1
|
Maya-González C, Delgado-Vega AM, Taylan F, Lagerstedt Robinson K, Hansson L, Pal N, Fagman H, Puls F, Wessman S, Stenman J, Georgantzi K, Fransson S, Díaz De Ståhl T, Ek T, Palmer R, Tesi B, Kogner P, Martinsson T, Nordgren A. Occurrence of cancer in Marfan syndrome: Report of two patients with neuroblastoma and review of the literature. Am J Med Genet A 2024; 194:e63812. [PMID: 38990105 DOI: 10.1002/ajmg.a.63812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder caused by pathogenic variants in FBN1, with a hitherto unknown association with cancer. Here, we present two females with MFS who developed pediatric neuroblastoma. Patient 1 presented with neonatal MFS and developed an adrenal neuroblastoma with unfavorable tumor genetics at 10 months of age. Whole genome sequencing revealed a germline de novo missense FBN1 variant (NP_000129.3:p.(Asp1322Asn)), resulting in intron 32 inclusion and exon 32 retention. Patient 2 was diagnosed with classic MFS, caused by a germline de novo frameshift variant in FBN1 (NP_000129.3:p.(Cys805Ter)). At 18 years, she developed high-risk neuroblastoma with a somatic ALK pathogenic variant (NP_004295.2:p.(Arg1275Gln)). We identified 32 reported cases of MFS with cancer in PubMed, yet none with neuroblastoma. Among patients, we observed an early cancer onset and high frequency of MFS complications. We also queried cancer databases for somatic FBN1 variants, finding 49 alterations reported in PeCan, and variants in 2% of patients in cBioPortal. In conclusion, we report the first two patients with MFS and neuroblastoma and highlight an early age at cancer diagnosis in reported patients with MFS. Further epidemiological and functional studies are needed to clarify the growing evidence linking MFS and cancer.
Collapse
Affiliation(s)
- Carolina Maya-González
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Angelica Maria Delgado-Vega
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Fulya Taylan
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Kristina Lagerstedt Robinson
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Lina Hansson
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Niklas Pal
- Department of Pediatric Oncology, Astrid Lindgren Children's Hospital, Stockholm, Sweden
| | - Henrik Fagman
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Florian Puls
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sandra Wessman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Jakob Stenman
- Department of Pediatric Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - Kleopatra Georgantzi
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Teresita Díaz De Ståhl
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Torben Ek
- Children Cancer Center, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Ruth Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bianca Tesi
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
2
|
Besouro-Duarte A, Carrasqueiro B, Sousa S, Xavier JM, Maia AT. Colocalised Genetic Associations Reveal Alternative Splicing Variants as Candidate Causal Links for Breast Cancer Risk in 10 Loci. Cancers (Basel) 2024; 16:3020. [PMID: 39272878 PMCID: PMC11394352 DOI: 10.3390/cancers16173020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Genome-wide association studies (GWASs) have revealed numerous loci associated with breast cancer risk, yet the precise causal variants, their impact on molecular mechanisms, and the affected genes often remain elusive. We hypothesised that specific variants exert their influence by affecting cis-regulatory alternative splice elements. An analysis of splicing quantitative trait loci (sQTL) in healthy breast tissue from female individuals identified multiple variants linked to alterations in splicing ratios. Through colocalisation analysis, we pinpointed 43 variants within twelve genes that serve as candidate causal links between sQTL and GWAS findings. In silico splice analysis highlighted a potential mechanism for three genes-FDPS, SGCE, and MRPL11-where variants in proximity to or on the splice site modulate usage, resulting in alternative splice transcripts. Further in vitro/vivo studies are imperative to fully understand how these identified changes contribute to breast oncogenesis. Moreover, investigating their potential as biomarkers for breast cancer risk could enhance screening strategies and early detection methods for breast cancer.
Collapse
Affiliation(s)
- André Besouro-Duarte
- CINTESIS@RISE, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Gambelas Campus, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Beatriz Carrasqueiro
- Faculty of Medicine and Biomedical Sciences, Gambelas Campus, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Sofia Sousa
- Faculty of Medicine and Biomedical Sciences, Gambelas Campus, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Joana M Xavier
- CINTESIS@RISE, Universidade do Algarve, 8005-139 Faro, Portugal
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ana-Teresa Maia
- CINTESIS@RISE, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Gambelas Campus, Universidade do Algarve, 8005-139 Faro, Portugal
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
3
|
Qi Y, Wei Y, Li L, Ge H, Wang Y, Zeng C, Ma F. Genetic factors in the pathogenesis of cardio-oncology. J Transl Med 2024; 22:739. [PMID: 39103883 DOI: 10.1186/s12967-024-05537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
In recent years, with advancements in medicine, the survival period of patients with tumours has significantly increased. The adverse effects of tumour treatment on patients, especially cardiac toxicity, have become increasingly prominent. In elderly patients with breast cancer, treatment-related cardiovascular toxicity has surpassed cancer itself as the leading cause of death. Moreover, in recent years, an increasing number of novel antitumour drugs, such as multitargeted agents, antibody‒drug conjugates (ADCs), and immunotherapies, have been applied in clinical practice. The cardiotoxicity induced by these drugs has become more pronounced, leading to a complex and diverse mechanism of cardiac damage. The risks of unintended cardiovascular toxicity are increased by high-dose anthracyclines, immunotherapies, and concurrent radiation, in addition to traditional cardiovascular risk factors such as smoking, hypertension, diabetes, hyperlipidaemia, and obesity. However, these factors do not fully explain why only a subset of individuals experience treatment-related cardiac toxicity, whereas others with similar clinical features do not. Recent studies indicate that genetics play a significant role in susceptibility to the development of cardiovascular toxicity from cancer therapies. These genes are involved in drug metabolism, oxidative damage, cardiac dysfunction, and other processes. Moreover, emerging evidence suggests that epigenetics also plays a role in drug-induced cardiovascular toxicity. We conducted a review focusing on breast cancer as an example to help oncologists and cardiologists better understand the mechanisms and effects of genetic factors on cardiac toxicity. In this review, we specifically address the relationship between genetic alterations and cardiac toxicity, including chemotherapy-related genetic changes, targeted therapy-related genetic changes, and immune therapy-related genetic changes. We also discuss the role of epigenetic factors in cardiac toxicity. We hope that this review will improve the risk stratification of patients and enable therapeutic interventions that mitigate these unintended adverse consequences of life-saving cancer treatments.
Collapse
Affiliation(s)
- Yalong Qi
- Department of Medical Oncology, Cancer Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing, 100021, China
| | - Yuhan Wei
- Department of Medical Oncology, Cancer Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing, 100021, China
| | - Lixi Li
- Department of Medical Oncology, Cancer Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing, 100021, China
| | - Hewei Ge
- Department of Medical Oncology, Cancer Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing, 100021, China
| | - Yuanyi Wang
- Department of Medical Oncology, Cancer Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing, 100021, China
| | - Cheng Zeng
- Department of Medical Oncology, Cancer Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing, 100021, China
| | - Fei Ma
- Department of Medical Oncology, Cancer Hospital, National Cancer Center, National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing, 100021, China.
| |
Collapse
|
4
|
Chandrasekhar S, Lin S, Jurkute N, Oprych K, Estramiana Elorrieta L, Schiff E, Malka S, Wright G, Michaelides M, Mahroo OA, Webster AR, Arno G. Investigating Splice Defects in USH2A Using Targeted Long-Read Sequencing. Cells 2024; 13:1261. [PMID: 39120292 PMCID: PMC11311777 DOI: 10.3390/cells13151261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Biallelic variants in USH2A are associated with retinitis pigmentosa (RP) and Type 2 Usher Syndrome (USH2), leading to impaired vision and, additionally, hearing loss in the latter. Although the introduction of next-generation sequencing into clinical diagnostics has led to a significant uplift in molecular diagnostic rates, many patients remain molecularly unsolved. It is thought that non-coding variants or variants of uncertain significance contribute significantly to this diagnostic gap. This study aims to demonstrate the clinical utility of the reverse transcription-polymerase chain reaction (RT-PCR)-Oxford Nanopore Technology (ONT) sequencing of USH2A mRNA transcripts from nasal epithelial cells to determine the splice-altering effect of candidate variants. Five affected individuals with USH2 or non-syndromic RP who had undergone whole genome sequencing were recruited for further investigation. All individuals had uncertain genotypes in USH2A, including deep intronic rare variants, c.8682-654C>G, c.9055+389G>A, and c.9959-2971C>T; a synonymous variant of uncertain significance, c.2139C>T; p.(Gly713=); and a predicted loss of function duplication spanning an intron/exon boundary, c.3812-3_3837dup p.(Met1280Ter). In silico assessment using SpliceAI provided splice-altering predictions for all candidate variants which were investigated using ONT sequencing. All predictions were found to be accurate; however, in the case of c.3812-3_3837dup, the outcome was a complex cryptic splicing pattern with predominant in-frame exon 18 skipping and a low level of exon 18 inclusion leading to the predicted stop gain. This study detected and functionally characterised simple and complex mis-splicing patterns in USH2A arising from previously unknown deep intronic variants and previously reported variants of uncertain significance, confirming the pathogenicity of the variants.
Collapse
Affiliation(s)
| | - Siying Lin
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Neringa Jurkute
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Department of Neuro-Ophthalmology, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Kathryn Oprych
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Clinical Genetics, St George’s University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Leire Estramiana Elorrieta
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- Section for Paediatrics, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London W2 1NY, UK
| | - Elena Schiff
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Samantha Malka
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Genevieve Wright
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Omar A. Mahroo
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Department of Ophthalmology, St Thomas’ Hospital, London SE1 7EH, UK
| | - Andrew R. Webster
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Gavin Arno
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute of Health Research Biomedical Research Centre at Moorfields Eye Hospital and the UCL Institute of Ophthalmology, London EC1V 9EL, UK
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| |
Collapse
|
5
|
Zhang Z, Hu Q, Yang C, Chen M, Han B. Comparison of human leukocyte antigen in patients with paroxysmal nocturnal hemoglobinuria of different clone sizes. Ann Hematol 2024; 103:1897-1907. [PMID: 38616191 DOI: 10.1007/s00277-024-05740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/01/2024] [Indexed: 04/16/2024]
Abstract
Glycosylphosphatidylinositol-anchored protein-deficient hematopoietic stem and progenitor cell development caused by PIGA mutations cannot fully explain the pathogenesis of paroxysmal nocturnal hemoglobinuria (PNH). Herein, patients newly diagnosed with PNH at our hospital between April 2019 and April 2021 were recruited. The human leukocyte antigen (HLA) class I and II loci were analyzed, and patients were stratified by PNH clone sizes: small (< 50%) and large (≥ 50%). In 40 patients (29 males; 72.5%), the median PNH clone size was 72%. Thirteen (32.5%) and twenty-seven (67.5%) patients harbored small and large PNH clones, respectively. DRB1*15:01 and DQB1*06:02 had higher frequencies in patients with PNH than in healthy controls (adjusted P-value = 4.10 × 10-4 and 4.10 × 10-4, respectively). Whole HLA class I and II allele contributions differed (P = 0.046 and 0.065, not significant difference) when comparing patients with small and large PNH clones. B*13:01 and C*04:01 allelic frequencies were significantly higher in patients with small clones (P = 0.032 and P = 0.032, respectively). Patients with small clones had higher class II HLA evolutionary divergence (HED) (P = 0.041) and global class I and II HED (P = 0.019). In the entire cohort, 17 HLA aberrations were found in 11 (27.5%) patients. No significant differences in HLA aberrations were found between patients with small or large clones. In conclusion, patients with small clones tended to have a higher frequency of immune attack-associated alleles. A higher HED in patients with small clones may reflect a propensity for T cell-mediated autoimmunity. HLA aberrations were similar between patients with small and large clones.
Collapse
Affiliation(s)
- Zhuxin Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Qinglin Hu
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Chen Yang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Miao Chen
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| | - Bing Han
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
6
|
Esposito S, Zollo I, Villella VR, Scialò F, Giordano S, Esposito MV, Salemme N, Di Domenico C, Cernera G, Zarrilli F, Castaldo G, Amato F. Identification of an ultra-rare Alu insertion in the CFTR gene: Pitfalls and challenges in genetic test interpretation. Clin Chim Acta 2024; 558:118317. [PMID: 38580140 DOI: 10.1016/j.cca.2024.118317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
Cystic fibrosis (CF) is a life-limiting genetic disorder characterized by defective chloride ion transport due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Early detection through newborn screening programs significantly improves outcomes for individuals with CF by enabling timely intervention. Here, we report the identification of an Alu element insertion within the exon 15 of CFTR gene, initially overlooked in standard next-generation sequencing analyses. However, using traditional molecular techniques, based on polymerase chain reaction and Sanger sequencing, allowed the identification of the Alu element and the reporting of a correct diagnosis. Our analysis, based on bioinformatics tools and molecular techniques, revealed that the Alu element insertion severely affects the gene expression, splicing patterns, and structure of CFTR protein. In conclusion, this study emphasizes the importance of how the integration of human expertise and modern technologies represents a pivotal step forward in genomic medicine, ensuring the delivery of precision healthcare to individuals affected by genetic diseases.
