cytotoxicity in ob/ob mice. Interestingly, the effect of E3 vaccination on dyslipidemia attenuates development of atherosclerosis in B6.KOR/StmSlc-Apoeshl mice fed a high-cholesterol diet, which represent a model of severe familial hypercholesterolemia (FH) caused by ApoE loss of function. Taken together, ANGPTL3 vaccination could be an effective therapeutic strategy against dyslipidemia and associated diseases.
Collapse
Affiliation(s)
- Hirotaka Fukami
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0556, Japan
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0556, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0556, Japan
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0556, Japan
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0556, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0556, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroki Hayashi
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yusuke Okadome
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0556, Japan
| | - Eiji Matsunaga
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0556, Japan
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0556, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0556, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0556, Japan
| | - Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0556, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0556, Japan
- Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0556, Japan
| | - Michio Sato
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0556, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0556, Japan
| | - Taichi Sugizaki
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0556, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0556, Japan
| | - Takashige Kuwabara
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0556, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0556, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0556, Japan
| | - Masashi Mukoyama
- Department of Nephrology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0556, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0556, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0556, Japan
- Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0556, Japan
| |
Collapse
|
13
|
Sekimoto T, Koba S, Mori H, Sakai R, Arai T, Yokota Y, Sato S, Tanaka H, Masaki R, Oishi Y, Ogura K, Arai K, Nomura K, Kosaki R, Sakai K, Tsujita H, Kondo S, Tsukamoto S, Tsunoda F, Shoji M, Matsumoto H, Hamazaki Y, Shinke T. Small Dense Low-Density Lipoprotein Cholesterol: A Residual Risk for Rapid Progression of Non-Culprit Coronary Lesion in Patients with Acute Coronary Syndrome. J Atheroscler Thromb 2021; 28:1161-1174. [PMID: 33551393 PMCID: PMC8592706 DOI: 10.5551/jat.60152] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/24/2020] [Indexed: 11/11/2022] Open
Abstract
AIM This study investigated whether the small dense low-density lipoprotein cholesterol (sd-LDL-c) level is associated with the rapid progression (RP) of non-culprit coronary artery lesions and cardiovascular events (CE) after acute coronary syndrome (ACS). METHODS In 142 consecutive patients with ACS who underwent primary percutaneous coronary intervention for the culprit lesion, the sd-LDL-c level was measured using a direct homogeneous assay on admission for ACS and at the 10-month follow-up coronary angiography. RP was defined as a progression of any pre-existing coronary stenosis and/or stenosis development in the initially normal coronary artery. CEs were defined as cardiac death, myocardial infarction, stroke, or coronary revascularization. RESULTS Patients were divided into two groups based on the presence (n=29) or absence (n=113) of RP after 10 months. The LDL-c and sd-LDL-c levels at baseline were equivalent in both the groups. However, the sd-LDL-c, triglyceride, remnant lipoprotein cholesterol (RL-c), and apoC3 levels at follow-up were significantly higher in the RP group than in the non-RP group. The optimal threshold values of sd-LDL-c, triglyceride, RL-c, and apoC3 for predicting RP according to receiver operating characteristics analysis were 20.9, 113, 5.5, and 9.7 mg/dL, respectively. Only the sd-LDL-c level (≥ 20.9 mg/dL) was significantly associated with incident CEs at 31±17 months (log-rank: 4.123, p=0.043). CONCLUSIONS The sd-LDL-c level on treatment was significantly associated with RP of non-culprit lesions, resulting in CEs in ACS patients. On-treatment sd-LDL-c is a residual risk and aggressive reduction of sd-LDL-c might be needed to prevent CEs.
Collapse
Affiliation(s)
- Teruo Sekimoto
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hiroyoshi Mori
- Division of Cardiology, Department of Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Rikuo Sakai
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Taito Arai
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yuya Yokota
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Shunya Sato
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hideaki Tanaka
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ryota Masaki
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yosuke Oishi
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kunihiro Ogura
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ken Arai
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Kosuke Nomura
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Ryota Kosaki
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Koshiro Sakai
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hiroaki Tsujita
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Seita Kondo
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Shigeto Tsukamoto
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Fumiyoshi Tsunoda
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Makoto Shoji
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Division of Cardiology, Department of Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Hidenari Matsumoto
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yuji Hamazaki
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
- Division of Cardiology, Otakanomori Hospital, Chiba, Japan
| | - Toshiro Shinke
- Division of Cardiology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
14
|
Lipoproteins and Cardiovascular Disease: An Update on the Clinical Significance of Atherogenic Small, Dense LDL and New Therapeutical Options. Biomedicines 2021; 9:biomedicines9111579. [PMID: 34829807 PMCID: PMC8615620 DOI: 10.3390/biomedicines9111579] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Dyslipidemia is a potent risk factor for the genesis and progression of cardiovascular disease (CVD), and both the concentration and type of low-density lipoproteins (LDL) augment this association. The small, dense LDL (sdLDL) subfraction is the subtype which is most strongly predictive of atherosclerosis and cardiovascular events. In addition to the traditionally available lipid-lowering treatment options, certain novel therapies have been shown to favorably impact sdLDL, among them the antidiabetic class of agents known as glucagon-like peptide 1 receptor agonists (GLP1-RAs). These drugs seem to alter the pathophysiologic mechanisms responsible for the formation and accumulation of atherogenic lipoprotein particles, thus potentially reducing cardiovascular outcomes. They represent a uniquely targeted therapeutic approach to reduce cardiometabolic risk and warrant further study for their beneficial nonglycemic actions.
Collapse
|
15
|
Chang TY, Chen JD. Low-density lipoprotein cholesterol/apolipoprotein B ratio is superior to apolipoprotein B alone in the diagnosis of coronary artery calcification. Coron Artery Dis 2021; 32:561-566. [PMID: 33394694 DOI: 10.1097/mca.0000000000001004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Coronary artery calcification (CAC) is closely associated with adverse coronary artery events and mortality. Measuring the extent of CAC can lead to the early diagnosis of coronary artery atherosclerosis. In this study, we determined the association between the low-density lipoprotein cholesterol (LDL-C) and apolipoprotein B (ApoB) ratio, ApoB, and CAC and compared the usefulness of the LDL-C/ApoB ratio and ApoB for diagnosing CAC. METHODS A total of 10 357 subjects who underwent self-paid health checkups from July 2006 to May 2016 were enrolled in this cross-sectional study. The extension of CAC was assessed using a coronary artery calcium score with electron-beam computed tomography. Subjects who had an Agatston calcium score >0 were defined as having CAC, whereas those with a score ≥400 were defined as having severe CAC. Low LDL-C/ApoB ratios were used to represent the predominance of small, dense LDL-C. RESULTS The prevalence of subjects with coronary calcification increased with the quartile values of ApoB levels and low quartile values of LDL-C/ApoB ratios. The odds ratios for CAC and severe CAC were 2.9 [95% confidence interval (CI), 2.2-3.9] and 4.4 (95% CI, 3.3-5.9) among the highest quartile of ApoB compared with the lowest quartile, and 9.5 (95% CI, 8.3-10.9) and 103.0 (95% CI, 56.9-187.8) among the lowest quartile of LDL-C/ApoB ratios compared with the highest quartile. The areas under the curve of ApoB and LDL-C/ApoB ratio for the diagnosis of CAC and severe CAC were 0.591 versus 0.679 and 0.618 versus 0.787, respectively. The LCL-C/ApoB ratio was superior to ApoB in terms of diagnosing subjects with CAC and severe CAC. CONCLUSION The LDL-C/ApoB ratio is a superior indicator to ApoB in the diagnosis of subjects with CAC, it can be conveniently used to improve the diagnostic ability of ApoB for CAC.
