1
|
van der Eijk Y, Woh J. Is secondhand smoke associated with mental health issues? A narrative review of the evidence and policy implications. Health Policy 2023; 136:104900. [PMID: 37651970 DOI: 10.1016/j.healthpol.2023.104900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/20/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Secondhand smoke (SHS) is a well-established cause of lung cancer, respiratory disease, heart disease and developmental issues in children, with an overwhelming evidence base spanning over four decades. In this narrative review, we describe studies which have also linked self-reported or cotinine-assessed SHS exposure in the home, workplace and other settings to mental health disorders including depression, suicide, anxiety, and psychological distress in children and adults, sleeping disorders, Attention Deficit Hyperactivity Disorder and behavioural issues in children, and dementia in older adults. In general, evidence indicates that SHS exposure is associated with these disorders in a dose-response manner, with higher odds reported in people who are exposed to SHS at high levels, frequently, and in the home environment. Most studies so far are cross-sectional albeit in large, nationally representative samples from various countries with a smaller number of longitudinal studies. More research is needed in this area to determine whether SHS is a direct cause of adverse mental health outcomes, and whether creating smokefree environments leads to improved mental wellbeing. In particular, more research is needed on the impact of smokefree home environments, an area which has received relatively little focus in smokefree interventions which generally target public places.
Collapse
Affiliation(s)
- Yvette van der Eijk
- Saw Swee Hock School of Public Health, MD1 Tahir Foundation Building, National University of Singapore, 12 Science Drive 2 #09-01C, 117549, Singapore.
| | - Joanne Woh
- Saw Swee Hock School of Public Health, MD1 Tahir Foundation Building, National University of Singapore, 12 Science Drive 2 #09-01C, 117549, Singapore
| |
Collapse
|
2
|
Naidoo D, Pošta M, Roy A, Kulkarni M, Van Staden J. Synthesis of potent neuroprotective butenolides based on plant smoke derived 3,4,5-Trimethylfuran-2(5H)-one and 3-methyl-2H-furo[2,3-c]pyrone-2-one. PHYTOCHEMISTRY 2019; 163:187-194. [PMID: 31014820 DOI: 10.1016/j.phytochem.2019.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/05/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Smoke derived karrikinolide and trimethylbutenolide exerted neuroprotective effects against monoamine oxidase and acetylcholinesterase. Synthesis of potent analogs was achieved. Sulphur substitution in the bicyclic ring structure of KAR1 displayed the most encouraging activity returning IC50 values of 13.75 ± 0.001 μM and 0.03 ± 0.02 μM for monoamine oxidase A and B and 0.08 ± 0.006 μM for acetylcholinesterase. Neuroprotective butenolides may be particularly useful in the treatment of depressive disorders, Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Devashan Naidoo
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa
| | - Martin Pošta
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovonám. 2, 16610, Prague 6, Czech Republic
| | - Ayan Roy
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa
| | - Manoj Kulkarni
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa
| | - Johannes Van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
3
|
van Haren MJ, Thomas MG, Sartini D, Barlow DJ, Ramsden DB, Emanuelli M, Klamt F, Martin NI, Parsons RB. The kinetic analysis of the N-methylation of 4-phenylpyridine by nicotinamide N-methyltransferase: Evidence for a novel mechanism of substrate inhibition. Int J Biochem Cell Biol 2018; 98:127-136. [PMID: 29549048 DOI: 10.1016/j.biocel.2018.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/23/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022]
Abstract
The N-methylation of 4-phenylpyridine produces the neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+). We investigated the kinetics of 4-phenylpyridine N-methylation by nicotinamide N-methyltransferase (NNMT) and its effect upon 4-phenylpyridine toxicity in vitro. Human recombinant NNMT possessed 4-phenylpyridine N-methyltransferase activity, with a specific activity of 1.7 ± 0.03 nmol MPP+ produced/h/mg NNMT. Although the Km for 4-phenylpyridine was similar to that reported for nicotinamide, its kcat of 9.3 × 10-5 ± 2 × 10-5 s-1 and specificity constant, kcat/Km, of 0.8 ± 0.8 s-1 M-1 were less than 0.15% of the respective values for nicotinamide, demonstrating that 4-phenylpyridine is a poor substrate for NNMT. At low (<2.5 mM) substrate concentration, 4-phenylpyridine N-methylation was competitively inhibited by dimethylsulphoxide, with a Ki of 34 ± 8 mM. At high (>2.5 mM) substrate concentration, enzyme activity followed substrate inhibition kinetics, with a Ki of 4 ± 1 mM. In silico molecular docking suggested that 4-phenylpyridine binds to the active site of NNMT in two non-redundant poses, one a substrate binding mode and the other an inhibitory mode. Finally, the expression of NNMT in the SH-SY5Y cell-line had no effect cell death, viability, ATP content or mitochondrial membrane potential. These data demonstrate that 4-phenylpyridine N-methylation by NNMT is unlikely to serve as a source of MPP+. The possibility for competitive inhibition by dimethylsulphoxide should be considered in NNMT-based drug discovery studies. The potential for 4-phenylpyridine to bind to the active site in two binding orientations using the same active site residues is a novel mechanism of substrate inhibition.