Collapse
Affiliation(s)
- Speranza Esposito
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy
| | - Immacolata Zollo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy
| | - Valeria Rachela Villella
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy
| | - Filippo Scialò
- CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy; Department of Translational Medical Science, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Sonia Giordano
- AORN Ospedali dei Colli-Monaldi-Cotugno-CTO, Naples, Italy
| | | | - Nunzia Salemme
- San Giuseppe and Melorio Hospital, Santa Maria Capua Vetere, Caserta, Italy
| | | | - Gustavo Cernera
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy
| | - Federica Zarrilli
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy
| | - Felice Amato
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy.
| |
Collapse
|
7
|
Mohar NP, Cox EM, Adelizzi E, Moore SA, Mathews KD, Darbro BW, Wallrath LL. The Influence of a Genetic Variant in CCDC78 on LMNA-Associated Skeletal Muscle Disease. Int J Mol Sci 2024; 25:4930. [PMID: 38732148 PMCID: PMC11084688 DOI: 10.3390/ijms25094930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Mutations in the LMNA gene-encoding A-type lamins can cause Limb-Girdle muscular dystrophy Type 1B (LGMD1B). This disease presents with weakness and wasting of the proximal skeletal muscles and has a variable age of onset and disease severity. This variability has been attributed to genetic background differences among individuals; however, such variants have not been well characterized. To identify such variants, we investigated a multigeneration family in which affected individuals are diagnosed with LGMD1B. The primary genetic cause of LGMD1B in this family is a dominant mutation that activates a cryptic splice site, leading to a five-nucleotide deletion in the mature mRNA. This results in a frame shift and a premature stop in translation. Skeletal muscle biopsies from the family members showed dystrophic features of variable severity, with the muscle fibers of some family members possessing cores, regions of sarcomeric disruption, and a paucity of mitochondria, not commonly associated with LGMD1B. Using whole genome sequencing (WGS), we identified 21 DNA sequence variants that segregate with the family members possessing more profound dystrophic features and muscle cores. These include a relatively common variant in coiled-coil domain containing protein 78 (CCDC78). This variant was given priority because another mutation in CCDC78 causes autosomal dominant centronuclear myopathy-4, which causes cores in addition to centrally positioned nuclei. Therefore, we analyzed muscle biopsies from family members and discovered that those with both the LMNA mutation and the CCDC78 variant contain muscle cores that accumulated both CCDC78 and RyR1. Muscle cores containing mislocalized CCDC78 and RyR1 were absent in the less profoundly affected family members possessing only the LMNA mutation. Taken together, our findings suggest that a relatively common variant in CCDC78 can impart profound muscle pathology in combination with a LMNA mutation and accounts for variability in skeletal muscle disease phenotypes.
Collapse
Affiliation(s)
- Nathaniel P. Mohar
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (N.P.M.); (E.A.)
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Efrem M. Cox
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA (S.A.M.)
- Department of Neurosurgery, UNLV School of Medicine, Las Vegas, NV 89106, USA
| | - Emily Adelizzi
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (N.P.M.); (E.A.)
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Steven A. Moore
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA (S.A.M.)
| | - Katherine D. Mathews
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Benjamin W. Darbro
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (N.P.M.); (E.A.)
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Lori L. Wallrath
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA; (N.P.M.); (E.A.)
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Liu X, Zhang H, Zeng Y, Zhu X, Zhu L, Fu J. DRANetSplicer: A Splice Site Prediction Model Based on Deep Residual Attention Networks. Genes (Basel) 2024; 15:404. [PMID: 38674339 PMCID: PMC11048956 DOI: 10.3390/genes15040404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/20/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
The precise identification of splice sites is essential for unraveling the structure and function of genes, constituting a pivotal step in the gene annotation process. In this study, we developed a novel deep learning model, DRANetSplicer, that integrates residual learning and attention mechanisms for enhanced accuracy in capturing the intricate features of splice sites. We constructed multiple datasets using the most recent versions of genomic data from three different organisms, Oryza sativa japonica, Arabidopsis thaliana and Homo sapiens. This approach allows us to train models with a richer set of high-quality data. DRANetSplicer outperformed benchmark methods on donor and acceptor splice site datasets, achieving an average accuracy of (96.57%, 95.82%) across the three organisms. Comparative analyses with benchmark methods, including SpliceFinder, Splice2Deep, Deep Splicer, EnsembleSplice, and DNABERT, revealed DRANetSplicer's superior predictive performance, resulting in at least a (4.2%, 11.6%) relative reduction in average error rate. We utilized the DRANetSplicer model trained on O. sativa japonica data to predict splice sites in A. thaliana, achieving accuracies for donor and acceptor sites of (94.89%, 94.25%). These results indicate that DRANetSplicer possesses excellent cross-organism predictive capabilities, with its performance in cross-organism predictions even surpassing that of benchmark methods in non-cross-organism predictions. Cross-organism validation showcased DRANetSplicer's excellence in predicting splice sites across similar organisms, supporting its applicability in gene annotation for understudied organisms. We employed multiple methods to visualize the decision-making process of the model. The visualization results indicate that DRANetSplicer can learn and interpret well-known biological features, further validating its overall performance. Our study systematically examined and confirmed the predictive ability of DRANetSplicer from various levels and perspectives, indicating that its practical application in gene annotation is justified.
Collapse
Affiliation(s)
- Xueyan Liu
- College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China; (X.L.); (X.Z.); (L.Z.); (J.F.)
| | - Hongyan Zhang
- College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China; (X.L.); (X.Z.); (L.Z.); (J.F.)
| | - Ying Zeng
- School of Computer and Communication, Hunan Institute of Engineering, Xiangtan 411104, China;
| | - Xinghui Zhu
- College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China; (X.L.); (X.Z.); (L.Z.); (J.F.)
| | - Lei Zhu
- College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China; (X.L.); (X.Z.); (L.Z.); (J.F.)
| | - Jiahui Fu
- College of Information and Intelligence, Hunan Agricultural University, Changsha 410128, China; (X.L.); (X.Z.); (L.Z.); (J.F.)
| |
Collapse
|
9
|
Zhang R, Cui D, Song C, Ma X, Cai N, Zhang Y, Feng M, Cao Y, Chen L, Qiang R. Evaluating the efficacy of a long-read sequencing-based approach in the clinical diagnosis of neonatal congenital adrenocortical hyperplasia. Clin Chim Acta 2024; 555:117820. [PMID: 38307397 DOI: 10.1016/j.cca.2024.117820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders predominantly characterized by impaired corticosteroid synthesis. Clinical phenotypes include hypoadrenocorticism, electrolyte disturbances, abnormal gonadal development, and short stature, of which severe hyponadrenocorticism and salt wasting can be life-threatening. Genetic analysis can help in the clinical diagnosis of CAH. However, the 21-OHD-causing gene CYP21A2 is arranged in tandem with the highly homologous CYP21A1P pseudogene, making it difficult to determine the exact genotypes using the traditional method of multiplex ligation-dependent probe amplification (MLPA) plus Sanger sequencing or next-generation sequencing (NGS). We applied a long-read sequencing-based approach termed comprehensive analysis of CAH (CACAH) to 48 newborns with CAH that were diagnosed by clinical features and the traditional MLPA plus Sanger sequencing method for retrospective analysis, to evaluate its efficacy in the clinical diagnosis of neonatal CAH. Compared with the MLPA plus Sanger sequencing method, CACAH showed 100 % consistency in detecting SNV/indel variants located in exons and exon-intron boundary regions of CAH-related genes. It can directly determine the cis-trans relationship without the need to analyze parental genotypes, which reduces the time to diagnosis. Moreover, CACAH was able to distinguish different CYP21A1P/CYP21A2 and TNXA/TNXB chimeras, and detect additional variants (CYP21A2 variants c.-121C > T, c.*13G > A, c.*52C > T, c.*440C > T, c.*443 T > C, and TNXB variants c.12463 + 2 T > C, c.12204 + 5G > A). We also identified the TNXB variant c.11435_11524 + 30del alone instead of as a part of the TNXA/TNXB-CH-1 chimera in two newborns, which might be introduced by gene conversion. All of these characteristics enabled clinicians to better explain the phenotype of subjects and manage them more effectively. CACAH has a great advantage over the traditional MLPA and Sanger sequencing methods, showing substantial potential in the genetic diagnosis and screening of neonatal CAH.
Collapse
Affiliation(s)
- Ruixue Zhang
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, China
| | - Di Cui
- Berry Genomics Corporation, Beijing 102200, China
| | - Chengrong Song
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, China
| | - Xiaoping Ma
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, China
| | - Na Cai
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, China
| | - Yan Zhang
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, China
| | - Mei Feng
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, China
| | - Yanlin Cao
- Berry Genomics Corporation, Beijing 102200, China
| | - Libao Chen
- Berry Genomics Corporation, Beijing 102200, China
| | - Rong Qiang
- Center of Neonatal Disease Screening, Department of Clinical Genetics, Northwest Women's and Children's Hospital, China.
| |
Collapse
|
10
|
Fehér E, Kaszab E, Mótyán JA, Máté D, Bali K, Hoitsy M, Sós E, Jakab F, Bányai K. Structural similarity of human papillomavirus E4 and polyomaviral VP4 exhibited by genomic analysis of the common kestrel (Falco tinnunculus) polyomavirus. Vet Res Commun 2024; 48:309-315. [PMID: 37688754 PMCID: PMC10810995 DOI: 10.1007/s11259-023-10210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023]
Abstract
Polyomaviruses are widely distributed viruses of birds that may induce developmental deformities and internal organ disorders primarily in nestlings. In this study, polyomavirus sequence was detected in kidney and liver samples of a common kestrel (Falco tinnunculus) that succumbed at a rescue station in Hungary. The amplified 5025 nucleotide (nt) long genome contained the early (large and small T antigen, LTA and STA) and late (viral proteins, VP1, VP2, VP3) open reading frames (ORFs) typical for polyomaviruses. One of the additional putative ORFs (named VP4) showed identical localization with the VP4 and ORF-X of gammapolyomaviruses, but putative splicing sites could not be found in its sequence. Interestingly, the predicted 123 amino acid (aa) long protein sequence showed the highest similarity with human papillomavirus E4 early proteins in respect of the aa distribution and motif arrangement implying similar functions. The LTA of the kestrel polyomavirus shared <59.2% nt and aa pairwise identity with the LTA sequence of other polyomaviruses and formed a separated branch in the phylogenetic tree among gammapolyomaviruses. Accordingly, the kestrel polyomavirus may be the first member of a novel species within the Gammapolyomavirus genus, tentatively named Gammapolyomavirus faltin.
Collapse
Affiliation(s)
- Enikő Fehér
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary.
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary.
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary.
| | - Eszter Kaszab
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- Institute of Metagenomics, University of Debrecen, Debrecen, Hungary
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dóra Máté
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
| | - Krisztina Bali
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
| | - Márton Hoitsy
- Conservation and Veterinary Services, Budapest Zoo and Botanical Garden, Budapest, Hungary
- Department of Exotic Animal and Wildlife Medicine, University of Veterinary Medicine, Budapest, Hungary
| | - Endre Sós
- Conservation and Veterinary Services, Budapest Zoo and Botanical Garden, Budapest, Hungary
- Department of Exotic Animal and Wildlife Medicine, University of Veterinary Medicine, Budapest, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Krisztián Bányai
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
- National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
11
|
Zheng K, Lin S, Gao J, Chen S, Su J, Liu Z, Duan S. Novel compound heterozygous MYO15A splicing variants in autosomal recessive non-syndromic hearing loss. BMC Med Genomics 2024; 17:4. [PMID: 38167320 PMCID: PMC10763153 DOI: 10.1186/s12920-023-01777-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Hereditary hearing loss is a highly heterogeneous disorder. This study aimed to identify the genetic cause of a Chinese family with autosomal recessive non-syndromic sensorineural hearing loss (ARNSHL). METHODS Clinical information and peripheral blood samples were collected from the proband and its parents. Two-step high-throughput next-generation sequencing on the Ion Torrent platform was applied to detect variants as follows. First, long-range PCR was performed to amplify all the regions of the GJB2, GJB3, SLC26A4, and MT-RNR1 genes, followed by next-generation sequencing. If no candidate pathogenetic variants were found, the targeted exon sequencing with AmpliSeq technology was employed to examine another 64 deafness-associated genes. Sanger sequencing was used to identify variants and the lineage co-segregation. The splicing of the MYO15A gene was assessed by in silico bioinformatics prediction and minigene assays. RESULTS Two candidate MYO15A gene (OMIM, #602,666) heterozygous splicing variants, NG_011634.2 (NM_016239.3): c.6177 + 1G > T and c.9690 + 1G > A, were identified in the proband, and these two variants were both annotated as pathogenic according to the American College of Medical Genetics and Genomics (ACMG) guidelines. Further bioinformatic analysis predicted that the c.6177 + 1G > T variant might cause exon skipping and that the c.9690 + 1G > A variant might activate a cryptic splicing donor site in the downstream intronic region. An in vitro minigene assay confirmed the above predictions. CONCLUSIONS We identified a compound heterozygous splicing variant in the MYO15A gene in a Han Chinese family with ARNSHL. Our results broaden the spectrum of MYO15A variants, potentially benefiting the early diagnosis, prevention, and treatment of the disease.
Collapse
Affiliation(s)
- Kaifeng Zheng
- Laboratory of Molecular Medicine, Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Sheng Lin
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Jian Gao
- Laboratory of Molecular Medicine, Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Shiguo Chen
- Laboratory of Molecular Medicine, Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Jindi Su
- Laboratory of Molecular Medicine, Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Zhiqiang Liu
- Shenzhen Health Development Research and Data Management Center, Shenzhen, China
| | - Shan Duan
- Laboratory of Molecular Medicine, Institute of Maternal and Child Medicine, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
12
|
Nielsen H, Teufel F, Brunak S, von Heijne G. SignalP: The Evolution of a Web Server. Methods Mol Biol 2024; 2836:331-367. [PMID: 38995548 DOI: 10.1007/978-1-0716-4007-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
SignalP ( https://services.healthtech.dtu.dk/services/SignalP-6.0/ ) is a very popular prediction method for signal peptides, the intrinsic signals that make proteins secretory. The SignalP web server has existed since 1995 and is now in its sixth major version. In this historical account, we (three authors who have taken part in the entire journey plus the first author of the latest version) describe the differences between the versions and discuss the various decisions taken along the way.
Collapse
Affiliation(s)
- Henrik Nielsen
- Section for Bioinformatics, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Felix Teufel
- Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Digital Science & Innovation, Novo Nordisk A/S, Malov, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
- Science for Life Laboratory, Stockholm University, Solna, Sweden
| |
Collapse
|
13
|
Fandiño S, Gomez-Lucia E, Benítez L, Doménech A. Comparison of Endogenous Alpharetroviruses (ALV-like) across Galliform Species: New Distant Proviruses. Microorganisms 2023; 12:86. [PMID: 38257913 PMCID: PMC10820513 DOI: 10.3390/microorganisms12010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The Genus Alpharetrovirus contains viruses pathogenic mainly for chickens, forming the Avian Sarcoma and Leukosis Virus group (ASLV). Cells of most Galliform species, besides chickens, contain genetic elements (endogenous retroviruses, ERVs) that could recombine with other alpharetroviruses or express proteins, complementing defective ASLV, which may successfully replicate and cause disease. However, they are quite unknown, and only ALV-F, from ring-necked pheasants, has been partially published. Upon scrutiny of 53 genomes of different avian species, we found Alpharetrovirus-like sequences only in 12 different Galliformes, including six full-length (7.4-7.6 Kbp) and 27 partial sequences. Phylogenetic studies of the regions studied (LTR, gag, pol, and env) consistently resulted in five almost identical clades containing the same ERVs: Clade I (presently known ASLVs); Clade II (Callipepla spp. ERVs); Clade IIIa (Phasianus colchicus ERVs); Clade IIIb (Alectoris spp. ERVs); and Clade IV (Centrocercus spp. ERVs). The low pol identity scores suggested that each of these Clades may be considered a different species. ORF analysis revealed that putatively encoded proteins would be very similar in length and domains to those of other alpharetroviruses and thus potentially functional. This will undoubtedly contribute to better understanding the biology of defective viruses, especially in wild Galliformes, their evolution, and the danger they may represent for other wild species and the poultry industry.
