1
|
Kordys M, Urbanowicz A. 3D Puzzle at the Nanoscale-How do RNA Viruses Self-Assemble their Capsids into Perfectly Ordered Structures. Macromol Biosci 2024; 24:e2400088. [PMID: 38864315 DOI: 10.1002/mabi.202400088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/03/2024] [Indexed: 06/13/2024]
Abstract
The phenomenon of RNA virus self-organization, first observed in the mid-20th century in tobacco mosaic virus, is the subject of extensive research. Efforts to comprehend this process intensify due to its potential for producing vaccines or antiviral compounds as well as nanocarriers and nanotemplates. However, direct observation of the self-assembly is hindered by its prevalence within infected host cells. One of the approaches involves in vitro and in silico research using model viruses featuring a ssRNA(+) genome enclosed within a capsid made up of a single type protein. While various pathways are proposed based on these studies, their relevance in vivo remains uncertain. On the other hand, the development of advanced microscopic methods provide insights into the events within living cells, where following viral infection, specialized compartments form to facilitate the creation of nascent virions. Intriguingly, a growing body of evidence indicates that the primary function of packaging signals in viral RNA is to effectively initiate the virion self-assembly. This is in contrast to earlier opinions suggesting a role in marking RNA for encapsidation. Another noteworthy observation is that many viruses undergo self-assembly within membraneless liquid organelles, which are specifically induced by viral proteins.
Collapse
Affiliation(s)
- Martyna Kordys
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego Str. 12/14, Poznan, 61-704, Poland
| | - Anna Urbanowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego Str. 12/14, Poznan, 61-704, Poland
| |
Collapse
|
2
|
Schuphan J, Stojanović N, Lin YY, Buhl EM, Aveic S, Commandeur U, Schillberg S, Fischer H. A Combination of Flexible Modified Plant Virus Nanoparticles Enables Additive Effects Resulting in Improved Osteogenesis. Adv Healthc Mater 2024; 13:e2304243. [PMID: 38417028 DOI: 10.1002/adhm.202304243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/16/2024] [Indexed: 03/01/2024]
Abstract
Plant virus nanoparticles (VNPs) genetically engineered to present osteogenic cues provide a promising method for biofunctionalizing hydrogels in bone tissue engineering. Flexible Potato virus X (PVX) nanoparticles substantially enhance the attachment and differentiation of human mesenchymal stem cells (hMSCs) by presenting the RGD motif, hydroxyapatite-binding peptide (HABP), or consecutive polyglutamates (E8) in a concentration-dependent manner. Therefore, it is hypothesized that Tobacco mosaic virus nanoparticles, which present 1.6 times more functional peptides than PVX, will meliorate such an impact. This study hypothesizes that cultivating hMSCs on a surface coated with a combination of two VNPs presenting peptides for either cell attachment or mineralization can achieve additionally enhancing effects on osteogenesis. Calcium minerals deposited by differentiating hMSCs increases two to threefold for this combination, while the Alkaline Phosphatase activity of hMSCs grown on the PVX-RGD/PVX-HABP-coated surface significantly surpasses any other VNP combination. Superior additive effects are observed for the first time by employing a combination of VNPs with varying functionalities. It is found that the flexible VNP geometry plays a more critical role than the concentration of functional peptides. In conclusion, various peptide-presenting plant VNPs exhibit an additive enhancing effect offering significant potential for effectively functionalizing cell-containing hydrogels in bone tissue engineering.
Collapse
Affiliation(s)
- Juliane Schuphan
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Natalija Stojanović
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Ying-Ying Lin
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute of Pathology, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Sanja Aveic
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Stefan Schillberg
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
3
|
Wendlandt T, Britz B, Kleinow T, Hipp K, Eber FJ, Wege C. Getting Hold of the Tobamovirus Particle-Why and How? Purification Routes over Time and a New Customizable Approach. Viruses 2024; 16:884. [PMID: 38932176 PMCID: PMC11209083 DOI: 10.3390/v16060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
This article develops a multi-perspective view on motivations and methods for tobamovirus purification through the ages and presents a novel, efficient, easy-to-use approach that can be well-adapted to different species of native and functionalized virions. We survey the various driving forces prompting researchers to enrich tobamoviruses, from the search for the causative agents of mosaic diseases in plants to their increasing recognition as versatile nanocarriers in biomedical and engineering applications. The best practices and rarely applied options for the serial processing steps required for successful isolation of tobamoviruses are then reviewed. Adaptations for distinct particle species, pitfalls, and 'forgotten' or underrepresented technologies are considered as well. The article is topped off with our own development of a method for virion preparation, rooted in historical protocols. It combines selective re-solubilization of polyethylene glycol (PEG) virion raw precipitates with density step gradient centrifugation in biocompatible iodixanol formulations, yielding ready-to-use particle suspensions. This newly established protocol and some considerations for perhaps worthwhile further developments could serve as putative stepping stones towards preparation procedures appropriate for routine practical uses of these multivalent soft-matter nanorods.
Collapse
Affiliation(s)
- Tim Wendlandt
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| | - Beate Britz
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| | - Tatjana Kleinow
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany;
| | - Fabian J. Eber
- Department of Mechanical and Process Engineering, Offenburg University of Applied Sciences, Badstr. 24, 77652 Offenburg, Germany;
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| |
Collapse
|
4
|
Shtykova EV, Dubrovin EV, Ksenofontov AL, Gifer PK, Petoukhov MV, Tokhtar VK, Sapozhnikova IM, Stavrianidi AN, Kordyukova LV, Batishchev OV. Structural Insights into Plant Viruses Revealed by Small-Angle X-ray Scattering and Atomic Force Microscopy. Viruses 2024; 16:427. [PMID: 38543792 PMCID: PMC10975137 DOI: 10.3390/v16030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 05/23/2024] Open
Abstract
The structural study of plant viruses is of great importance to reduce the damage caused by these agricultural pathogens and to support their biotechnological applications. Nowadays, X-ray crystallography, NMR spectroscopy and cryo-electron microscopy are well accepted methods to obtain the 3D protein structure with the best resolution. However, for large and complex supramolecular structures such as plant viruses, especially flexible filamentous ones, there are a number of technical limitations to resolving their native structure in solution. In addition, they do not allow us to obtain structural information about dynamics and interactions with physiological partners. For these purposes, small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM) are well established. In this review, we have outlined the main principles of these two methods and demonstrated their advantages for structural studies of plant viruses of different shapes with relatively high spatial resolution. In addition, we have demonstrated the ability of AFM to obtain information on the mechanical properties of the virus particles that are inaccessible to other experimental techniques. We believe that these under-appreciated approaches, especially when used in combination, are valuable tools for studying a wide variety of helical plant viruses, many of which cannot be resolved by classical structural methods.
Collapse
Affiliation(s)
- Eleonora V. Shtykova
- National Research Centre, “Kurchatov Institute”, Moscow 123098, Russia; (E.V.S.)
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
| | - Evgeniy V. Dubrovin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander L. Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Polina K. Gifer
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
| | - Maxim V. Petoukhov
- National Research Centre, “Kurchatov Institute”, Moscow 123098, Russia; (E.V.S.)
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
| | - Valeriy K. Tokhtar
- Scientific and Educational Center, Botanical Garden of the National Research University “BelSU”, Belgorod 308033, Russia;
| | - Irina M. Sapozhnikova
- Institute of Chemical Engineering, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Ekaterinburg 620002, Russia;
| | - Andrey N. Stavrianidi
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Larisa V. Kordyukova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia; (E.V.D.); (P.K.G.); (A.N.S.)
| |
Collapse
|
5
|
Grübel J, Wendlandt T, Urban D, Jauch CO, Wege C, Tovar GEM, Southan A. Soft Sub-Structured Multi-Material Biosensor Hydrogels with Enzymes Retained by Plant Viral Scaffolds. Macromol Biosci 2024; 24:e2300311. [PMID: 37922890 DOI: 10.1002/mabi.202300311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/13/2023] [Indexed: 11/07/2023]
Abstract
An all-soft multi-material combination consisting of a hydrogel based on poly(ethylene glycol) (PEG) coated with spatially defined spots of gelatin methacryloyl (GM) containing selectively addressable viral nanorods is presented, and its basic application as a qualitative biosensor with reporter enzymes displayed on the tobacco mosaic virus (TMV) bioscaffolds within the GM is demonstrated. Biologically inert PEG supports are equipped with GM spots serving as biological matrix for enzymes clustered on TMV particles preventing diffusion out of the gel. For this multi-material combination, i) the PEG-based hydrogel surface is modified to achieve a clear boundary between coated and non-coated regions by introducing either isothiouronium or thiol groups. ii) Cross-linking of the GM spots is studied to achieve anchoring to the hydrogel surface. iii) The enzymes horseradish peroxidase or penicillinase (Pen) are conjugated to TMV and integrated into the GM matrix. In contrast to free enzymes, enzyme-decorated TMVs persist in GM spots and show sustained enzyme activity as evidenced by specific color reaction after 7 days of washing, and for Pen after 22 months after dry storage. Therefore, the integration of enzyme-coupled TMV into hydrogel matrices is a promising and versatile approach to obtaining reusable and analyte-specific sensor components.