Collapse
Affiliation(s)
- Matthijs J van Haren
- Utrecht University, Utrecht Institute for Pharmaceutical Science, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Martin G Thomas
- King's College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - Davide Sartini
- Universitá Politecnica delle Marche, Department of Clinical Sciences, School of Medicine, Ancona, Italy
| | - David J Barlow
- King's College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK
| | - David B Ramsden
- University of Birmingham, Institute of Metabolism and Systems Research, Edgbaston, Birmingham B15 2TH, UK
| | - Monica Emanuelli
- Universitá Politecnica delle Marche, Department of Clinical Sciences, School of Medicine, Ancona, Italy
| | - Fábio Klamt
- Universidade Federal do Rio Grande do Sul, Departmento de Bioquímica, Instituto de Ciêncas Básicas de Saúde, Rua Ramiro Barcelos, Porto Alegre, RS 90035 003, Brazil
| | - Nathaniel I Martin
- Utrecht University, Utrecht Institute for Pharmaceutical Science, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Richard B Parsons
- King's College London, Institute of Pharmaceutical Science, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
4
|
Hogg RC. Contribution of Monoamine Oxidase Inhibition to Tobacco Dependence: A Review of the Evidence. Nicotine Tob Res 2015; 18:509-23. [PMID: 26508396 DOI: 10.1093/ntr/ntv245] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/15/2015] [Indexed: 11/12/2022]
Abstract
BACKGROUND There is a hypothesis that substances present in, or derived from, tobacco smoke inhibit monoamine oxidase (MAO) in the brains of smokers, reducing the degradation of catecholamine neurotransmitters involved in central reward pathways and acting synergistically with nicotine to increase its addictive effects. OBJECTIVE The objective of this review was to evaluate the evidence for a role of MAO inhibition by tobacco-derived substances in tobacco dependence. INVESTIGATIONAL PLAN Relevant studies on the effects of tobacco use on MAO levels or activity in humans were identified by electronic searches. RESULTS The identified data show a clear association between smoking and lower density of MAO-A and MAO-B binding sites in the brains of smokers and strong evidence that MAO is inhibited by a substance or substances in, or derived from, tobacco smoke. There was little evidence to support the hypothesis that low MAO levels/activity is a predictive factor for tobacco use. Substances that inhibit MAO in in vitro assays have been isolated from tobacco leaves and tobacco smoke; however, no single substance has been shown to be absorbed from tobacco smoke and to inhibit MAO in the brains of human smokers. Nevertheless, it is possible that MAO inhibition in smokers could result from additive or synergistic effects of several tobacco-derived substances. MAO inhibition potentiates the reinforcing effects of intravenous nicotine in rodents; however, no data were identified to support the hypothesis that MAO inhibitors in or derived from tobacco or tobacco additives affect tobacco dependence in human smokers. IMPLICATIONS This comprehensive review describes the available evidence for the role of MAO inhibition in tobacco dependence and points the way for further research in this field. In view of the large number of MAO inhibitors identified in tobacco and tobacco smoke, identification of the putative inhibitors responsible for the lower level/activity of MAO in smokers may be impractical. Future studies must address whether the lower level/activity of MAO observed in smokers is also seen in users of other tobacco products and if this change is implicated in their dependence-inducing effects.
