1
|
Chou H, Arthur K, Shaw E, Schaber C, Boyle B, Allsworth M, Kelley EF, Stewart GM, Wheatley CM, Schwartz J, Fermoyle CC, Ziegler BL, Johnson KA, Robach P, Basset P, Johnson BD. Metabolic insights at the finish line: deciphering physiological changes in ultramarathon runners through breath VOC analysis. J Breath Res 2024; 18:026008. [PMID: 38290132 DOI: 10.1088/1752-7163/ad23f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Exhaustive exercise can induce unique physiological responses in the lungs and other parts of the human body. The volatile organic compounds (VOCs) in exhaled breath are ideal for studying the effects of exhaustive exercise on the lungs due to the proximity of the breath matrix to the respiratory tract. As breath VOCs can originate from the bloodstream, changes in abundance should also indicate broader physiological effects of exhaustive exercise on the body. Currently, there is limited published data on the effects of exhaustive exercise on breath VOCs. Breath has great potential for biomarker analysis as it can be collected non-invasively, and capture real-time metabolic changes to better understand the effects of exhaustive exercise. In this study, we collected breath samples from a small group of elite runners participating in the 2019 Ultra-Trail du Mont Blanc ultra-marathon. The final analysis included matched paired samples collected before and after the race from 24 subjects. All 48 samples were analyzed using the Breath Biopsy Platform with GC-Orbitrap™ via thermal desorption gas chromatography-mass spectrometry. The Wilcoxon signed-rank test was used to determine whether VOC abundances differed between pre- and post-race breath samples (adjustedP-value < .05). We identified a total of 793 VOCs in the breath samples of elite runners. Of these, 63 showed significant differences between pre- and post-race samples after correction for multiple testing (12 decreased, 51 increased). The specific VOCs identified suggest the involvement of fatty acid oxidation, inflammation, and possible altered gut microbiome activity in response to exhaustive exercise. This study demonstrates significant changes in VOC abundance resulting from exhaustive exercise. Further investigation of VOC changes along with other physiological measurements can help improve our understanding of the effect of exhaustive exercise on the body and subsequent differences in VOCs in exhaled breath.
Collapse
Affiliation(s)
- Hsuan Chou
- Owlstone Medical, Cambridge, United Kingdom
| | | | - Elen Shaw
- Owlstone Medical, Cambridge, United Kingdom
| | | | | | | | - Eli F Kelley
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Glenn M Stewart
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
- Menzies Health Institute Queensland, Griffith University, Brisbane, Australia
| | - Courtney M Wheatley
- Department of Cardiovascular Diseases, Mayo Clinic, Scottsdale, AZ, United States of America
| | - Jesse Schwartz
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Caitlin C Fermoyle
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
- Utah Vascular Research Laboratory, Salt Lake City, UT, United States of America
| | - Briana L Ziegler
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Kay A Johnson
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| | - Paul Robach
- Ecole Nationale des Sports de Montagne, Chamonix, France
| | | | - Bruce D Johnson
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
2
|
A Single Bout of Ultra-Endurance Exercise Reveals Early Signs of Muscle Aging in Master Athletes. Int J Mol Sci 2022; 23:ijms23073713. [PMID: 35409073 PMCID: PMC8998696 DOI: 10.3390/ijms23073713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/22/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023] Open
Abstract
Middle-aged and master endurance athletes exhibit similar physical performance and long-term muscle adaptation to aerobic exercise. Nevertheless, we hypothesized that the short-term plasticity of the skeletal muscle might be distinctly altered for master athletes when they are challenged by a single bout of prolonged moderate-intensity exercise. Six middle-aged (37Y) and five older (50Y) master highly-trained athletes performed a 24-h treadmill run (24TR). Vastus lateralis muscle biopsies were collected before and after the run and assessed for proteomics, fiber morphometry, intramyocellular lipid droplets (LD), mitochondrial oxidative activity, extracellular matrix (ECM), and micro-vascularisation. Before 24TR, muscle fiber type morphometry, intramyocellular LD, oxidative activity, ECM and micro-vascularisation were similar between master and middle-aged runners. For 37Y runners, 24TR was associated with ECM thickening, increased capillary-to-fiber interface, and an 89% depletion of LD in type-I fibers. In contrast, for 50Y runners, 24TR did not alter ECM and capillarization and poorly depleted LDs. Moreover, an impaired succinate dehydrogenase activity and functional class scoring of proteomes suggested reduced oxidative phosphorylation post-24TR exclusively in 50Y muscle. Collectively, our data support that middle-aged and master endurance athletes exhibit distinct transient plasticity in response to a single bout of ultra-endurance exercise, which may constitute early signs of muscle aging for master athletes.
Collapse
|
3
|
König S, Jockenhöfer C, Billich C, Beer M, Machann J, Schmidt-Trucksäss A, Schütz U. Long distance running - Can bioprofiling predict success in endurance athletes? Med Hypotheses 2020; 146:110474. [PMID: 33418424 DOI: 10.1016/j.mehy.2020.110474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022]
Abstract
The TransEuropeFootRace (TEFR) was one of the most extreme multistage competitions worldwide. The ultramarathon took the runners over a distance of 4487 km, from Bari, Italy, to the North Cape, Norway, in 64 days. The participating ultra-long-distance runners had to complete almost two marathons per day (~70 km). The race was accompanied by a research team analysing adaptations of different organ systems of the human body that were exposed to a chronic lack of regeneration time. Here, we analyzed runner's urine using mass spectrometric profiling of thousands of low-molecular weight compounds. The results indicated that pre-race molecular factors can predict finishers and separate them from nonfinishers already before the race. These observations were related to the training volume as finishers ran about twice as many kilometers per week before TEFR than nonfinishers, thus apparently achieving a higher performance level and resistance against overuse. While this hypothesis needs to be validated in future long-distance races, the bioprofiling experiments suggest that the competition readiness of the runners is measurable and might be adjustable.