Collapse
Affiliation(s)
- Jana Grübel
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Tim Wendlandt
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Daniela Urban
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Corinna O Jauch
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Günter E M Tovar
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
| |
Collapse
|
6
|
Geiger F, Wendlandt T, Berking T, Spatz JP, Wege C. Convenient site-selective protein coupling from bacterial raw lysates to coenzyme A-modified tobacco mosaic virus (TMV) by Bacillus subtilis Sfp phosphopantetheinyl transferase. Virology 2023; 578:61-70. [PMID: 36473278 DOI: 10.1016/j.virol.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
A facile enzyme-mediated strategy enables site-specific covalent one-step coupling of genetically tagged luciferase molecules to coenzyme A-modified tobacco mosaic virus (TMV-CoA) both in solution and on solid supports. Bacillus subtilis surfactin phosphopantetheinyl transferase Sfp produced in E. coli mediated the conjugation of firefly luciferase N-terminally extended by eleven amino acids forming a 'ybbR tag' as Sfp-selective substrate, which even worked in bacterial raw lysates. The enzymes displayed on the protein coat of the TMV nanocarriers exhibited high activity. As TMV has proven a beneficial high surface-area adapter template stabilizing enzymes in different biosensing layouts in recent years, the use of TMV-CoA for fishing ybbR-tagged proteins from complex mixtures might become an advantageous concept for the versatile equipment of miniaturized devices with biologically active proteins. It comes along with new opportunities for immobilizing multiple functionalities on TMV adapter coatings, as desired, e.g., in handheld systems for point-of-care detection.
Collapse
Affiliation(s)
- Fania Geiger
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, 69120, Heidelberg, Germany; Heidelberg University, Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Tim Wendlandt
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Research Unit Molecular and Synthetic Plant Virology, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Tim Berking
- University of Stuttgart, Institute of Organic Chemistry, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Joachim P Spatz
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Jahnstraße 29, 69120, Heidelberg, Germany; Heidelberg University, Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM), Im Neuenheimer Feld 225, 69120, Heidelberg, Germany; Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Christina Wege
- University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Research Unit Molecular and Synthetic Plant Virology, Pfaffenwaldring 57, 70569, Stuttgart, Germany.
| |
Collapse
|
7
|
Egli M, Zhang S. Ned Seeman and the prediction of amino acid-basepair motifs mediating protein-nucleic acid recognition. Biophys J 2022; 121:4777-4787. [PMID: 35711143 PMCID: PMC9808504 DOI: 10.1016/j.bpj.2022.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 06/10/2022] [Indexed: 01/07/2023] Open
Abstract
Fifty years ago, the first atomic-resolution structure of a nucleic acid double helix, the mini-duplex (ApU)2, revealed details of basepair geometry, stacking, sugar conformation, and backbone torsion angles, thereby superseding earlier models based on x-ray fiber diffraction, including the original DNA double helix proposed by Watson and Crick. Just 3 years later, in 1976, Ned Seeman, John Rosenberg, and Alex Rich leapt from their structures of mini-duplexes and H-bonding motifs between bases in small-molecule structures and transfer RNA to predicting how proteins could sequence specifically recognize double helix nucleic acids. They proposed interactions between amino acid side chains and nucleobases mediated by two hydrogen bonds in the major or minor grooves. One of these, the arginine-guanine pair, emerged as the most favored amino acid-base interaction in experimental structures of protein-nucleic acid complexes determined since 1986. In this brief review we revisit the pioneering work by Seeman et al. and discuss the importance of the arginine-guanine pairing motif.
Collapse
Affiliation(s)
- Martin Egli
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee.
| | - Shuguang Zhang
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
8
|
Shah SN, Saunders K, Thuenemann EC, Evans DJ, Lomonossoff GP. Designer-length palladium nanowires can be templated by the central channel of tobacco mosaic virus nanorods. Virology 2022; 577:155-162. [PMID: 36384077 DOI: 10.1016/j.virol.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022]
Abstract
We have developed methods for the templated synthesis of palladium nanowires (Pd NWs) within the central channel of tobacco mosaic virus (TMV) nanorods of various lengths. We show that uniform 4 nm diameter Pd NWs can be produced by selective growth within these channels by including the capping reagent, poly(vinyl-pyrrolidone) (PVP30K) and reducing the metal precursor to metallic palladium with ascorbic acid. The length of the Pd NWs can be controlled either by varying the length of the nanorod templates and/or through alterations to the reaction conditions. We have also demonstrated bimetallic gold (Au)-palladium (Pd) in-situ metallization of TMV nanorods resulting in the production of Pd NWs 6 nm gold nanoparticles attached to their ends. The materials produced have many potential applications in the construction of nanoscale devices.
Collapse
Affiliation(s)
- Sachin N Shah
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK; Department of Chemistry, University of Hull, Hull, HU6 7RX, UK
| | - Keith Saunders
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Eva C Thuenemann
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - David J Evans
- Department of Chemistry, University of Hull, Hull, HU6 7RX, UK
| | - George P Lomonossoff
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
9
|
Creager ANH. Tobacco Mosaic Virus and the History of Molecular Biology. Annu Rev Virol 2022; 9:39-55. [PMID: 35704746 DOI: 10.1146/annurev-virology-100520-014520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The history of tobacco mosaic virus (TMV) includes many firsts in science, beginning with its being the first virus identified. This review offers an overview of a history of research on TMV, with an emphasis on its close connections to the emergence and development of molecular biology. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Angela N H Creager
- Department of History, Princeton University, Princeton, New Jersey; USA;
| |
Collapse
|
10
|
Chan SK, Steinmetz NF. Isolation of Tobacco Mosaic Virus-Binding Peptides for Biotechnology Applications. Chembiochem 2022; 23:e202200040. [PMID: 35320626 PMCID: PMC9262120 DOI: 10.1002/cbic.202200040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/17/2022] [Indexed: 11/09/2022]
Abstract
Tobacco mosaic virus (TMV) was the first virus to be discovered and it is now widely used as a tool for biological research and biotechnology applications. TMV particles can be decorated with functional molecules by genetic engineering or bioconjugation. However, this can destabilize the nanoparticles, and/or multiple rounds of modification may be necessary, reducing product yields and preventing the display of certain cargo molecules. To overcome these challenges, we used phage display technology and biopanning to isolate a TMV-binding peptide (TBPT25 ) with strong binding properties (IC50 =0.73 μM, KD =0.16 μM), allowing the display of model cargos via a single mixing step. The TMV-binding peptide is specific for TMV but does not recognize free coat proteins and can therefore be used to decorate intact TMV or detect intact TMV particles in crude plant sap.
Collapse
Affiliation(s)
- Soo Khim Chan
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Nicole F Steinmetz
- Department of NanoEngineering, Department of Bioengineering, Department of Radiology, Center for Nano-ImmunoEngineering, Moores Cancer Center, Institute for Materials Discovery and Design, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Miller JG, Hughes SA, Modlin C, Conticello VP. Structures of synthetic helical filaments and tubes based on peptide and peptido-mimetic polymers. Q Rev Biophys 2022; 55:1-103. [PMID: 35307042 DOI: 10.1017/s0033583522000014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractSynthetic peptide and peptido-mimetic filaments and tubes represent a diverse class of nanomaterials with a broad range of potential applications, such as drug delivery, vaccine development, synthetic catalyst design, encapsulation, and energy transduction. The structures of these filaments comprise supramolecular polymers based on helical arrangements of subunits that can be derived from self-assembly of monomers based on diverse structural motifs. In recent years, structural analyses of these materials at near-atomic resolution (NAR) have yielded critical insights into the relationship between sequence, local conformation, and higher-order structure and morphology. This structural information offers the opportunity for development of new tools to facilitate the predictable and reproduciblede novodesign of synthetic helical filaments. However, these studies have also revealed several significant impediments to the latter process – most notably, the common occurrence of structural polymorphism due to the lability of helical symmetry in structural space. This article summarizes the current state of knowledge on the structures of designed peptide and peptido-mimetic filamentous assemblies, with a focus on structures that have been solved to NAR for which reliable atomic models are available.
Collapse
Affiliation(s)
- Jessalyn G Miller
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA30322
| | - Spencer A Hughes
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA30322
| | - Charles Modlin
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA30322
| | | |
Collapse
|
12
|
Iobbi V, Lanteri AP, Minuto A, Santoro V, Ferrea G, Fossa P, Bisio A. Autoxidation Products of the Methanolic Extract of the Leaves of Combretum micranthum Exert Antiviral Activity against Tomato Brown Rugose Fruit Virus (ToBRFV). Molecules 2022; 27:760. [PMID: 35164024 PMCID: PMC8838289 DOI: 10.3390/molecules27030760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
Tomato brown rugose fruit virus (ToBRFV) is a new damaging plant virus of great interest from both an economical and research point of view. ToBRFV is transmitted by contact, remains infective for months, and to-date, no resistant cultivars have been developed. Due to the relevance of this virus, new effective, sustainable, and operator-safe antiviral agents are needed. Thus, 4-hydroxybenzoic acid was identified as the main product of the alkaline autoxidation at high temperature of the methanolic extract of the leaves of C. micranthum, known for antiviral activity. The autoxidized extract and 4-hydroxybenzoic acid were assayed in in vitro experiments, in combination with a mechanical inoculation test of tomato plants. Catechinic acid, a common product of rearrangement of catechins in hot alkaline solution, was also tested. Degradation of the viral particles, evidenced by the absence of detectable ToBRFV RNA and the loss of virus infectivity, as a possible consequence of disassembly of the virus coat protein (CP), were shown. Homology modeling was then applied to prepare the protein model of ToBRFV CP, and its structure was optimized. Molecular docking simulation showed the interactions of the two compounds, with the amino acid residues responsible for CP-CP interactions. Catechinic acid showed the best binding energy value in comparison with ribavirin, an anti-tobamovirus agent.