Collapse
Affiliation(s)
- Tsui-Yen Chang
- Department of Family Medicine, Shin Kong Wu Ho-Su Memorial Hospital
| | - Jong-Dar Chen
- Department of Family Medicine, Shin Kong Wu Ho-Su Memorial Hospital
- Department of Medicine, School of Medicine, Fu Jen Catholic University, Taipei, Taiwan
| |
Collapse
|
16
|
Ramasammy R, Munisammy L, Sweta K, Selvakumar S, Velu K, Rani J, Kajalakshmy S. Association between GCK gene polymorphism and gestational diabetes mellitus and its pregnancy outcomes. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
17
|
Akutsu N, Hori K, Mizobuchi S, Ogaku A, Koyama Y, Fujito H, Arai R, Ebuchi Y, Migita S, Morikawa T, Tamaki T, Kojima K, Murata N, Nishida T, Kitano D, Fukamachi D, Okumura Y. Clinical Importance of the LDL-C/Apolipoprotein B Ratio for Neointimal Formation after Everolimus-Eluting Stent Implantations. J Atheroscler Thromb 2021; 29:536-550. [PMID: 33746158 PMCID: PMC9090476 DOI: 10.5551/jat.60954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIMS Smaller low-density lipoprotein (LDL) particle size has been suggested to result in the development of endothelial dysfunction, atherosclerosis, and in-stent restenosis (ISR); however, little is known regarding the impact of the LDL particle size on the neointima formation leading to ISR after everolimus-eluting stent (EES) implantation. METHODS In this study, we have included 100 patients to examine the relationship between an LDL-C/apolipoprotein B (Apo B) ≤ 1.2, reportedly representing the LDL particle size, and the neointimal characteristics using optical coherence tomography (OCT) and coronary angioscopy (CAS) during the follow-up coronary angiography (CAG) period (8.8±2.5 months) after EES implantation. We divided them into two groups: LDL-C/Apo B ≤ 1.2 group (low LDL-C/Apo B group, n=53) and LDL-C/Apo B >1.2 group (high LDL-C/Apo B group, n=47). RESULTS The low LDL-C/Apo B group had a significantly larger neointimal volume (12.8±5.3 vs. 10.3±4.9 mm3, p=0.021) and lower incidence of a neointimal homogeneous pattern (71 vs. 89 %), higher incidence of a neointimal heterogeneous pattern (25 vs. 9 %) (p=0.006) and higher prevalence of macrophage accumulation (9 vs. 2 %) (p=0.030) as assessed via OCT, and, as per the CAS findings, a higher prevalence of yellow grade ≥ 2 (grade 2; adjusted residual: 2.94, grade 3; adjusted residual: 2.00, p=0.017) than the high LDL-C/Apo B group. CONCLUSIONS A low LDL-C/Apo B ratio was found to be strongly associated with neointimal proliferation and neointimal instability evidenced chronically by OCT and CAS. An LDL-C/Apo B ≤ 1.2 will be of aid in terms of identifying high-risk patients after EES implantation.
Collapse
Affiliation(s)
- Naotaka Akutsu
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Koichiro Hori
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Saki Mizobuchi
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Akihito Ogaku
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Yutaka Koyama
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Hidesato Fujito
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Riku Arai
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Yasunari Ebuchi
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Suguru Migita
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Tomoyuki Morikawa
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Takehiro Tamaki
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Keisuke Kojima
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Nobuhiro Murata
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Toshihiko Nishida
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Daisuke Kitano
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine.,Division of Advanced Cardiovascular Imaging, Department of Medicine, Nihon University School of Medicine
| | - Daisuke Fukamachi
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| | - Yasuo Okumura
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine
| |
Collapse
|
18
|
Liou L, Kaptoge S. Association of small, dense LDL-cholesterol concentration and lipoprotein particle characteristics with coronary heart disease: A systematic review and meta-analysis. PLoS One 2020; 15:e0241993. [PMID: 33166340 PMCID: PMC7652325 DOI: 10.1371/journal.pone.0241993] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/25/2020] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVES The aim of this study was to systematically collate and appraise the available evidence regarding the associations between small, dense low-density lipoprotein (sdLDL) and incident coronary heart disease (CHD), focusing on cholesterol concentration (sdLDL-C) and sdLDL particle characteristics (presence, density, and size). BACKGROUND Coronary heart disease (CHD) is the leading cause of death worldwide. Small, dense low-density lipoprotein (sdLDL) has been hypothesized to induce atherosclerosis and subsequent coronary heart disease (CHD). However, the etiological relevance of lipoprotein particle size (sdLDL) versus cholesterol content (sdLDL-C) remains unclear. METHODS PubMed, MEDLINE, Web of Science, and EMBASE were systematically searched for studies published before February 2020. CHD associations were based on quartile comparisons in eight studies of sdLDL-C and were based on binary categorization in fourteen studies of sdLDL particle size. Reported hazards ratios (HR) and odds ratios (OR) with 95% confidence interval (CI) were standardized and pooled using a random-effects meta-analysis model. RESULTS Data were collated from 21 studies with a total of 30,628 subjects and 5,693 incident CHD events. The average age was 67 years, and 53% were men. Higher sdLDL and sdLDL-C levels were both significantly associated with higher risk of CHD. The pooled estimate for the high vs. low categorization of sdLDL was 1.36 (95% CI: 1.21, 1.52) and 1.07 (95% CI: 1.01, 1.12) for comparing the top quartiles versus the bottom of sdLDL-C. Several studies suggested a dose response relationship. CONCLUSIONS The findings show a positive association between sdLDL or sdLDL-C levels and CHD, which is supported by an increasing body of genetic evidence in favor of its causality as an etiological risk factor. Thus, the results support sdLDL and sdLDL-C as a risk marker, but further research is required to establish sdLDL or sdLDL-C as a potential therapeutic marker for incident CHD risk reduction.
Collapse
Affiliation(s)
- Lathan Liou
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Stephen Kaptoge
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Jakubauskas D, Jansen M, Lyngsø J, Cheng Y, Pedersen JS, Cárdenas M. Toward reliable low-density lipoprotein ultrastructure prediction in clinical conditions: A small-angle X-ray scattering study on individuals with normal and high triglyceride serum levels. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 31:102318. [PMID: 33091569 DOI: 10.1016/j.nano.2020.102318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/23/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Atherosclerosis is the main killer in the west and therefore a major health challenge today. Total serum cholesterol and lipoprotein concentrations, used as clinical markers, fail to predict the majority of cases, especially between the risk scale extremes, due to the high complexity in lipoprotein structure and composition. In particular, low-density lipoprotein (LDL) plays a key role in atherosclerosis development, with LDL size being a parameter considered for determining the risk for cardiovascular diseases. Determining LDL size and structural parameters is challenging to address experimentally under physiological-like conditions. This article describes the biochemistry and ultrastructure of normolipidemic and hypertriglyceridemic LDL fractions and subfractions using small-angle X-ray scattering. Our results conclude that LDL particles of hypertriglyceridemic compared to healthy individuals 1) have lower LDL core melting temperature, 2) have lower cholesteryl ester ordering in their core, 3) are smaller, rounder and more spherical below melting temperature, and 4) their protein-containing shell is thinner above melting temperature.
Collapse
Affiliation(s)
- Dainius Jakubauskas
- Biofilms - Research center for Biointerfaces, Dept. of Biomedical Science, Faculty of Health and Society, Malmo University, Malmo, Sweden.
| | - Martin Jansen
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Centre, University of Freiburg, Freiburg im Breisgau, Germany.
| | - Jeppe Lyngsø
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.
| | - Yuanji Cheng
- Department of Materials Science and Applied Mathematics, Faculty of Technology and Society, Malmo University, Malmo, Sweden.
| | - Jan Skov Pedersen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.
| | - Marité Cárdenas
- Biofilms - Research center for Biointerfaces, Dept. of Biomedical Science, Faculty of Health and Society, Malmo University, Malmo, Sweden.