Collapse
Affiliation(s)
- Sergio Fandiño
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain; (S.F.); (A.D.)
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), C. de José Antonio Novais 12, 28040 Madrid, Spain;
- Research Group, “Animal Viruses” of Complutense University of Madrid, 28040 Madrid, Spain
| | - Esperanza Gomez-Lucia
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain; (S.F.); (A.D.)
- Research Group, “Animal Viruses” of Complutense University of Madrid, 28040 Madrid, Spain
| | - Laura Benítez
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), C. de José Antonio Novais 12, 28040 Madrid, Spain;
- Research Group, “Animal Viruses” of Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Doménech
- Department of Animal Health, Veterinary Faculty, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040 Madrid, Spain; (S.F.); (A.D.)
- Research Group, “Animal Viruses” of Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
14
|
Batlle-Masó L, Rivière JG, Franco-Jarava C, Martín-Nalda A, Garcia-Prat M, Parra-Martínez A, Aguiló-Cucurull A, Castells N, Martinez-Gallo M, Soler-Palacín P, Colobran R. Molecular Challenges in the Diagnosis of X-Linked Chronic Granulomatous Disease: CNVs, Intronic Variants, Skewed X-Chromosome Inactivation, and Gonosomal Mosaicism. J Clin Immunol 2023; 43:1953-1963. [PMID: 37597073 DOI: 10.1007/s10875-023-01556-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/16/2023] [Indexed: 08/21/2023]
Abstract
Chronic granulomatous disease (CGD) is a prototypical inborn error of immunity affecting phagocytes, in which these cells are unable to produce reactive oxygen species. CGD is caused by defects in genes encoding subunits of the NADPH oxidase enzyme complex (CYBA, CYBB, CYBC1, NCF1, NCF2, NCF4); inflammatory responses are dysregulated, and patients are highly susceptible to recurrent severe bacterial and fungal infections. X-linked CGD (XL-CGD), caused by mutations in the CYBB gene, is the most common and severe form of CGD. In this study, we describe the analytical processes undertaken in 3 families affected with XL-CGD to illustrate several molecular challenges in the genetic diagnosis of this condition: in family 1, a girl with a heterozygous deletion of CYBB exon 13 and skewed X-chromosome inactivation (XCI); in family 2, a boy with a hemizygous deletion of CYBB exon 7, defining its consequences at the mRNA level; and in family 3, 2 boys with the same novel intronic variant in CYBB (c.1151 + 6 T > A). The variant affected the splicing process, although a small fraction of wild-type mRNA was produced. Their mother was a heterozygous carrier, while their maternal grandmother was a carrier in form of gonosomal mosaicism. In summary, using a variety of techniques, including an NGS-based targeted gene panel and deep amplicon sequencing, copy number variation calling strategies, microarray-based comparative genomic hybridization, and cDNA analysis to define splicing defects and skewed XCI, we show how to face and solve some uncommon genetic mechanisms in the diagnosis of XL-CGD.
Collapse
Affiliation(s)
- Laura Batlle-Masó
- Infection and Immunity Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Children's Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
- Pompeu Fabra University (UPF), Barcelona, Catalonia, Spain
| | - Jacques G Rivière
- Infection and Immunity Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Children's Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
| | - Clara Franco-Jarava
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
- Translational Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Immunology Division, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Andrea Martín-Nalda
- Infection and Immunity Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Children's Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
| | - Marina Garcia-Prat
- Infection and Immunity Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Children's Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
| | - Alba Parra-Martínez
- Infection and Immunity Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Children's Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
| | - Aina Aguiló-Cucurull
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
- Translational Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Immunology Division, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Neus Castells
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Medicine Genetics Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Mónica Martinez-Gallo
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain
- Translational Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Immunology Division, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
| | - Pere Soler-Palacín
- Infection and Immunity Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain.
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Children's Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain.
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain.
| | - Roger Colobran
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Catalonia, Spain.
- Translational Immunology Research Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain.
- Immunology Division, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain.
- Department of Clinical and Molecular Genetics, Vall d'Hebron University Hospital (HUVH), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain.
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Bellaterra, Catalonia, Spain.
| |
Collapse
|
15
|
Wang S, Chen X. Identification of Protein-Coding Gene Structure and Protein-Related Genes and Their Splicing Sites in Kidney Stone Disease: A Protein Big Data Analysis. Appl Biochem Biotechnol 2023; 195:6020-6031. [PMID: 36763230 DOI: 10.1007/s12010-023-04322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 02/11/2023]
Abstract
The study of protein-coding gene structure and protein-related genes in kidney stone disease is used for accurate identification of splicing sites and accurate location of gene exon boundaries, which is one of the difficulties and key problems in understanding the genome and discovering new genes. Prediction techniques based on signal characteristics of conserved sequences around splicing sites, such as the weighted array model (WAM), are widely used. On this basis, several other features that can be used for splicing site recognition (such as the base composition of splicing site upstream and downstream sequences, the change of signal and base composition of upstream and downstream sequences with the C + G content of adjacent sequences) were mined further, and a model was developed to describe these features. In this study, a log-linear model that can effectively integrate these features for splicing site recognition was designed, and a SpliceKey programme was developed. The findings reveal that SpliceKey's splicing site identification accuracy is not only much better than the WAM approach, but also better than DGSplice.
Collapse
Affiliation(s)
- Shiyu Wang
- The Second Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Xiangmei Chen
- The Second Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
16
|
Kawamoto N, Hamada Y, Kobayashi S, Naruse H, Ishiura H, Matsukawa T, Mitsui J, Tsuji S, Sonoo M, Toda T. Noncanonical splice-site variant in peripheral myelin protein 22 gene (PMP22) in a patient with hereditary neuropathy with liability to pressure palsies. J Peripher Nerv Syst 2023; 28:513-517. [PMID: 37170477 DOI: 10.1111/jns.12558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
AIM Hereditary neuropathy with liability to pressure palsies (HNPP) is a peripheral neuropathy with autosomal dominant inheritance. Diagnosis can be made from the characteristic abnormalities determined by nerve conduction studies (NCS), including subclinical deficits at physiological compression sites. Heterozygous deletion of the chromosome 17p11.2-p12 region including the peripheral myelin protein 22 gene (PMP22) is the cause in the majority of cases. However, the loss of function of PMP22 due to frameshift-causing insertion/deletion, missense, nonsense, or splice-site disrupting variants cause HNPP in some patients. We report a case of a patient diagnosed with HNPP on the basis of clinical features and the results of NCS. No deletions of PMP22 were detected by fluorescence in situ hybridization. METHODS We performed direct nucleotide sequence analysis and identified a heterozygous variant, c.78 + 3G > T, in PMP22. Since this variant is located outside the canonical splice site at the exon 2-intron 2 junction, we investigated whether the variant causes aberrant splicing and leads to the skipping of exon 2 of PMP22 by in vitro minigene splicing assay. RESULTS We demonstrated that the c.78 + 3G > T variant causes the skipping of exon 2 and leads to loss of function of the mutant allele. CONCLUSION Searching for sequence variants located outside the canonical splice sites should also be considered even when deletion of PMP22 is not found in a patient with a clinical diagnosis suggesting HNPP.
Collapse
Affiliation(s)
- Norifumi Kawamoto
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuichi Hamada
- Department of Neurology, Teikyo University School of Medicine, Tokyo, Japan
| | - Shunsuke Kobayashi
- Department of Neurology, Teikyo University School of Medicine, Tokyo, Japan
| | - Hiroya Naruse
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takashi Matsukawa
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jun Mitsui
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Precision Medicine Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shoji Tsuji
- Institute of Medical Genomics, International University of Health and Welfare, Chiba, Japan
| | - Masahiro Sonoo
- Department of Neurology, Teikyo University School of Medicine, Tokyo, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Saadi SM, Cali E, Khalid LB, Yousaf H, Zafar G, Khan HN, Sher M, Vona B, Abdullah U, Malik NA, Klar J, Efthymiou S, Dahl N, Houlden H, Toft M, Baig SM, Fatima A, Iqbal Z. Genetic Investigation of Consanguineous Pakistani Families Segregating Rare Spinocerebellar Disorders. Genes (Basel) 2023; 14:1404. [PMID: 37510308 PMCID: PMC10379343 DOI: 10.3390/genes14071404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Spinocerebellar disorders are a vast group of rare neurogenetic conditions, generally characterized by overlapping clinical symptoms including progressive cerebellar ataxia, spastic paraparesis, cognitive deficiencies, skeletal/muscular and ocular abnormalities. The objective of the present study is to identify the underlying genetic causes of the rare spinocerebellar disorders in the Pakistani population. Herein, nine consanguineous families presenting different spinocerebellar phenotypes have been investigated using whole exome sequencing. Sanger sequencing was performed for segregation analysis in all the available individuals of each family. The molecular analysis of these families identified six novel pathogenic/likely pathogenic variants; ZFYVE26: c.1093del, SACS: c.1201C>T, BICD2: c.2156A>T, ALS2: c.2171-3T>G, ALS2: c.3145T>A, and B4GALNT1: c.334_335dup, and three already reported pathogenic variants; FA2H: c.159_176del, APTX: c.689T>G, and SETX: c.5308_5311del. The clinical features of all patients in each family are concurrent with the already reported cases. Hence, the current study expands the mutation spectrum of rare spinocerebellar disorders and implies the usefulness of next-generation sequencing in combination with clinical investigation for better diagnosis of these overlapping phenotypes.
Collapse
Affiliation(s)
- Saadia Maryam Saadi
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Elisa Cali
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Lubaba Bintee Khalid
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Hammad Yousaf
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
| | - Ghazala Zafar
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Haq Nawaz Khan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Muhammad Sher
- Department of Allied Health Sciences, Iqra National University Swat Campus, Swat 19200, Pakistan
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Uzma Abdullah
- University Institute of Biochemistry and Biotechnology (UIBB), Pir Mehr Ali Shah Arid Agriculture University Rawalpindi (PMAS-AAUR), Rawalpindi 46300, Pakistan
| | - Naveed Altaf Malik
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
| | - Joakim Klar
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, P.O. Box 815, 751 08 Uppsala, Sweden
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Uppsala University and Science for Life Laboratory, P.O. Box 815, 751 08 Uppsala, Sweden
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mathias Toft
- Institute of Clinical Medicine, University of Oslo, P.O. Box 1171, N-0318 Oslo, Norway
- Department of Neurology, Oslo University Hospital, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway
| | - Shahid Mahmood Baig
- Human Molecular Genetics Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Ambrin Fatima
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi 74000, Pakistan
| | - Zafar Iqbal
- Department of Neurology, Oslo University Hospital, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway
| |
Collapse
|
18
|
de la Morena-Barrio B, Palomo Á, Padilla J, Martín-Fernández L, Rojo-Carrillo JJ, Cifuentes R, Bravo-Pérez C, Garrido-Rodríguez P, Miñano A, Rubio AM, Pagán J, Llamas M, Vicente V, Vidal F, Lozano ML, Corral J, de la Morena-Barrio ME. Impact of genetic structural variants in factor XI deficiency: identification, accurate characterization, and inferred mechanism by long-read sequencing. J Thromb Haemost 2023; 21:1779-1788. [PMID: 36940803 DOI: 10.1016/j.jtha.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Congenital factor XI (FXI) deficiency is a probably underestimated coagulopathy that confers antithrombotic protection. Characterization of genetic defects in F11 is mainly focused on the identification of single-nucleotide variants and small insertion/deletions because they represent up to 99% of the alterations accounting for factor deficiency, with only 3 gross gene defects of structural variants (SVs) having been described. OBJECTIVES To identify and characterize the SVs affecting F11. METHODS The study was performed in 93 unrelated subjects with FXI deficiency recruited in Spanish hospitals over a period of 25 years (1997-2022). F11 was analyzed by next-generation sequencing, multiplex ligand probe amplification, and long-read sequencing. RESULTS Our study identified 30 different genetic variants. Interestingly, we found 3 SVs, all heterozygous: a complex duplication affecting exons 8 and 9, a tandem duplication of exon 14, and a large deletion affecting the whole gene. Nucleotide resolution obtained by long-read sequencing revealed Alu repetitive elements involved in all breakpoints. The large deletion was probably generated de novo in the paternal allele during gametogenesis, and despite affecting 30 additional genes, no syndromic features were described. CONCLUSION SVs may account for a high proportion of F11 genetic defects implicated in the molecular pathology of congenital FXI deficiency. These SVs, likely caused by a nonallelic homologous recombination involving repetitive elements, are heterogeneous in both type and length and may be de novo. These data support the inclusion of methods to detect SVs in this disorder, with long-read-based methods being the most appropriate because they detect all SVs and achieve adequate nucleotide resolution.