Collapse
Affiliation(s)
- Valeria Iobbi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (V.I.); (P.F.)
| | - Anna Paola Lanteri
- CeRSAA—Centro di Sperimentazione e Assistenza Agricola, Regione Rollo 98, 17031 Albenga, Italy; (A.P.L.); (A.M.)
| | - Andrea Minuto
- CeRSAA—Centro di Sperimentazione e Assistenza Agricola, Regione Rollo 98, 17031 Albenga, Italy; (A.P.L.); (A.M.)
| | - Valentina Santoro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Salerno, Italy;
| | - Giuseppe Ferrea
- Azienda Sanitaria Locale 1, Regione Liguria, Via Aurelia 97, Bussana, 18038 Sanremo, Italy;
| | - Paola Fossa
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (V.I.); (P.F.)
| | - Angela Bisio
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (V.I.); (P.F.)
| |
Collapse
|
13
|
Dronina J, Samukaite-Bubniene U, Ramanavicius A. Advances and insights in the diagnosis of viral infections. J Nanobiotechnology 2021; 19:348. [PMID: 34717656 PMCID: PMC8556785 DOI: 10.1186/s12951-021-01081-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Viral infections are the most common among diseases that globally require around 60 percent of medical care. However, in the heat of the pandemic, there was a lack of medical equipment and inpatient facilities to provide all patients with viral infections. The detection of viral infections is possible in three general ways such as (i) direct virus detection, which is performed immediately 1-3 days after the infection, (ii) determination of antibodies against some virus proteins mainly observed during/after virus incubation period, (iii) detection of virus-induced disease when specific tissue changes in the organism. This review surveys some global pandemics from 1889 to 2020, virus types, which induced these pandemics, and symptoms of some viral diseases. Non-analytical methods such as radiology and microscopy also are overviewed. This review overlooks molecular analysis methods such as nucleic acid amplification, antibody-antigen complex determination, CRISPR-Cas system-based viral genome determination methods. Methods widely used in the certificated diagnostic laboratory for SARS-CoV-2, Influenza A, B, C, HIV, and other viruses during a viral pandemic are outlined. A comprehensive overview of molecular analytical methods has shown that the assay's sensitivity, accuracy, and suitability for virus detection depends on the choice of the number of regions in the viral open reading frame (ORF) genome sequence and the validity of the selected analytical method.
Collapse
Affiliation(s)
- Julija Dronina
- Laboratory of Nanotechnology, Department of Functional Materials and Electronics, Center for Physical Sciences and Technology, Sauletekio av. 3, Vilnius, Lithuania
- Department of Physical Chemistry, Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania
| | - Urte Samukaite-Bubniene
- Department of Physical Chemistry, Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geoscience, Vilnius University, Naugarduko str. 24, 03225, Vilnius, Lithuania.
| |
Collapse
|
14
|
Zanotti G, Grinzato A. Structure of filamentous viruses. Curr Opin Virol 2021; 51:25-33. [PMID: 34592708 DOI: 10.1016/j.coviro.2021.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/21/2021] [Accepted: 09/12/2021] [Indexed: 12/17/2022]
Abstract
Despite filamentous viruses represent an important portion of the universe of viruses, their 3D structures available are quite limited, particularly if compared to the large number of structures of icosahedral viruses present in the Protein Data Bank. As a matter of fact, flexible filamentous viruses cannot be grown as single crystals and past structural studies have mostly been limited to X-ray fiber diffraction or to the determination of the structure of isolated viral proteins. Only very recently, several structures of filamentous viruses have become available, owing to the recent development of cryo-electron microscopy. This technique has given a strong impulse to the field and has allowed the building of reliable molecular models of entire viruses, in some cases at a nearly atomic resolution level. In this paper we briefly describe the architecture of filamentous viruses that infect bacteria, archaea, plants and humans. It is easy to foresee that more new structures of filamentous viruses will become available soon and they will allow a better understanding of the rules underlying the structural organization of these organisms so relevant for the life on our planet.
Collapse
Affiliation(s)
- Giuseppe Zanotti
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua, 35131, Italy.
| | - Alessandro Grinzato
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi 58/B, Padua, 35131, Italy.
| |
Collapse
|
15
|
Venkataraman S, Hefferon K. Application of Plant Viruses in Biotechnology, Medicine, and Human Health. Viruses 2021; 13:1697. [PMID: 34578279 PMCID: PMC8473230 DOI: 10.3390/v13091697] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 01/06/2023] Open
Abstract
Plant-based nanotechnology programs using virus-like particles (VLPs) and virus nanoparticles (VNPs) are emerging platforms that are increasingly used for a variety of applications in biotechnology and medicine. Tobacco mosaic virus (TMV) and potato virus X (PVX), by virtue of having high aspect ratios, make ideal platforms for drug delivery. TMV and PVX both possess rod-shaped structures and single-stranded RNA genomes encapsidated by their respective capsid proteins and have shown great promise as drug delivery systems. Cowpea mosaic virus (CPMV) has an icosahedral structure, and thus brings unique benefits as a nanoparticle. The uses of these three plant viruses as either nanostructures or expression vectors for high value pharmaceutical proteins such as vaccines and antibodies are discussed extensively in the following review. In addition, the potential uses of geminiviruses in medical biotechnology are explored. The uses of these expression vectors in plant biotechnology applications are also discussed. Finally, in this review, we project future prospects for plant viruses in the fields of medicine, human health, prophylaxis, and therapy of human diseases.
Collapse
Affiliation(s)
| | - Kathleen Hefferon
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada;
| |
Collapse
|
16
|
Schuphan J, Commandeur U. Analysis of Engineered Tobacco Mosaic Virus and Potato Virus X Nanoparticles as Carriers for Biocatalysts. FRONTIERS IN PLANT SCIENCE 2021; 12:710869. [PMID: 34421958 PMCID: PMC8377429 DOI: 10.3389/fpls.2021.710869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Plant virus nanoparticles are promising candidates for the development of novel materials, including nanocomposites and scaffolds/carriers for functional molecules such as enzymes. Their advantages for enzyme immobilization include a modular organization, a robust and programmable structure, and a simple, cost-effective production. However, the activity of many enzymes relies on posttranslational modification and most plant viruses replicate in the cytoplasm, so functional enzymes cannot be displayed on the virus surface by direct coat protein fusions. An alternative display system to present the Trichoderma reesei endoglucanase Cel12A on potato virus X (PVX) using SpyTag/SpyCatcher (ST/SC) technology was recently developed by the authors, which allows the carrier and enzyme to be produced separately before isopeptide conjugation. Although kinetic analysis clearly indicated efficient biocatalyst activity, the PVX carrier interfered with substrate binding. To overcome this, the suitability of tobacco mosaic virus (TMV) was tested, which can also accommodate a larger number of ST peptides. We produced TMV particles displaying ST as a new platform for the immobilization of enzymes such as Cel12A, and compared its performance to the established PVX-ST platform in terms of catalytic efficiency. Although more enzyme molecules were immobilized on the TMV-ST particles, we found that the rigid scaffold and helical spacing significantly affected enzyme activity.
Collapse
|
17
|
Thuenemann EC, Byrne MJ, Peyret H, Saunders K, Castells-Graells R, Ferriol I, Santoni M, Steele JFC, Ranson NA, Avesani L, Lopez-Moya JJ, Lomonossoff GP. A Replicating Viral Vector Greatly Enhances Accumulation of Helical Virus-Like Particles in Plants. Viruses 2021; 13:885. [PMID: 34064959 PMCID: PMC8150850 DOI: 10.3390/v13050885] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
The production of plant helical virus-like particles (VLPs) via plant-based expression has been problematic with previous studies suggesting that an RNA scaffold may be necessary for their efficient production. To examine this, we compared the accumulation of VLPs from two potexviruses, papaya mosaic virus and alternanthera mosaic virus (AltMV), when the coat proteins were expressed from a replicating potato virus X- based vector (pEff) and a non-replicating vector (pEAQ-HT). Significantly greater quantities of VLPs could be purified when pEff was used. The pEff system was also very efficient at producing VLPs of helical viruses from different virus families. Examination of the RNA content of AltMV and tobacco mosaic virus VLPs produced from pEff revealed the presence of vector-derived RNA sequences, suggesting that the replicating RNA acts as a scaffold for VLP assembly. Cryo-EM analysis of the AltMV VLPs showed they had a structure very similar to that of authentic potexvirus particles. Thus, we conclude that vectors generating replicating forms of RNA, such as pEff, are very efficient for producing helical VLPs.
Collapse
Affiliation(s)
- Eva C. Thuenemann
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich Research Park, Norwich NR4 7UH, UK; (H.P.); (K.S.); (R.C.-G.); (J.F.C.S.)
| | - Matthew J. Byrne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (M.J.B.); (N.A.R.)
| | - Hadrien Peyret
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich Research Park, Norwich NR4 7UH, UK; (H.P.); (K.S.); (R.C.-G.); (J.F.C.S.)
| | - Keith Saunders
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich Research Park, Norwich NR4 7UH, UK; (H.P.); (K.S.); (R.C.-G.); (J.F.C.S.)
| | - Roger Castells-Graells
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich Research Park, Norwich NR4 7UH, UK; (H.P.); (K.S.); (R.C.-G.); (J.F.C.S.)
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Inmaculada Ferriol
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), 08193 Cerdanyola del Vallès, Spain; (I.F.); (J.J.L.-M.)
- Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| | - Mattia Santoni
- Diamante srl. Strada Le Grazie, 15, 37134 Verona, Italy;
| | - John F. C. Steele
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich Research Park, Norwich NR4 7UH, UK; (H.P.); (K.S.); (R.C.-G.); (J.F.C.S.)
- Piramal Healthcare UK Ltd., Piramal Pharma Solutions, Earls Road, Grangemouth, Stirlingshire FK3 8XG, UK
| | - Neil A. Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; (M.J.B.); (N.A.R.)
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134 Verona, Italy;
| | - Juan Jose Lopez-Moya
- Centre for Research in Agricultural Genomics (CRAG, CSIC-IRTA-UAB-UB), 08193 Cerdanyola del Vallès, Spain; (I.F.); (J.J.L.-M.)
- Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| | - George P. Lomonossoff
- John Innes Centre, Department of Biochemistry and Metabolism, Norwich Research Park, Norwich NR4 7UH, UK; (H.P.); (K.S.); (R.C.-G.); (J.F.C.S.)
| |
Collapse
|
18
|
Brown AD, Chu S, Kappagantu M, Ghodssi R, Culver JN. Reprogramming Virus Coat Protein Carboxylate Interactions for the Patterned Assembly of Hierarchical Nanorods. Biomacromolecules 2021; 22:2515-2523. [PMID: 33886293 DOI: 10.1021/acs.biomac.1c00258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The self-assembly system of the rod-shaped tobacco mosaic virus (TMV) has been studied extensively for nanoscale applications. TMV coat protein assembly is modulated by intersubunit carboxylate groups whose electrostatic repulsion limits the assembly of virus rods without incorporating genomic RNA. To engineer assembly control into this system, we reprogrammed intersubunit carboxylate interactions to produce self-assembling coat proteins in the absence of RNA and in response to unique pH and ionic environmental conditions. Specifically, engineering a charge attraction at the intersubunit E50-D77 carboxylate group through a D77K substitution stabilized the coat proteins assembly into virus-like rods. In contrast, the reciprocal E50K modification alone did not confer virus-like rod assembly. However, a combination of R46G/E50K/E97G substitutions enabled virus-like rod assembly. Interestingly, the D77K substitution displays a unique pH-dependent assembly-disassembly profile, while the R46G/E50K/E97G substitutions confer a novel salt concentration dependency for assembly control. In addition, these unique environmentally controlled coat proteins allow for the directed assembly and disassembly of chimeric virus-like rods both in solution and on substrate-attached seed rods. Combined, these findings provide a controllable means to assemble functionally discrete virus-like rods for use in nanotechnology applications.
Collapse
Affiliation(s)
- Adam D Brown
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sangwook Chu
- Institute for Systems Research, University of Maryland, College Park, Maryland 20742, United States
| | - Madhu Kappagantu
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| | - Reza Ghodssi
- Institute for Systems Research, Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - James N Culver
- Institute for Bioscience and Biotechnology Research, Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
19
|
Nkanga CI, Steinmetz NF. The pharmacology of plant virus nanoparticles. Virology 2021; 556:39-61. [PMID: 33545555 PMCID: PMC7974633 DOI: 10.1016/j.virol.2021.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
The application of nanoparticles for medical purposes has made enormous strides in providing new solutions to health problems. The observation that plant virus-based nanoparticles (VNPs) can be repurposed and engineered as smart bio-vehicles for targeted drug delivery and imaging has launched extensive research for improving the therapeutic and diagnostic management of various diseases. There is evidence that VNPs are promising high value nanocarriers with potential for translational development. This is mainly due to their unique features, encompassing structural uniformity, ease of manufacture and functionalization by means of expression, chemical biology and self-assembly. While the development pipeline is moving rapidly, with many reports focusing on engineering and manufacturing aspects to tailor the properties and efficacy of VNPs, fewer studies have focused on gaining insights into the nanotoxicity of this novel platform nanotechnology. Herein, we discuss the pharmacology of VNPs as a function of formulation and route of administration. VNPs are reviewed in the context of their application as therapeutic adjuvants or nanocarrier excipients to initiate, enhance, attenuate or impede the formulation's toxicity. The summary of the data however also underlines the need for meticulous VNP structure-nanotoxicity studies to improve our understanding of their in vivo fates and pharmacological profiles to pave the way for translation of VNP-based formulations into the clinical setting.
Collapse
Affiliation(s)
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA, 92039, United States; Department of Bioengineering, Department of Radiology, Center for NanoImmunoEngineering, Moores Cancer Center, Institute for Materials Discovery and Design, University of California-San Diego, La Jolla, CA, 92039, United States.
| |
Collapse
|
20
|
An RNA-centric historical narrative around the Protein Data Bank. J Biol Chem 2021; 296:100555. [PMID: 33744291 PMCID: PMC8080527 DOI: 10.1016/j.jbc.2021.100555] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/17/2021] [Accepted: 03/16/2021] [Indexed: 01/06/2023] Open
Abstract
Some of the amazing contributions brought to the scientific community by the Protein Data Bank (PDB) are described. The focus is on nucleic acid structures with a bias toward RNA. The evolution and key roles in science of the PDB and other structural databases for nucleic acids illustrate how small initial ideas can become huge and indispensable resources with the unflinching willingness of scientists to cooperate globally. The progress in the understanding of the molecular interactions driving RNA architectures followed the rapid increase in RNA structures in the PDB. That increase was consecutive to improvements in chemical synthesis and purification of RNA molecules, as well as in biophysical methods for structure determination and computer technology. The RNA modeling efforts from the early beginnings are also described together with their links to the state of structural knowledge and technological development. Structures of RNA and of its assemblies are physical objects, which, together with genomic data, allow us to integrate present-day biological functions and the historical evolution in all living species on earth.
Collapse
|
21
|
Wu Z, Yang W, Hou S, Xie D, Yang J, Liu L, Yang S. In vivo antiviral activity and disassembly mechanism of novel 1-phenyl-5-amine-4-pyrazole thioether derivatives against Tobacco mosaic virus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 173:104771. [PMID: 33771249 DOI: 10.1016/j.pestbp.2021.104771] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
A series of novel 1-phenyl-5-amine-4-pyrazole thioether derivatives containing a 1,3,4-oxadiazole moiety was designed and synthesised. In vivo antiviral bioassay results showed that most of the target compounds exhibited excellent inactivation activity against Tobacco mosaic virus (TMV). The EC50 values of the inactivation activities for T2, T7, T9, T24, T25 and T27 were 15.7, 15.7, 15.5, 11.9, 12.5 and 16.5 μg/mL, respectively, which were remarkably superior over that of the commercialised antiviral agent ningnanmycin (40.3 μg/mL). Morphological study using AFM and TEM of TMV treated with T24 showed that T24 could significantly shorten the polymerization length of TMV particles and formed a distinct break on the rod-shaped TMV. Investigations for virus infection efficiency on tobacco leaves demonstrated that infectivity of virion had been reduced obviously upon T24 treatment. Subsequently, a strong interaction between T24 and TMV-CP (Kd = 3.8 μM, score 6.11) was observed through MST experiments. Molecular docking study further revealed that target compounds interact with amino acid residue Glu50 in TMV CP, causing disassembly of virion, shorting the length of the virion and reducing the infectivity of virion, and resulting in high inactivating activity of target compounds. This study provides a new insight for discovery of antiviral compounds through a new action mechanism with a new binding site.
Collapse
Affiliation(s)
- Zhibing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China.
| | - Wenqing Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Shuaitao Hou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Dewen Xie
- College of Pharmacy, Guizhou University, Guiyang 550025, PR China
| | - Jingxin Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Liwei Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
22
|
|
23
|
Aljabali AA, Obeid MA. Inorganic-organic Nanomaterials for Therapeutics and Molecular Imaging Applications. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2210681209666190807145229] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background::
Surface modification of nanoparticles with targeting moieties can be
achieved through bioconjugation chemistries to impart new Functionalities. Various polymeric
nanoparticles have been used for the formulation of nanoparticles such as naturally-occurring
protein cages, virus-like particles, polymeric saccharides, and liposomes. These polymers have
been proven to be biocompatible, side effects free and degradable with no toxicity.
Objectives::
This paper reviews available literature on the nanoparticles pharmaceutical and medical
applications. The review highlights and updates the customized solutions for selective drug
delivery systems that allow high-affinity binding between nanoparticles and the target receptors.
Methods::
Bibliographic databases and web-search engines were used to retrieve studies that assessed
the usability of nanoparticles in the pharmaceutical and medical fields. Data were extracted
on each system in vivo and in vitro applications, its advantages and disadvantages, and its ability to
be chemically and genetically modified to impart new functionalities. Finally, a comparison
between naturally occurring and their synthetic counterparts was carried out.
Results::
The results showed that nanoparticles-based systems could have promising applications in
diagnostics, cell labeling, contrast agents (Magnetic Resonance Imaging and Computed Tomography),
antimicrobial agents, and as drug delivery systems. However, precautions should be taken
to avoid or minimize toxic effect or incompatibility of nanoparticles-based systems with the biological
systems in case of pharmaceutical or medical applications.
Conclusion::
This review presented a summary of recent developments in the field of pharmaceutical
nanotechnology and highlighted the challenges and the merits that some of the nanoparticles-
based systems both in vivo and in vitro systems.
Collapse
Affiliation(s)
- Alaa A.A. Aljabali
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Yarmouk University, P.O. BOX 566, Irbid 21163, Jordan
| | - Mohammad A. Obeid
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Yarmouk University, P.O. BOX 566, Irbid 21163, Jordan
| |
Collapse
|
24
|
Li L, Steinmetz NF, Eppell SJ, Zypman FR. Charge Calibration Standard for Atomic Force Microscope Tips in Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13621-13632. [PMID: 33155810 DOI: 10.1021/acs.langmuir.0c02455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An electric charge standard with nanoscale resolution is created using the known charge distribution of a single tobacco mosaic virus coat protein combined with the known packing of these proteins in the virus capsid. This advances the ability to measure charge on nanometric samples. Experimental atomic force microscope (AFM) force-distance curves are collected under aqueous conditions with controlled pH and ion concentration. A mathematical model that considers a polarizable dielectric tip immersed in an electrolyte is used to obtain charge density from the AFM measurements. Interactions between the tip and the sample are modeled using theory that includes monopolar electrostatic interactions, dipolar interactions, screening from both the dielectric nature of ambient water and solvated ions as described by the linear Poisson-Boltzmann equation, and hard-core repulsion. It is found that the tip charge density changes on a timescale of hours requiring recalibration of the tip for experiments lasting more than an hour. As an example of how a charge-calibrated tip may be used, the surface charge densities on 20 individual carboxylate-modified polystyrene (PS) beads are measured. The average of these AFM-measured bead charge densities is compared with the value obtained from conventional titration combined with electron microscopy. The two values are found to agree within 20%. While the comparison demonstrates similarity of the two charge measurements, hypotheses are put forward as to why the two techniques might be expected not to provide identical mean charge densities. The considerations used to build these hypotheses thus underscore the relevance of the method performed here if charge information is required on individual nanoparticles.