Collapse
Affiliation(s)
- Simone König
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster, Germany.
| | - Charlotte Jockenhöfer
- Core Unit Proteomics, Interdisciplinary Center for Clinical Research, University of Münster, Germany
| | - Christian Billich
- Clinic for Diagnostic and Interventional Radiology, University Hospital Ulm, Germany
| | - Meinrad Beer
- Clinic for Diagnostic and Interventional Radiology, University Hospital Ulm, Germany
| | - Jürgen Machann
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Germany; German Center for Diabetes Research (DZD), Tübingen, Germany; Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Germany
| | - Arno Schmidt-Trucksäss
- Department of Sport, Exercise and Health, Division Sports and Exercise Medicine, University of Basel, Switzerland
| | - Uwe Schütz
- Clinic for Diagnostic and Interventional Radiology, University Hospital Ulm, Germany
| |
Collapse
|
4
|
Stander Z, Luies L, Mienie LJ, Keane KM, Howatson G, Clifford T, Stevenson EJ, Loots DT. The altered human serum metabolome induced by a marathon. Metabolomics 2018; 14:150. [PMID: 30830390 DOI: 10.1007/s11306-018-1447-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Endurance races have been associated with a substantial amount of adverse effects which could lead to chronic disease and long-term performance impairment. However, little is known about the holistic metabolic changes occurring within the serum metabolome of athletes after the completion of a marathon. OBJECTIVES Considering this, the aim of this study was to better characterize the acute metabolic changes induced by a marathon. METHODS Using an untargeted two dimensional gas chromatography time-of-flight mass spectrometry metabolomics approach, pre- and post-marathon serum samples of 31 athletes were analyzed and compared to identify those metabolites varying the most after the marathon perturbation. RESULTS Principle component analysis of the comparative groups indicated natural differentiation due to variation in the total metabolite profiles. Elevated concentrations of carbohydrates, fatty acids, tricarboxylic acid cycle intermediates, ketones and reduced concentrations of amino acids indicated a metabolic shift between various fuel substrate systems. Additionally, elevated odd-chain fatty acids and α-hydroxy acids indicated the utilization of α-oxidation and autophagy as alternative energy-producing mechanisms. Adaptations in gut microbe-associated markers were also observed and correlated with the metabolic flexibility of the athlete. CONCLUSION From these results it is evident that a marathon places immense strain on the energy-producing pathways of the athlete, leading to extensive protein degradation, oxidative stress, mammalian target of rapamycin complex 1 inhibition and autophagy. A better understanding of this metabolic shift could provide new insights for optimizing athletic performance, developing more efficient nutrition regimens and identify strategies to improve recovery.
Collapse
Affiliation(s)
- Zinandré Stander
- Human Metabolomics, North-West University, Private Bag X6001, Box 269, Potchefstroom, 2531, South Africa
| | - Laneke Luies
- Human Metabolomics, North-West University, Private Bag X6001, Box 269, Potchefstroom, 2531, South Africa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, Institute of Infectious Disease and Molecular Medicine, Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Rondebosch, 7700, South Africa
| | - Lodewyk J Mienie
- Human Metabolomics, North-West University, Private Bag X6001, Box 269, Potchefstroom, 2531, South Africa
| | - Karen M Keane
- Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, NE1 8ST, Newcastle upon Tyne, UK
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, NE1 8ST, Newcastle upon Tyne, UK
- Water Research Group, School of Environmental Sciences and Development, North-West University, Potchefstroom, 2531, South Africa
| | - Tom Clifford
- Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, NE1 8ST, Newcastle upon Tyne, UK
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Emma J Stevenson
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Du Toit Loots
- Human Metabolomics, North-West University, Private Bag X6001, Box 269, Potchefstroom, 2531, South Africa.
| |
Collapse
|
5
|
Nielsen J, Christensen AE, Nellemann B, Christensen B. Lipid droplet size and location in human skeletal muscle fibers are associated with insulin sensitivity. Am J Physiol Endocrinol Metab 2017; 313:E721-E730. [PMID: 28743757 DOI: 10.1152/ajpendo.00062.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/28/2017] [Accepted: 07/18/2017] [Indexed: 11/22/2022]
Abstract
In skeletal muscle, an accumulation of lipid droplets (LDs) in the subsarcolemmal space is associated with insulin resistance, but the underlying mechanism is not clear. We aimed to investigate how the size, number, and location of LDs are associated with insulin sensitivity and muscle fiber types and are regulated by aerobic training and treatment with an erythropoiesis-stimulating agent (ESA) in healthy young untrained men. LD analyses were performed by quantitative transmission electron microscopy, and insulin sensitivity was assessed by a hyperinsulinemic-euglycemic clamp. At baseline, we found that only the diameter (and not the number) of individual subsarcolemmal LDs was negatively associated with insulin sensitivity (R2 = 0.20, P = 0.03, n = 29). Despite 34% (P = 0.004) fewer LDs, the diameter of individual subsarcolemmal LDs was 20% (P = 0.0004) larger in type 2 fibers than in type 1 fibers. Furthermore, aerobic training decreased the size of subsarcolemmal LDs in the type 2 fibers, and ESA treatment lowered the number of both intermyofibrillar and subsarcolemmal LDs in the type 1 fibers. In conclusion, the size of individual subsarcolemmal LDs may be involved in the mechanism by which LDs are associated with insulin resistance in skeletal muscle.
Collapse
Affiliation(s)
- Joachim Nielsen
- Department of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense M, Denmark;
- Department of Pathology, SDU Muscle Research Cluster (SMRC), Odense University Hospital, Odense C, Denmark; and
| | - Anders E Christensen
- Department of Sports Science and Clinical Biomechanics, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense M, Denmark
| | - Birgitte Nellemann
- Department of Endocrinology and Internal Medicine, NBG/THG, Aarhus University Hospital, Aarhus, Denmark
| | - Britt Christensen
- Department of Endocrinology and Internal Medicine, NBG/THG, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
6
|
Li Y, Lee S, Langleite T, Norheim F, Pourteymour S, Jensen J, Stadheim HK, Storås TH, Davanger S, Gulseth HL, Birkeland KI, Drevon CA, Holen T. Subsarcolemmal lipid droplet responses to a combined endurance and strength exercise intervention. Physiol Rep 2014; 2:2/11/e12187. [PMID: 25413318 PMCID: PMC4255802 DOI: 10.14814/phy2.12187] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Muscle lipid stores and insulin sensitivity have a recognized association although the mechanism remains unclear. We investigated how a 12‐week supervised combined endurance and strength exercise intervention influenced muscle lipid stores in sedentary overweight dysglycemic subjects and normal weight control subjects (n = 18). Muscle lipid stores were measured by magnetic resonance spectroscopy (MRS), electron microscopy (EM) point counting, and direct EM lipid droplet measurements of subsarcolemmal (SS) and intramyofibrillar (IMF) regions, and indirectly, by deep sequencing and real‐time PCR of mRNA of lipid droplet‐associated proteins. Insulin sensitivity and VO2max increased significantly in both groups after 12 weeks of training. Muscle lipid stores were reduced according to MRS at baseline before and after the intervention, whereas EM point counting showed no change in LD stores post exercise, indicating a reduction in muscle adipocytes. Large‐scale EM quantification of LD parameters of the subsarcolemmal LD population demonstrated reductions in LD density and LD diameters. Lipid droplet volume in the subsarcolemmal LD population was reduced by ~80%, in both groups, while IMF LD volume was unchanged. Interestingly, the lipid droplet diameter (n = 10 958) distribution was skewed, with a lack of small diameter lipid droplets (smaller than ~200 nm), both in the SS and IMF regions. Our results show that the SS LD lipid store was sensitive to training, whereas the dominant IMF LD lipid store was not. Thus, net muscle lipid stores can be an insufficient measure for the effects of training. We have investigated the muscle storage lipids responses to exercise, finding that subsarcolemmal lipid droplets are reduced 80%. Interestingly, we find that the lipid droplet diameter distribution was skewed, with a marked lack of lipid droplets smaller than 200 nm.