Collapse
Affiliation(s)
- Ron C Hogg
- Medical Writing, OmniScience Ltd, Geneva, Switzerland
| |
Collapse
|
5
|
Sung YH, Yurgelun-Todd DA, Kondo DG, Shi XF, Lundberg KJ, Hellem TL, Huber RS, McGlade EC, Jeong EK, Renshaw PF. Gender differences in the effect of tobacco use on brain phosphocreatine levels in methamphetamine-dependent subjects. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2015; 41:281-9. [PMID: 25871447 DOI: 10.3109/00952990.2015.1019673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND A high prevalence of tobacco smoking has been observed in methamphetamine users, but there have been no in vivo brain neurochemistry studies addressing gender effects of tobacco smoking in methamphetamine users. Methamphetamine addiction is associated with increased risk of depression and anxiety in females. There is increasing evidence that selective analogues of nicotine, a principal active component of tobacco smoking, may ease depression and improve cognitive performance in animals and humans. OBJECTIVES To investigate the effects of tobacco smoking and gender on brain phosphocreatine (PCr) levels, a marker of brain energy metabolism reported to be reduced in methamphetamine-dependent subjects. METHODS Thirty female and 27 male methamphetamine-dependent subjects were evaluated with phosphorus-31 magnetic resonance spectroscopy ((31)P-MRS) to measure PCr levels within the pregenual anterior cingulate, which has been implicated in methamphetamine neurotoxicity. RESULTS Analysis of covariance revealed that there were statistically significant slope (PCr versus lifetime amount of tobacco smoking) differences between female and male methamphetamine-dependent subjects (p = 0.03). In females, there was also a statistically significant interaction between lifetime amounts of tobacco smoking and methamphetamine in regard to PCr levels (p = 0.01), which suggests that tobacco smoking may have a more significant positive impact on brain PCr levels in heavy, as opposed to light to moderate, methamphetamine-dependent females. CONCLUSION These results indicate that tobacco smoking has gender-specific effects in terms of increased anterior cingulate high energy PCr levels in methamphetamine-dependent subjects. Cigarette smoking in methamphetamine-dependent women, particularly those with heavy methamphetamine use, may have a potentially protective effect upon neuronal metabolism.
Collapse
|
6
|
Younesi E, Ansari S, Guendel M, Ahmadi S, Coggins C, Hoeng J, Hofmann-Apitius M, Peitsch MC. CSEO - the Cigarette Smoke Exposure Ontology. J Biomed Semantics 2014; 5:31. [PMID: 25093069 PMCID: PMC4120729 DOI: 10.1186/2041-1480-5-31] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 07/03/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND In the past years, significant progress has been made to develop and use experimental settings for extensive data collection on tobacco smoke exposure and tobacco smoke exposure-associated diseases. Due to the growing number of such data, there is a need for domain-specific standard ontologies to facilitate the integration of tobacco exposure data. RESULTS The CSEO (version 1.0) is composed of 20091 concepts. The ontology in its current form is able to capture a wide range of cigarette smoke exposure concepts within the knowledge domain of exposure science with a reasonable sensitivity and specificity. Moreover, it showed a promising performance when used to answer domain expert questions. The CSEO complies with standard upper-level ontologies and is freely accessible to the scientific community through a dedicated wiki at https://publicwiki-01.fraunhofer.de/CSEO-Wiki/index.php/Main_Page. CONCLUSIONS The CSEO has potential to become a widely used standard within the academic and industrial community. Mainly because of the emerging need of systems toxicology to controlled vocabularies and also the lack of suitable ontologies for this domain, the CSEO prepares the ground for integrative systems-based research in the exposure science.
Collapse
Affiliation(s)
- Erfan Younesi
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | - Sam Ansari
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Michaela Guendel
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | - Shiva Ahmadi
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | - Chris Coggins
- Carson Watts Consulting, 1266 Carson Watts Rd, King, NC 27021-7453, USA
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Martin Hofmann-Apitius
- Fraunhofer Institute for Algorithms and Scientific Computing SCAI, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
7
|
Inhibition of monoamine oxidase isoforms modulates nicotine withdrawal syndrome in the rat. Life Sci 2013; 93:448-53. [PMID: 23988853 DOI: 10.1016/j.lfs.2013.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/02/2013] [Accepted: 08/12/2013] [Indexed: 11/20/2022]
Abstract
AIMS There have been many reports of monoamine oxidase (MAO) inhibition by non-nicotine ingredients in tobacco smoke, persisting for days after smoking cessation. This study determined the effect of inhibiting MAO and its isoforms on nicotine withdrawal syndrome. MAIN METHODS Rats were rendered nicotine-dependent by seven days of subcutaneous (s.c.) 9 mg/kg/day infusion of nicotine bitartrate. Twenty-two hours after termination of infusion, they were observed over 20 min for somatically expressed nicotine withdrawal signs. Three hours before observation, rats were injected intraperitoneally (i.p.) with 4 mg/kg each of the MAO A antagonist clorgyline and the MAO B antagonist deprenyl, or with saline alone. A similar experiment was performed with non-dependent, saline-infused rats. Another experiment compared nicotine-dependent rats that received injections of either saline or 4 mg/kg clorgyline alone. A further experiment compared rats receiving either saline or 4 mg/kg deprenyl alone. KEY FINDINGS Combined treatment with both MAO inhibitors markedly and significantly exacerbated somatically expressed nicotine withdrawal signs in nicotine infused rats, while having no significant effects in saline-infused rats. Rats injected s.c. with 4 mg/kg clorgyline alone had significantly more withdrawal signs than saline-injected rats, while deprenyl-injected rats had significantly fewer signs than saline controls. Assays confirmed that clorgyline thoroughly reduced MAO A enzymatic activity and deprenyl thoroughly reduced MAO B activity. SIGNIFICANCE The results suggest that inhibition of MAO A may contribute to the intensity of withdrawal syndrome in smoking cessation.