Collapse
Affiliation(s)
- Li Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Nicole F Steinmetz
- Departments of NanoEngineering, Bioengineering, and Radiology, Moores Cancer Center, Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, California 92039, United States
| | - Steven J Eppell
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Fredy R Zypman
- Department of Physics, Yeshiva University, Manhattan, New York 10033, United States
| |
Collapse
|
25
|
Sharma J, Purohit R, Hallan V. Conformational behavior of coat protein in plants and association with coat protein-mediated resistance against TMV. Braz J Microbiol 2020; 51:893-908. [PMID: 31933177 PMCID: PMC7455624 DOI: 10.1007/s42770-020-00225-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
Tobacco mosaic virus (TMV) coat protein (CP) self assembles in viral RNA deprived transgenic plants to form aggregates based on the physical conditions of the environment. Transgenic plants in which these aggregates are developed show resistance toward infection by TMV referred to as CP-MR. This phenomenon has been extensively used to protect transgenic plants against viral diseases. The mutants T42W and E50Q CP confer enhanced CP-MR as compared to the WT CP. The aggregates, when examined, show the presence of helical discs in the case of WT CP; on the other hand, mutants show the presence of highly stable non-helical long rods. These aggregates interfere with the accumulation of MP as well as with the disassembly of TMV in plant cells. Here, we explored an atomic level insight to the process of CP-MR through MD simulations. The subunit-subunit interactions were assessed with the help of MM-PBSA calculations. Moreover, classification of secondary structure elements of the protein also provided unambiguous information about the conformational changes occurring in the two chains, which indicated toward increased flexibility of the mutant protein and seconded the other results of simulations. Our finding indicates the essential structural changes caused by the mutation in CP subunits, which are critically responsible for CP-MR and provides an in silico insight into the effects of these transitions over CP-MR. These results could further be utilized to design TMV-CP-based small peptides that would be able to provide appropriate protection against TMV infection.
Collapse
Affiliation(s)
- Jatin Sharma
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India
- Biotechnology division, CSIR-IHBT, Palampur, HP, 176061, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP, 176061, India.
- Biotechnology division, CSIR-IHBT, Palampur, HP, 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), CSIR-IHBT Campus, Palampur, HP, 176061, India.
| | - Vipin Hallan
- Biotechnology division, CSIR-IHBT, Palampur, HP, 176061, India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-IHBT Campus, Palampur, HP, 176061, India
| |
Collapse
|
26
|
Song C, Takai-Todaka R, Miki M, Haga K, Fujimoto A, Ishiyama R, Oikawa K, Yokoyama M, Miyazaki N, Iwasaki K, Murakami K, Katayama K, Murata K. Dynamic rotation of the protruding domain enhances the infectivity of norovirus. PLoS Pathog 2020; 16:e1008619. [PMID: 32614892 PMCID: PMC7331980 DOI: 10.1371/journal.ppat.1008619] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Norovirus is the major cause of epidemic nonbacterial gastroenteritis worldwide. Lack of structural information on infection and replication mechanisms hampers the development of effective vaccines and remedies. Here, using cryo-electron microscopy, we show that the capsid structure of murine noroviruses changes in response to aqueous conditions. By twisting the flexible hinge connecting two domains, the protruding (P) domain reversibly rises off the shell (S) domain in solutions of higher pH, but rests on the S domain in solutions of lower pH. Metal ions help to stabilize the resting conformation in this process. Furthermore, in the resting conformation, the cellular receptor CD300lf is readily accessible, and thus infection efficiency is significantly enhanced. Two similar P domain conformations were also found simultaneously in the human norovirus GII.3 capsid, although the mechanism of the conformational change is not yet clear. These results provide new insights into the mechanisms of non-enveloped norovirus transmission that invades host cells, replicates, and sometimes escapes the hosts immune system, through dramatic environmental changes in the gastrointestinal tract.
Collapse
Affiliation(s)
- Chihong Song
- National Institute for Physiological Sciences, Okazaki, Japan
| | - Reiko Takai-Todaka
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | | | - Kei Haga
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Akira Fujimoto
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Ryoka Ishiyama
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Kazuki Oikawa
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | | | - Naoyuki Miyazaki
- Institute for Protein Research, Osaka University, Suita, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | - Kenji Iwasaki
- Institute for Protein Research, Osaka University, Suita, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | | | - Kazuhiko Katayama
- Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ōmura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
- National Institute of Infectious Diseases, Tokyo, Japan
- * E-mail: (KK); (KM)
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, Okazaki, Japan
- * E-mail: (KK); (KM)
| |
Collapse
|
27
|
Roig-Solvas B, Brooks DH, Makowski L. FiXR: a framework to reconstruct fiber cross-sections from X-ray fiber diffraction experiments. Acta Crystallogr D Struct Biol 2020; 76:102-117. [DOI: 10.1107/s2059798319015961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/26/2019] [Indexed: 11/10/2022] Open
Abstract
Ab initio reconstruction methods have revolutionized the capabilities of small-angle X-ray scattering (SAXS), allowing the data-driven discovery of previously unknown molecular conformations, exploiting optimization heuristics and assumptions behind the composition of globular molecules. While these methods have been successful for the analysis of small particles, their impact on fibrillar assemblies has been more limited. The micrometre-range size of these assemblies and the complex interaction of their periodicities in their scattering profiles indicate that the discovery of fibril structures from SAXS measurements requires novel approaches beyond extending existing tools for molecular discovery. In this work, it is proposed to use SAXS measurements, together with diffraction theory, to infer the electron distribution of the average cross-section of a fiber. This cross-section is modeled as a discrete electron density with continuous support, allowing representations beyond binary distributions. Additional constraints, such as non-negativity or smoothness/connectedness, can also be added to the framework. The proposed approach is tested using simulated SAXS data from amyloid β fibril models and using measured data of Tobacco mosaic virus from SAXS experiments, recovering the geometry and density of the cross-sections in all cases. The approach is further tested by analyzing SAXS data from different amyloid β fibril assemblies, with results that are in agreement with previously proposed models from cryo-EM measurements. The limitations of the proposed method, together with an analysis of the robustness of the method and the combination with different experimental sources, are also discussed.
Collapse
|
28
|
Guo J, Lin Y, Wang Q. Development of nanotubes coated with platinum nanodendrites using a virus as a template. NANOTECHNOLOGY 2020; 31:015502. [PMID: 31519011 DOI: 10.1088/1361-6528/ab4448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We developed a facile method to fabricate platinum (Pt) porous nanotubes coated with interconnected Pt dendrites using the tobacco mosaic virus (TMV) as a template. The surface-exposed arginine residues of the TMV induced the selective deposition of Pt seeds on the TMV outside surface, and poly(sodium-p-styrenesulfonate) (PSS) was chosen to stabilize the dispersity of TMV coated with Pt seeds (TMV/SPt). The limited space between the Pt seeds and their uniform distribution on the TMV exterior confined the growth of Pt dendrites, resulting in continuous dendritic platinum nanotubes (TMV/DPtNT). The synergistic effects of porous dendrites and anisotropic structures of the TMV/DPtNTs provided an increase in the active sites, the enhancement of transport efficiency and long-distance electron transfer, which greatly improved the catalytic activity. We also demonstrated that such nanotubes could be used in the detection of H2O2 with good sensitivity.
Collapse
Affiliation(s)
- Jiawang Guo
- The State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China. University of Science and Technology of China, Hefei 230026, People's Republic of China
| | | | | |
Collapse
|
29
|
Ohashi M, Maeda SI, Sato C. Bayesian inference for three-dimensional helical reconstruction using a soft-body model. Phys Rev E 2019; 100:042411. [PMID: 31770999 DOI: 10.1103/physreve.100.042411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Indexed: 11/07/2022]
Abstract
Estimation of the three-dimensional (3D) structure of a protein using cryo transmission electron microscopy (cryo-TEM) is an inverse problem, which aims to estimate the parameters of a specific physical process from observations. In general, we need to model the observation process to estimate a structure. However, the inconsistency between the model and a real observation process decreases the estimation accuracy. In cryo-TEM, the flexibility of a soft protein, including the bending of a helix, can lead to inconsistencies between the observations because of the assumption that there is a consistent 3D structure behind each observed image. In this paper, we propose a 3D reconstruction algorithm for helical structures using a parametric soft-body model that can represent continuous deformation. We performed an approximate Bayesian inference for unobservable (hidden) variables, such as the deformation parameters, projection angle, and two-dimensional origin offset (shift) of each protein in the 3D structure estimation problem. Our principled approach is not only beneficial to deal with the uncertainties in the estimation, but also beneficial to make the optimization algorithm convergent and efficient. Reconstructions with artificial molecules validated the advantage of the proposed method, particularly, when deformed helices were imaged under a low signal-to-noise ratio condition. Moreover, we confirmed that the proposed method successfully reconstructed a 3D structure from cryo-TEM images of the tobacco mosaic virus.