Collapse
Affiliation(s)
- Yuchuan Li
- Department of Nutrition, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Sindre Lee
- Department of Nutrition, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Torgrim Langleite
- Department of Nutrition, Institute of Basic Medical Science, University of Oslo, Oslo, Norway Department of Endocrinology, Morbid Obesity and Preventive Medicine, Faculty of Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Shirin Pourteymour
- Department of Nutrition, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | | | | | | | - Svend Davanger
- Department of Anatomy, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Hanne L Gulseth
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Faculty of Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Kåre I Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Faculty of Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| | - Torgeir Holen
- Department of Nutrition, Institute of Basic Medical Science, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
A review of the multi-level adaptations for maximizing aerobic dive duration in marine mammals: from biochemistry to behavior. J Comp Physiol B 2013; 184:23-53. [DOI: 10.1007/s00360-013-0782-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/27/2013] [Accepted: 08/30/2013] [Indexed: 11/26/2022]
|
8
|
Stephens NA, Skipworth RJE, Macdonald AJ, Greig CA, Ross JA, Fearon KCH. Intramyocellular lipid droplets increase with progression of cachexia in cancer patients. J Cachexia Sarcopenia Muscle 2011; 2:111-117. [PMID: 21766057 PMCID: PMC3117997 DOI: 10.1007/s13539-011-0030-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 05/11/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND: Intramyocellular lipids are an important source of fuel for mitochondrial fat oxidation and play an important role in intramuscular lipid homeostasis. We hypothesised that due to the phenotype associated with cancer cachexia, there would exist an association between increasing weight loss and the number/size of intramyocellular lipid droplets. METHODS: Nineteen cancer patients and 6 controls undergoing surgery were recruited. A rectus abdominis biopsy was performed and processed for transmission electron microscopy (TEM). The number of intramyocellular lipid droplets and lipid droplet diameter were calculated from the TEM images. CT scans, performed as part of patients' routine care, were analysed to determine amount of adipose (intermuscular, visceral and subcutaneous) and muscle tissue. RESULTS: Compared with controls, cancer patients had increased numbers of lipid droplets (mean (SD) 1.8 (1.9) vs. 6.4 (9.1) per ×2,650 field, respectively, p = 0.036). Mean (SD) lipid droplet diameter was also higher in cancer patients compared with controls (0.42 (0.13) vs. 0.24 (0.21) μm, p = 0.015). Mean lipid droplet count correlated positively with the severity of weight loss (R = 0.51, p = 0.025) and negatively with CT-derived measures of intermuscular fat (R = -0.53, p = 0.022) and visceral fat (R = -0.51, p = 0.029). CONCLUSIONS: This study suggests that the number and size of intramyocellular lipid droplets is increased in the presence of cancer and increases further with weight loss/loss of adipose mass in other body compartments.
Collapse
Affiliation(s)
- Nathan A Stephens
- Department of Clinical and Surgical Sciences (Surgery), School of Clinical Sciences and Community Health, University of Edinburgh, Royal Infirmary, 51 Little France Crescent, Edinburgh, EH16 4SA UK
| | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Devries MC, Tarnopolsky MA. Muscle Physiology in Healthy Men and Women and Those with Metabolic Myopathies. Phys Med Rehabil Clin N Am 2009; 20:101-31, viii-ix. [DOI: 10.1016/j.pmr.2008.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Larson-Meyer DE, Borkhsenious ON, Gullett JC, Russell RR, Devries MC, Smith SR, Ravussin E. Effect of dietary fat on serum and intramyocellular lipids and running performance. Med Sci Sports Exerc 2008; 40:892-902. [PMID: 18408608 DOI: 10.1249/mss.0b013e318164cb33] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE This study evaluated whether lowering IMCL stores via 3-d consumption of very-low-fat (LFAT) diet impairs endurance performance relative to a moderate-fat diet (MFAT), and whether such a diet unfavorably alters lipid profiles. METHODS Twenty-one male and female endurance-trained runners followed a controlled diet and training regimen for 3 d prior to consuming either a LFAT (10% fat) or MFAT (35% fat) isoenergetic diet for another 3 d in random crossover fashion. On day 7, runners followed a glycogen normalization protocol (to equalize glycogen stores) and then underwent performance testing (90-min preload run at 62 +/- 1% VO2max followed by a 10-km time trial) on the morning of day 8. Muscle biopsies obtained from vastus lateralis before and after performance testing were analyzed for IMCL (via electron microscopy) and glycogen content (via enzymatic methodology). RESULTS Despite approximately 30% lower IMCL (0.220 +/- 0.032% LFAT, 0.316 +/- 0.049% MFAT; P = 0.045) and approximately 22% higher muscle glycogen stores at the start of performance testing (P = 0.10), 10-km performance time was not significantly different following the two diet treatments (43.5 +/- 1.4 min LFAT vs 43.7 +/- 1.2 min MFAT). However, LFAT produced less favorable lipid profiles (P < 0.01) by increasing fasting triglycerides (baseline = 84.9 +/- 8.6; LFAT = 118.7 +/- 10.0 mg.dL(-1)) and the total cholesterol:HDL cholesterol ratio (baseline = 3.42 +/- 0.13:1; LFAT = 3.75 +/- 0.20:1), whereas MFAT lowered triglycerides (baseline = 97.5 +/- 12.2; MFAT = 70.9 +/- 7.1 mg.dL(-1)) and the total cholesterol:HDL cholesterol ratio (baseline = 3.47 +/- 0.18:1; MFAT = 3.33 +/- 0.14:1). CONCLUSION The results suggest that reducing IMCL via 3-d consumption of a LFAT diet does not impair running performance lasting a little over 2 h (compared with 3-d consumption of a MFAT diet plus 1-d glycogen normalization), but that even short-term consumption of a LFAT diet may unfavorably alter serum lipids, even in healthy, endurance-trained runners.