| |
Collapse
|
20
|
Wu T, Xiao H, Lu L, Chen Y, Wang Y, Xia W, Long M, Tao J, Shen J, Shuai X. Polymeric Vector-Mediated Targeted Delivery of Anti-PAK1 siRNA to Macrophages for Efficient Atherosclerosis Treatment. ACS Biomater Sci Eng 2019; 5:4455-4462. [PMID: 33438411 DOI: 10.1021/acsbiomaterials.9b01076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Teng Wu
- Department of Hypertension and Vascular Disease, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Hong Xiao
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Liejing Lu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Yali Chen
- Department of Hypertension and Vascular Disease, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yong Wang
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Wenhao Xia
- Department of Hypertension and Vascular Disease, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ming Long
- Department of Hypertension and Vascular Disease, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jun Tao
- Department of Hypertension and Vascular Disease, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Xintao Shuai
- Department of Hypertension and Vascular Disease, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
21
|
Adam S, Liu Y, Siahmansur T, Ho JH, Dhage SS, Yadav R, New JP, Donn R, Ammori BJ, Syed AA, Malik RA, Soran H, Durrington PN. Bariatric surgery as a model to explore the basis and consequences of the Reaven hypothesis: Small, dense low-density lipoprotein and interleukin-6. Diab Vasc Dis Res 2019; 16:144-152. [PMID: 31014098 DOI: 10.1177/1479164119826479] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Reaven originally described the clustering of insulin resistance/hyperinsulinaemia, obesity (particularly visceral), altered cytokine levels, glucose intolerance, hypertriglyceridaemia and low high-density lipoprotein cholesterol. Subsequently, a potentially highly atherogenic small, dense low-density lipoprotein was also reported. We have studied the effect of bariatric surgery on this and other risk factors for atherosclerosis. METHODS Forty patients (20 with type 2 diabetes mellitus) undergoing bariatric surgery were studied before and 1 year after bariatric surgery. RESULTS Twelve months after bariatric surgery, median body mass index had decreased from 49.5 to 36.5 kg/m2, fasting insulin from 21.3 to 7.8 mU/L and insulin resistance (homeostatic model assessment of insulin resistance) from 5.9 to 1.8 (all p < 0.001). Thirteen out of 20 patients had remission from type 2 diabetes mellitus. Highly sensitive C-reactive protein, interleukin-6, fasting triglycerides ( p < 0.001) and small, dense low-density lipoprotein ( p < 0.001) decreased, while high-density lipoprotein cholesterol increased ( p < 0.001) significantly, irrespective of having type 2 diabetes mellitus and/or being treated with statin therapy before surgery. CONCLUSION The association between marked weight loss and change in insulin resistance and hyperinsulinaemia with the change in small, dense low-density lipoprotein and interleukin-6 warrants further investigation. Bariatric surgery provides a model for investigating the mechanisms linking insulin resistance/hyperinsulinaemia to atherosclerosis.
Collapse
Affiliation(s)
- Safwaan Adam
- 1 Cardiovascular Research Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- 2 Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - Tarza Siahmansur
- 1 Cardiovascular Research Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jan H Ho
- 1 Cardiovascular Research Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- 2 Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, UK
| | - Shaishav S Dhage
- 1 Cardiovascular Research Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- 2 Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, UK
| | - Rahul Yadav
- 3 Department of Diabetes and Endocrinology, Warrington and Halton Hospitals NHS Foundation Trust, Warrington, UK
| | - John P New
- 1 Cardiovascular Research Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- 4 Department of Diabetes, Endocrinology and Obesity Medicine, Salford Royal NHS Foundation Trust, Salford, UK
| | - Rachelle Donn
- 1 Cardiovascular Research Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Basil J Ammori
- 1 Cardiovascular Research Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- 5 Department of Surgery, Salford Royal NHS Foundation Trust, Salford, UK
| | - Akheel A Syed
- 1 Cardiovascular Research Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- 4 Department of Diabetes, Endocrinology and Obesity Medicine, Salford Royal NHS Foundation Trust, Salford, UK
| | - Rayaz A Malik
- 1 Cardiovascular Research Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- 6 Weill-Cornell Medicine-Qatar, Doha, Qatar
| | - Handrean Soran
- 1 Cardiovascular Research Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- 2 Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, UK
| | - Paul N Durrington
- 1 Cardiovascular Research Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
22
|
Robertson MD, Pedersen C, Hinton PJ, Mendis ASJR, Cani PD, Griffin BA. Elevated high density lipoprotein cholesterol and low grade systemic inflammation is associated with increased gut permeability in normoglycemic men. Nutr Metab Cardiovasc Dis 2018; 28:1296-1303. [PMID: 30459055 DOI: 10.1016/j.numecd.2018.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Serum lipids and lipoproteins are established biomarkers of cardiovascular disease risk that could be influenced by impaired gut barrier function via effects on the absorption of dietary and biliary cholesterol. The aim of this study was to examine the potential relationship between gut barrier function (gut permeability) and concentration of serum lipids and lipoproteins, in an ancillary analysis of serum samples taken from a previous study. METHODS AND RESULTS Serum lipids, lipoproteins and functional gut permeability, as assessed by the percentage of the urinary recovery of 51Cr-labelled EDTA absorbed within 24 h, were measured in a group of 30 healthy men. Serum lipopolysaccharide, high sensitivity C-reactive protein and interleukin-6 were also measured as markers of low-grade inflammation. The group expressed a 5-fold variation in total gut permeability (1.11-5.03%). Gut permeability was unrelated to the concentration of both serum total and low density lipoprotein (LDL)-cholesterol, but was positively associated with serum high density lipoprotein (HDL)-cholesterol (r = 0.434, P = 0.015). Serum HDL-cholesterol was also positively associated with serum endotoxaemia (r = 0.415, P = 0.023). CONCLUSION The significant association between increased gut permeability and elevated serum HDL-cholesterol is consistent with the role of HDL as an acute phase reactant, and in this situation, potentially dysfunctional lipoprotein. This finding may have negative implications for the putative role of HDL as a cardio-protective lipoprotein.
Collapse
Affiliation(s)
- M D Robertson
- Nutritional Sciences, University of Surrey, Guildford, UK.
| | - C Pedersen
- Nutritional Sciences, University of Surrey, Guildford, UK
| | - P J Hinton
- Medical Physics, Royal Surrey County Hospital, Guildford, UK
| | - A S J R Mendis
- Nutritional Sciences, University of Surrey, Guildford, UK
| | - P D Cani
- WELBIO - Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - B A Griffin
- Nutritional Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
23
|
Pietzner M, Budde K, Homuth G, Kastenmüller G, Henning AK, Artati A, Krumsiek J, Völzke H, Adamski J, Lerch MM, Kühn JP, Nauck M, Friedrich N. Hepatic Steatosis Is Associated With Adverse Molecular Signatures in Subjects Without Diabetes. J Clin Endocrinol Metab 2018; 103:3856-3868. [PMID: 30060179 DOI: 10.1210/jc.2018-00999] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/24/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND AIMS Exaggerated hepatic triglyceride accumulation (i.e., hepatic steatosis) represents a strong risk factor for type 2 diabetes mellitus and cardiovascular disease. Despite the clear association of hepatic steatosis with impaired insulin signaling, the precise molecular mechanisms involved are still under debate. We combined data from several metabolomics techniques to gain a comprehensive picture of molecular alterations related to the presence of hepatic steatosis in a diabetes-free sample (N = 769) of the population-based Study of Health in Pomerania. METHODS Liver fat content (LFC) was assessed using MRI. Metabolome measurements of plasma and urine samples were done by mass spectrometry and nuclear magnetic resonance spectroscopy. Linear regression analyses were used to detect significant associations with either LFC or markers of hepatic damage. Possible mediations through insulin resistance, hypertriglyceridemia, and inflammation were tested. A predictive molecular signature of hepatic steatosis was established using regularized logistic regression. RESULTS The LFC-associated atherogenic lipid profile, tightly connected to shifts in the phospholipid content, and a prediabetic amino acid cluster were mediated by insulin resistance. Molecular surrogates of oxidative stress and multiple associations with urine metabolites (e.g., indicating altered cortisol metabolism or phase II detoxification products) were unaffected in mediation analyses. Incorporation of urine metabolites slightly improved classification of hepatic steatosis. CONCLUSIONS Comprehensive metabolic profiling allowed us to reveal molecular patterns accompanying hepatic steatosis independent of the known hallmarks. Novel biomarkers from urine (e.g., cortisol glucuronide) are worthwhile for follow-up in patients suffering from more severe liver impairment compared with our merely healthy population-based sample.