Collapse
Affiliation(s)
- Masataka Ohashi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki Prefecture 305-8574, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki Prefecture 305-8566, Japan.,BioNet Ltd., 2-3-28 Nishikityo, Tachikawa, Tokyo 190-0022, Japan
| | - Shin-Ichi Maeda
- Preferred Networks, Inc., 1-6-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Chikara Sato
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki Prefecture 305-8574, Japan.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki Prefecture 305-8566, Japan
| |
Collapse
|
30
|
Gamper C, Spenlé C, Boscá S, van der Heyden M, Erhardt M, Orend G, Bagnard D, Heinlein M. Functionalized Tobacco Mosaic Virus Coat Protein Monomers and Oligomers as Nanocarriers for Anti-Cancer Peptides. Cancers (Basel) 2019; 11:cancers11101609. [PMID: 31652529 PMCID: PMC6826726 DOI: 10.3390/cancers11101609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 01/13/2023] Open
Abstract
Components with self-assembly properties derived from plant viruses provide the opportunity to design biological nanoscaffolds for the ordered display of agents of diverse nature and with complementing functions. With the aim of designing a functionalized nanoscaffold to target cancer, the coat protein (CP) of Tobacco mosaic virus (TMV) was tested as nanocarrier for an insoluble, highly hydrophobic peptide that targets the transmembrane domain of the Neuropilin-1 (NRP1) receptor in cancer cells. The resulting construct CPL-K (CP-linker-“Kill”) binds to NRP1 in cancer cells and disrupts NRP1 complex formation with PlexA1 as well as downstream Akt survival signaling. The application of CPL-K also inhibits angiogenesis and cell migration. CP was also fused to a peptide that targets the extracellular domain of NRP1 and this fusion protein (CPL-F, CP-Linker-“Find”) is shown to bind to cultured cancer cells and to inhibit NRP1-dependent angiogenesis as well. CPL-K and CPL-F maintain their anti-angiogenic properties upon co-assembly to oligomers/nanoparticles together with CPL. The observations show that the CP of TMV can be employed to generate a functionalized nanoparticle with biological activity. Remarkably, fusion to CPL allowed us to solubilize the highly insoluble transmembrane NRP1 peptide and to retain its anti-angiogenic effect.
Collapse
Affiliation(s)
- Coralie Gamper
- Institut de Biologie Moléculaire des Plantes (IBMP-CNRS), Université de Strasbourg, 67000 Strasbourg, France.
- INSERM 1119, BMNST Laboratory, Université de Strasbourg, 67000 Strasbourg, France.
- Labex Medalis, Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg, FMTS, Université de Strasbourg, 67000 Strasbourg, France.
- INSERM 1109, MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Université de Strasbourg, 67000 Strasbourg, France.
| | - Caroline Spenlé
- Institut de Biologie Moléculaire des Plantes (IBMP-CNRS), Université de Strasbourg, 67000 Strasbourg, France.
- INSERM 1119, BMNST Laboratory, Université de Strasbourg, 67000 Strasbourg, France.
- Labex Medalis, Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg, FMTS, Université de Strasbourg, 67000 Strasbourg, France.
- INSERM 1109, MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Université de Strasbourg, 67000 Strasbourg, France.
| | - Sonia Boscá
- Institut de Biologie Moléculaire des Plantes (IBMP-CNRS), Université de Strasbourg, 67000 Strasbourg, France.
| | - Michael van der Heyden
- INSERM 1119, BMNST Laboratory, Université de Strasbourg, 67000 Strasbourg, France.
- Labex Medalis, Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg, FMTS, Université de Strasbourg, 67000 Strasbourg, France.
- INSERM 1109, MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Université de Strasbourg, 67000 Strasbourg, France.
| | - Mathieu Erhardt
- Institut de Biologie Moléculaire des Plantes (IBMP-CNRS), Université de Strasbourg, 67000 Strasbourg, France.
| | - Gertraud Orend
- Labex Medalis, Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg, FMTS, Université de Strasbourg, 67000 Strasbourg, France.
- INSERM 1109, MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Université de Strasbourg, 67000 Strasbourg, France.
- INSERM 1109, The Tumor Microenvironment Laboratory, Université de Strasbourg, 67000 Strasbourg, France.
| | - Dominique Bagnard
- INSERM 1119, BMNST Laboratory, Université de Strasbourg, 67000 Strasbourg, France.
- Labex Medalis, Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg, FMTS, Université de Strasbourg, 67000 Strasbourg, France.
- INSERM 1109, MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Université de Strasbourg, 67000 Strasbourg, France.
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes (IBMP-CNRS), Université de Strasbourg, 67000 Strasbourg, France.
- University of Strasbourg Institute of Advanced Study (USIAS), 67000 Strasbourg, France.
| |
Collapse
|
31
|
Wege C, Koch C. From stars to stripes: RNA-directed shaping of plant viral protein templates-structural synthetic virology for smart biohybrid nanostructures. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1591. [PMID: 31631528 DOI: 10.1002/wnan.1591] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/04/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
The self-assembly of viral building blocks bears exciting prospects for fabricating new types of bionanoparticles with multivalent protein shells. These enable a spatially controlled immobilization of functionalities at highest surface densities-an increasing demand worldwide for applications from vaccination to tissue engineering, biocatalysis, and sensing. Certain plant viruses hold particular promise because they are sustainably available, biodegradable, nonpathogenic for mammals, and amenable to in vitro self-organization of virus-like particles. This offers great opportunities for their redesign into novel "green" carrier systems by spatial and structural synthetic biology approaches, as worked out here for the robust nanotubular tobacco mosaic virus (TMV) as prime example. Natural TMV of 300 x 18 nm is built from more than 2,100 identical coat proteins (CPs) helically arranged around a 6,395 nucleotides ssRNA. In vitro, TMV-like particles (TLPs) may self-assemble also from modified CPs and RNAs if the latter contain an Origin of Assembly structure, which initiates a bidirectional encapsidation. By way of tailored RNA, the process can be reprogrammed to yield uncommon shapes such as branched nanoobjects. The nonsymmetric mechanism also proceeds on 3'-terminally immobilized RNA and can integrate distinct CP types in blends or serially. Other emerging plant virus-deduced systems include the usually isometric cowpea chlorotic mottle virus (CCMV) with further strikingly altered structures up to "cherrybombs" with protruding nucleic acids. Cartoon strips and pictorial descriptions of major RNA-based strategies induct the reader into a rare field of nanoconstruction that can give rise to utile soft-matter architectures for complex tasks. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Claudia Koch
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
32
|
Arkhipenko MV, Nikitin NA, Baranov OA, Evtushenko EA, Atabekov JG, Karpova OV. Surface Charge Mapping on Virions and Virus-Like Particles of Helical Plant Viruses. Acta Naturae 2019; 11:73-78. [PMID: 31993237 PMCID: PMC6977955 DOI: 10.32607/20758251-2019-11-4-73-78] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Currently, the assembly of helical plant viruses is poorly understood. The viral assembly and infection may be affected by the charge distribution on the virion surface. However, only the total virion charge (isoelectric point) has been determined for most plant viruses. Here, we report on the first application of positively charged magnetic nanoparticles for mapping the surface charge distribution of helical plant viruses. The charge was demonstrated to be unevenly distributed on the surface of viruses belonging to different taxonomic groups, with the negative charge being predominantly located at one end of the virions. This charge distribution is mainly controlled by viral RNA.
Collapse
Affiliation(s)
- M. V. Arkhipenko
- Department of Virology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - N. A. Nikitin
- Department of Virology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - O. A. Baranov
- Department of Virology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - E. A. Evtushenko
- Department of Virology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - J. G. Atabekov
- Department of Virology, Lomonosov Moscow State University, Moscow, 119234 Russia
| | - O. V. Karpova
- Department of Virology, Lomonosov Moscow State University, Moscow, 119234 Russia
| |
Collapse
|
33
|
Wang H, Chen Y, Zhang W. A single-molecule atomic force microscopy study reveals the antiviral mechanism of tannin and its derivatives. NANOSCALE 2019; 11:16368-16376. [PMID: 31436278 DOI: 10.1039/c9nr05410c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antiviral agents work by stopping or intervening the virus replication. Virus replication is a fast and multi-step process while effective antiviral intervention requires agents to interact with the protein coat, genetic RNA/DNA or both during virus replication. Thus, quantifying these interactions at the molecular level, although it is quite challenging, is very important for an understanding of the underlying molecular mechanism of antiviral intervention. Here, at the single molecule level, we employ single molecule force spectroscopy (SMFS) in combination with AFM imaging and choose tobacco mosaic virus (TMV)/tannin as a model system of tubular virus to directly study how the inhibitor influences the interactions of RNA and coat protein. We illustrated the antiviral mechanism of tannin during the three main stages of TMV infection, i.e., before the entry of cells, the disassembly of genetic RNA and reassembly of genetic RNA, respectively. Our SMFS results show that tannin and its derivatives can stabilize the TMV complex by enhancing the interactions between RNA and coat protein via weak interactions, such as hydrogen bonding and hydrophobic interactions. In addition, the stabilization effect showed molecular weight dependence, i.e., for higher molecular weight tannin the stabilization occurs after genetic RNA gets partially disassembled from the protein coat, while the lower molecular weight tannin hydrolyte starts experiencing the stabilization effect before the RNA disassembly. Furthermore, the cycling stretching-relaxation experiments in the presence/absence of tannin proved that tannin can prevent the assembling of RNA and coat protein. In addition, the AFM imaging results demonstrate that tannin can cause the aggregation of TMV particles in a concentration-dependent manner; a higher concentration of tannin will cause more severe aggregations. These results deepen our understanding of the antiviral mechanism of tannin and its derivatives, which facilitate the rational design of efficient agents for antiviral therapy.
Collapse
Affiliation(s)
- Huijie Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China.
| | - Ying Chen
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China.