Collapse
Affiliation(s)
- D Enette Larson-Meyer
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Muscle Physiology in Healthy Men and Women and Those with Metabolic Myopathies. Neurol Clin 2008; 26:115-48; ix. [DOI: 10.1016/j.ncl.2007.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Devries MC, Lowther SA, Glover AW, Hamadeh MJ, Tarnopolsky MA. IMCL area density, but not IMCL utilization, is higher in women during moderate-intensity endurance exercise, compared with men. Am J Physiol Regul Integr Comp Physiol 2007; 293:R2336-42. [PMID: 17913867 DOI: 10.1152/ajpregu.00510.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Women use more fat during endurance exercise as evidenced by a lower respiratory exchange ratio (RER). The contribution of intramyocellular lipid (IMCL) to lipid oxidation during endurance exercise is controversial, and studies investigating sex differences in IMCL utilization have found conflicting results. We determined the effect of sex on net IMCL use during an endurance exercise bout using an ultrastructural evaluation. Men ( n = 17) and women ( n = 19) completed 90-min cycling at 63% V̇o2peak. Biopsies were taken before and after exercise and fixed for electron microscopy to determine IMCL size, # IMCL/area, IMCL area density, and the % IMCL touching mitochondria. Women had a lower RER and carbohydrate oxidation rate and a higher lipid oxidation rate during exercise ( P < 0.05), compared with men. Women had a higher # IMCL/area and IMCL area density ( P < 0.05), compared with men. Women, but not men, had a higher % IMCL touching mitochondria postexercise ( P = 0.03). Exercise decreased IMCL area density ( P = 0.01), due to a decrease in the # IMCL/area ( P = 0.02). There was no sex difference in IMCL size or net use. In conclusion, women have higher IMCL area density compared with men, due to an increased # IMCL and not an increased IMCL size, as well as an increased % IMCL touching mitochondria postexercise. Endurance exercise resulted in a net decrease in IMCL density due to decreased number of IMCL, not decreased IMCL size, in both sexes.
Collapse
Affiliation(s)
- Michaela C Devries
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
14
|
Technical evaluation of in vivo abdominal fat and IMCL quantification using MRI and MRSI at 3 T. Magn Reson Imaging 2007; 26:188-97. [PMID: 17683890 DOI: 10.1016/j.mri.2007.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 05/30/2007] [Accepted: 06/11/2007] [Indexed: 01/24/2023]
Abstract
OBJECTIVES The objectives of this study were to develop protocols that measure abdominal fat and calf muscle lipids with magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS), respectively, at 3 T and to examine the correlation between these parameters and insulin sensitivity. MATERIALS AND METHODS Ten nondiabetic subjects [five insulin-sensitive (IS) subjects and five insulin-resistant (IR) subjects] were scanned at 3 T. Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) were segmented semiautomatically from abdominal imaging. Intramyocellular lipids (IMCL) in calf muscles were quantified with single-voxel MRS in both soleus and tibialis anterior muscles and with magnetic resonance spectroscopic imaging (MRSI). RESULTS The average coefficient of variation (CV) of VAT/(VAT+SAT) was 5.2%. The interoperator CV was 1.1% and 5.3% for SAT and VAT estimates, respectively. The CV of IMCL was 13.7% in soleus, 11.9% in tibialis anterior and 2.9% with MRSI. IMCL based on MRSI (3.8+/-1.2%) were significantly inversely correlated with glucose disposal rate, as measured by a hyperinsulinemic-euglycemic clamp. VAT volume correlated significantly with IMCL. IMCL based on MRSI for IR subjects was significantly greater than that for IS subjects (4.5+/-0.9% vs. 2.8+/-0.5%, P=.02). CONCLUSION MRI and MRS techniques provide a robust noninvasive measurement of abdominal fat and muscle IMCL, which are correlated with insulin action in humans.
Collapse
|
15
|
Stellingwerff T, Boon H, Jonkers RAM, Senden JM, Spriet LL, Koopman R, van Loon LJC. Significant intramyocellular lipid use during prolonged cycling in endurance-trained males as assessed by three different methodologies. Am J Physiol Endocrinol Metab 2007; 292:E1715-23. [PMID: 17299080 DOI: 10.1152/ajpendo.00678.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intramyocellular triacylglycerol (IMTG) has been suggested to represent an important substrate source during exercise. In the present study, IMTG utilization during exercise is assessed through the use of various methodologies. In addition, we identified differences in the use of intramyocellular lipids deposited in the immediate subsarcolemmal (SS) area and those stored in the more central region of the fiber. Contemporary stable isotope technology was applied in combination with muscle tissue sampling before and immediately after 3 h of moderate-intensity cycling exercise (62 +/- 2% Vo(2 max)) in eight well-trained male cyclists. Continuous infusions with [U-13C]palmitate and [6,6-(2)H2]glucose were applied to quantify plasma free fatty acid (FFA) and glucose oxidation rates and to estimate whole body IMTG and glycogen use. Both immunohistochemical analyses of oil red O (ORO)-stained muscle cross sections and biochemical triacylglycerol (TG) extraction were performed to assess muscle lipid content. During exercise, plasma FFA, muscle (and/or lipoprotein)-derived TG, plasma glucose, and muscle glycogen oxidation contributed 24 +/- 2, 22 +/- 3, 11 +/- 1, and 43 +/- 3% to total energy expenditure, respectively. In accordance, a significant net decline in muscle lipid content was observed following exercise as assessed by ORO staining (67 +/- 8%) and biochemical TG extraction (49 +/- 8%), and a positive correlation was observed between methods (r = 0.56; P < 0.05). Lipid depots located in the SS area were utilized to a greater extent than the more centrally located depots. This is the first study to show significant use of IMTG as a substrate source during exercise in healthy males via the concurrent implementation of three major methodologies. In addition, this study shows differences in resting subcellular intramyocellular lipid deposit distribution and in the subsequent net use of these deposits during exercise.
Collapse
Affiliation(s)
- Trent Stellingwerff
- Department of Movement Science, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
16
|
Schrauwen-Hinderling VB, Hesselink MKC, Schrauwen P, Kooi ME. Intramyocellular lipid content in human skeletal muscle. Obesity (Silver Spring) 2006; 14:357-67. [PMID: 16648604 DOI: 10.1038/oby.2006.47] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fat can be stored not only in adipose tissue but also in other tissues such as skeletal muscle. Fat droplets accumulated in skeletal muscle [intramyocellular lipids (IMCLs)] can be quantified by different methods, all with advantages and drawbacks. Here, we briefly review IMCL quantification methods that use biopsy specimens (biochemical quantification, electron microscopy, and histochemistry) and non-invasive alternatives (magnetic resonance spectroscopy, magnetic resonance imaging, and computed tomography). Regarding the physiological role, it has been suggested that IMCL serves as an intracellular source of energy during exercise. Indeed, IMCL content decreases during prolonged submaximal exercise, and analogously to glycogen, IMCL content is increased in the trained state. In addition, IMCL content is highest in oxidative, type 1 muscle fibers. Together, this, indeed, suggests that the IMCL content is increased in the trained state to optimally match fat oxidative capacity and that it serves as readily available fuel. However, elevation of plasma fatty acid levels or dietary fat content also increases IMCL content, suggesting that skeletal muscle also stores fat simply if the availability of fatty acids is high. Under these conditions, the uptake into skeletal muscle may have negative consequences on insulin sensitivity. Besides the evaluation of the various methods to quantify IMCLs, this perspective describes IMCLs as valuable energy stores during prolonged exercise, which, however, in the absence of regular physical activity and with overconsumption of fat, can have detrimental effects on muscular insulin sensitivity.