Collapse
Affiliation(s)
- Belén de la Morena-Barrio
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain
| | - Ángeles Palomo
- Servicio de Hematología y Hemoterapia del centro Materno-Infantil del Hospital Regional Universitario Carlos de Haya, Málaga, Spain
| | - José Padilla
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain
| | - Laura Martín-Fernández
- Laboratori de Coagulopaties Congènites, Banc de Sang i Teixits, Barcelona, Spain; Medicina Transfusional. Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan José Rojo-Carrillo
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain
| | - Rosa Cifuentes
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain
| | - Carlos Bravo-Pérez
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain
| | - Pedro Garrido-Rodríguez
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain
| | - Antonia Miñano
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain
| | - Ana María Rubio
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain
| | - Javier Pagán
- Servicio de Medicina Interna, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - María Llamas
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain
| | - Vicente Vicente
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain
| | - Francisco Vidal
- Laboratori de Coagulopaties Congènites, Banc de Sang i Teixits, Barcelona, Spain; Medicina Transfusional. Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - María Luisa Lozano
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain
| | - Javier Corral
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain.
| | - María Eugenia de la Morena-Barrio
- Servicio de Hematología, Hospital Universitario Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Pascual Parrilla, Centro de Investigación Biomédica en Red de Enfermedades Raras-Instituto de Salud Carlos III, Murcia, Spain.
| |
Collapse
|
19
|
Fabo T, Khavari P. Functional characterization of human genomic variation linked to polygenic diseases. Trends Genet 2023; 39:462-490. [PMID: 36997428 PMCID: PMC11025698 DOI: 10.1016/j.tig.2023.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023]
Abstract
The burden of human disease lies predominantly in polygenic diseases. Since the early 2000s, genome-wide association studies (GWAS) have identified genetic variants and loci associated with complex traits. These have ranged from variants in coding sequences to mutations in regulatory regions, such as promoters and enhancers, as well as mutations affecting mediators of mRNA stability and other downstream regulators, such as 5' and 3'-untranslated regions (UTRs), long noncoding RNA (lncRNA), and miRNA. Recent research advances in genetics have utilized a combination of computational techniques, high-throughput in vitro and in vivo screening modalities, and precise genome editing to impute the function of diverse classes of genetic variants identified through GWAS. In this review, we highlight the vastness of genomic variants associated with polygenic disease risk and address recent advances in how genetic tools can be used to functionally characterize them.
Collapse
Affiliation(s)
- Tania Fabo
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford University, Stanford, CA, USA; Graduate Program in Genetics, Stanford University, Stanford, CA, USA; Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Paul Khavari
- Program in Epithelial Biology, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford University, Stanford, CA, USA; Graduate Program in Genetics, Stanford University, Stanford, CA, USA; Stanford University School of Medicine, Stanford University, Stanford, CA, USA; Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, USA.
| |
Collapse
|
20
|
Orosz G, Szabó L, Bereti S, Zámbó V, Csala M, Kereszturi É. Molecular Basis of Unequal Alternative Splicing of Human SCD5 and Its Alteration by Natural Genetic Variations. Int J Mol Sci 2023; 24:ijms24076517. [PMID: 37047490 PMCID: PMC10095032 DOI: 10.3390/ijms24076517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Alternative splicing (AS) is a major means of post-transcriptional control of gene expression, and provides a dynamic versatility of protein isoforms. Cancer-related AS disorders have diagnostic, prognostic and therapeutic values. Changes in the expression and AS of human stearoyl-CoA desaturase-5 (SCD5) are promising specific tumor markers, although the transcript variants (TVs) of the gene have not yet been confirmed. Our in silico, in vitro and in vivo study focuses on the distribution of SCD5 TVs (A and B) in human tissues, the functionality of the relevant splice sites, and their modulation by certain single-nucleotide variations (SNVs). An order of magnitude higher SCD5A expression was found compared with SCD5B. This unequal splicing is attributed to a weaker recognition of the SCD5B-specific splicing acceptor site, based on predictions confirmed by an optimized minigene assay. The pronounced dominance of SCD5A was largely modified (rs1430176385_A, rs1011850309_A) or even inverted (rs1011850309_C) by natural SNVs at the TV-specific splice sites. Our results provide long missing data on the proportion of SCD5 TVs in human tissues and reveal mutation-driven changes in SCD5 AS, potentially affecting tumor-associated reprogramming of lipid metabolism, thus having prognostic significance, which may be utilized for novel and personalized therapeutic approaches.
Collapse
Affiliation(s)
- Gabriella Orosz
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Luca Szabó
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Szanna Bereti
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Veronika Zámbó
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Miklós Csala
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| | - Éva Kereszturi
- Department of Molecular Biology, Semmelweis University, H-1085 Budapest, Hungary
| |
Collapse
|
21
|
Novotná Floriančičová K, Baltzis A, Smejkal J, Czerneková M, Kaczmarek Ł, Malý J, Notredame C, Vinopal S. Phylogenetic and functional characterization of water bears (Tardigrada) tubulins. Sci Rep 2023; 13:5194. [PMID: 36997657 PMCID: PMC10063605 DOI: 10.1038/s41598-023-31992-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/21/2023] [Indexed: 04/01/2023] Open
Abstract
Tardigrades are microscopic ecdysozoans that can withstand extreme environmental conditions. Several tardigrade species undergo reversible morphological transformations and enter into cryptobiosis, which helps them to survive periods of unfavorable environmental conditions. However, the underlying molecular mechanisms of cryptobiosis are mostly unknown. Tubulins are evolutionarily conserved components of the microtubule cytoskeleton that are crucial in many cellular processes. We hypothesize that microtubules are necessary for the morphological changes associated with successful cryptobiosis. The molecular composition of the microtubule cytoskeleton in tardigrades is unknown. Therefore, we analyzed and characterized tardigrade tubulins and identified 79 tardigrade tubulin sequences in eight taxa. We found three α-, seven β-, one γ-, and one ε-tubulin isoform. To verify in silico identified tardigrade tubulins, we also isolated and sequenced nine out of ten predicted Hypsibius exemplaris tubulins. All tardigrade tubulins were localized as expected when overexpressed in mammalian cultured cells: to the microtubules or to the centrosomes. The presence of a functional ε-tubulin, clearly localized to centrioles, is attractive from a phylogenetic point of view. Although the phylogenetically close Nematoda lost their δ- and ε-tubulins, some groups of Arthropoda still possess them. Thus, our data support the current placement of tardigrades into the Panarthropoda clade.
Collapse
Affiliation(s)
- Kamila Novotná Floriančičová
- Department of Biology, Faculty of Science, J. E. Purkyně University (UJEP), Usti Nad Labem, Czech Republic
- Centre for Nanotechnology and Biotechnology, Faculty of Science, UJEP, Usti Nad Labem, Czech Republic
| | | | - Jiří Smejkal
- Centre for Nanotechnology and Biotechnology, Faculty of Science, UJEP, Usti Nad Labem, Czech Republic
| | - Michaela Czerneková
- Department of Biology, Faculty of Science, J. E. Purkyně University (UJEP), Usti Nad Labem, Czech Republic
| | - Łukasz Kaczmarek
- Department of Animal Taxonomy and Ecology, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Jan Malý
- Centre for Nanotechnology and Biotechnology, Faculty of Science, UJEP, Usti Nad Labem, Czech Republic
| | - Cedric Notredame
- Centre for Genomic Regulation, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Stanislav Vinopal
- Department of Biology, Faculty of Science, J. E. Purkyně University (UJEP), Usti Nad Labem, Czech Republic.
- Centre for Nanotechnology and Biotechnology, Faculty of Science, UJEP, Usti Nad Labem, Czech Republic.
| |
Collapse
|
22
|
Sharma D, Sharma K, Mishra A, Siwach P, Mittal A, Jayaram B. Molecular dynamics simulation-based trinucleotide and tetranucleotide level structural and energy characterization of the functional units of genomic DNA. Phys Chem Chem Phys 2023; 25:7323-7337. [PMID: 36825435 DOI: 10.1039/d2cp04820e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Genomes of most organisms on earth are written in a universal language of life, made up of four units - adenine (A), thymine (T), guanine (G), and cytosine (C), and understanding the way they are put together has been a great challenge to date. Multiple efforts have been made to annotate this wonderfully engineered string of DNA using different methods but they lack a universal character. In this article, we have investigated the structural and energetic profiles of both prokaryotes and eukaryotes by considering two essential genomic sites, viz., the transcription start sites (TSS) and exon-intron boundaries. We have characterized these sites by mapping the structural and energy features of DNA obtained from molecular dynamics simulations, which considers all possible trinucleotide and tetranucleotide steps. For DNA, these physicochemical properties show distinct signatures at the TSS and intron-exon boundaries. Our results firmly convey the idea that DNA uses the same dialect for prokaryotes and eukaryotes and that it is worth going beyond sequence-level analyses to physicochemical space to determine the functional destiny of DNA sequences.
Collapse
Affiliation(s)
- Dinesh Sharma
- Supercomputing Facility for Bioinformatics & Computational Biology, Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Kopal Sharma
- Supercomputing Facility for Bioinformatics & Computational Biology, Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Akhilesh Mishra
- Supercomputing Facility for Bioinformatics & Computational Biology, Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - Priyanka Siwach
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, Haryana, India
| | - Aditya Mittal
- Supercomputing Facility for Bioinformatics & Computational Biology, Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India
| | - B Jayaram
- Supercomputing Facility for Bioinformatics & Computational Biology, Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, India.,Department of Chemistry, Indian Institute of Technology, Delhi, India.
| |
Collapse
|
23
|
Liu H, Micic N, Miller S, Crocoll C, Bjarnholt N. Species-specific dynamics of specialized metabolism in germinating sorghum grain revealed by temporal and tissue-resolved transcriptomics and metabolomics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:807-820. [PMID: 36863218 DOI: 10.1016/j.plaphy.2023.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
Seed germination is crucial for plant productivity, and the biochemical changes during germination affect seedling survival, plant health and yield. While the general metabolism of germination is extensively studied, the role of specialized metabolism is less investigated. We therefore analyzed the metabolism of the defense compound dhurrin during sorghum (Sorghum bicolor) grain germination and early seedling development. Dhurrin is a cyanogenic glucoside, which is catabolized into different bioactive compounds at other stages of plant development, but its fate and role during germination is unknown. We dissected sorghum grain into three different tissues and investigated dhurrin biosynthesis and catabolism at the transcriptomic, metabolomic and biochemical level. We further analyzed transcriptional signature differences of cyanogenic glucoside metabolism between sorghum and barley (Hordeum vulgare), which produces similar specialized metabolites. We found that dhurrin is de novo biosynthesized and catabolized in the growing embryonic axis as well as the scutellum and aleurone layer, two tissues otherwise mainly acknowledged for their involvement in release and transport of general metabolites from the endosperm to the embryonic axis. In contrast, genes encoding cyanogenic glucoside biosynthesis in barley are exclusively expressed in the embryonic axis. Glutathione transferase enzymes (GSTs) are involved in dhurrin catabolism and the tissue-resolved analysis of GST expression identified new pathway candidate genes and conserved GSTs as potentially important in cereal germination. Our study demonstrates a highly dynamic tissue- and species-specific specialized metabolism during cereal grain germination, highlighting the importance of tissue-resolved analyses and identification of specific roles of specialized metabolites in fundamental plant processes.
Collapse
Affiliation(s)
- Huijun Liu
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark; Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark.
| | - Nikola Micic
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark; Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark.
| | - Sara Miller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark; Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark.
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark.
| | - Nanna Bjarnholt
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark; Copenhagen Plant Science Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark.
| |
Collapse
|
24
|
Rahmani N, Ahmadvand M, Khakpour G. Use of expanded carrier screening for retrospective diagnosis of two deceased siblings with Van Maldergem syndrome 2: case report. ASIAN BIOMED 2022; 16:322-328. [PMID: 37551355 PMCID: PMC10392142 DOI: 10.2478/abm-2022-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Van Maldergem syndrome (VMLDS) is a recessive disease which affects multiple organs including the face, ear, and limb extremities. It can be caused by pathogenic variants in either the gene DCHS1 or FAT4. Diagnosis of VMLDS is complicated, especially regarding its similarity of symptoms to Hennekam syndrome, another disorder caused by FAT4 variants. Reported patients are two infantile siblings with multiple congenital anomalies, who deceased without clinical diagnosis. Whole exome sequencing was exploited for expanded carrier screening (ECS) of their parents, which revealed a novel splicing variant in the gene FAT4, NM_024582.6: c.7018+1G>A. In silico analysis of the variant indicates loss of canonical donor splice site of intron 6. This variant is classified as pathogenic based on ACMG criteria. Reverse phenotyping of patients resulted in likely diagnosis of VMLDS2. This study reaffirms the possibility of using ECS, leading to the genetic diagnosis of a rare disease with complicated clinical features.
Collapse
Affiliation(s)
- Nasim Rahmani
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran1449614535, Iran
| | - Mohammad Ahmadvand
- Department of Oncology and Stem Cell Transplantation, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran1411713135, Iran
| | - Golnaz Khakpour
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran1449614535, Iran
- Department of Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, School of Medicine, Iran University of Medical Sciences, Tehran1445613131, Iran
| |
Collapse
|
25
|
Hopkins CE, Brock T, Caulfield TR, Bainbridge M. Phenotypic screening models for rapid diagnosis of genetic variants and discovery of personalized therapeutics. Mol Aspects Med 2022; 91:101153. [PMID: 36411139 PMCID: PMC10073243 DOI: 10.1016/j.mam.2022.101153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 11/19/2022]
Abstract
Precision medicine strives for highly individualized treatments for disease under the notion that each individual's unique genetic makeup and environmental exposures imprints upon them not only a disposition to illness, but also an optimal therapeutic approach. In the realm of rare disorders, genetic predisposition is often the predominant mechanism driving disease presentation. For such, mostly, monogenic disorders, a causal gene to phenotype association is likely. As a result, it becomes important to query the patient's genome for the presence of pathogenic variations that are likely to cause the disease. Determining whether a variant is pathogenic or not is critical to these analyses and can be challenging, as many disease-causing variants are novel and, ergo, have no available functional data to help categorize them. This problem is exacerbated by the need for rapid evaluation of pathogenicity, since many genetic diseases present in young children who will experience increased morbidity and mortality without rapid diagnosis and therapeutics. Here, we discuss the utility of animal models, with a focus mainly on C. elegans, as a contrast to tissue culture and in silico approaches, with emphasis on how these systems are used in determining pathogenicity of variants with uncertain significance and then used to screen for novel therapeutics.