Collapse
Affiliation(s)
- Maik Pietzner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Kathrin Budde
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and University Greifswald, Greifswald, Germany
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ann-Kristin Henning
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anna Artati
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jan Krumsiek
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Henry Völzke
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Center for Diabetes Research (DZD), Site Greifswald, Greifswald, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Site Greifswald, Greifswald, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Jens P Kühn
- Institute of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
- Institute of Diagnostic Radiology, University Medicine, Carl Gustav Carus University, Dresden, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| |
Collapse
|
24
|
DiNicolantonio JJ, O'Keefe JH. Effects of dietary fats on blood lipids: a review of direct comparison trials. Open Heart 2018; 5:e000871. [PMID: 30094038 PMCID: PMC6074619 DOI: 10.1136/openhrt-2018-000871] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2018] [Indexed: 01/08/2023] Open
Affiliation(s)
- James J DiNicolantonio
- Preventive Cardiology, Saint Lukes Mid America Heart Institute, Kansas City, Missouri, USA
| | - James H O'Keefe
- Preventive Cardiology, Saint Lukes Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
25
|
Kypreos KE, Bitzur R, Karavia EA, Xepapadaki E, Panayiotakopoulos G, Constantinou C. Pharmacological Management of Dyslipidemia in Atherosclerosis: Limitations, Challenges, and New Therapeutic Opportunities. Angiology 2018; 70:197-209. [PMID: 29862840 DOI: 10.1177/0003319718779533] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Clinical and epidemiological studies during the last 7 decades indicated that elevated low-density lipoprotein cholesterol (LDL-C) levels and reduced high-density lipoprotein cholesterol (HDL-C) levels correlate with the pathogenesis and progression of atherosclerotic lesions in the arterial wall. This observation led to the development of LDL-C-lowering drugs for the prevention and treatment of atherosclerosis, some with greater success than others. However, a body of recent clinical evidence shows that a substantial residual cardiovascular risk exists even at very low levels of LDL-C, suggesting that new therapeutic modalities are still needed for reduction of atherosclerosis morbidity and mortality. Unfortunately, HDL-C-raising drugs developed toward this goal had disappointing results thus far. Here, we critically review the literature presenting available evidence and challenges that need to be met and discuss possible new avenues for the development of novel lipid pharmacotherapeutics to reduce the burden of atherosclerosis.
Collapse
Affiliation(s)
- Kyriakos E Kypreos
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, Greece
| | - Rafael Bitzur
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Eleni A Karavia
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, Greece
| | - Eva Xepapadaki
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, Greece
| | | | - Caterina Constantinou
- Department of Pharmacology, University of Patras Medical School, Rio Achaias, Greece
| |
Collapse
|
26
|
|
27
|
Ide K, Koshizaka M, Tokuyama H, Tokuyama T, Ishikawa T, Maezawa Y, Takemoto M, Yokote K. N-3 polyunsaturated fatty acids improve lipoprotein particle size and concentration in Japanese patients with type 2 diabetes and hypertriglyceridemia: a pilot study. Lipids Health Dis 2018; 17:51. [PMID: 29544483 PMCID: PMC5855932 DOI: 10.1186/s12944-018-0706-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/09/2018] [Indexed: 12/26/2022] Open
Abstract
Background Patients with type 2 diabetes are at high risk for cardiovascular disease. Although hydroxymethylglutaryl-CoA reductase inhibitors (statins) can reduce cardiovascular events, residual risk remains even after target low-density lipoprotein cholesterol (LDL-C) levels have been achieved. Lipoprotein particle size and fraction changes are thought to contribute to such risks. The purpose of this study was to evaluate the effects of n-3 polyunsaturated fatty acids (n-3 PUFAs), predominantly eicosapentaenoic acid and docosahexaenoic acid, on lipoprotein particle size, concentration, and glycemic control in Japanese patients with type 2 diabetes and hypertriglyceridemia. Methods This was a multicenter, prospective, open-label, single arm study. We enrolled 14 patients with type 2 diabetes and hypertriglyceridemia treated with statins and dipeptidyl peptidase-4 inhibitors with glycated hemoglobin (HbA1c) < 8.0%, LDL-C < 120 mg/dL, and fasting triglyceride ≥150 mg/dL. After a 12-week observation period, they were treated with 4 g/day n-3 PUFAs for 12 weeks. Lipoprotein particle sizes, concentrations, lipoprotein insulin resistance (LPIR) scores, lipid profiles, HbA1c, and fasting plasma glucose (FPG) were measured before and after treatment. Lipoprotein profiles were measured by nuclear magnetic resonance spectroscopy. Data were analyzed using Wilcoxon signed-rank tests. Results Concentrations of total cholesterol (P < 0.001), LDL-C (P = 0.003), and triglyceride (P < 0.001) decreased following n-3 PUFA administration. N-3 PUFAs decreased the size of very low-density lipoprotein (VLDL; P < 0.001) particles, but did not affect LDL or high-density lipoprotein (HDL) particles. The concentration of large LDL increased, whereas small LDL decreased, causing the large to small LDL ratio to increase significantly (P = 0.042). Large VLDL and chylomicron concentrations significantly decreased, as did the large to small VLDL ratio (all P < 0.001). FPG levels unchanged, whereas HbA1c levels slightly increased. LPIR scores improved significantly (P = 0.001). Conclusions N-3 PUFAs partly improved atherogenic lipoprotein particle size and concentration, and produced less atherogenic lipoprotein subclass ratios in patients that achieved target LDL-C levels and glycemic control. These results suggest that n-3 PUFAs may reduce residual cardiovascular risk factors in statin-treated patients with type 2 diabetes and hypertriglyceridemia. Trial registration The study was registered at UMIN-ID: UMIN000013776. Electronic supplementary material The online version of this article (10.1186/s12944-018-0706-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kana Ide
- Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Masaya Koshizaka
- Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan. .,Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan.
| | - Hirotake Tokuyama
- Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan.,National Hospital Organization Chiba Medical Center, Chiba, Japan.,Yu-karigaoka Tokuyama Clinic, Chiba, Japan
| | | | - Takahiro Ishikawa
- Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Yoshiro Maezawa
- Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| | - Minoru Takemoto
- Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan.,Department of Medicine, Division of Diabetes, Metabolism and Endocrinology, International University of Health and Welfare, Chiba, Japan
| | - Koutaro Yokote
- Clinical Cell Biology and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.,Department of Diabetes, Metabolism and Endocrinology, Chiba University Hospital, Chiba, Japan
| |
Collapse
|
28
|
Impact of liver fat on the differential partitioning of hepatic triacylglycerol into VLDL subclasses on high and low sugar diets. Clin Sci (Lond) 2017; 131:2561-2573. [PMID: 28923880 PMCID: PMC6365592 DOI: 10.1042/cs20171208] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/11/2017] [Accepted: 09/15/2017] [Indexed: 01/07/2023]
Abstract
Dietary sugars are linked to the development of non-alcoholic fatty liver disease (NAFLD) and dyslipidaemia, but it is unknown if NAFLD itself influences the effects of sugars on plasma lipoproteins. To study this further, men with NAFLD (n = 11) and low liver fat ‘controls’ (n = 14) were fed two iso-energetic diets, high or low in sugars (26% or 6% total energy) for 12 weeks, in a randomised, cross-over design. Fasting plasma lipid and lipoprotein kinetics were measured after each diet by stable isotope trace-labelling. There were significant differences in the production and catabolic rates of VLDL subclasses between men with NAFLD and controls, in response to the high and low sugar diets. Men with NAFLD had higher plasma concentrations of VLDL1-triacylglycerol (TAG) after the high (P<0.02) and low sugar (P<0.0002) diets, a lower VLDL1-TAG fractional catabolic rate after the high sugar diet (P<0.01), and a higher VLDL1-TAG production rate after the low sugar diet (P<0.01), relative to controls. An effect of the high sugar diet, was to channel hepatic TAG into a higher production of VLDL1-TAG (P<0.02) in the controls, but in contrast, a higher production of VLDL2-TAG (P<0.05) in NAFLD. These dietary effects on VLDL subclass kinetics could be explained, in part, by differences in the contribution of fatty acids from intra-hepatic stores, and de novo lipogenesis. The present study provides new evidence that liver fat accumulation leads to a differential partitioning of hepatic TAG into large and small VLDL subclasses, in response to high and low intakes of sugars.