Collapse
|
8
|
Harris AC, Stepanov I, Pentel PR, LeSage MG. Delivery of nicotine in an extract of a smokeless tobacco product reduces its reinforcement-attenuating and discriminative stimulus effects in rats. Psychopharmacology (Berl) 2012; 220:565-76. [PMID: 21960181 PMCID: PMC3363290 DOI: 10.1007/s00213-011-2514-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 09/12/2011] [Indexed: 12/21/2022]
Abstract
RATIONALE Animal models of tobacco addiction rely on administration of nicotine alone or nicotine combined with isolated constituents. Models using tobacco extracts derived from tobacco products and containing a range of tobacco constituents might more accurately simulate tobacco exposure in humans. OBJECTIVE To compare the effects of nicotine alone and an aqueous smokeless tobacco extract in several addiction-related animal behavioral models. METHODS Nicotine alone and nicotine dose-equivalent concentrations of extract were compared in terms of their acute effects on intracranial self-stimulation (ICSS) thresholds, discriminative stimulus effects, and effects on locomotor activity. RESULTS Similar levels of nicotine and minor alkaloids were achieved using either artificial saliva or saline for extraction, supporting the clinical relevance of the saline extracts used in these studies. Extract produced reinforcement-enhancing (ICSS threshold-decreasing) effects similar to those of nicotine alone at low to moderate nicotine doses, but reduced reinforcement-attenuating (ICSS threshold-increasing) effects at a high nicotine dose. In rats trained to discriminate nicotine alone from saline, intermediate extract doses did not substitute for the training dose as well as nicotine alone. Locomotor stimulant effects and nicotine distribution to brain were similar following administration of extract or nicotine alone. CONCLUSIONS The reinforcement-attenuating and discriminative stimulus effects of nicotine delivered in an extract of a commercial smokeless tobacco product differed from those of nicotine alone. Extracts of tobacco products may be useful for evaluating the abuse liability of those products and understanding the role of non-nicotine constituents in tobacco addiction.
Collapse
Affiliation(s)
- Andrew C. Harris
- Minneapolis Medical Research Foundation, Minneapolis, MN, Minneapolis, MN,Department of Medicine, University of Minnesota Medical School
| | | | - Paul R. Pentel
- Minneapolis Medical Research Foundation, Minneapolis, MN, Minneapolis, MN,Department of Medicine, University of Minnesota Medical School,Department of Pharmacology, University of Minnesota
| | - Mark G. LeSage
- Minneapolis Medical Research Foundation, Minneapolis, MN, Minneapolis, MN,Department of Medicine, University of Minnesota Medical School
| |
Collapse
|
9
|
Bandiera FC. What are candidate biobehavioral mechanisms underlying the association between secondhand smoke exposure and mental health? Med Hypotheses 2011; 77:1009-10. [PMID: 21903339 DOI: 10.1016/j.mehy.2011.08.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 08/17/2011] [Indexed: 11/26/2022]
Abstract
There is a consistent positive and significant association between secondhand smoke exposure and mental health outcomes in the literature. There are potential genetic and behavioral confounders (e.g., psychological stress, maternal depression, and family functioning) were discussed, as well as potential causal neurobiological pathways (e.g., dopamine system). Further neurobiological research to establish causal pathways is needed as well as the integration of positive observational findings into clinical and public health prevention practices.