Collapse
Affiliation(s)
- Vera B Schrauwen-Hinderling
- Department of Radiology, University Hospital Maastricht, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
17
|
van Loon LJC. Use of intramuscular triacylglycerol as a substrate source during exercise in humans. J Appl Physiol (1985) 2005; 97:1170-87. [PMID: 15358749 DOI: 10.1152/japplphysiol.00368.2004] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fat and carbohydrate are the principal substrates that fuel aerobic ATP synthesis in skeletal muscle. Most endogenous fat is stored as triacylglycerol in subcutaneous and deep visceral adipose tissue. Smaller quantities of triacylglycerol are deposited as lipid droplets inside skeletal muscle fibers. The potential role of intramyocellular triacylglycerol (IMTG) as a substrate source during exercise in humans has recently regained much of its interest because of the proposed functional relationship between IMTG accumulation and the development of skeletal muscle insulin resistance. Exercise likely represents an effective means to prevent excess IMTG accretion by stimulating its rate of oxidation. However, there is much controversy on the actual contribution of the IMTG pool as a substrate source during exercise. The apparent discrepancy in the literature likely stems from methodological difficulties that have been associated with the methods used to estimate IMTG oxidation during exercise. However, recent studies using stable isotope methodology, 1H-magnetic resonance spectroscopy, and electron and/or immunofluorescence microscopy all support the contention that the IMTG pool can function as an important substrate source during exercise. Although more research is warranted, IMTG mobilization and/or oxidation during exercise seem to be largely determined by exercise intensity, exercise duration, macronutrient composition of the diet, training status, gender, and/or age. In addition, indirect evidence suggests that the capacity to mobilize and/or oxidize IMTG is substantially impaired in an obese and/or Type 2 diabetic state. As we now become aware that skeletal muscle has an enormous capacity to oxidize IMTG stores during exercise, more research is warranted to develop combined exercise, nutritional, and/or pharmacological interventions to effectively stimulate IMTG oxidation in sedentary, obese, and/or Type 2 diabetes patients.
Collapse
Affiliation(s)
- Luc J C van Loon
- Nutrition Research Institute Maastricht (NUTRIM Dept. of Human Biology, Maastricht Univ., PO Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
18
|
Lange KHW. Fat metabolism in exercise - with special reference to training and growth hormone administration. Scand J Med Sci Sports 2004; 14:74-99. [PMID: 15043630 DOI: 10.1111/j.1600-0838.2004.381.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Despite abundance of fat, exclusive dependency on fat oxidation can only sustain a metabolic rate corresponding to 50-60% of VO(2max) in humans. This puzzling finding has been subject to intense research for many years. Lately, it has gained renewed interest as a consequence of increased obesity and physical inactivity imposed by Western lifestyle. Why are humans so poor at metabolizing fat? Can fat metabolism be manipulated by exercise, training, diet and hormones? And why is fat stored in specialized adipose tissue and not just as lipid droplets inside muscle cells? In the present review, human fat metabolism is discussed in relation to how human fat metabolism is designed. Limitations in this design are explored and examples of different designs for fat metabolism from animal physiology are included to illustrate these limitations. Various means of manipulating fat metabolism are discussed with special emphasis on exercise, training, growth hormone (GH) physiology and GH administration. It is concluded that fat stores, non-esterified fatty acids (NEFAs) availability and enzymes for fat oxidation can be increased substantially. However, it is almost impossible to increase fat oxidation during endurance exercise at higher intensities. It seems that, for some reason, the human being is far from optimally designed for fat oxidation during exercise. Acute GH administration has several unexpected effects on fat and carbohydrate metabolism during aerobic exercise, and future research in this area is likely to provide valuable information with respect to GH physiology and the regulation of fat and carbohydrate metabolism during aerobic exercise.
Collapse
|
19
|
Smekal G, von Duvillard SP, Pokan R, Tschan H, Baron R, Hofmann P, Wonisch M, Bachl N. Effect of endurance training on muscle fat metabolism during prolonged exercise:. Nutrition 2003; 19:891-900. [PMID: 14559327 DOI: 10.1016/s0899-9007(03)00171-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gerhard Smekal
- Institute of Sports Sciences, Department of Sport Physiology, University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kimber NE, Heigenhauser GJF, Spriet LL, Dyck DJ. Skeletal muscle fat and carbohydrate metabolism during recovery from glycogen-depleting exercise in humans. J Physiol 2003; 548:919-27. [PMID: 12651914 PMCID: PMC2342904 DOI: 10.1113/jphysiol.2002.031179] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The primary aim of the present study was to determine whether intramuscular triacylglycerol (IMTG) utilization contributed significantly to the increase in lipid oxidation during recovery from exercise, as determined from the muscle biopsy technique. In addition, we also examined the regulation of pyruvate dehydrogenase (PDHa) and changes in muscle acetyl units during an 18 h recovery period after glycogen-depleting exercise. Eight endurance-trained males completed an exhaustive bout of exercise (approximately 90 min) on a cycle ergometer followed by ingestion of carbohydrate (CHO)-rich meals (64-70 % of energy from carbohydrate) at 1, 4 and 7 h of recovery. Duplicate muscle biopsies were obtained at exhaustion, and 3, 6 and 18 h of recovery. Despite the large intake of CHO during recovery (491 +/- 28 g or 6.8 +/- 0.3 g kg-1), respiratory exchange ratio values of 0.77 to 0.84 indicated a greater reliance on lipid as an oxidative fuel. However, there was no net IMTG utilization during recovery. IMTG content at exhaustion was 23.5 +/- 3.5 mmol (kg dry wt)-1, and remained constant at 24.6 +/- 2.6, 25.7 +/- 2.8 and 28.4 +/- 3.0 mmol (kg dry wt)-1 after 3, 6 and 18 h of recovery. Muscle glycogen increased significantly from 37 +/- 11 mmol (kg dry wt)-1 at exhaustion, to 165 +/- 13, 250 +/- 18, and 424 +/- 22 mmol (kg dry wt)-1 at 3, 6 and 18 h of recovery, respectively. PDHa was reduced at 6 and 18 h when compared to exhaustion, but did not change during the recovery period. Acetyl-CoA, acetylcarnitine and pyruvate contents declined significantly after 3 h of recovery compared to exhaustion, and thereafter remained unchanged. We conclude that IMTG has a negligible role in contributing to the enhanced fat oxidation during recovery from exhaustive exercise. Despite the elevation of glucose and insulin following high-CHO meals during recovery, CHO oxidation and PDH activation were decreased, supporting the hypothesis that glycogen resynthesis is of high metabolic priority. Plasma fatty acids, very low density lipoprotein triacylglycerols, as well as intramuscular acetylcarnitine stores are likely to be important fuel sources for aerobic energy, particularly during the first few hours of recovery.