Collapse
|
29
|
Small Dense Low-Density Lipoprotein as Biomarker for Atherosclerotic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1273042. [PMID: 28572872 PMCID: PMC5441126 DOI: 10.1155/2017/1273042] [Citation(s) in RCA: 232] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/12/2017] [Indexed: 01/11/2023]
Abstract
Low-density lipoprotein (LDL) plays a key role in the development and progression of atherosclerosis and cardiovascular disease. LDL consists of several subclasses of particles with different sizes and densities, including large buoyant (lb) and intermediate and small dense (sd) LDLs. It has been well documented that sdLDL has a greater atherogenic potential than that of other LDL subfractions and that sdLDL cholesterol (sdLDL-C) proportion is a better marker for prediction of cardiovascular disease than that of total LDL-C. Circulating sdLDL readily undergoes multiple atherogenic modifications in blood plasma, such as desialylation, glycation, and oxidation, that further increase its atherogenicity. Modified sdLDL is a potent inductor of inflammatory processes associated with cardiovascular disease. Several laboratory methods have been developed for separation of LDL subclasses, and the results obtained by different methods can not be directly compared in most cases. Recently, the development of homogeneous assays facilitated the LDL subfraction analysis making possible large clinical studies evaluating the significance of sdLDL in the development of cardiovascular disease. Further studies are needed to establish guidelines for sdLDL evaluation and correction in clinical practice.
Collapse
|
30
|
Mandraffino G, Aragona CO, Scuruchi M, Mamone F, D'Ascola A, Alibrandi A, Cinquegrani M, Morace C, Oreto L, Saitta C, Mormina E, Carerj S, Saitta A, Imbalzano E. Biglycan expression, earlier vascular damage and pro-atherogenic profile improvement after smoke cessation in young people. Atherosclerosis 2017; 257:109-115. [DOI: 10.1016/j.atherosclerosis.2017.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/12/2016] [Accepted: 01/12/2017] [Indexed: 12/24/2022]
|
31
|
Zidani S, Benakmoum A, Ammouche A, Benali Y, Bouhadef A, Abbeddou S. Effect of dry tomato peel supplementation on glucose tolerance, insulin resistance, and hepatic markers in mice fed high-saturated-fat/high-cholesterol diets. J Nutr Biochem 2017; 40:164-171. [DOI: 10.1016/j.jnutbio.2016.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 11/01/2016] [Accepted: 11/07/2016] [Indexed: 11/17/2022]
|
32
|
Do HDL and LDL subfractions play a role in atherosclerosis in end-stage renal disease (ESRD) patients? Int Urol Nephrol 2016; 49:155-164. [PMID: 27942970 DOI: 10.1007/s11255-016-1466-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/17/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND Significantly increased cardiovascular mortality in patients with chronic kidney (CKD) disease cannot be explained by traditional risk factors. Recent studies revealed that the quality of HDL and LDL cholesterol may be more important than their serum levels. The aim of this study was to assess which LDL and HDL subfractions were more abundant in end-stage renal disease (ESRD) patients and to analyse whether subfraction distribution could be associated with accelerated atherosclerotic processes. METHODS This study included 50 ESRD patients undergoing dialysis and 20 healthy volunteers. LDL and HDL subfractions were analysed in serum with the use of Lipoprint system. All patients had intima-media thickness (IMT) measured. RESULTS Statistically significant differences in subfractions between control and study group were observed in case of: HDL1 (p < 0.0001), HDL2 (p = 0.009), HDL3 (p < 0.0001), HDL4 (p = 0.003), HDL5 (p = 0.01), HDL7 (p < 0.0001), HDL8 (p < 0.0001), HDL9 (p < 0.0001), HDL10 (p < 0.0001), large HDL (p < 0.0001), HDL Small (p < 0.0001) as well as IDL-B (p = 0.014), IDLA (p = 0.011), LDL2 (p = 0.007). Significant differences were also observed in HDL and LDL subfraction distribution between haemodialysis patients with normal and increased IMT: HDL6 (p = 0.020), HDL Large (HDL1-3) (p = 0.017), HDL Intermediate (HDL4-7) (p = 0.017). CONCLUSIONS This study revealed that ESRD influenced HDL subfractions. In HD patients, large HDL subfractions are more abundant while small HDL fraction is more frequent in healthy persons. It failed to show the influence of end-stage disease on LDL subfraction levels. Shift in HDL subfractions might be responsible for the increased risk of atherosclerosis in CKD patients.
Collapse
|
33
|
Monge R, Holst I, Faiges F, Rivero A. Plasma Lipid Levels in 10- to 13-year-old Costa Rican Elementary Schoolchildren. Food Nutr Bull 2016. [DOI: 10.1177/156482650002100308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An adverse lipid profile is a major risk factor for atherosclerosis. This study evaluated the lipid profiles of 683 schoolchildren aged 10 to 13 years. The prevalence of both high LDL and high total cholesterol levels was significantly (p < . 001) higher in private schoolchildren than in public schoolchildren. There were no significant differences in the prevalence of high triglyceride levels among the schoolchildren. Mean total cholesterol and LDL cholesterol levels were significantly higher in children whose parents had completed over 11 years of schooling. Private schoolchildren were more sedentary and tended to have a more atherogenic diet. Our data suggest that prevention programmes in primary schools are required to decrease the prevalence of cardiovascular risk factors, including abnormal lipid profiles.
Collapse
Affiliation(s)
- Rafael Monge
- Costa Rican Institute for Research and Education on Nutrition and Health (INCIENSA), Ministry of Health, in Tres Ríos, Costa Rica
| | - Ileana Holst
- Clinical Chemistry Department, Faculty of Microbiology, University of Costa Rica
| | | | | |
Collapse
|
34
|
The effect of nandrolone treatment with and without enforced swimming on histological and biochemical changes in the heart and coronary artery of male rats. Anatol J Cardiol 2016; 17:176-183. [PMID: 27752030 PMCID: PMC5864976 DOI: 10.14744/anatoljcardiol.2016.7333] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Objective: Chronic anabolic androgenic steroid (AAS) consumption increases incidence of cardiovascular abnormalities in athletes and mechanisms underlying those abnormalities continue to be investigated. This study examines whether nandrolone consumption induced cardiac and coronary artery wall abnormalities via oxidative stress. It was also designed to determine whether enforced swimming augmented possible cardiotoxic effects of nandrolone in rat heart. Methods: Twenty-four male Wistar rats were divided into 3 groups: control, nandrolone, and nandrolone with enforced swimming. Nandrolone group received 10 mg/kg body weight nandrolone 3 times a week for 6 weeks. Nandrolone group with enforced swimming received the same amount of nandrolone and was forced to swim with excess weight of 20% body weight. Results: After 6 weeks of treatment, results indicated proliferation of heart muscle and coronary smooth muscle cells and lipid peroxidation; significant rise in levels of 8-hydroxy-2’-deoxyguanosine (8-OHdG), nicotinamide adenine dinucleotide phosphate oxidase, homocysteine (Hcy), apolipoprotein B, low-density lipoprotein, and cholesterol, as well as severe fibrosis in heart tissue and around coronary arteries of nandrolone and nandrolone with enforced swimming groups compared with control group. Conclusion: These findings strongly support idea that nandrolone intake by sedentary rats and exercised rats induced heart abnormality mediated by oxidative stress, which was manifest in increased lipid peroxidation, Hcy, and 8-OHdG in heart tissue.