Collapse
Affiliation(s)
- Frank C Bandiera
- Department of Epidemiology and Public Health, Miller School of Medicine, University of Miami, Clinical Research Building, 1120 NW 14th Street, United States.
| |
Collapse
|
10
|
Abstract
The core nature of nicotine dependence is evident in wide variations in how individuals become and remain smokers. Individuals with pre-existing behavioral traits are more likely to develop nicotine dependence and experience difficulty when attempting to quit. Many molecular factors likely contribute to individual variations in the development of nicotine dependence and behavioral traits in complex manners. However, the identification of such molecules has been hampered by the phenotypic complexity of nicotine dependence and the complex ways molecules affect elements of nicotine dependence. We hypothesize that nicotine dependence is, in part, a result of interactions between nicotine and pre-existing behavioral traits. This perspective suggests that the identification of the molecular bases of such pre-existing behavioral traits will contribute to the development of effective methods for reducing smoking dependence and for helping smokers to quit.
Collapse
Affiliation(s)
- N Hiroi
- Department of Psychiatry and Behavioral Sciences, Laboratory of Molecular Psychobiology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - D Scott
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
11
|
Tassin JP. Uncoupling between noradrenergic and serotonergic neurons as a molecular basis of stable changes in behavior induced by repeated drugs of abuse. Biochem Pharmacol 2008; 75:85-97. [PMID: 17686465 DOI: 10.1016/j.bcp.2007.06.038] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 06/25/2007] [Accepted: 06/26/2007] [Indexed: 10/23/2022]
Abstract
A challenge in drug dependence is to delineate long-term behavioral and neurochemical modifications induced by drugs of abuse. In rodents, drugs of abuse induce locomotor hyperactivity, and repeating injections enhance this response. This effect, called behavioral sensitization, persists many months after the last administration, thus mimicking long-term sensitivity to drugs observed in human addicts. Although addictive properties of drugs of abuse are generally considered to be mediated by an increased release of dopamine in the ventral striatum, recent pharmacological and genetic experiments indicate an implication of alpha1b-adrenergic receptors in behavioral and rewarding responses to psychostimulants and opiates. Later on, it was shown that not only noradrenergic but also serotonergic systems, through 5-HT(2A) receptors, were controlling behavioral effects of drugs of abuse. More recently, experiments performed in animals knockout for alpha1b-adrenergic or 5-HT(2A) receptors indicated that noradrenergic and serotonergic neurons, besides their activating effects, inhibit each other by means of the stimulation of alpha1b-adrenergic and 5-HT(2A) receptors and that this mutual inhibition vanishes in wild type mice with repeated injections of psychostimulants, opiates or alcohol. Uncoupling induced by repeated treatments with drugs of abuse installs a stable sensitization of noradrenergic and serotonergic neurons, thus explaining an increased reactivity of dopaminergic neurons and behavioral sensitization. We propose that noradrenergic/serotonergic uncoupling is a common stable neurochemical consequence of repeated drugs of abuse which may also occur during chronic stressful situations and facilitate the onset of mental illness. Drug consumption would facilitate an artificial re-coupling of these neurons, thus bringing a temporary relief.
Collapse
Affiliation(s)
- Jean-Pol Tassin
- Institut National de la Santé et de la Recherche Médicale Unité 114, Centre National de la Recherche Scientifique UMR 7148, Collège de France 11, Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
| |
Collapse
|
12
|
Franke RM, Belluzzi JD, Leslie FM. Gestational exposure to nicotine and monoamine oxidase inhibitors influences cocaine-induced locomotion in adolescent rats. Psychopharmacology (Berl) 2007; 195:117-24. [PMID: 17653695 DOI: 10.1007/s00213-007-0876-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 06/22/2007] [Indexed: 10/23/2022]
Abstract
RATIONALE Many pregnant women continue to smoke, despite a strong association between maternal smoking and neurobehavioral deficits in the offspring. Although gestational nicotine (GN) treatment in rodents is used as the primary animal model of maternal smoking, tobacco smoke contains more than 4,000 constituents, including monoamine oxidase inhibitors (MAOIs). OBJECTIVES The aim of this study was to determine whether there are interactions between the effects of gestational exposure to nicotine and MAOIs on cocaine-induced locomotor sensitization in adolescent rats. MATERIALS AND METHODS Pregnant rats were implanted on day 4 of gestation with osmotic minipumps delivering saline, nicotine (3 mg/kg per day), the MAOIs clorgyline and deprenyl (1 and 0.25 mg/kg per day, respectively), or nicotine/clorgyline/deprenyl (GMN). Adolescent female offspring were tested for cocaine-induced locomotor sensitization. Animals were treated with saline or cocaine (5 or 15 mg/kg, intraperitoneally) daily from postnatal (P) days 32-36 and challenged with cocaine (15 mg/kg) on P51 (day 20). RESULTS Group differences were observed in chronic but not acute effects of cocaine. Whereas gestational MAOI treatment, with or without nicotine, increased ambulatory response to cocaine on day 5, the opposite was found for vertical activity. Different adaptive responses were observed on cocaine challenge day. GNM animals exhibited enhanced locomotor activity in the cocaine-associated environment before cocaine challenge on day 20. In contrast, only GN animals exhibited significant locomotor sensitization to the cocaine challenge. CONCLUSIONS Gestational nicotine and MAOIs both influence brain development. Such interactions may sensitize adolescents to drug abuse and should be considered in animal models of maternal smoking.