Collapse
Affiliation(s)
| | | | - Thomas R Caulfield
- Mayo Clinic, Department of Neuroscience, Department of Computational Biology, Department of Clinical Genomics, Jacksonville, FL, 32224, Rochester, MN, 55905, USA
| | | |
Collapse
|
26
|
Cormier MJ, Pedersen BS, Bayrak-Toydemir P, Quinlan AR. Combining genetic constraint with predictions of alternative splicing to prioritize deleterious splicing in rare disease studies. BMC Bioinformatics 2022; 23:482. [PMID: 36376793 PMCID: PMC9664736 DOI: 10.1186/s12859-022-05041-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Despite numerous molecular and computational advances, roughly half of patients with a rare disease remain undiagnosed after exome or genome sequencing. A particularly challenging barrier to diagnosis is identifying variants that cause deleterious alternative splicing at intronic or exonic loci outside of canonical donor or acceptor splice sites. RESULTS Several existing tools predict the likelihood that a genetic variant causes alternative splicing. We sought to extend such methods by developing a new metric that aids in discerning whether a genetic variant leads to deleterious alternative splicing. Our metric combines genetic variation in the Genome Aggregate Database with alternative splicing predictions from SpliceAI to compare observed and expected levels of splice-altering genetic variation. We infer genic regions with significantly less splice-altering variation than expected to be constrained. The resulting model of regional splicing constraint captures differential splicing constraint across gene and exon categories, and the most constrained genic regions are enriched for pathogenic splice-altering variants. Building from this model, we developed ConSpliceML. This ensemble machine learning approach combines regional splicing constraint with multiple per-nucleotide alternative splicing scores to guide the prediction of deleterious splicing variants in protein-coding genes. ConSpliceML more accurately distinguishes deleterious and benign splicing variants than state-of-the-art splicing prediction methods, especially in "cryptic" splicing regions beyond canonical donor or acceptor splice sites. CONCLUSION Integrating a model of genetic constraint with annotations from existing alternative splicing tools allows ConSpliceML to prioritize potentially deleterious splice-altering variants in studies of rare human diseases.
Collapse
Affiliation(s)
- Michael J Cormier
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | - Brent S Pedersen
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
| | | | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA.
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
27
|
Generation of the First Human In Vitro Model for McArdle Disease Based on iPSC Technology. Int J Mol Sci 2022; 23:ijms232213964. [PMID: 36430443 PMCID: PMC9692531 DOI: 10.3390/ijms232213964] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
McArdle disease is a rare autosomal recessive disorder caused by mutations in the PYGM gene. This gene encodes for the skeletal muscle isoform of glycogen phosphorylase (myophosphorylase), the first enzyme in glycogenolysis. Patients with this disorder are unable to obtain energy from their glycogen stored in skeletal muscle, prompting an exercise intolerance. Currently, there is no treatment for this disease, and the lack of suitable in vitro human models has prevented the search for therapies against it. In this article, we have established the first human iPSC-based model for McArdle disease. For the generation of this model, induced pluripotent stem cells (iPSCs) from a patient with McArdle disease (harbouring the homozygous mutation c.148C>T; p.R50* in the PYGM gene) were differentiated into myogenic cells able to contract spontaneously in the presence of motor neurons and generate calcium transients, a proof of their maturity and functionality. Additionally, an isogenic skeletal muscle model of McArdle disease was created. As a proof-of-concept, we have tested in this model the rescue of PYGM expression by two different read-through compounds (PTC124 and RTC13). The developed model will be very useful as a platform for testing drugs or compounds with potential pharmacological activity.
Collapse
|
28
|
Shchagina O, Fedotov V, Markova T, Shatokhina O, Ryzhkova O, Fedotova T, Polyakov A. Palmoplantar Keratoderma: A Molecular Genetic Analysis of Family Cases. Int J Mol Sci 2022; 23:ijms23179576. [PMID: 36076978 PMCID: PMC9455982 DOI: 10.3390/ijms23179576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Palmoplantar keratoderma is a clinically polymorphic disorder with a heterogeneous etiology characterized by marked hyperkeratotic lesions on the surface of palms and soles. Hereditary forms of palmoplantar keratoderma usually have autosomal dominant inheritance and are caused by mutations in dozens of genes, most of which belong to the keratin family. We carried out clinical and molecular genetic analysis of the affected and healthy members of four families with autosomal dominant palmoplantar keratoderma. In three out of four family cases of autosomal dominant palmoplantar keratoderma, the following molecular genetic causes were established: in two families—previously non-described missense mutations in the AQP5 gene (NM_001651.4): c.369C>G (p.(Asn123Lys)) and c.103T>G (p.(Trp35Gly)); in one family—a described splice site mutation in the KRT9 gene (NM_000226.4): c.31T>G. In one family, the possible cause of palmoplantar keratoderma was detected—a variant in the KRT1 gene (NM_006121.4): c.931G>A (p.(Glu311Lys)).
Collapse
Affiliation(s)
- Olga Shchagina
- Research Centre for Medical Genetics, Moskvorechye St., 1, 115522 Moscow, Russia
- Correspondence:
| | - Valeriy Fedotov
- Voronezh Regional Clinical Hospital №1, Moscow Avenue, 151, 394066 Voronezh, Russia
| | - Tatiana Markova
- Research Centre for Medical Genetics, Moskvorechye St., 1, 115522 Moscow, Russia
| | - Olga Shatokhina
- Research Centre for Medical Genetics, Moskvorechye St., 1, 115522 Moscow, Russia
| | - Oksana Ryzhkova
- Research Centre for Medical Genetics, Moskvorechye St., 1, 115522 Moscow, Russia
| | - Tatiana Fedotova
- Voronezh Regional Clinical Hospital №1, Moscow Avenue, 151, 394066 Voronezh, Russia
| | - Aleksander Polyakov
- Research Centre for Medical Genetics, Moskvorechye St., 1, 115522 Moscow, Russia
| |
Collapse
|
29
|
Vafaee-Shahi M, Farhadi M, Razmara E, Morovvati S, Ghasemi S, Abedini SS, Bagher Z, Alizadeh R, Falah M. Novel phenotype and genotype spectrum of NARS2 and literature review of previous mutations. Ir J Med Sci 2022; 191:1877-1890. [PMID: 34374940 DOI: 10.1007/s11845-021-02736-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/30/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Mutations in NARS2 (MIM: 612803) are associated with combined oxidative phosphorylation deficiency 24 (COXPD24; MIM: 616239) that is a rare mitochondrial and a multisystem autosomal recessive disorder. AIMS We aimed to detect the underlying genetic factors in two siblings with progressive ataxia, epilepsy, and severe-to-profound hearing impairment. METHODS After doing medical assessments and pertinent tests (i.e., auditory brainstem responses, pure tone otoacoustic emission test, cardiac examinations, computed tomography, and electroencephalogram), because of the clinical and probable genetic heterogeneity, whole-exome sequencing was performed, and co-segregation analysis was confirmed by Sanger sequencing. Biological impacts of the novel variant were evaluated using sequence-to-function bioinformatics tools. RESULTS A novel homozygous missense variant, NM_024678.6:c.545 T > A; p.(Ile182Lys), in exon 5 of NARS2 was identified in both patients and verified by Sanger sequencing. In silico analyses introduced this variant as pathogenic. Mitral valve prolapses with mild regurgitation, brachymetatarsia, severe hallux valgus, and clubbed fingers were reported as novel manifestations in association with NARS2 gene. By doing a literature review, we also underscored the high heterogeneity of disease phenotype. CONCLUSIONS Herein, we report some novel phenotype and genotype features of two female patients in an Iranian consanguineous family with COXPD24, caused by a variant in NARS2-NM_024678.6: c.545 T > A; p.(Ile182Lys). Moreover, our data expanded the phenotype and genotype spectrum of NARS2-related disorder and confirmed an unpredictable nature of genotype-phenotype correlation in COXPD24.
Collapse
Affiliation(s)
- Mohammad Vafaee-Shahi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Pediatric Growth and Development Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeid Morovvati
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeide Ghasemi
- Ali Asghar Children's Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Sedigheh Abedini
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zohreh Bagher
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Rafieh Alizadeh
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Falah
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Harvey JP, Yu-Wai-Man P, Cheetham ME. Characterisation of a novel OPA1 splice variant resulting in cryptic splice site activation and mitochondrial dysfunction. Eur J Hum Genet 2022; 30:848-855. [PMID: 35534703 PMCID: PMC9259687 DOI: 10.1038/s41431-022-01102-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022] Open
Abstract
Autosomal dominant optic atrophy (DOA) is an inherited optic neuropathy that results in progressive, bilateral visual acuity loss and field defects. OPA1 is the causative gene in around 60% of cases of DOA. The majority of patients have a pure ocular phenotype, but 20% have extra-ocular features (DOA +). We report on a patient with DOA + manifesting as bilateral optic atrophy, spastic paraparesis, urinary incontinence and white matter changes in the central nervous system associated with a novel heterozygous splice variant NM_015560.2(OPA1):c.2356-1 G > T. Further characterisation, which was performed using fibroblasts obtained from a skin biopsy, demonstrated that this variant altered mRNA splicing of the OPA1 transcript, specifically a 21 base pair deletion at the start of exon 24, NM_015560.2(OPA1):p.Cys786_Lys792del. The majority of variant transcripts were shown to escape nonsense-mediated decay and modelling of the predicted protein structure suggests that the in-frame 7 amino acid deletion may affect OPA1 oligomerisation. Fibroblasts carrying the c.2356-1 G > T variant demonstrated impaired mitochondrial bioenergetics, membrane potential, increased cell death, and disrupted and fragmented mitochondrial networks in comparison to WT cells. This study suggests that the c.2356-1 G > T OPA1 splice site variant leads to a cryptic splice site activation and may manifest in a dominant-negative manner, which could account for the patient's severe syndromic phenotype.
Collapse
Affiliation(s)
- Joshua Paul Harvey
- UCL Institute of Ophthalmology, London, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London, UK.
| | - Patrick Yu-Wai-Man
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
31
|
Rayat S, Farhadi M, Emamdjomeh H, Morovvati S, Falah M. Analysis of TMIE gene mutations including the first large deletion of exon 1 with autosomal recessive non-syndromic deafness. BMC Med Genomics 2022; 15:133. [PMID: 35710363 PMCID: PMC9204965 DOI: 10.1186/s12920-022-01287-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background Transmembrane inner ear (TMIE) protein is an essential component of the mechanotransduction complex. In collaboration with other components, TMIE aids the maintenance and function of the sensory hair cells. Autosomal recessive deafness-6 (DFNB6) is caused by mutated TMIE, a gene in the high genetic heterogeneity spectrum of deafness. Hearing loss has a significant impact on the global economy and the quality of life of affected persons, their families, and society. Here, three unrelated families with TMIE variants are presented. All three cases were found while studying the genetic causes of an Iranian cohort of subjects with cochlear implants. Methods Whole exome sequencing was performed to find possible genetic etiology in probands of families after a comprehensive medical evaluation for hearing loss. Co-segregation analysis in probands and other family members was performed by Sanger sequencing. The variants were interpreted per the American College of Medical Genetics and Genomics guidelines. Results Three different variants associated with TMIE were confirmed as reasons for autosomal recessive non-syndromic deafness. The first novel ~ 10-kb deletion surrounding exon 1 of TMIE along with two previously reported variants co-segregated with families including a frameshift variant c.122_125dup (p.Pro43fs) and a missense variant c.250 C > T; p.(Arg84Trp) in exons 2, and 3, respectively. Conclusion This study increases the mutational spectrum of the TMIE gene and highlights the importance of the large deletion of this gene as a reason for hearing loss. Moreover, an efficient and simple multiplex PCR assay was developed to determine the exact breakpoints of the TMIE deletion. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01287-9.
Collapse
Affiliation(s)
- Sima Rayat
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hessamaldin Emamdjomeh
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeid Morovvati
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Masoumeh Falah
- ENT and Head and Neck Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Novel Loss-of-Function Variants in CHD2 Cause Childhood-Onset Epileptic Encephalopathy in Chinese Patients. Genes (Basel) 2022; 13:genes13050908. [PMID: 35627293 PMCID: PMC9140428 DOI: 10.3390/genes13050908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Developmental and epileptic encephalopathy-94 (DEE94) is a severe form of epilepsy characterized by a broad spectrum of neurodevelopmental disorders. It is caused by pathogenic CHD2 variants. While only a few pathogenic CHD2 variants have been reported with detailed clinical phenotypes, most of which lack molecular analysis. In this study, next-generation sequencing (NGS) was performed to identify likely pathogenic CHD2 variants in patients with epilepsy. Three likely pathogenic variants were finally identified in different patients. The seizure onset ages were from two years to six years. Patients 1 and 2 had developmental delays before epilepsy, while patient 3 had intellectual regression after the first seizure onset. The observed seizures were myoclonic, febrile, and generalized tonic-clonic, which had been controlled by different combinations of antiepileptic drugs. Two de novo (c.1809_1809+1delGGinsTT, p.? and c.3455+2_3455+3insTG, p.?) and one maternal (c.3783G>A, p.W1261*) variant were identified, which were all predicted to be pathogenic/likely pathogenic. Molecular analysis was performed in patient 1, and we detected aberrantly spliced products, proving the pathogenicity of this CHD2 variant. New cases with novel variants, along with a detailed clinical and molecular analysis, are important for a better understanding of CHD2-related epileptic encephalopathy.
Collapse
|
33
|
Odaira K, Kawashima F, Tamura S, Suzuki N, Tokoro M, Hayakawa Y, Suzuki A, Kanematsu T, Okamoto S, Takagi A, Katsumi A, Matsushita T, Shima M, Nogami K, Kojima T, Hayakawa F. F9 mRNA splicing aberration due to a deep Intronic structural variation in a patient with moderate hemophilia B. Thromb Res 2022; 213:91-96. [DOI: 10.1016/j.thromres.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/03/2022] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
|
34
|
Reis MC, Patrun J, Ackl N, Winter P, Scheifele M, Danek A, Nolte D. A Severe Dementia Syndrome Caused by Intron Retention and Cryptic Splice Site Activation in STUB1 and Exacerbated by TBP Repeat Expansions. Front Mol Neurosci 2022; 15:878236. [PMID: 35493319 PMCID: PMC9048483 DOI: 10.3389/fnmol.2022.878236] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
Heterozygous pathogenic variants in the STIP1 homologous and U-box containing protein 1 (STUB1) gene have been identified as causes of autosomal dominant inherited spinocerebellar ataxia type 48 (SCA48). SCA48 is characterized by an ataxic movement disorder that is often, but not always, accompanied by a cognitive affective syndrome. We report a severe early onset dementia syndrome that mimics frontotemporal dementia and is caused by the intronic splice donor variant c.524+1G>A in STUB1. Impaired splicing was demonstrated by RNA analysis and in minigene assays of mutated and wild-type constructs of STUB1. The most striking consequence of this splicing impairment was retention of intron 3 in STUB1, which led to an in-frame insertion of 63 amino acids (aa) (p.Arg175_Glu176ins63) into the highly conserved coiled-coil domain of its encoded protein, C-terminus of HSP70-interacting protein (CHIP). To a lesser extent, activation of two cryptic splice sites in intron 3 was observed. The almost exclusively used one, c.524+86, was not predicted by in silico programs. Variant c.524+86 caused a frameshift (p.Arg175fs*93) that resulted in a truncated protein and presumably impairs the C-terminal U-box of CHIP, which normally functions as an E3 ubiquitin ligase. The cryptic splice site c.524+99 was rarely used and led to an in-frame insertion of 33 aa (p.Arg175_Glu176ins33) that resulted in disruption of the coiled-coil domain, as has been previously postulated for complete intron 3 retention. We additionally detected repeat expansions in the range of reduced penetrance in the TATA box-binding protein (TBP) gene by excluding other genes associated with dementia syndromes. The repeat expansion was heterozygous in one patient but compound heterozygous in the more severely affected patient. Therefore, we concluded that the observed severe dementia syndrome has a digenic background, making STUB1 and TBP important candidate genes responsible for early onset dementia syndromes.