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
34
|
Weis F, Beckers M, von der Hocht I, Sachse C. Elucidation of the viral disassembly switch of tobacco mosaic virus. EMBO Rep 2019; 20:e48451. [PMID: 31535454 PMCID: PMC6831999 DOI: 10.15252/embr.201948451] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 11/26/2022] Open
Abstract
Stable capsid structures of viruses protect viral RNA while they also require controlled disassembly for releasing the viral genome in the host cell. A detailed understanding of viral disassembly processes and the involved structural switches is still lacking. This process has been extensively studied using tobacco mosaic virus (TMV), and carboxylate interactions are assumed to play a critical part in this process. Here, we present two cryo‐EM structures of the helical TMV assembly at 2.0 and 1.9 Å resolution in conditions of high Ca2+ concentration at low pH and in water. Based on our atomic models, we identify the conformational details of the disassembly switch mechanism: In high Ca2+/acidic pH environment, the virion is stabilized between neighboring subunits through carboxyl groups E95 and E97 in close proximity to a Ca2+ binding site that is shared between two subunits. Upon increase in pH and lower Ca2+ levels, mutual repulsion of the E95/E97 pair and Ca2+ removal destabilize the network of interactions between adjacent subunits at lower radius and release the switch for viral disassembly.
Collapse
Affiliation(s)
- Felix Weis
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Maximilian Beckers
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Faculty of Biosciences, EMBL and Heidelberg University, Heidelberg, Germany
| | - Iris von der Hocht
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons 3/Structural Biology, Forschungszentrum Jülich, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Carsten Sachse
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons 3/Structural Biology, Forschungszentrum Jülich, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
35
|
Plant virus-based materials for biomedical applications: Trends and prospects. Adv Drug Deliv Rev 2019; 145:96-118. [PMID: 30176280 DOI: 10.1016/j.addr.2018.08.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/06/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Nanomaterials composed of plant viral components are finding their way into medical technology and health care, as they offer singular properties. Precisely shaped, tailored virus nanoparticles (VNPs) with multivalent protein surfaces are efficiently loaded with functional compounds such as contrast agents and drugs, and serve as carrier templates and targeting vehicles displaying e.g. peptides and synthetic molecules. Multiple modifications enable uses including vaccination, biosensing, tissue engineering, intravital delivery and theranostics. Novel concepts exploit self-organization capacities of viral building blocks into hierarchical 2D and 3D structures, and their conversion into biocompatible, biodegradable units. High yields of VNPs and proteins can be harvested from plants after a few days so that various products have reached or are close to commercialization. The article delineates potentials and limitations of biomedical plant VNP uses, integrating perspectives of chemistry, biomaterials sciences, molecular plant virology and process engineering.
Collapse
|
36
|
Ibrahim A, Odon V, Kormelink R. Plant Viruses in Plant Molecular Pharming: Toward the Use of Enveloped Viruses. FRONTIERS IN PLANT SCIENCE 2019; 10:803. [PMID: 31275344 PMCID: PMC6594412 DOI: 10.3389/fpls.2019.00803] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/04/2019] [Indexed: 05/03/2023]
Abstract
Plant molecular pharming has emerged as a reliable platform for recombinant protein expression providing a safe and low-cost alternative to bacterial and mammalian cells-based systems. Simultaneously, plant viruses have evolved from pathogens to molecular tools for recombinant protein expression, chimaeric viral vaccine production, and lately, as nanoagents for drug delivery. This review summarizes the genesis of viral vectors and agroinfection, the development of non-enveloped viruses for various biotechnological applications, and the on-going research on enveloped plant viruses.
Collapse
|
37
|
Chu S, Brown AD, Culver JN, Ghodssi R. Tobacco Mosaic Virus as a Versatile Platform for Molecular Assembly and Device Fabrication. Biotechnol J 2018; 13:e1800147. [DOI: 10.1002/biot.201800147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/06/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Sangwook Chu
- Department of Electrical and Computer Engineering8223 Paint Branch Dr, A.V. Williams Bldg, University of MarylandCollege ParkMD20742USA
- Institute for Systems Research8223 Paint Branch Dr, A.V. Williams Bldg, University of MarylandCollege ParkMDUSA
| | - Adam D. Brown
- Fischell Department of Bioengineering3102 A. James Clark Hall, University of MarylandCollege ParkMD20742USA
- Institute for Bioscience and Biotechnology Research9600 Gudelsky Dr, RockvilleMD20850USA
| | - James N. Culver
- Fischell Department of Bioengineering3102 A. James Clark Hall, University of MarylandCollege ParkMD20742USA
- Institute for Bioscience and Biotechnology Research9600 Gudelsky Dr, RockvilleMD20850USA
- Department of Plant Science and Landscape Architecture4291 Field House Dr, Plant Sciences Bldg, University of MarylandCollege ParkMD20742USA
| | - Reza Ghodssi
- Department of Electrical and Computer Engineering8223 Paint Branch Dr, A.V. Williams Bldg, University of MarylandCollege ParkMD20742USA
- Institute for Systems Research8223 Paint Branch Dr, A.V. Williams Bldg, University of MarylandCollege ParkMDUSA
- Fischell Department of Bioengineering3102 A. James Clark Hall, University of MarylandCollege ParkMD20742USA
| |
Collapse
|
38
|
Pitek AS, Park J, Wang Y, Gao H, Hu H, Simon DI, Steinmetz NF. Delivery of thrombolytic therapy using rod-shaped plant viral nanoparticles decreases the risk of hemorrhage. NANOSCALE 2018; 10:16547-16555. [PMID: 30137088 PMCID: PMC6145846 DOI: 10.1039/c8nr02861c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cardiovascular thrombotic disease is an underlying cause of stroke, myocardial infarction and pulmonary embolism - some of the leading causes of death worldwide. Reperfusion therapy with anticoagulant, antiplatelet, and fibrinolytic agents has significantly reduced early mortality and morbidity from acute myocardial infarction and stroke. Nevertheless, bleeding side effects (e.g., intracranial hemorrhage) associated with the anti-thrombotic therapy can offset its benefits and limit its applicability to strictly defined short therapeutic windows. We have previously shown that elongated plant virus based nanoparticles can target cardiovascular thrombi and exhibited their utility for the delivery of streptokinase in an ex vivo model of thrombosis. Herein, we build upon our previous findings and demonstrate plant viral delivery of the current standard-of-care tissue plasminogen activator (tPA). Studies on a pre-clinical mouse model of arterial thrombosis indicate that while the therapeutic efficacy of free tPA and tPA-conjugated TMV are similar, the safety profile of the tPA-TMV formulation is improved, i.e. administration of the latter has less impact on hemostasis as demonstrated by decreased bleeding time. Thus, our data suggest that TMV-based delivery of thrombolytic therapies could be a promising and safer alternative to reperfusion therapy with the tPA.
Collapse
Affiliation(s)
- Andrzej S. Pitek
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jooneon Park
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yunmei Wang
- Harrington Heart and Vascular Institute, Case Cardiovascular Research Institute, Department of Medicine, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Huiyun Gao
- Harrington Heart and Vascular Institute, Case Cardiovascular Research Institute, Department of Medicine, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - He Hu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Daniel I. Simon
- Harrington Heart and Vascular Institute, Case Cardiovascular Research Institute, Department of Medicine, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Nicole F. Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Materials Science and Engineering,
Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
39
|
Application of Plant Viruses as a Biotemplate for Nanomaterial Fabrication. Molecules 2018; 23:molecules23092311. [PMID: 30208562 PMCID: PMC6225259 DOI: 10.3390/molecules23092311] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
Viruses are widely used to fabricate nanomaterials in the field of nanotechnology. Plant viruses are of great interest to the nanotechnology field because of their symmetry, polyvalency, homogeneous size distribution, and ability to self-assemble. This homogeneity can be used to obtain the high uniformity of the templated material and its related properties. In this paper, the variety of nanomaterials generated in rod-like and spherical plant viruses is highlighted for the cowpea chlorotic mottle virus (CCMV), cowpea mosaic virus (CPMV), brome mosaic virus (BMV), and tobacco mosaic virus (TMV). Their recent studies on developing nanomaterials in a wide range of applications from biomedicine and catalysts to biosensors are reviewed.
Collapse
|
40
|
Lomonossoff GP, Wege C. TMV Particles: The Journey From Fundamental Studies to Bionanotechnology Applications. Adv Virus Res 2018; 102:149-176. [PMID: 30266172 PMCID: PMC7112118 DOI: 10.1016/bs.aivir.2018.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ever since its initial characterization in the 19th century, tobacco mosaic virus (TMV) has played a prominent role in the development of modern virology and molecular biology. In particular, research on the three-dimensional structure of the virus particles and the mechanism by which these assemble from their constituent protein and RNA components has made TMV a paradigm for our current view of the morphogenesis of self-assembling structures, including viral particles. More recently, this knowledge has been applied to the development of novel reagents and structures for applications in biomedicine and bionanotechnology. In this article, we review how fundamental science has led to TMV being at the vanguard of these new technologies.
Collapse
Affiliation(s)
| | - Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
41
|
Abstract
Within the materials science community, proteins with cage-like architectures are being developed as versatile nanoscale platforms for use in protein nanotechnology. Much effort has been focused on the functionalization of protein cages with biological and non-biological moieties to bring about new properties of not only individual protein cages, but collective bulk-scale assemblies of protein cages. In this review, we report on the current understanding of protein cage assembly, both of the cages themselves from individual subunits, and the assembly of the individual protein cages into higher order structures. We start by discussing the key properties of natural protein cages (for example: size, shape and structure) followed by a review of some of the mechanisms of protein cage assembly and the factors that influence it. We then explore the current approaches for functionalizing protein cages, on the interior or exterior surfaces of the capsids. Lastly, we explore the emerging area of higher order assemblies created from individual protein cages and their potential for new and exciting collective properties.