Collapse
Affiliation(s)
- Ryan M Franke
- Department of Pharmacology, School of Medicine, University of California, Irvine CA, 92697, USA
| | | | | |
Collapse
|
13
|
Abstract
The high rates of co-morbidity of drug addiction with depression may be attributable to shared neurobiology. Here, we discuss shared neurobiological substrates in drug withdrawal and depression, with an emphasis on changes in brain reward circuitry that may underlie anhedonia, a core symptom of depression and drug withdrawal. We explored experimentally whether clinical antidepressant medications or other treatments would reverse the anhedonia observed in rats undergoing spontaneous nicotine or amphetamine withdrawal, defined operationally as elevated brain reward thresholds. The co-administration of selective serotonin reuptake inhibitors with a serotonin-1A receptor antagonist, or the tricyclic antidepressant desipramine, or the atypical antidepressant bupropion ameliorated nicotine or amphetamine withdrawal in rats. Thus, increases in monoaminergic neurotransmission, or neuroadaptations induced by increased monoaminergic neurotransmission, ameliorated depression-like aspects of drug withdrawal. Further, chronic pretreatment with the atypical antipsychotic clozapine, that has some efficacy in the treatment of the depression-like symptoms of schizophrenia, attenuated nicotine and amphetamine withdrawal. Finally, a metabotropic glutamate 2/3 receptor antagonist reversed threshold elevations associated with nicotine withdrawal. The effects of these pharmacological manipulations are consistent with the altered neurobiology observed in drug withdrawal and depression. Thus, these data support the hypothesis of common substrates mediating the depressive symptoms of drug withdrawal and those seen in psychiatric patients. Accordingly, the anhedonic state associated with drug withdrawal can be used to study the neurobiology of anhedonia, and thus contribute to the identification of novel targets for the treatment of depression-like symptoms seen in various psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Neil E Paterson
- Department of Psychiatry, School of Medicine, University of California, San Diego, 9500 Gilman Drive, MC0603, La Jolla, CA 92093, USA
| | | |
Collapse
|
14
|
Villégier AS, Salomon L, Granon S, Changeux JP, Belluzzi JD, Leslie FM, Tassin JP. Monoamine oxidase inhibitors allow locomotor and rewarding responses to nicotine. Neuropsychopharmacology 2006; 31:1704-13. [PMID: 16395299 DOI: 10.1038/sj.npp.1300987] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although nicotine is generally considered to be the main compound responsible for the addictive properties of tobacco, experimental data indicate that nicotine does not exhibit all the characteristics of other abused substances, such as psychostimulants and opiates. For example, nicotine is only a weak locomotor enhancer in rats and generally fails to induce a locomotor response in mice. This observation contradicts the general consensus that all drugs of abuse release dopamine in the nucleus accumbens, a subcortical structure, and thus increase locomotor activity in rodents. Because tobacco smoke contains monoamine oxidase inhibitors (MAOIs) and decreases MAO activity in smokers, we have combined MAOIs with nicotine to determine whether it is possible to obtain a locomotor response to nicotine in C57Bl6 mice. Among 15 individual or combined MAOIs, including harmane, norharmane, moclobemide, selegiline, pargyline, clorgyline, tranylcypromine and phenelzine, only irreversible inhibitors of both MAO-A and -B (tranylcypromine, phenelzine, and clorgyline+selegiline) allowed a locomotor response to nicotine. The locomotor stimulant interaction of tranylcypromine and nicotine was absent in beta2-nicotinic acetylcholine receptor subunit knockout mice. Finally, it was found that, whereas naïve rats did not readily self-administer nicotine (10 microg/kg/injection), a robust self-administration of nicotine occurred when animals were pretreated with tranylcypromine (3 mg/kg). Our data suggest that MAOIs contained in tobacco and tobacco smoke act in synergy with nicotine to enhance its rewarding effects.