Collapse
Affiliation(s)
- Nicholas E Kimber
- Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
21
|
Watt MJ, Heigenhauser GJF, Spriet LL. Intramuscular triacylglycerol utilization in human skeletal muscle during exercise: is there a controversy? J Appl Physiol (1985) 2002; 93:1185-95. [PMID: 12235013 DOI: 10.1152/japplphysiol.00197.2002] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Intramuscular triacylglyerols (IMTGs) represent a potentially important energy source for contracting human skeletal muscle. Although the majority of evidence from isotope tracer and (1)H-magnetic resonance spectroscopy (MRS) studies demonstrate IMTG utilization during exercise, controversy regarding the importance of IMTG as a metabolic substrate persists. The controversy stems from studies that measure IMTG in skeletal muscle biopsy samples and report no significant net IMTG degradation during prolonged moderate-intensity (55-70% maximal O(2) consumption) exercise lasting 90-120 min. Although postexercise decrements in IMTG levels are often reported from direct muscle measurements, the marked between-biopsy variability (approximately 23%) that has been reported with this technique in untrained subjects is larger than the expected decrease in IMTG content, effectively precluding significant findings. In contrast, recent data obtained in endurance-trained subjects demonstrated reduced variability between duplicate biopsies (approximately 12%), and significant changes in IMTG were detected after 120 min of moderate-intensity exercise. Therefore, it is our contention that the muscle biopsy, isotope tracer, and (1)H-MRS techniques report significant and energetically important oxidation of free fatty acids derived from IMTGs during prolonged moderate exercise.
Collapse
Affiliation(s)
- Matthew J Watt
- Department of Human Biology and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | | |
Collapse
|
22
|
Howald H, Boesch C, Kreis R, Matter S, Billeter R, Essen-Gustavsson B, Hoppeler H. Content of intramyocellular lipids derived by electron microscopy, biochemical assays, and (1)H-MR spectroscopy. J Appl Physiol (1985) 2002; 92:2264-72. [PMID: 12015335 DOI: 10.1152/japplphysiol.01174.2001] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Three different methods to determine intramyocellular lipid (IMCL) contents in human skeletal muscle have been compared. (1)H-magnetic resonance spectroscopy (MRS) was evaluated against electron microscopic morphometry and biochemical assays of biopsy samples from m. tibialis anterior of 10 healthy subjects. The results of (1)H-MRS and morphometry were strongly correlated, proving the validity of the (1)H-MRS results for the noninvasive determination of IMCL. Biochemical assays yielded results that did not significantly correlate with the results of the other methods. When IMCL levels obtained from the three methods are expressed in common units, it was found that (1)H-MRS yielded IMCL average levels that were 1.8 times lower than those found by morphometry. Potential reasons for the discrepancy are discussed. It is expected that (1)H-MRS will be suitable to replace invasive techniques for IMCL determination, whenever noninvasiveness is crucial, e.g., for repeated investigations in studies of substrate recruitment and recovery in exercise.
Collapse
Affiliation(s)
- Hans Howald
- Department of Anatomy, University of Bern, CH-3000 Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
23
|
Larson-Meyer DE, Newcomer BR, Hunter GR. Influence of endurance running and recovery diet on intramyocellular lipid content in women: a 1H NMR study. Am J Physiol Endocrinol Metab 2002; 282:E95-E106. [PMID: 11739089 DOI: 10.1152/ajpendo.2002.282.1.e95] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using a randomly assigned crossover design, we evaluated the change in intramyocellular lipid stores (IMCL) from baseline after a 2-h treadmill run [67% of maximal oxygen uptake (VO2 max)] and the recovery of IMCL in response to a postexercise very low-fat (10% of energy, LFAT) or moderate-fat (35% of energy, MFAT) recovery diet in seven female runners. IMCL was measured in soleus muscle by use of water-suppressed 1H-NMR spectroscopic imaging before (baseline), after, and approximately 22 h and 70 h after the run. IMCL fell by approximately 25% (P < 0.05) during the endurance run and was dependent on dietary fat content for postexercise recovery (P = 0.038, diet x time interaction). Consumption of the MFAT recovery diet allowed IMCL stores to return to baseline by 22 h and to overshoot (vs. baseline) by 70 h postexercise. In contrast, consumption of the LFAT recovery diet did not allow IMCL stores to return to baseline even by 70 h after the endurance run (P < 0.01 at 70 h). These results suggest that a certain quantity of dietary fat is required to replenish IMCL after endurance running.
Collapse
Affiliation(s)
- D Enette Larson-Meyer
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana 70808, USA.
| | | | | |
Collapse
|
24
|
Décombaz J, Schmitt B, Ith M, Decarli B, Diem P, Kreis R, Hoppeler H, Boesch C. Postexercise fat intake repletes intramyocellular lipids but no faster in trained than in sedentary subjects. Am J Physiol Regul Integr Comp Physiol 2001; 281:R760-9. [PMID: 11506990 DOI: 10.1152/ajpregu.2001.281.3.r760] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hypotheses that postexercise replenishment of intramyocellular lipids (IMCL) is enhanced by endurance training and that it depends on fat intake were tested. Trained and untrained subjects exercised on a treadmill for 2 h at 50% peak oxygen consumption, reducing IMCL by 26-22%. During recovery, they were fed 55% (high fat) or 15% (low fat) lipid energy diets. Muscle substrate stores were estimated by (1)H (IMCL)- and (13)C (glycogen)-magnetic resonance spectroscopy in tibialis anterior muscle before and after exercise. Resting IMCL content was 71% higher in trained than untrained subjects and correlated significantly with glycogen content. Both correlated positively with indexes of insulin sensitivity. After 30 h on the high-fat diet, IMCL concentration was 30-45% higher than preexercise, whereas it remained 5-17% lower on the low-fat diet. Training status had no significant influence on IMCL replenishment. Glycogen was restored within a day with both diets. We conclude that fat intake postexercise strongly promotes IMCL repletion independently of training status. Furthermore, replenishment of IMCL can be completed within a day when fat intake is sufficient.