Collapse
Affiliation(s)
- Marlen Colleen Reis
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Julia Patrun
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Nibal Ackl
- Psychiatrische Dienste Thurgau, Münsterlingen, Switzerland
- Neurologische Klinik und Poliklinik, Klinikum der Universität München, Munich, Germany
| | - Pia Winter
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
| | | | - Adrian Danek
- Neurologische Klinik und Poliklinik, Klinikum der Universität München, Munich, Germany
| | - Dagmar Nolte
- Institut für Humangenetik, Justus-Liebig-Universität Giessen, Giessen, Germany
- *Correspondence: Dagmar Nolte,
| |
Collapse
|
35
|
Stephenson SE, Costain G, Blok LE, Silk MA, Nguyen TB, Dong X, Alhuzaimi DE, Dowling JJ, Walker S, Amburgey K, Hayeems RZ, Rodan LH, Schwartz MA, Picker J, Lynch SA, Gupta A, Rasmussen KJ, Schimmenti LA, Klee EW, Niu Z, Agre KE, Chilton I, Chung WK, Revah-Politi A, Au PB, Griffith C, Racobaldo M, Raas-Rothschild A, Ben Zeev B, Barel O, Moutton S, Morice-Picard F, Carmignac V, Cornaton J, Marle N, Devinsky O, Stimach C, Wechsler SB, Hainline BE, Sapp K, Willems M, Bruel AL, Dias KR, Evans CA, Roscioli T, Sachdev R, Temple SE, Zhu Y, Baker JJ, Scheffer IE, Gardiner FJ, Schneider AL, Muir AM, Mefford HC, Crunk A, Heise EM, Millan F, Monaghan KG, Person R, Rhodes L, Richards S, Wentzensen IM, Cogné B, Isidor B, Nizon M, Vincent M, Besnard T, Piton A, Marcelis C, Kato K, Koyama N, Ogi T, Goh ESY, Richmond C, Amor DJ, Boyce JO, Morgan AT, Hildebrand MS, Kaspi A, Bahlo M, Friðriksdóttir R, Katrínardóttir H, Sulem P, Stefánsson K, Björnsson HT, Mandelstam S, Morleo M, Mariani M, Scala M, Accogli A, Torella A, Capra V, Wallis M, Jansen S, Waisfisz Q, de Haan H, Sadedin S, Lim SC, White SM, Ascher DB, Schenck A, Lockhart PJ, Christodoulou J, Tan TY, Christodoulou J, Tan TY. Germline variants in tumor suppressor FBXW7 lead to impaired ubiquitination and a neurodevelopmental syndrome. Am J Hum Genet 2022; 109:601-617. [PMID: 35395208 DOI: 10.1016/j.ajhg.2022.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/28/2022] [Indexed: 11/01/2022] Open
Abstract
Neurodevelopmental disorders are highly heterogenous conditions resulting from abnormalities of brain architecture and/or function. FBXW7 (F-box and WD-repeat-domain-containing 7), a recognized developmental regulator and tumor suppressor, has been shown to regulate cell-cycle progression and cell growth and survival by targeting substrates including CYCLIN E1/2 and NOTCH for degradation via the ubiquitin proteasome system. We used a genotype-first approach and global data-sharing platforms to identify 35 individuals harboring de novo and inherited FBXW7 germline monoallelic chromosomal deletions and nonsense, frameshift, splice-site, and missense variants associated with a neurodevelopmental syndrome. The FBXW7 neurodevelopmental syndrome is distinguished by global developmental delay, borderline to severe intellectual disability, hypotonia, and gastrointestinal issues. Brain imaging detailed variable underlying structural abnormalities affecting the cerebellum, corpus collosum, and white matter. A crystal-structure model of FBXW7 predicted that missense variants were clustered at the substrate-binding surface of the WD40 domain and that these might reduce FBXW7 substrate binding affinity. Expression of recombinant FBXW7 missense variants in cultured cells demonstrated impaired CYCLIN E1 and CYCLIN E2 turnover. Pan-neuronal knockdown of the Drosophila ortholog, archipelago, impaired learning and neuronal function. Collectively, the data presented herein provide compelling evidence of an F-Box protein-related, phenotypically variable neurodevelopmental disorder associated with monoallelic variants in FBXW7.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - John Christodoulou
- Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia; Victorian Clinical Genetics Services, Melbourne, VIC 3052, Australia
| | - Tiong Yang Tan
- Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia; Victorian Clinical Genetics Services, Melbourne, VIC 3052, Australia.
| |
Collapse
|
36
|
Whole-exome sequencing in a Japanese multiplex family identifies new susceptibility genes for intracranial aneurysms. PLoS One 2022; 17:e0265359. [PMID: 35299232 PMCID: PMC8929693 DOI: 10.1371/journal.pone.0265359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/28/2022] [Indexed: 11/19/2022] Open
Abstract
Background Intracranial aneurysms (IAs) cause subarachnoid hemorrhage, which has high rates of mortality and morbidity when ruptured. Recently, the role of rare variants in the genetic background of complex diseases has been increasingly recognized. The aim of this study was to identify rare variants for susceptibility to IA. Methods Whole-exome sequencing was performed on seven members of a Japanese pedigree with highly aggregated IA. Candidate genes harboring co-segregating rare variants with IA were re-sequenced and tested for association with IA using additional 500 probands and 323 non-IA controls. Functional analysis of rare variants detected in the pedigree was also conducted. Results We identified two gene variants shared among all four affected participants in the pedigree. One was the splicing donor c.1515+1G>A variant in NPNT (Nephronectin), which was confirmed to cause aberrant splicing by a minigene assay. The other was the missense p.P83T variant in CBY2 (Chibby family member 2). Overexpression of p.P83T CBY2 fused with red fluorescent protein tended to aggregate in the cytoplasm. Although Nephronectin has been previously reported to be involved in endothelial angiogenic functions, CBY2 is a novel molecule in terms of vascular pathophysiology. We confirmed that CBY2 was expressed in cerebrovascular smooth muscle cells in an isoform2-specific manner. Targeted CBY2 re-sequencing in additional case-control samples identified three deleterious rare variants (p.R46H, p.P83T, and p.L183R) in seven probands, showing a significant enrichment in the overall probands (8/501) compared to the controls (0/323) (p = 0.026, Fisher’s extract test). Conclusions NPNT and CBY2 were identified as novel susceptibility genes for IA. The highly heterogeneous and polygenic architecture of IA susceptibility can be uncovered by accumulating extensive analyses that focus on each pedigree with a high incidence of IA.
Collapse
|
37
|
Sivakumar A, Dinakarkumar Y, Al-Qahtani WH, Karnan M, Rajabathar J, Charumathi A, Sadhaasivam E, Venugopal AP, Singh BM, Qutub M, Anjaneyulu SR. In silico profiling of non-synonymous SNPs in IDS gene for early diagnosis of Hunter syndrome. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00271-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Single amino acid substitutions in the Iduronate-2-sulfatase enzyme result in destabilization of the protein and cause a genetic disorder called Hunter syndrome. To gain functional insight into the mutations causing Hunter syndrome, various bioinformatics tools were employed, and special significance is given to molecular docking.
Results
In-silico tools available online for preliminary analysis including SIFT, PolyPhen 2.0, etc., were primarily employed and have identified 51 Non-synonymous Single Nucleotide Polymorphisms (ns-SNPs) as possibly deleterious. Further, modelling and energy minimization followed by Root Mean Square Deviation (RMSD) calculation has labelled 42 mutations as probably deleterious ns-SNPs. Later, trajectory analysis was performed using online tools like PSIPRED, SRide, etc., and has predicted six ns-SNPs as potentially deleterious. Additionally, docking was performed, and three candidate ns-SNPs were identified. Finally, these three ns-SNPs were confirmed to play a significant role in causing syndrome through root mean square fluctuation (RMSF) calculations.
Conclusion
From the observed results, G134E, V503D, and E521D were predicted to be candidate ns-SNPs in comparison with other in-silico tools and confirmed by RMSF calculations. Thus, the identified candidate ns-SNPs can be employed as a potential genetic marker in the early diagnosis of Hunter syndrome after clinical validation.
Collapse
|
38
|
Chan ER, Mehlotra RK, Pirani KA, Ratsimbasoa AC, Williams SM, Gaedigk A, Zimmerman PA. CYP2D6 gene resequencing in the Malagasy, a population at the crossroads between Asia and Africa: a pilot study. Pharmacogenomics 2022; 23:315-325. [PMID: 35230160 PMCID: PMC8965795 DOI: 10.2217/pgs-2021-0146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: Plasmodium vivax malaria is endemic in Madagascar, where populations have genetic inheritance from Southeast Asia and East Africa. Primaquine, a drug of choice for vivax malaria, is metabolized principally via CYP2D6. CYP2D6 variation was characterized by locus-specific gene sequencing and was compared with TaqMan™ genotype data. Materials & methods: Long-range PCR amplicons were generated from 96 Malagasy samples and subjected to next-generation sequencing. Results: The authors observed high concordance between TaqMan™-based CYP2D6 genotype calls and the base calls from sequencing. In addition, there are new variants and haplotypes present in the Malagasy. Conclusion: Sequencing unique admixed populations provides more detailed and accurate insights regarding CYP2D6 variability, which may help optimize primaquine treatment across human genetic diversity.
Collapse
Affiliation(s)
- E Ricky Chan
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA.,Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Rajeev K Mehlotra
- Center for Global Health & Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Karim A Pirani
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Arsene C Ratsimbasoa
- University of Fianarantsoa, Fianarantsoa, Madagascar.,CNARP (Centre National d'Application de Recherche Pharmaceutique), Antananarivo, Madagascar
| | - Scott M Williams
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA.,Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Peter A Zimmerman
- Center for Global Health & Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
39
|
Knoedler JR, Inoue S, Bayless DW, Yang T, Tantry A, Davis CH, Leung NY, Parthasarathy S, Wang G, Alvarado M, Rizvi AH, Fenno LE, Ramakrishnan C, Deisseroth K, Shah NM. A functional cellular framework for sex and estrous cycle-dependent gene expression and behavior. Cell 2022; 185:654-671.e22. [PMID: 35065713 PMCID: PMC8956134 DOI: 10.1016/j.cell.2021.12.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/22/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023]
Abstract
Sex hormones exert a profound influence on gendered behaviors. How individual sex hormone-responsive neuronal populations regulate diverse sex-typical behaviors is unclear. We performed orthogonal, genetically targeted sequencing of four estrogen receptor 1-expressing (Esr1+) populations and identified 1,415 genes expressed differentially between sexes or estrous states. Unique subsets of these genes were distributed across all 137 transcriptomically defined Esr1+ cell types, including estrous stage-specific ones, that comprise the four populations. We used differentially expressed genes labeling single Esr1+ cell types as entry points to functionally characterize two such cell types, BNSTprTac1/Esr1 and VMHvlCckar/Esr1. We observed that these two cell types, but not the other Esr1+ cell types in these populations, are essential for sex recognition in males and mating in females, respectively. Furthermore, VMHvlCckar/Esr1 cell type projections are distinct from those of other VMHvlEsr1 cell types. Together, projection and functional specialization of dimorphic cell types enables sex hormone-responsive populations to regulate diverse social behaviors.
Collapse
Affiliation(s)
- Joseph R Knoedler
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Sayaka Inoue
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Daniel W Bayless
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Taehong Yang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Adarsh Tantry
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Chung-Ha Davis
- Neurosciences Graduate Program, Stanford University, Stanford, CA 94305, USA
| | - Nicole Y Leung
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | | | - Grace Wang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Maricruz Alvarado
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Abbas H Rizvi
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Lief E Fenno
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | | | - Karl Deisseroth
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Nirao M Shah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
40
|
Kobayashi A, Ohtaka R, Toki T, Hara J, Muramatsu H, Kanezaki R, Takahashi Y, Sato T, Kamio T, Kudo K, Sasaki S, Yoshida T, Utsugisawa T, Kanno H, Yoshida K, Nannya Y, Takahashi Y, Kojima S, Miyano S, Ogawa S, Terui K, Ito E. Dyserythropoietic anaemia with an intronic GATA1 splicing mutation in patients suspected to have Diamond-Blackfan anaemia. EJHAEM 2022; 3:163-167. [PMID: 35846220 PMCID: PMC9175706 DOI: 10.1002/jha2.374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Abstract
Diamond-Blackfan anaemia (DBA) shares clinical features with two recently reported sporadic cases of dyserythropoietic anaemia with a cryptic GATA1 splicing mutation (c.871-24 C>T). We hypothesized that some patients clinically diagnosed with DBA but whose causative genes were unknown may carry the intronic GATA1 mutation. Here, we examined 79 patients in our DBA cohort, who had no detectable causative genes. The intronic GATA1 mutation was identified in two male patients sharing the same pedigree that included multiple cases with anaemia. Cosegregation of this mutation and disease in multiple family members provide evidence to support the pathogenicity of the intronic GATA1 mutation.