Collapse
|
15
|
Karolewicz B, Klimek V, Zhu H, Szebeni K, Nail E, Stockmeier CA, Johnson L, Ordway GA. Effects of depression, cigarette smoking, and age on monoamine oxidase B in amygdaloid nuclei. Brain Res 2005; 1043:57-64. [PMID: 15862518 PMCID: PMC2921180 DOI: 10.1016/j.brainres.2005.02.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 02/08/2005] [Accepted: 02/12/2005] [Indexed: 11/26/2022]
Abstract
Altered concentrations of dopamine transporter and D2/D3 receptors have been observed in the amygdaloid complex of subjects with major depression. These findings are suggestive of neurochemical abnormalities in the limbic dopamine system in depression. Monoamine oxidase-B (MAO-B) is a key enzyme in the catabolism of biogenic amines, including dopamine, and alterations in this enzyme may underlie dopaminergic abnormalities associated with depression. The specific binding of [(3)H]lazabemide to MAO-B was measured in the right amygdaloid complex of 15 major depressive subjects and 16 psychiatrically normal controls. Subjects of the two study groups were matched as close as possible for age, sex, and postmortem interval. Examination of the regional distribution of MAO-B revealed lower [(3)H]lazabemide binding to MAO-B in the lateral and basal nuclei of the amygdala and higher binding in the medial nucleus. A modest elevation in binding to MAO-B observed in all amygdaloid nuclei in major depressive subjects as compared to control subjects failed to reach statistical significance. A significant decrease in binding to MAO-B was observed when cigarette smokers were compared to nonsmoking subjects. The amount of MAO-B binding positively correlated with the age of subjects in all nuclei investigated. A decreased amount of MAO-B in smokers further validates the pharmacological effect of tobacco smoke on this enzyme.
Collapse
Affiliation(s)
- Beata Karolewicz
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Violetta Klimek
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - He Zhu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Katalin Szebeni
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Emily Nail
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Craig A. Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Laurel Johnson
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | - Gregory A. Ordway
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Corresponding author. Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA. Fax: +1 601 984 5894. (G.A. Ordway)
| |
Collapse
|
16
|
Valette H, Bottlaender M, Dollé F, Coulon C, Ottaviani M, Syrota A. Acute inhibition of cardiac monoamine oxidase A after tobacco smoke inhalation: validation study of [11C]befloxatone in rats followed by a positron emission tomography application in baboons. J Pharmacol Exp Ther 2005; 314:431-6. [PMID: 15833896 DOI: 10.1124/jpet.105.085704] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The in vivo characteristics of [11C]befloxatone were assessed in myocardium of rats and monkeys. A complete multicompartmental model was developed to quantify monkey cardiac monoamine oxidase A (MAO-A) binding sites using positron emission tomography (PET) and was applied to assess the acute effects of inhalation of tobacco smoke. Unknown compounds contained in tobacco smoke inhibit brain MAO. In vitro, befloxatone inhibits selectively, competitively, and reversibly MAO-A in human tissues. [11C]Befloxatone (1.85 MBq) was i.v. injected into rats. Animals were sacrificed, dissected, and samples were assessed for radioactivity. Another group of rats was pretreated with clorgyline (10 mg/kg i.v.). Monkeys were injected with [11C]befloxatone (222-370 MBq), and the chest was imaged with PET for 2 h. Presaturation and displacement experiments were performed using unlabeled befloxatone. For quantification of myocardial binding sites (Bmax), [11C]befloxatone was first injected as a tracer dose (2.7-9.3 nmol) and 20 min later injected as a mixture of labeled and unlabeled befloxatone (labeled, 10.3-41.9 nmol; unlabeled, 407-765 nmol). In rodents, cardiac uptake was high (3.39 +/- 0.5% injected dose/g tissue) and strongly inhibited (80%) by clorgyline. In monkeys, administration of unlabeled befloxatone displaced 85% of cardiac radioactivity. Bmax was found to be 208 +/- 13 pmol ml(-1) tissue. Inhalation of tobacco smoke decreased Bmax: 150 +/- 6.2 pmol ml(-1), whereas nicotine did not. [11C]Befloxatone allows a good visualization of the heart. Cardiac MAO-A Bmax was quantified and a clear effect of acute inhalation of tobacco smoke was evidenced. Therefore, a single cigarette can interfere with the cardiac turnover of catecholamines.