Collapse
Affiliation(s)
- J Décombaz
- Nestlé Research Center, Nestec Ltd., PO Box 44, CH-1000 Lausanne 26, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Performance in endurance events is dependent upon the maximal aerobic power, the percentage of that power that can be sustained and the availability of substrates (carbohydrates [CHO] and fats). The purpose of this paper is to present a perspective of recent studies that demonstrate the role of fat intake and oxidation on endurance performance. Studies have shown that fatigue is associated with reduced muscle glycogen and that increasing muscle glycogen or blood glucose prolongs performance while increasing fat and decreasing CHO decreases performance. This has led to an emphasis on CHO intake in athletes in endurance sports, which quite often leads to low caloric intake. It is well known that trained subjects have higher levels of fat oxidative capacity, which spares glycogen during endurance sports. Data from recent studies in trained athletes, who were fed iso-caloric high-fat diets (42% to 55%) that maintained adequate CHO levels, have shown an increase in endurance in both men and women when compared to diets composed of low fat intake (10% to 15%). The magnitude of the effect on endurance was significant at high percentages of maximal aerobic power and increased as the percentage of maximal aerobic power decreased. Based on this review, a baseline diet comprising 20% protein, 30% CHO and 30% fat, with the remaining 20% of the calories distributed between CHO and fat based on the intensity and duration of the sport, is recommended for discussion and future research.
Collapse
Affiliation(s)
- D R Pendergast
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, Buffalo, New York 14214, USA
| | | | | |
Collapse
|
26
|
Krssak M, Petersen KF, Bergeron R, Price T, Laurent D, Rothman DL, Roden M, Shulman GI. Intramuscular glycogen and intramyocellular lipid utilization during prolonged exercise and recovery in man: a 13C and 1H nuclear magnetic resonance spectroscopy study. J Clin Endocrinol Metab 2000; 85:748-54. [PMID: 10690886 DOI: 10.1210/jcem.85.2.6354] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Depletion of muscle glycogen is considered a limiting performance factor during prolonged exercise, whereas the role of the intramyocellular lipid (IMCL) pool is not yet fully understood. We examined 1) intramyocellular glycogen and lipid utilization during prolonged exercise, 2) resynthesis of muscle glycogen and lipids during recovery, and 3) changes in glycogen content between nonexercising and exercising muscles during recovery. Subjects ran on a treadmill at submaximal intensity until exhaustion. Glycogen concentrations were assessed in thigh, calf, and nonexercising forearm muscle, and IMCL content was measured in soleus muscle using magnetic resonance spectroscopy techniques. At the time of exhaustion, glycogen depletion was 2-fold greater in calf than in thigh muscles, but a significant amount of glycogen was left in both leg muscles. The glycogen concentration in nonexercising forearm muscle decreased during the initial 5 h of recovery to 73% of the baseline value. Duringthe exercise, the IMCL content decreased to 67% and subsequently during recovery increased to 83% of the baseline value. In summary, we found during prolonged running 1) significantly greater muscle glycogen utilization in the calf muscle group than in the thigh muscle group, 2) significant utilization of IMCL in the soleus muscle, and 3) a decrease in glycogen content in nonexercising muscle and an increase in glycogen content in recovering muscles during the postexercise phase. These latter data are consistent with the hypothesis that there is transfer of glycogen by the glucose-lactate and the glucose-->alanine cycle from the resting muscle (forearm) to recovering muscles (thigh and calf) after running exercise.
Collapse
Affiliation(s)
- M Krssak
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Horvath PJ, Eagen CK, Fisher NM, Leddy JJ, Pendergast DR. The effects of varying dietary fat on performance and metabolism in trained male and female runners. J Am Coll Nutr 2000; 19:52-60. [PMID: 10682876 DOI: 10.1080/07315724.2000.10718914] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Low dietary fat intake has become the diet of choice for many athletes. Recent studies in animals and humans suggest that a high fat diet may increase VO2max and endurance. We studied the effects of a low, medium and high fat diet on performance and metabolism in runners. METHODS Twelve male and 13 female runners (42 miles/week) ate diets of 16% and 31% fat for four weeks. Six males and six females increased their fat intakes to 44%. All diets were designed to be isocaloric. Endurance and VO2max were tested at the end of each diet. Plasma levels of lactate, pyruvate, glucose, glycerol, and triglycerides were measured before and after the VO2max and endurance runs. Free fatty acids were measured during the VO2max and endurance runs. RESULTS Runners on the low fat diet ate 19% fewer calories than on the medium or high fat diets. Body weight, percent body fat (males=71 kg and 16%; females=57 kg and 19%), VO2max and anaerobic power were not affected by the level of dietary fat. Endurance time increased from the low fat to medium fat diet by 14%. No differences were seen in plasma lactate, glucose, glycerol, triglycerides and fatty acids when comparing the low versus the medium fat diet. Subjects who increased dietary fat to 44% had higher plasma pyruvate (46%) and lower lactate levels (39%) after the endurance run. CONCLUSION These results suggest that runners on a low fat diet consume fewer calories and have reduced endurance performance than on a medium or high fat diet. A high fat diet, providing sufficient total calories, does not compromise anaerobic power.
Collapse
Affiliation(s)
- P J Horvath
- Department of Physical Therapy, University at Buffalo, New York 14214, USA
| | | | | | | | | |
Collapse
|
28
|
van Hall G, González-Alonso J, Sacchetti M, Saltin B. Skeletal muscle substrate metabolism during exercise: methodological considerations. Proc Nutr Soc 1999; 58:899-912. [PMID: 10817157 DOI: 10.1017/s0029665199001202] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of the present article is to evaluate critically the various methods employed in studies designed to quantify precisely skeletal muscle substrate utilization during exercise. In general, the pattern of substrate utilization during exercise can be described well from O2 uptake measurements and the respiratory exchange ratio. However, if the aim is to quantify limb or muscle metabolism, invasive measurements have to be carried out, such as the determination of blood flow, arterio-venous (a-v) difference measurements for O2 and relevant substrates, and biopsies of the active muscle. As many substrates and metabolites may be both taken up and released by muscle at rest and during exercise, isotopes can be used to determine uptake and/or release and also fractional uptake can be accounted for. Furthermore, the use of isotopes opens up further possibilities for the estimation of oxidation rates of various substrates. There are several methodological concerns to be aware of when studying the metabolic response to exercise in human subjects. These concerns include: (1) the muscle mass involved in the exercise is largely unknown (bicycle or treadmill). Moreover, whether the muscle sample obtained from a limb muscle and the substrate and metabolite concentrations are representative can be a problem; (2) the placement of the venous catheter can be critical, and it should be secured so that the blood sample represents blood from the active muscle with a minimum of contamination from other muscles and tissues; (3) the use of net limb glycerol release to estimate lipolysis is probably not valid (triacylglycerol utilization by muscle), since glycerol can be metabolized in skeletal muscle; (4) the precision of blood-borne substrate concentrations during exercise measured by a-v difference is hampered since they become very small due to the high blood flow. Recommendations are given in order to obtain more quantitative and conclusive data in studies investigating the regulatory mechanisms for substrate choice by muscle.