Collapse
Affiliation(s)
- Akie Kobayashi
- Department of PediatricsHirosaki University Graduate School of MedicineHirosakiJapan
| | - Ryusei Ohtaka
- Department of PediatricsHirosaki University Graduate School of MedicineHirosakiJapan
| | - Tsutomu Toki
- Department of PediatricsHirosaki University Graduate School of MedicineHirosakiJapan
| | - Junichi Hara
- Department of Pediatric Hematology and OncologyOsaka City General HospitalOsakaJapan
| | - Hideki Muramatsu
- Department of PediatricsNagoya University Graduate School of MedicineNagoyaJapan
| | - Rika Kanezaki
- Department of PediatricsHirosaki University Graduate School of MedicineHirosakiJapan
| | - Yuka Takahashi
- Department of PediatricsHirosaki University Graduate School of MedicineHirosakiJapan
| | - Tomohiko Sato
- Department of PediatricsHirosaki University Graduate School of MedicineHirosakiJapan
| | - Takuya Kamio
- Department of PediatricsHirosaki University Graduate School of MedicineHirosakiJapan
| | - Ko Kudo
- Department of PediatricsHirosaki University Graduate School of MedicineHirosakiJapan
| | - Shinya Sasaki
- Department of PediatricsHirosaki University Graduate School of MedicineHirosakiJapan
| | - Taro Yoshida
- Department of PediatricsNagoya University Graduate School of MedicineNagoyaJapan
| | - Taiju Utsugisawa
- Department of Transfusion Medicine and Cell ProcessingFaculty of MedicineTokyo Women's Medical UniversityTokyoJapan
| | - Hitoshi Kanno
- Department of Transfusion Medicine and Cell ProcessingFaculty of MedicineTokyo Women's Medical UniversityTokyoJapan
| | - Kenichi Yoshida
- Department of Pathology and Tumor BiologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Yasuhito Nannya
- Department of Pathology and Tumor BiologyGraduate School of MedicineKyoto UniversityKyotoJapan
- Division of Hematopoietic Disease ControlInstitute of Medical ScienceThe University of TokyoTokyoJapan
| | - Yoshiyuki Takahashi
- Department of PediatricsNagoya University Graduate School of MedicineNagoyaJapan
| | - Seiji Kojima
- Department of PediatricsNagoya University Graduate School of MedicineNagoyaJapan
| | - Satoru Miyano
- M&D Data Science CenterTokyo Medical and Dental UniversityTokyoJapan
| | - Seishi Ogawa
- Department of Pathology and Tumor BiologyGraduate School of MedicineKyoto UniversityKyotoJapan
- Department of MedicineCenter for Hematology and Regenerative MedicineKarolinska InstituteStockholmSweden
| | - Kiminori Terui
- Department of PediatricsHirosaki University Graduate School of MedicineHirosakiJapan
| | - Etsuro Ito
- Department of PediatricsHirosaki University Graduate School of MedicineHirosakiJapan
- Department of Community MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
41
|
White LA, Bisom TC, Grimes HL, Hayashi M, Lanchy JM, Lodmell JS. Tra2beta-Dependent Regulation of RIO Kinase 3 Splicing During Rift Valley Fever Virus Infection Underscores the Links Between Alternative Splicing and Innate Antiviral Immunity. Front Cell Infect Microbiol 2022; 11:799024. [PMID: 35127560 PMCID: PMC8807687 DOI: 10.3389/fcimb.2021.799024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Rift Valley fever virus (RVFV) is an emerging pathogen that has potential to cause severe disease in humans and domestic livestock. Propagation of RVFV strain MP-12 is negatively impacted by the actions of RIOK3, a protein involved in the cellular immune response to viral infection. During RVFV infection, RIOK3 mRNA is alternatively spliced to produce an isoform that correlates with the inhibition of interferon β signaling. Here, we identify splicing factor TRA2-β (also known as TRA2beta and hTRA2-β) as a key regulator governing the relative abundance of RIOK3 splicing isoforms. Using RT-PCR and minigenes, we determined that TRA2-β interaction with RIOK3 pre-mRNA was necessary for constitutive splicing of RIOK3 mRNA, and conversely, lack of TRA2-β engagement led to increased alternative splicing. Expression of TRA2-β was found to be necessary for RIOK3's antiviral effect against RVFV. Intriguingly, TRA2-β mRNA is also alternatively spliced during RVFV infection, leading to a decrease in cellular TRA2-β protein levels. These results suggest that splicing modulation serves as an immune evasion strategy by RVFV and/or is a cellular mechanism to prevent excessive immune response. Furthermore, the results suggest that TRA2-β can act as a key regulator of additional steps of the innate immune response to viral infection.
Collapse
Affiliation(s)
- Luke Adam White
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Thomas C. Bisom
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, United States
| | - Hunter L. Grimes
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Miyuki Hayashi
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, United States
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - J. Stephen Lodmell
- Division of Biological Sciences, University of Montana, Missoula, MT, United States,Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States,*Correspondence: J. Stephen Lodmell,
| |
Collapse
|
42
|
Yamoto K, Okada S, Kato F, Fujisawa Y, Fukami M, Saitsu H, Ogata T. A novel intronic PORCN variant creating an alternative splice acceptor site in a mother and her daughter with focal dermal hypoplasia. Am J Med Genet A 2022; 188:1612-1617. [PMID: 35005837 DOI: 10.1002/ajmg.a.62649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/14/2021] [Accepted: 12/21/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Kaori Yamoto
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Fumiko Kato
- Hamamatsu Child Health and Developmental Medicine, Hamamatsu, Japan
| | - Yasuko Fujisawa
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Pediatrics, Hamamatsu Medical Center, Hamamatsu, Japan
| |
Collapse
|
43
|
Lado S, Futas J, Plasil M, Loney T, Weidinger P, Camp JV, Kolodziejek J, Kannan DO, Horin P, Nowotny N, Burger PA. Crimean-Congo Hemorrhagic Fever Virus Past Infections Are Associated with Two Innate Immune Response Candidate Genes in Dromedaries. Cells 2021; 11:8. [PMID: 35011568 PMCID: PMC8750074 DOI: 10.3390/cells11010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/15/2021] [Indexed: 12/16/2022] Open
Abstract
Dromedaries are an important livestock, used as beasts of burden and for meat and milk production. However, they can act as an intermediate source or vector for transmitting zoonotic viruses to humans, such as the Middle East respiratory syndrome coronavirus (MERS-CoV) or Crimean-Congo hemorrhagic fever virus (CCHFV). After several outbreaks of CCHFV in the Arabian Peninsula, recent studies have demonstrated that CCHFV is endemic in dromedaries and camel ticks in the United Arab Emirates (UAE). There is no apparent disease in dromedaries after the bite of infected ticks; in contrast, fever, myalgia, lymphadenopathy, and petechial hemorrhaging are common symptoms in humans, with a case fatality ratio of up to 40%. We used the in-solution hybridization capture of 100 annotated immune genes to genotype 121 dromedaries from the UAE tested for seropositivity to CCHFV. Through univariate linear regression analysis, we identified two candidate genes belonging to the innate immune system: FCAR and CLEC2B. These genes have important functions in the host defense against viral infections and in stimulating natural killer cells, respectively. This study opens doors for future research into immune defense mechanisms in an enzootic host against an important zoonotic disease.
Collapse
Affiliation(s)
- Sara Lado
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, 1160 Vienna, Austria;
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria
| | - Jan Futas
- Department of Animal Genetics, University of Veterinary Sciences Brno, 61242 Brno, Czech Republic; (J.F.); (M.P.); (P.H.)
- RG Animal Immunogenomics, CEITEC VETUNI Brno, 61242 Brno, Czech Republic
| | - Martin Plasil
- Department of Animal Genetics, University of Veterinary Sciences Brno, 61242 Brno, Czech Republic; (J.F.); (M.P.); (P.H.)
- RG Animal Immunogenomics, CEITEC VETUNI Brno, 61242 Brno, Czech Republic
| | - Tom Loney
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (T.L.); (N.N.)
| | - Pia Weidinger
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (P.W.); (J.V.C.); (J.K.)
| | - Jeremy V. Camp
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (P.W.); (J.V.C.); (J.K.)
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria
| | - Jolanta Kolodziejek
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (P.W.); (J.V.C.); (J.K.)
| | | | - Petr Horin
- Department of Animal Genetics, University of Veterinary Sciences Brno, 61242 Brno, Czech Republic; (J.F.); (M.P.); (P.H.)
- RG Animal Immunogenomics, CEITEC VETUNI Brno, 61242 Brno, Czech Republic
| | - Norbert Nowotny
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates; (T.L.); (N.N.)
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (P.W.); (J.V.C.); (J.K.)
| | - Pamela A. Burger
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, 1160 Vienna, Austria;
| |
Collapse
|
44
|
Hong X, Ying Y, Zhang J, Chen S, Xu X, He J, Zhu F. Six splice site variations, three of them novel, in the ABO gene occurring in nine individuals with ABO subtypes. J Transl Med 2021; 19:470. [PMID: 34809663 PMCID: PMC8607603 DOI: 10.1186/s12967-021-03141-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
Background Nucleotide mutations in the ABO gene may reduce the activity of glycosyltransferase, resulting in lower levels of A or B antigen expression in red blood cells. Six known splice sites have been identified according to the database of red cell immunogenetics and the blood group terminology of the International Society of Blood Transfusion. Here, we describe six distinct splice site variants in individuals with ABO subtypes. Methods The ABO phenotype was examined using a conventional serological method. A polymerase chain reaction sequence-based typing method was used to examine the whole coding sequence of the ABO gene. The ABO gene haplotypes were studied using allele-specific primer amplification or cloning technology. In silico analytic tools were used to assess the functional effect of splice site variations. Results Six distinct variants in the ABO gene splice sites were identified in nine individuals with ABO subtypes, including c.28 + 1_2delGT, c.28 + 5G > A, c.28 + 5G > C, c.155 + 5G > A, c.204-1G > A and c.374 + 5G > A. c.28 + 1_2delGT was detected in an Aw individual, while c.28 + 5G > A, c.28 + 5G > C, and c.204-1G > A were detected in Bel individuals. c.155 + 5G > A was detected in one B3 and two AB3 individuals, whereas c.374 + 5G > A was identified in two Ael individuals. Three novel splice site variants (c.28 + 1_2delGT, c.28 + 5G > A and c.28 + 5G > C) in the ABO gene were discovered, all of which resulted in low antigen expression. In silico analysis revealed that all variants had the potential to alter splice transcripts. Conclusions Three novel splice site variations in the ABO gene were identified in Chinese individuals, resulting in decreased A or B antigen expression and the formation of ABO subtypes. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03141-5.
Collapse
Affiliation(s)
- Xiaozhen Hong
- Blood Center of Zhejiang Province, Jianye Road 789, Hangzhou, Zhejiang, 30052, People's Republic of China.,Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, 310052, People's Republic of China
| | - Yanling Ying
- Blood Center of Zhejiang Province, Jianye Road 789, Hangzhou, Zhejiang, 30052, People's Republic of China.,Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, 310052, People's Republic of China
| | - Jingjing Zhang
- Blood Center of Zhejiang Province, Jianye Road 789, Hangzhou, Zhejiang, 30052, People's Republic of China.,Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, 310052, People's Republic of China
| | - Shu Chen
- Blood Center of Zhejiang Province, Jianye Road 789, Hangzhou, Zhejiang, 30052, People's Republic of China.,Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, 310052, People's Republic of China
| | - Xianguo Xu
- Blood Center of Zhejiang Province, Jianye Road 789, Hangzhou, Zhejiang, 30052, People's Republic of China.,Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, 310052, People's Republic of China
| | - Ji He
- Blood Center of Zhejiang Province, Jianye Road 789, Hangzhou, Zhejiang, 30052, People's Republic of China.,Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, 310052, People's Republic of China
| | - Faming Zhu
- Blood Center of Zhejiang Province, Jianye Road 789, Hangzhou, Zhejiang, 30052, People's Republic of China. .,Key Laboratory of Blood Safety Research of Zhejiang Province, Hangzhou, Zhejiang, 310052, People's Republic of China.
| |
Collapse
|
45
|
Sytsma TM, Chen DH, Rolf B, Dorschner M, Jayadev S, Keene CD, Zhang J, Bird TD, Latimer CS. Spinal cord-predominant neuropathology in an adult-onset case of POLR3A-related spastic ataxia. Neuropathology 2021; 42:58-65. [PMID: 34753215 PMCID: PMC8810698 DOI: 10.1111/neup.12775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/30/2022]
Abstract
Biallelic mutations in POLR3A have been associated with childhood‐onset hypomyelinating leukodystrophies and adolescent‐to‐adult‐onset spastic ataxia, the latter of which has been linked to the intronic variant c.1909 + 22G>A. We report a case of adult‐onset spastic ataxia in a 75‐year‐old man, being a compound heterozygous carrier of this variant, whose brain and spinal cord were for the first time investigated by neuropathological examination. We describe prominent degeneration of the posterior columns, spinocerebellar tracts, and anterior corticospinal tracts of the spinal cord in a pattern resembling Friedreich's ataxia, with a notable lack of significant white matter pathology throughout the brain, in marked contrast with childhood‐onset cases. Immunohistochemical examination for the POLR3A protein demonstrated no apparent differences in localization or staining intensity between the proband and an age‐matched control subject. We demonstrate the clinicopathologic description of POLR3A‐related neurodegenerative disease and also mention the differential diagnosis of the childhood‐onset hypomyelinating leukodystrophy and late‐onset spastic ataxia phenotypes.