Collapse
Affiliation(s)
- William M Aumiller
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|
42
|
Femtosecond X-ray coherent diffraction of aligned amyloid fibrils on low background graphene. Nat Commun 2018; 9:1836. [PMID: 29743480 PMCID: PMC5943278 DOI: 10.1038/s41467-018-04116-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/03/2018] [Indexed: 11/09/2022] Open
Abstract
Here we present a new approach to diffraction imaging of amyloid fibrils, combining a free-standing graphene support and single nanofocused X-ray pulses of femtosecond duration from an X-ray free-electron laser. Due to the very low background scattering from the graphene support and mutual alignment of filaments, diffraction from tobacco mosaic virus (TMV) filaments and amyloid protofibrils is obtained to 2.7 Å and 2.4 Å resolution in single diffraction patterns, respectively. Some TMV diffraction patterns exhibit asymmetry that indicates the presence of a limited number of axial rotations in the XFEL focus. Signal-to-noise levels from individual diffraction patterns are enhanced using computational alignment and merging, giving patterns that are superior to those obtainable from synchrotron radiation sources. We anticipate that our approach will be a starting point for further investigations into unsolved structures of filaments and other weakly scattering objects.
Collapse
|
43
|
Wenz NL, Piasecka S, Kalinowski M, Schneider A, Richert C, Wege C. Building expanded structures from tetrahedral DNA branching elements, RNA and TMV protein. NANOSCALE 2018; 10:6496-6510. [PMID: 29569670 DOI: 10.1039/c7nr07743b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
By combining both chemical and enzymatic ligation with procedures guiding the self-assembly of nanotubular tobacco mosaic virus (TMV)-like particles (TLPs), novel nucleoprotein structures based on DNA-terminated branching elements, RNA scaffolds and TMV coat protein (CP) are made accessible. Tetrahedral tetrakis(hydroxybiphenyl)adamantane cores with four 5'-phosphorylated dinucleotide arms were coupled to DNA linkers by chemical ligation. The resulting three-dimensional (3D) branching elements were enzymatically ligated to the 3' termini of RNA scaffolds either prior to or after the RNAs' incorporation into TLPs. Thus, architectures with interconnected nanotube domains in two different length classes were generated, each containing 70 CP subunits per 10 nm length. Short TMV origin-of-assembly-containing RNA scaffolds ligated to the DNA allowed the growth of protein-coated 34 nm tubes on the terminal RNA strands in situ. Alternatively, 290 nm pre-fabricated tubes with accessible RNA 3' termini, attained by DNA blocking elements hybridized to the RNAs, were ligated with the branched cores. Both approaches resulted in four-armed nanoobjects, demonstrating a so far unique combination of organic synthesis of branching elements, enzymatic modifications, nucleic acid-based scaffolding and RNA-guided and DNA-controlled assembly of tubular RNA-encapsidating protein domains, yielding a novel class of 3D nucleoprotein architectures with polyvalent protein elements. In the long term, the production route might give rise to supramolecular systems with complex functionalities, installed via the orthogonal coupling of effector molecules to TLP domains.
Collapse
Affiliation(s)
- Nana L Wenz
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Sylwia Piasecka
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Matthäus Kalinowski
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Angela Schneider
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| |
Collapse
|
44
|
Direct imaging and computational cryo-electron microscopy of ribbons and nanotubes. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
45
|
Guo J, Zhao X, Hu J, Lin Y, Wang Q. Tobacco Mosaic Virus with Peroxidase-Like Activity for Cancer Cell Detection through Colorimetric Assay. Mol Pharm 2018; 15:2946-2953. [DOI: 10.1021/acs.molpharmaceut.7b00921] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jiawang Guo
- The State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xia Zhao
- The State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jun Hu
- The State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yuan Lin
- The State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Qian Wang
- The State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
46
|
Riekel C, Burghammer M, Snigirev I, Rosenthal M. Microstructural metrology of tobacco mosaic virus nanorods during radial compression and heating. SOFT MATTER 2018; 14:194-204. [PMID: 29138785 DOI: 10.1039/c7sm01332a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We determined stress-induced deformations and the thermal stability of nanorod-shaped tobacco mosaic virus (TMV) capsids in coffee-ring structures by X-ray nanodiffraction. The hexagonal capsids lattice transforms under compression in the outer boundary zone of the coffee-ring into a tetragonal lattice. The helical pitch of the nanorods increases by about 2.5% across the outer boundary zone while the lateral distance between nanorods decreases continuously across the whole coffee-ring structure by about 2% due to compressive forces. The diffraction patterns show a mixture of helical scattering and Bragg peaks attributed to a lattice of nanorods interlocked by their helical grooves. Thermo-nanodiffraction reveals water loss up to about 100 °C resulting in a reduction of the helical pitch by about 6% with respect to its maximum value and a reduction of the nanorods separation by about 0.5 nm. Up to about 200 °C the pitch is increasing again by about 2%. Secondary crystallization in the bulk reaches a maximum at 150-160 °C. At higher temperatures the crystallinity is continuously decreasing up to about 220 °C. Above about 200 °C and depending on the heating history, the nanorods start disintegrating into small, randomly oriented aggregates.
Collapse
Affiliation(s)
- C Riekel
- The European Synchrotron, ESRF, CS40220, F-38043 Grenoble Cedex 9, France.
| | | | | | | |
Collapse
|
47
|
Abstract
RNA-guided self-assembly of tobacco mosaic virus (TMV)-like nucleoprotein nanotubes is possible using 3'-terminally surface-linked scaffold RNAs containing the viral origin of assembly (OAS). In combination with TMV coat protein (CP) preparations, these scaffold RNAs can direct the growth of selectively addressable multivalent carrier particles directly at sites of interest on demand. Serving as adapter templates for the installation of functional molecules, they may promote an integration of active units into miniaturized technical devices, or enable their presentation on soft-matter nanotube systems at high surface densities advantageous for, for example, biodetection or purification applications. This chapter describes all procedures essential for the bottom-up fabrication of "nanostar" colloids with gold cores and multiple TMV-like arms, immobilized in a programmable manner by way of hybridization of the RNA scaffolds to oligodeoxynucleotides exposed on the gold beads.
Collapse
Affiliation(s)
- Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany.
| | - Fabian J Eber
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
48
|
Dickmeis C, Altintoprak K, van Rijn P, Wege C, Commandeur U. Bioinspired Silica Mineralization on Viral Templates. Methods Mol Biol 2018; 1776:337-362. [PMID: 29869253 DOI: 10.1007/978-1-4939-7808-3_23] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant virus capsids are attractive entities for nanotechnological applications because of their variation in shape and natural assembly ability. This chapter describes the production and modification of three differently shaped plant virus capsids for silica mineralization purposes. The chosen plant viruses exhibit either an icosahedral (cowpea mosaic virus, CPMV), or a flexuous rod-like structure (potato virus X, PVX), or a rigid rod-like shape (tobacco mosaic virus, TMV), and are well-known and frequently used plant viruses for biotechnological applications. We describe the production (including genetic or chemical modification) and purification of the plant viruses or of empty virus-like particles in the case of CPMV, as well as the characterization of these harvested templates. The mineralization procedures and differences in the protocols specific to the distinct viruses are described, and the analyses of the mineralization results are explained.
Collapse
Affiliation(s)
- Christina Dickmeis
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Klara Altintoprak
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Patrick van Rijn
- Faculty of Medical Sciences, University of Groningen, AV, Groningen, The Netherlands
| | - Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Ulrich Commandeur
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
49
|
Abstract
Plant viruses are emerging as versatile tools for nanotechnology applications since it is possible to modify their multivalent protein surfaces and thereby introduce and display new functionalities. In this chapter, we describe a tobacco mosaic virus (TMV) variant that exposes two selectively addressable amino acid moieties on each of its 2130 coat protein (CP) subunits. A lysine as well as a cysteine introduced at accessible sites of every CP can be modified with amino- and/or thiol-reactive chemistry such as N-hydroxysuccinimide esters (NHS ester) and maleimide containing reagents alone or simultaneously. This enables the pairwise immobilization of distinct molecules in close vicinity to each other on the TMV surface by simple standard conjugation protocols. We describe the generation of the mutations, the virus propagation and isolation as well as the dual functionalization of the TMV variant with two fluorescent dyes. The labeling is evaluated by SDS-PAGE and spectrophotometry and the degree of labeling (DOL) calculated.
Collapse
Affiliation(s)
- Christina Wege
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Fania Geiger
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany.
| |
Collapse
|
50
|
Larkin EJ, Brown AD, Culver JN. Fabrication of Tobacco Mosaic Virus-Like Nanorods for Peptide Display. Methods Mol Biol 2018; 1776:51-60. [PMID: 29869234 DOI: 10.1007/978-1-4939-7808-3_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Virus-like particles (VLPs) are genome-free protein shells assembled from virus coat proteins (CPs). The uniform and nanoscale structure of VLPs combined with their noninfectious nature have made them ideal candidates for the display of functional peptides. While the vast majority of VLPs are derived from spherical viruses, tobacco mosaic virus (TMV) produces a rod-shaped particle with a hollow central channel. However, under physiological conditions the TMV CP forms only disk-shaped macromolecules. Here, we describe the design, construction, purification, and processing of rod-shaped TMV-VLPs using a simple bacterial expression system. The robust nature of this system allows for the display of functional peptides and molecules on the outer surface of this novel VLP.
Collapse
Affiliation(s)
- Emily J Larkin
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Adam D Brown
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - James N Culver
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA.
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA.
| |
Collapse
|