Collapse
Affiliation(s)
- G van Hall
- The Copenhagen Muscle Research Centre, Rigshospitalet, Denmark
| | | | | | | |
Collapse
|
29
|
Boesch C, Décombaz J, Slotboom J, Kreis R. Observation of intramyocellular lipids by means of 1H magnetic resonance spectroscopy. Proc Nutr Soc 1999; 58:841-50. [PMID: 10817151 DOI: 10.1017/s0029665199001147] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) are being increasingly used for investigations of human muscle physiology. While MRI reveals the morphology of muscles in great detail (e.g. for the determination of muscle volumes), MRS provides information on the chemical composition of the tissue. Depending on the observed nucleus, MRS allows the monitoring of high-energy phosphates (31P MRS), glycogen (13C MRS), or intramyocellular lipids (1H MRS), to give only a few examples. The observation of intramyocellular lipids (IMCL) by means of 1H MRS is non-invasive and, therefore, can be repeated many times and with a high temporal resolution. MRS has the potential to replace the biopsy for the monitoring of IMCL levels; however, the biopsy still has the advantage that other methods such as those used in molecular biology can be applied to the sample. The present study describes variations in the IMCL levels (expressed in mmol/kg wet weight and ml/100 ml) in three different muscles before and after (0, 1, 2, and 5 d) marathon runs for a well-trained individual who followed two different recovery protocols varying mainly in the diet. It was shown that the repletion of IMCL levels is strongly dependent on the diet post exercise. The monitoring of IMCL levels by means of 1H MRS is extremely promising, but several methodological limitations and pitfalls need to be considered, and these are addressed in the present review.
Collapse
Affiliation(s)
- C Boesch
- Department of Clinical Research, MR Spectroscopy and Methodology, University of Bern, Switzerland.
| | | | | | | |
Collapse
|
30
|
Kanatous SB, DiMichele LV, Cowan DF, Davis RW. High aerobic capacities in the skeletal muscles of pinnipeds: adaptations to diving hypoxia. J Appl Physiol (1985) 1999; 86:1247-56. [PMID: 10194210 DOI: 10.1152/jappl.1999.86.4.1247] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective was to assess the aerobic capacity of skeletal muscles in pinnipeds. Samples of swimming and nonswimming muscles were collected from Steller sea lions (Eumetopias jubatus, n = 27), Northern fur seals (Callorhinus ursinus, n = 5), and harbor seals (Phoca vitulina, n = 37) by using a needle biopsy technique. Samples were either immediately fixed in 2% glutaraldehyde or frozen in liquid nitrogen. The volume density of mitochondria, myoglobin concentration, citrate synthase activity, and beta-hydroxyacyl-CoA dehydrogenase was determined for all samples. The swimming muscles of seals had an average total mitochondrial volume density per volume of fiber of 9.7%. The swimming muscles of sea lions and fur seals had average mitochondrial volume densities of 6.2 and 8.8%, respectively. These values were 1.7- to 2.0-fold greater than in the nonswimming muscles. Myoglobin concentration, citrate synthase activity, and beta-hydroxyacyl-CoA dehydrogenase were 1.1- to 2. 3-fold greater in the swimming vs. nonswimming muscles. The swimming muscles of pinnipeds appear to be adapted for aerobic lipid metabolism under the hypoxic conditions that occur during diving.
Collapse
Affiliation(s)
- S B Kanatous
- Department of Medicine, University of California at San Diego, La Jolla, California, 92092-0623, USA.
| | | | | | | |
Collapse
|
31
|
Brouns F, van der Vusse GJ. Utilization of lipids during exercise in human subjects: metabolic and dietary constraints. Br J Nutr 1998; 79:117-28. [PMID: 9536855 DOI: 10.1079/bjn19980022] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During endurance exercise, skeletal muscle relies mainly on both carbohydrate (CHO) and fat oxidation to cover energy needs. Numerous scientific studies have shown that increasing the exercise intensity leads to a progressive utilization of CHO. The latter will induce a state of glycogen depletion which is generally recognized as being a limiting factor for the continuation of strenuous exercise. Different dietary interventions have been proposed to overcome this limitation. A high-CHO diet during periods of intense training and competition, as well as CHO intake during exercise, are known to maintain a high rate of CHO oxidation and to delay fatigue. However, it has been recognized also that enhancing fatty acid (FA) oxidation during exercise induces a reduced rate of glycogen degradation, resulting in an improved endurance capacity. This is most strikingly observed as a result of frequent endurance exercise which improves a number of factors known to govern the FA flux and the oxidative capacity of skeletal muscle. Such factors are: (1) blood flow and capillarization; (2) lipolysis of triacylglycerol (TAG) in adipose tissue and circulating TAG and transport of FA from blood plasma to the sarcoplasm; (3) availability and rate of hydrolysis of intramuscular TAG; (4) activation of the FA and transport across the mitochondrial membrane; (5) the activity of enzymes in the oxidative pathway; (6) hormonal adaptations, i.e. sensitivity to catecholamines and insulin. The observation that the plasma FA concentration is an important factor in determining the rate of FA oxidation, and that some dietary factors may influence the rate of FA supply to muscle as well as to the mitochondria, has led to a number of dietary interventions with the ultimate goal to enhance FA oxidation and endurance performance. It appears that experimental data are not equivocal that dietary interventions, such as a high-fat diet, medium-chain TAG-fat emulsions and caffeine intake during exercise, as well as L-carnitine supplementation, do significantly enhance FA oxidation during exercise. So far, only regular endurance exercise can be classified as successful in achieving adaptations which enhance FA mobilization and oxidation.
Collapse
Affiliation(s)
- F Brouns
- Department of Human Biology, Nutrition Toxicology and Environment Research Institute, Maastricht, The Netherlands.
| | | |
Collapse
|
32
|
Boesch C, Slotboom J, Hoppeler H, Kreis R. In vivo determination of intra-myocellular lipids in human muscle by means of localized 1H-MR-spectroscopy. Magn Reson Med 1997; 37:484-93. [PMID: 9094069 DOI: 10.1002/mrm.1910370403] [Citation(s) in RCA: 320] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intra-myocellular lipids (IMCL) are stored in droplets in the cytoplasm of muscle cells and are an energy storage form readily accessed during long-term exercise. 1H-MR spectroscopy methods are presented for noninvasive determination of IMCL in human muscle. This is based on (a) the separation of two resonances in the lipid-CH2-region, with the one assigned to IMCL being independent of muscle orientation relative to the magnetic field and (b) the fact that IMCL resonances scale along with signal amplitudes of metabolites in the muscle cell (e.g., creatine) when voxel size is increased, while lipid signals of bulk fat show a disproportionate growth. Inter-individual and intra-individual reproducibility studies indicate that the error of the method is about 6% and that IMCL levels differ significantly between identical muscles in different subjects, as well as intra-individually when measured at 1 week intervals. IMCL determinations in a single subject before and after strenuous exercise indicate that lipid stores recover with a t1/2 of about 1 day.
Collapse
Affiliation(s)
- C Boesch
- Department of MR-Spectroscopy and Methodology, University of Bern, Switzerland
| | | | | | | |
Collapse
|
33
|
|