Collapse
Affiliation(s)
- Trevor M Sytsma
- Neuropathology Division, Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Dong-Hui Chen
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Bradley Rolf
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Michael Dorschner
- Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Suman Jayadev
- Neuropathology Division, Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA.,Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - C Dirk Keene
- Neuropathology Division, Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jing Zhang
- Neuropathology Division, Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Thomas D Bird
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA.,Division of Medical Genetics, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.,Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington, USA
| | - Caitlin S Latimer
- Neuropathology Division, Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
46
|
Diagnostic Yield of Targeted Hearing Loss Gene Panel Sequencing in a Large German Cohort With a Balanced Age Distribution from a Single Diagnostic Center: An Eight-year Study. Ear Hear 2021; 43:1049-1066. [PMID: 34753855 PMCID: PMC9007094 DOI: 10.1097/aud.0000000000001159] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Objectives: Hereditary hearing loss exhibits high degrees of genetic and clinical heterogeneity. To elucidate the population-specific and age-related genetic and clinical spectra of hereditary hearing loss, we investigated the sequencing data of causally associated hearing loss genes in a large cohort of hearing-impaired probands with a balanced age distribution from a single center in Southwest Germany. Design: Genetic testing was applied to 305 hearing-impaired probands/families with a suspected genetic hearing loss etiology and a balanced age distribution over a period of 8 years (2011–2018). These individuals were representative of the regional population according to age and sex distributions. The genetic testing workflow consisted of single-gene screening (n = 21) and custom-designed hearing loss gene panel sequencing (n = 284) targeting known nonsyndromic and syndromic hearing loss genes in a diagnostic setup. Retrospective reanalysis of sequencing data was conducted by applying the current American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines. Results: A genetic diagnosis was established for 75 (25%) of the probands that involved 75 causal variants in 35 genes, including 16 novel causal variants and 9 medically significant variant reclassifications. Nearly half of the solved cases (47%; n = 35) were related to variants in the five most frequently affected genes: GJB2 (25%), MYO15A, WFS1, SLC26A4, and COL11A1 (all 5%). Nearly one-quarter of the cases (23%; n = 17) were associated with variants in seven additional genes (TMPRSS3, COL4A3, LOXHD1, EDNRB, MYO6, TECTA, and USH2A). The remaining one-third of single cases (33%; n = 25) were linked to variants in 25 distinct genes. Diagnostic rates and gene distribution were highly dependent on phenotypic characteristics. A positive family history of autosomal-recessive inheritance in combination with early onset and higher grades of hearing loss significantly increased the solve rate up to 60%, while late onset and lower grades of hearing loss yielded significantly fewer diagnoses. Regarding genetic diagnoses, autosomal-dominant genes accounted for 37%, autosomal-recessive genes for 60%, and X-linked genes for 3% of the solved cases. Syndromic/nonsyndromic hearing loss mimic genes were affected in 27% of the genetic diagnoses. Conclusions: The genetic epidemiology of the largest German cohort subjected to comprehensive targeted sequencing for hereditary hearing loss to date revealed broad causal gene and variant spectra in this population. Targeted hearing loss gene panel analysis proved to be an effective tool for ensuring an appropriate diagnostic yield in a routine clinical setting including the identification of novel variants and medically significant reclassifications. Solve rates were highly sensitive to phenotypic characteristics. The unique population-adapted and balanced age distribution of the cohort favoring late hearing loss onset uncovered a markedly large contribution of autosomal-dominant genes to the diagnoses which may be a representative for other age balanced cohorts in other populations.
Collapse
|
47
|
Larsen OH, Kjaergaard AD, Hvas AM, Nissen PH. Genetic Variants in the Protein S ( PROS1 ) Gene and Protein S Deficiency in a Danish Population. TH OPEN 2021; 5:e479-e488. [PMID: 34729451 PMCID: PMC8553426 DOI: 10.1055/s-0041-1736636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/08/2021] [Indexed: 12/01/2022] Open
Abstract
Protein S (PS) deficiency is a risk factor for venous thromboembolism (VTE) and can be caused by variants of the gene encoding PS (
PROS1
). This study aimed to evaluate the clinical value of molecular analysis of the
PROS1
gene in PS-deficient participants. We performed Sanger sequencing of the coding region of the
PROS1
gene and multiplex ligation-dependent probe amplification to exclude large structural rearrangements. Free PS was measured by a particle-enhanced immunoassay, while PS activity was assessed by a clotting method.
A total of 87 PS-deficient participants and family members were included. In 22 index participants, we identified 13
PROS1
coding variants. Five variants were novel. In 21 index participants, no coding sequence variants or structural rearrangements were identified. The free PS level was lower in index participants carrying a
PROS1
variant compared with index participants with no variant (0.51 [0.32–0.61] vs. 0.62 [0.57–0.73] × 10
3
IU/L;
p
< 0.05). The p.(Thr78Met) variant was associated with only slightly decreased free PS levels (0.59 [0.53–0.66] × 10
3
IU/L) compared with the p.(Glu390Lys) variant (0.27 [0.24–0.37] × 10
3
IU/L,
p
< 0.01). The frequency of VTE in participants with a coding
PROS1
variant was 43 and 17% in the group with normal
PROS1
gene (
p
= 0.05).
In conclusion, we report 13
PROS1
coding variants including five novel variants. PS levels differ by
PROS1
variant and the frequency of VTE was higher when a coding
PROS1
variant was present. Hence, molecular analysis of the
PROS1
gene may add clinical value in the diagnostic work-up of PS deficiency.
Collapse
Affiliation(s)
- Ole Halfdan Larsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Alisa D Kjaergaard
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Anne-Mette Hvas
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Peter H Nissen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
48
|
Song G, Chung JE, Yee J, Lee KE, Park K, Gwak HS. Effects of SLCO1B1 and SLCO1B3 Genetic Polymorphisms on Valsartan Pharmacokinetics in Healthy Korean Volunteers. J Pers Med 2021; 11:jpm11090862. [PMID: 34575639 PMCID: PMC8467379 DOI: 10.3390/jpm11090862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 01/11/2023] Open
Abstract
Purpose: This study aimed to examine OATP1B1 (SLCO1B1) and OATP1B3 (SLCO1B3) on the pharmacokinetics of valsartan. Twenty-five subjects were genotyped for 16 single-nucleotide polymorphisms of the SLCO1B1 and SLCO1B3 genes. Methods: After a single dose of 160 mg of valsartan was orally administered to healthy male volunteers, drug concentrations were assayed up to 48 h. The 25 subjects were genotyped for 16 single-nucleotide polymorphisms (SNPs) of the SLCO1B1 and SLCO1B3 genes. Subjects were classified into groups according to their SLCO1B1*1B haplotype; 23 subjects were carriers of SLCO1B1*1B and two subjects were included in the reference group with SLCO1B1*1A/*1A. Alternations of the splicing factor-binding site pattern caused by the given mutation were evaluated with the Human Splicing Finder (HSF) 3.1. Results: The subjects who carried SLCO1B1*1B showed a 2.3-fold higher clearance than those without the *1B haplotype. Mean Cmax and AUCinf were reduced by 45% and 54%, respectively, in the SLCO1B1*1B genotype group compared to the reference group with the *1A/*1A genotype (p < 0.01). The carriers of the rs4149153 T allele of SLCO1B3 had a 27% lower mean Cmax and a 1.5-fold higher Vd compared to homozygotic CC carriers (p < 0.05). In a combined analysis of SLCO1B1 and SLCO1B3, subjects not carrying SLCO1B1 *1B and carrying SLCO1B3 rs4149153 T allele showed a 1.6-fold higher clearance than those with the other genotypes, whereas mean Cmax and AUClast were reduced by 35% and 42%, respectively (p < 0.05), in the subjects. HSF 3.1 analysis showed that rs4149153 could cause alterations of the acceptor splice site (TAAATACTAAAGAC to TAAATATTAAAGAC) with scoring change (from 72.57 to 71.92, difference = −0.9). Conclusion: It was found that plasma exposure to valsartan is significantly decreased in SLCO1B1*1B carriers and carriers of the rs4149153 T allele of SLCO1B3, possibly as a result of increased hepatic uptake.
Collapse
Affiliation(s)
- Gonjin Song
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Sedaemun-gu, Seoul 03760, Korea; (G.S.); (J.Y.)
| | - Jee-Eun Chung
- Institute of Pharmaceutical Science and Technology, College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan 15588, Korea;
| | - Jeong Yee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Sedaemun-gu, Seoul 03760, Korea; (G.S.); (J.Y.)
| | - Kyung-Eun Lee
- College of Pharmacy, Chungbuk National University, 660-1, Yeonje-ri, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea;
| | - Kyungsoo Park
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaeemun-gu, Seoul 03722, Korea
- Correspondence: (K.P.); (H.-S.G.); Tel.: +82-2-2228-1730 (K.P.); +82-2-3277-4376 (H.-S.G.); Fax: +82-2-313-1894 (K.P.); +82-2-3277-2851 (H.-S.G.)
| | - Hye-Sun Gwak
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Sedaemun-gu, Seoul 03760, Korea; (G.S.); (J.Y.)
- Correspondence: (K.P.); (H.-S.G.); Tel.: +82-2-2228-1730 (K.P.); +82-2-3277-4376 (H.-S.G.); Fax: +82-2-313-1894 (K.P.); +82-2-3277-2851 (H.-S.G.)
| |
Collapse
|
49
|
Cancer predisposition and germline CTNNA1 variants. Eur J Med Genet 2021; 64:104316. [PMID: 34425242 DOI: 10.1016/j.ejmg.2021.104316] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/16/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022]
Abstract
Hereditary Diffuse Gastric Cancer (HDGC) is a cancer predisposing syndrome mainly caused by germline inactivating variants in CDH1, encoding E-cadherin. Early-onset diffuse gastric cancer (DGC) and/or invasive lobular breast cancer (LBC) are the main phenotypes in CDH1-associated HDGC. CTNNA1, encoding for α-E-catenin, and E-cadherin-partner in the adherens junction complex, has been recently classified as a HDGC predisposing gene. Nevertheless, little is known about CTNNA1 tumor spectrum in variant carriers and variant-type associated causality. Herein, we systematically reviewed the literature searching for CTNNA1 germline variants carriers, further categorized them according to HDGC clinical criteria (HDGC vs non-HDGC), collected phenotypes, classified variants molecularly and according to CDH1 ACMG/AMP guidelines and performed genotype-phenotype analysis. We found 41 families carrying CTNNA1 germline variants encompassing in total 105 probands and relatives. All probands from 13 HDGC families presented DGC and their average age of onset was 40 ± 17 years; 10/13 (77%) HDGC families carried a pathogenic (P) variant. Most probands from 28 non-HDGC families developed unspecified-BC, as well as most of their relatives; 4/28 (14%) carried a P variant, 16/28 (57%) carried a likely pathogenic (LP) variant, 7/28 (25%) carried variants of unknown significance (VUS) and 1/28 (4%) carried a likely benign variant. Regardless of clinical criteria, 97% (32/33) of probands and relatives from P variant-carrier families had DGC/unspecified-GC. In LP variant-carrier families, 82% (28/34) of probands and relatives had unspecified-BC. Only 2/105 individuals had LBC. A cluster of frameshift and nonsense variants was found in CTNNA1 last exon of non-HDGC families and classified as VUS. In conclusion, current available data confirms an association of CTNNA1 P variants with early-onset DGC, but not with LBC. We demonstrate that in ascertained cohorts, CTNNA1 P variants explain <2% of HDGC families and support the use of ACMG/AMP CDH1 specific variant curation guidelines, while no specific guidelines are developed for CTNNA1 variant classification. Moreover, we demonstrated that truncating variants at the CTNNA1 NMD-incompetent last exon have limited deleteriousness, and that CTNNA1 LP variants have lower actionability than CDH1 LP variants. Current knowledge supports considering only CTNNA1 P variants as clinically actionable in HDGC carrying families.
Collapse
|
50
|
Altan E, Hui A, Li Y, Pesavento P, Asín J, Crossley B, Deng X, Uzal FA, Delwart E. New Parvoviruses and Picornavirus in Tissues and Feces of Foals with Interstitial Pneumonia. Viruses 2021; 13:v13081612. [PMID: 34452477 PMCID: PMC8402702 DOI: 10.3390/v13081612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Six foals with interstitial pneumonia of undetermined etiology from Southern California were analyzed by viral metagenomics. Spleen, lung, and colon content samples obtained during necropsy from each animal were pooled, and nucleic acids from virus-like particles enriched for deep sequencing. The recently described equine copiparvovirus named eqcopivirus, as well as three previously uncharacterized viruses, were identified. The complete ORFs genomes of two closely related protoparvoviruses, and of a bocaparvovirus, plus the partial genome of a picornavirus were assembled. The parvoviruses were classified as members of new ungulate protoparvovirus and bocaparvovirus species in the Parvoviridae family. The picornavirus was classified as a new species in the Salivirus genus of the Picornaviridae family. Spleen, lung, and colon content samples from each foal were then tested for these viral genomes by nested PCR and RT-PCR. When present, parvoviruses were detected in both feces and spleen. The picornavirus, protoparvovirus, and eqcopivirus genomes were detected in the lungs of one animal each. Three foals were co-infected with the picornavirus and either a protoparvovirus, bocaparvovirus, or eqcopivirus. Two other foals were infected with a protoparvovirus only. No viral infection was detected in one animal. The complete ORFs of the first equine protoparvoviruses and bocaparvovirus, the partial ORF of the third equine picornavirus, and their detection in tissues of foals with interstitial pneumonia are described here. Testing the involvement of these viruses in fatal interstitial pneumonia or other equine diseases will require larger epidemiological and/or inoculation studies.
Collapse
Affiliation(s)
- Eda Altan
- Vitalant Research Institute, San Francisco, CA 94118, USA; (E.A.); (A.H.); (Y.L.); (X.D.)
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA 94118, USA
| | - Alvin Hui
- Vitalant Research Institute, San Francisco, CA 94118, USA; (E.A.); (A.H.); (Y.L.); (X.D.)
| | - Yanpeng Li
- Vitalant Research Institute, San Francisco, CA 94118, USA; (E.A.); (A.H.); (Y.L.); (X.D.)
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA 94118, USA
| | - Patricia Pesavento
- Department of Pathology Microbiology and Immunology, UC Davis, Davis, CA 95616, USA; (P.P.); (J.A.); (F.A.U.)
| | - Javier Asín
- Department of Pathology Microbiology and Immunology, UC Davis, Davis, CA 95616, USA; (P.P.); (J.A.); (F.A.U.)
- California Animal Health and Food Safety Laboratory System, UC Davis, Davis, CA 95616, USA;
| | - Beate Crossley
- California Animal Health and Food Safety Laboratory System, UC Davis, Davis, CA 95616, USA;
- Department of Medicine and Epidemiology, UC Davis, Davis, CA 95616, USA
| | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA 94118, USA; (E.A.); (A.H.); (Y.L.); (X.D.)
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA 94118, USA
| | - Francisco A. Uzal
- Department of Pathology Microbiology and Immunology, UC Davis, Davis, CA 95616, USA; (P.P.); (J.A.); (F.A.U.)
- California Animal Health and Food Safety Laboratory System, UC Davis, Davis, CA 95616, USA;
| | - Eric Delwart
- Vitalant Research Institute, San Francisco, CA 94118, USA; (E.A.); (A.H.); (Y.L.); (X.D.)
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA 94118, USA
- Correspondence:
| |
Collapse
|