Collapse
|
35
|
Winkler K, Friedrich I, Baumstark MW, Wieland H, März W. Pioglitazone reduces atherogenic dense low density lipoprotein (LDL) particles in patients with type 2 diabetes mellitus. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/14746514020020021301] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aim The new oral antidiabetic agent pioglitazone improves insulin sensitivity and glycaemic control, lowers triglycerides and increases high density lipoprotein (HDL) cholesterol in type 2 diabetes. The effect of pioglitazone on low density lipoprotein (LDL) subfractions is investigated, herein. Methods The effect of pioglitazone monotherapy (45 mg o.d. for six months) on LDL subfractions was observed in 30 patients with poorly controlled type 2 diabetes (HbA1C ≥ 7.5% and < 11.5% and triglycerides ≥ 150 mg/dL). The distribution of LDL subfractions was determined by equilibrium density gradient ultracentrifugation before and during treatment. Results HbA1C (9.5% before and 7.4% on treatment, p<0.001), triglycerides (-135 mg/dL [-32.2%], p=0.002) and apo B in LDL-6 (the most dense LDL subfraction) decreased significantly. The mean diameter of LDL particles increased (19.5 nm before and 19.8 nm on treatment, p=0.005), while the mean LDL density decreased significantly (from 1.0394 kg/L to 1.0381 kg/L on treatment; p=0.033). HDL increased from 36.3 mg/dL to 44.2 mg/dL (+ 21.6%, p<0.001). Total cholesterol and LDL-cholesterol did not change significantly. Conclusions The results confirm that pioglitazone improves glycaemic control in patients with type 2 diabetes. In addition, pioglitazone reduced the proportion of atherogenic dense LDL. The effects of pioglitazone on lipoprotein metabolism may translate into a reduced risk for atherosclerotic complications in type 2 diabetes.
Collapse
Affiliation(s)
- Karl Winkler
- Department of Clinical Chemistry, University of Freiburg, Germany, -freiburg.de
| | - Isolde Friedrich
- Department of Clinical Chemistry, University of Freiburg, Germany
| | | | - Heinrich Wieland
- Department of Clinical Chemistry, University of Freiburg, Germany
| | - Winfried März
- Department of Clinical Chemistry, University of Freiburg, Germany
| |
Collapse
|
36
|
Abstract
Accurate lipid and lipoprotein measurements, control of pre-analytical factors and consideration of biological variability are required for the reliable assessment of coronary heart disease (CHD) risk and the management of dyslipidaemia. Inclusion of high density lipoprotein-cholesterol, in addition to total cholesterol, in risk calculations is preferred to attain good sensitivity and specificity. Although the strong and independent association of triglyceride with CHD has been confirmed, its large biological variation limits its utility as a risk factor or primary treatment target. A fasting profile including triglyceride is essential however for consideration of genetic and secondary causes of dyslipidaemia and decisions on therapeutic intervention.
Collapse
Affiliation(s)
- William Richmond
- Chemical Pathology, St Mary's Hospital, Praed Street, Paddington, London, W2 1NY, UK,
| |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW The purpose is to discuss recent developments in the understanding of lipoprotein metabolism in diabetes, the cardiovascular risk associated with both type 1 and type 2 diabetes, recently published guidelines on the management of this risk, concerns over the use of statin treatment in diabetes, and other therapeutic options. RECENT FINDINGS Diabetic dyslipidaemia can be gross with massive hypertriglyceridemia, or subtle with a lipid profile which would be regarded as normal in a nondiabetic patient, but which hides underlying increases in atherogenic subfractions of LDL (e.g., small dense LDL, glycated LDL) and remnant lipoproteins. Statins can decrease these without the clinician being aware from routine biochemistry. In type 2 diabetes, HDL cholesterol levels are often reduced, whereas in type 1, insulin can raise HDL, but its antiatherogenic properties are compromised. Dyslipidaemia and hypertension predate the onset of glycaemia of diabetic proportions (metabolic syndrome). Obese people can thus die of diabetes before they develop it. Obesity should be prevented and treated. Statins decrease the risk of cardiovascular disease in diabetes or metabolic syndrome regardless of whether glycaemia worsens. SUMMARY One unassailable truth is that statin therapy is beneficial and should rarely, if ever, be withheld.
Collapse
Affiliation(s)
- Handrean Soran
- aCardiovascular Research Group, School of Biomedicine, University of Manchester bUniversity Department of Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | | | | | | |
Collapse
|
38
|
Raal FJ, Areias AJ, Joffe BI. Low density lipoproteins and atherosclerosis—quantity or quality? Redox Rep 2016; 1:171-6. [DOI: 10.1080/13510002.1995.11746980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
39
|
The Association Between Small Dense Low Density Lipoprotein and Coronary Artery Disease in North Indian Patients. Indian J Clin Biochem 2016; 32:186-192. [PMID: 28428693 DOI: 10.1007/s12291-016-0592-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
Abstract
Pathogenesis of coronary artery disease (CAD) is multi-factorial and several conventional risk factors have been ascribed; LDL-C being one of the important risk factor. However Indian population studies with established CAD often show LDL levels within normal range in patients with proven CAD. We hypothesized that Small dense low density lipoprotein (sdLDL) being more atherogenic might correlate more strongly to the occurrence and severity of CAD. The aim of the study was to evaluate the association between serum small dense LDL level and angiographically documented coronary artery disease. This is a cross sectional case control study in which sdLDL were measured in 126 patients with CAD and in 64 patients without CAD. Total cholesterol, HDL Cholesterol, LDL cholesterol and triglycerides were measured by standard methods along with other traditional risk factors. Direct quantitative measurement of sdLDL was done by enzymatic analysis. Mean sdLDL level was higher in patients with coronary stenosis than patients without coronary stenosis (16.3 ± 6.8 vs. 10.1 ± 5.7 mg/dL respectively, (p < 0.001). There was significant correlation between mean sdLDL and severity of CAD as assessed by syntax score with mean sdLDL level in low, intermediate and high syntax score being 15.0 ± 5.8, 20.1 ± 6.7 and 22.7 ± 7.3 mg/dL respectively (p value <0.001). A cut off value of 10.02 mg/dL was associated with presence of CAD (95 % CI 0.82-0.93, p < 0.001) using ROC curve. In conclusion Indian patients with established CAD have higher sdLDL levels compared to individuals without CAD despite having comparable LDL levels.
Collapse
|
40
|
Noakes T. The 2012 University of Cape Town Faculty of Health Sciences centenary debate. SOUTH AFRICAN JOURNAL OF CLINICAL NUTRITION 2016. [DOI: 10.1080/16070658.2015.11734522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Egeland GM, Klungsøyr K, Øyen N, Tell GS, Næss Ø, Skjærven R. Preconception Cardiovascular Risk Factor Differences Between Gestational Hypertension and Preeclampsia: Cohort Norway Study. Hypertension 2016; 67:1173-80. [PMID: 27113053 PMCID: PMC4861703 DOI: 10.1161/hypertensionaha.116.07099] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/18/2016] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Preconception predictors of gestational hypertension and preeclampsia may identify opportunities for early detection and improve our understanding of the pathogenesis and life course epidemiology of these conditions. Female participants in community-based Cohort Norway health surveys, 1994 to 2003, were prospectively followed through 2012 via record linkages to Medical Birth Registry of Norway. Analyses included 13 217 singleton pregnancies (average of 1.59 births to 8321 women) without preexisting hypertension. Outcomes were gestational hypertension without proteinuria (n=237) and preeclampsia (n=429). Mean age (SD) at baseline was 27.9 years (4.5), and median follow-up was 4.8 years (interquartile range 2.6–7.8). Gestational hypertension and preeclampsia shared several baseline risk factors: family history of diabetes mellitus, pregravid diabetes mellitus, a high total cholesterol/high-density lipoprotein cholesterol ratio (>5), overweight and obesity, and elevated blood pressure status. For preeclampsia, a family history of myocardial infarction before 60 years of age and elevated triglyceride levels (≥1.7 mmol/L) also predicted risk while physical activity was protective. Preterm preeclampsia was predicted by past-year binge drinking (≥5 drinks on one occasion) with an adjusted odds ratio of 3.7 (95% confidence interval 1.3–10.8) and by past-year physical activity of ≥3 hours per week with an adjusted odds ratio of 0.5 (95% confidence interval 0.3–0.8). The results suggest similarities and important differences between gestational hypertension, preeclampsia, and preterm preeclampsia. Modifiable risk factors could be targeted for improving pregnancy outcomes and the short- and long-term sequelae for mothers and offspring.
Collapse
Affiliation(s)
- Grace M Egeland
- From the Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway (G.M.E., K.K., N.Ø., G.S.T., R.S.); Health Data and Digitalization, Norwegian Institute of Public Health, Bergen, Norway (G.M.E., K.K., G.S.T., Ø.N., R.S.); and Institute of Health and Society, Blindern, University of Oslo, Oslo, Norway (Ø.N.).
| | - Kari Klungsøyr
- From the Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway (G.M.E., K.K., N.Ø., G.S.T., R.S.); Health Data and Digitalization, Norwegian Institute of Public Health, Bergen, Norway (G.M.E., K.K., G.S.T., Ø.N., R.S.); and Institute of Health and Society, Blindern, University of Oslo, Oslo, Norway (Ø.N.)
| | - Nina Øyen
- From the Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway (G.M.E., K.K., N.Ø., G.S.T., R.S.); Health Data and Digitalization, Norwegian Institute of Public Health, Bergen, Norway (G.M.E., K.K., G.S.T., Ø.N., R.S.); and Institute of Health and Society, Blindern, University of Oslo, Oslo, Norway (Ø.N.)
| | - Grethe S Tell
- From the Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway (G.M.E., K.K., N.Ø., G.S.T., R.S.); Health Data and Digitalization, Norwegian Institute of Public Health, Bergen, Norway (G.M.E., K.K., G.S.T., Ø.N., R.S.); and Institute of Health and Society, Blindern, University of Oslo, Oslo, Norway (Ø.N.)
| | - Øyvind Næss
- From the Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway (G.M.E., K.K., N.Ø., G.S.T., R.S.); Health Data and Digitalization, Norwegian Institute of Public Health, Bergen, Norway (G.M.E., K.K., G.S.T., Ø.N., R.S.); and Institute of Health and Society, Blindern, University of Oslo, Oslo, Norway (Ø.N.)
| | - Rolv Skjærven
- From the Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway (G.M.E., K.K., N.Ø., G.S.T., R.S.); Health Data and Digitalization, Norwegian Institute of Public Health, Bergen, Norway (G.M.E., K.K., G.S.T., Ø.N., R.S.); and Institute of Health and Society, Blindern, University of Oslo, Oslo, Norway (Ø.N.)
| |
Collapse
|
42
|
Kei A, Elisaf M. Hypertriglyceridemia, remnant cholesterol and cardiovascular risk: what genes can say. Int J Clin Pract 2016; 70:142-6. [PMID: 26817568 DOI: 10.1111/ijcp.12762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- A Kei
- Department of Internal Medicine, University of Ioannina Medical School, Ioannina, Greece
| | - M Elisaf
- Department of Internal Medicine, University of Ioannina Medical School, Ioannina, Greece.
| |
Collapse
|
43
|
The Evidence for Saturated Fat and for Sugar Related to Coronary Heart Disease. Prog Cardiovasc Dis 2015; 58:464-72. [PMID: 26586275 DOI: 10.1016/j.pcad.2015.11.006] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 11/12/2015] [Indexed: 12/19/2022]
Abstract
Dietary guidelines continue to recommend restricting intake of saturated fats. This recommendation follows largely from the observation that saturated fats can raise levels of total serum cholesterol (TC), thereby putatively increasing the risk of atherosclerotic coronary heart disease (CHD). However, TC is only modestly associated with CHD, and more important than the total level of cholesterol in the blood may be the number and size of low-density lipoprotein (LDL) particles that contain it. As for saturated fats, these fats are a diverse class of compounds; different fats may have different effects on LDL and on broader CHD risk based on the specific saturated fatty acids (SFAs) they contain. Importantly, though, people eat foods, not isolated fatty acids. Some food sources of SFAs may pose no risk for CHD or possibly even be protective. Advice to reduce saturated fat in the diet without regard to nuances about LDL, SFAs, or dietary sources could actually increase people's risk of CHD. When saturated fats are replaced with refined carbohydrates, and specifically with added sugars (like sucrose or high fructose corn syrup), the end result is not favorable for heart health. Such replacement leads to changes in LDL, high-density lipoprotein (HDL), and triglycerides that may increase the risk of CHD. Additionally, diets high in sugar may induce many other abnormalities associated with elevated CHD risk, including elevated levels of glucose, insulin, and uric acid, impaired glucose tolerance, insulin and leptin resistance, non-alcoholic fatty liver disease, and altered platelet function. A diet high in added sugars has been found to cause a 3-fold increased risk of death due to cardiovascular disease, but sugars, like saturated fats, are a diverse class of compounds. The monosaccharide, fructose, and fructose-containing sweeteners (e.g., sucrose) produce greater degrees of metabolic abnormalities than does glucose (either isolated as a monomer, or in chains as starch) and may present greater risk of CHD. This paper reviews the evidence linking saturated fats and sugars to CHD, and concludes that the latter is more of a problem than the former. Dietary guidelines should shift focus away from reducing saturated fat, and from replacing saturated fat with carbohydrates, specifically when these carbohydrates are refined. To reduce the burden of CHD, guidelines should focus particularly on reducing intake of concentrated sugars, specifically the fructose-containing sugars like sucrose and high-fructose corn syrup in the form of ultra-processed foods and beverages.
Collapse
|
44
|
Ivanova EA, Bobryshev YV, Orekhov AN. LDL electronegativity index: a potential novel index for predicting cardiovascular disease. Vasc Health Risk Manag 2015; 11:525-32. [PMID: 26357481 PMCID: PMC4559248 DOI: 10.2147/vhrm.s74697] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
High cardiovascular risk conditions are frequently associated with altered plasma lipoprotein profile, such as elevated low-density lipoprotein (LDL) and LDL cholesterol and decreased high-density lipoprotein. There is, however, accumulating evidence that specific subclasses of LDL may play an important role in cardiovascular disease development, and their relative concentration can be regarded as a more relevant risk factor. LDL particles undergo multiple modifications in plasma that can lead to the increase of their negative charge. The resulting electronegative LDL [LDL(–)] subfraction has been demonstrated to be especially atherogenic, and became a subject of numerous recent studies. In this review, we discuss the physicochemical properties of LDL(–), methods of its detection, atherogenic activity, and relevance of the LDL electronegativity index as a potential independent predictor of cardiovascular risk.
Collapse
Affiliation(s)
- Ekaterina A Ivanova
- Department of Pediatric Nephrology and Growth and Regeneration, Katholieke Universiteit Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Yuri V Bobryshev
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia ; Faculty of Medicine, School of Medical Sciences, University of New South Wales, Kensington, Sydney, NSW, Australia
| | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia ; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia ; Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
45
|
The Effects of Hyperhydrating Supplements Containing Creatine and Glucose on Plasma Lipids and Insulin Sensitivity in Endurance-Trained Athletes. JOURNAL OF AMINO ACIDS 2015; 2015:352458. [PMID: 26167296 PMCID: PMC4488253 DOI: 10.1155/2015/352458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 11/28/2022]
Abstract
The addition of carbohydrate (CHO) in the form of simple sugars to creatine (Cr) supplements is central. The study aimed to determine whether ingestion of glucose (Glu) simultaneously with Cr and glycerol (Cr/Gly) supplement is detrimental to plasma lipids of endurance-trained individuals and find out whether modification arising can be attenuated by replacing part of the Glu with alpha lipoic acid (Ala). Twenty-two endurance-trained cyclists were randomized to receive Cr/Gly/Glu (11.4 g Cr-H2O, 1 g Gly/kg BM, and 150 g Glu) or Cr/Gly/Glu/Ala (11.4 g Cr-H2O, 1 g Gly/kg BM, 100 g Glu, and 1 g Ala) for 7 days. Fasting concentration of TAG increased significantly (P < 0.01) after supplementation with Cr/Gly/Glu (before: 0.9 ± 0.2 mmol/L; after: 1.3 ± 0.4 mmol/L) and Cr/Gly/Glu/Ala (before: 0.8 ± 0.2 mmol/L; after: 1.2 ± 0.5 mmol/L) but changes were not different between the groups. Supplementation significantly (P < 0.05) increased the TAG to HDL-cholesterol ratio but had no effect on fasting concentration of total, HDL-, and LDL-cholesterol and insulin resistance. Thus, addition of Glu to Cr containing supplements enhances plasma TAG concentration and the TAG to HDL-cholesterol ratio and this enhancement cannot be attenuated by partial replacement of Glu with Ala.
Collapse
|
46
|
Pazderska A, Gibney J. Metabolic and lipoprotein aspects of polycystic ovarian syndrome. ACTA ACUST UNITED AC 2015. [DOI: 10.2217/clp.15.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Katsura T, Katakami N, Irie Y, Yamamoto Y, Okusu T, Kubo F, Kanamaru Y, Nakashoutani I, Yoshiuchi K, Sakamoto K, Kaneto H, Shimomura I, Kosugi K. The usefulness of a cholesterol absorption inhibitor in Japanese type 2 diabetes patients with dyslipidemia. Diabetes Technol Ther 2015; 17:427-34. [PMID: 25714444 DOI: 10.1089/dia.2014.0228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIM Cholesterol absorption has been suggested to be an independent risk factor for cerebral and cardiovascular events. We studied the clinical efficacy of ezetimibe in Japanese patients with type 2 diabetes mellitus complicated by dyslipidemia, in whom increased cholesterol absorption had been reported. SUBJECTS AND METHODS Ninety-six patients with type 2 diabetes complicated by dyslipidemia received ezetimibe at 10 mg/day for 12 weeks. The lipid profile, a cholesterol synthesis marker (lathosterol), and cholesterol absorption markers (cholestanol, sitosterol, and campesterol) were measured before and after the therapy to evaluate the clinical efficacy of ezetimibe. RESULTS Serum low-density lipoprotein-cholesterol (LDL-C) levels were positively associated with cholesterol absorption markers but not associated with a cholesterol synthesis marker, suggesting that serum LDL-C levels are more strongly related to cholesterol absorption than synthesis. During the 12-week ezetimibe treatment period, cholesterol absorption markers significantly decreased, and serum lipid profiles, including LDL-C levels, significantly improved. The LDL-C-lowering rate was greater in those patients who had been receiving statin therapy and were newly started on ezetimibe additionally than in the ezetimibe monotherapy group (-31.4% vs. -18.4%; P<0.001). CONCLUSIONS It is suggested that ezetimibe improves the lipid profile in Japanese type 2 diabetes patients with dyslipidemia through the substantial reduction of cholesterol absorption.
Collapse
|
48
|
Franzese CJ, Bliden KP, Gesheff MG, Pandya S, Guyer KE, Singla A, Tantry US, Toth PP, Gurbel PA. Relation of fish oil supplementation to markers of atherothrombotic risk in patients with cardiovascular disease not receiving lipid-lowering therapy. Am J Cardiol 2015; 115:1204-11. [PMID: 25759102 DOI: 10.1016/j.amjcard.2015.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 12/15/2022]
Abstract
Fish oil supplementation (FOS) is known to have cardiovascular benefits. However, the effects of FOS on thrombosis are incompletely understood. We sought to determine if the use of FOS is associated with lower indices of atherothrombotic risk in patients with suspected coronary artery disease (sCAD). This is a subgroup analysis of consecutive patients with sCAD (n=600) enrolled in the Multi-Analyte, Thrombogenic, and Genetic Markers of Atherosclerosis study. Patients on FOS were compared with patients not on FOS. Lipid profile was determined by vertical density gradient ultracentrifugation (n=520), eicosapentaenoic acid+docosahexaenoic acid was measured by gas chromatography (n=437), and AtherOx testing was performed by immunoassay (n=343). Thromboelastography (n=419), ADP- and collagen-induced platelet aggregation (n=137), and urinary 11-dehydrothromboxane B2 levels (n=259) were performed immediately before elective coronary angiography. In the total population, FOS was associated with higher eicosapentaenoic acid+docosahexaenoic acid content (p<0.001), lower triglycerides (p=0.04), total very low-density lipoprotein cholesterol (p=0.002), intermediate-density lipoprotein cholesterol (p=0.02), and AtherOx levels (p=0.02) but not in patients on lipid-lowering therapy. Patients not on lipid-lowering therapy taking FOS had lower very low-density lipoprotein cholesterol, intermediate-density lipoprotein cholesterol, remnant lipoproteins, triglycerides, low-density lipoprotein cholesterol, AtherOx levels, collagen-induced platelet aggregation, thrombin-induced platelet-fibrin clot strength, and shear elasticity (p<0.03 for all). In clopidogrel-treated patients, there was no difference in ADP-induced aggregation between FOS groups. Patients on FOS had lower urinary 11-dehydrothromboxane B2 levels regardless of lipid-lowering therapy (p<0.04). In conclusion, the findings of this study support the potential benefit of FOS for atherothrombotic risk reduction in sCAD with the greatest benefit in patients not receiving lipid-lowering therapy. Future prospective studies to compare FOS with lipid-lowering therapy and to assess the independent effects of FOS on thrombogenicity are needed.
Collapse
Affiliation(s)
| | - Kevin P Bliden
- Sinai Center for Thrombosis Research, Sinai Hospital, Baltimore, Maryland
| | - Martin G Gesheff
- Sinai Center for Thrombosis Research, Sinai Hospital, Baltimore, Maryland
| | - Shachi Pandya
- Sinai Center for Thrombosis Research, Sinai Hospital, Baltimore, Maryland
| | - Kirk E Guyer
- Department of Chemistry, Indiana University South Bend, South Bend, Indiana
| | - Anand Singla
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Udaya S Tantry
- Sinai Center for Thrombosis Research, Sinai Hospital, Baltimore, Maryland
| | - Peter P Toth
- Department of Preventive Cardiology, CGH Medical Center, Sterling, Illinois; Clinical Family and Community Medicine, University of Illinois College of Medicine, Peoria, Illinois
| | - Paul A Gurbel
- Sinai Center for Thrombosis Research, Sinai Hospital, Baltimore, Maryland.
| |
Collapse
|
49
|
Shirpoor A, Nemati S, Ansari MHK, Ilkhanizadeh B. The protective effect of vitamin E against prenatal and early postnatal ethanol treatment-induced heart abnormality in rats: a 3-month follow-up study. Int Immunopharmacol 2015; 26:72-9. [PMID: 25805307 DOI: 10.1016/j.intimp.2015.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/23/2015] [Accepted: 03/09/2015] [Indexed: 01/14/2023]
Abstract
Ethanol consumption during pregnancy is associated with fetal heart malformation. However, the underlying mechanism of prenatal ethanol exposure causing heart malfunction is not well known. The current study examined the effect of prenatal and early postnatal ethanol consumption on heart abnormality resulting from oxidative and inflammatory stress. It was also intended to find out whether vitamin E inhibits the abnormality induced by ethanol in rats' heart tissue. Pregnant Wistar rats received ethanol with/without vitamin E from the seventh day of gestation (GD7) throughout lactation. The proliferation in heart muscle cells and coronary smooth muscle cells, protein carbonyl, IL-6, TNF-α, homocysteine levels, also lipid profile in heart and plasma of male pups were measured at the end of lactation (PN 21) and 90 days after birth (PN 90). The results indicated proliferation of heart muscle and coronary smooth muscle cells along with heart structural alteration, protein oxidation, lipid peroxidation, inflammatory reaction, and hyperhomocysteinemia in offspring after 21 and 90 days of birth compared with the controls. Vitamin E treatment significantly decreased cell proliferation and heart structural alteration, compared with the group treated by ethanol alone. Furthermore, it reduced the elevation of protein carbonyl, lipid peroxidation, and increased inflammatory proteins to levels as those of the controls. These findings strongly support the idea that ethanol intake by dams during pregnancy and early postnatal days induces heart abnormality mediated by oxidative stress and inflammatory reactions, and that these effects can be alleviated by using vitamin E as an antioxidant and anti-inflammatory molecule.
Collapse
Affiliation(s)
- Alireza Shirpoor
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Samira Nemati
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Behrouz Ilkhanizadeh
- Department of Pathology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
50
|
Bier DM. Saturated Fats and Cardiovascular Disease: Interpretations Not as Simple as They Once Were. Crit Rev Food Sci Nutr 2015; 56:1943-6. [DOI: 10.1080/10408398.2014.998332] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|