Collapse
Affiliation(s)
- Héric Valette
- Service Hospitalier Frédéric Joliot, DSV/DRM-CEA, French Atomic Agency, F-91406 Orsay, France.
| | | | | | | | | | | |
Collapse
|
17
|
Human monoamine oxidase is inhibited by tobacco smoke: beta-carboline alkaloids act as potent and reversible inhibitors. Biochem Biophys Res Commun 2005; 326:378-86. [PMID: 15582589 DOI: 10.1016/j.bbrc.2004.11.033] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2004] [Indexed: 11/29/2022]
Abstract
Monoamine oxidase (MAO) is a mitochondrial outer-membrane flavoenzyme involved in brain and peripheral oxidative catabolism of neurotransmitters and xenobiotic amines, including neurotoxic amines, and a well-known target for antidepressant and neuroprotective drugs. Recently, positron emission tomography imaging has shown that smokers have a much lower activity of peripheral and brain MAO-A (30%) and -B (40%) isozymes compared to non-smokers. This MAO inhibition results from a pharmacological effect of smoke, but little is known about its mechanism. Working with mainstream smoke collected from commercial cigarettes we confirmed that cigarette smoke is a potent inhibitor of human MAO-A and -B isozymes. MAO inhibition was partly reversible, competitive for MAO-A, and a mixed-type inhibition for MAO-B. Two beta-carboline alkaloids, norharman (beta-carboline) and harman (1-methyl-beta-carboline), were identified by GC-MS, quantified, and isolated from the mainstream smoke by solid phase extraction and HPLC. Kinetics analysis revealed that beta-carbolines from cigarette smoke were competitive, reversible, and potent inhibitors of MAO enzymes. Norharman was an inhibitor of MAO-A (K(i)=1.2+/-0.18 microM) and MAO-B (K(i)=1.12+/-0.19 microM), and harman of MAO-A (K(i)=55.54+/-5.3nM). Beta-carboline alkaloids are psychopharmacologically active compounds that may occur endogenously in human tissues, including the brain. These results suggest that beta-carboline alkaloids from cigarette smoke acting as potent reversible inhibitors of MAO enzymes may contribute to the MAO-reduced activity produced by tobacco smoke in smokers. The presence of MAO inhibitors in smoke like beta-carbolines and others may help us to understand some of the purported neuropharmacological effects associated with smoking.
Collapse
|
18
|
Mazzio EA, Kolta MG, Reams RR, Soliman KFA. Inhibitory effects of cigarette smoke on glial inducible nitric oxide synthase and lack of protective properties against oxidative neurotoxins in vitro. Neurotoxicology 2005; 26:49-62. [PMID: 15527873 DOI: 10.1016/j.neuro.2004.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Accepted: 07/14/2004] [Indexed: 11/24/2022]
Abstract
Epidemiological studies consistently report an inverse correlation between cigarette smoking and associated risk for Parkinson's disease (PD). The degeneration of dopaminergic neurons may involve the toxic metabolic products of glial cell monoamine oxidase (MAO) and inducible nitric oxide synthase (iNOS). This study evaluates the direct protective effects of cigarette smoke (CS) against potential neurotoxic products of MAO, such as 1-methyl-4-phenylpyridinium (MPP+), 6-hydroxydopamine (6-OHDA) and hydrogen peroxide (H2O2) in brain neuroblastoma. Moreover, the effects of CS were also evaluated on endotoxin/cytokine activated glioma iNOS protein expression and MAO enzyme activity. Cigarette smoke condensates (CSCs) were acquired from Marlboro 20 Class A and Kentucky 2R4F reference research (2R4F) cigarettes. The CSCs did not protect against 6-OHDA or H2O2 toxicity in neuroblastoma, and exhibited a very mild protective effect [approximately 10%] against MPP+. Neither CSC demonstrated antioxidant capability, but conversely contained high concentration of NO2-. Paradoxically, in glioma cells, iNOS protein expression and endogenous enzymatic NO2- production were significantly blocked by both CSCs. Both CSCs also inhibited glioma MAO-A and MAO-B [1.4.3.4]. Kinetic analysis indicated that 2R4F-CSC displayed competitive inhibition and the Marlboro-CSC exerted potent competitive and non-competitive inhibition. In conclusion, these data suggest that cigarette smoke does not appear to directly protect against the toxicity of the selected neurotoxins. In contrast, CS exerts pronounced effects on glia, whereby its presence can simultaneously attenuate cytokine induction of iNOS and MAO.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida 32307, USA
| | | | | | | |
Collapse
|
19
|
Castagnoli K, Petzer JB, Steyn SJ, van der Schyf CJ, Castagnoli N. Inhibition of human MAO-A and MAO-B by a compound isolated from flue-cured tobacco leaves and its neuroprotective properties in the MPTP mouse model of neurodegeneration. Inflammopharmacology 2004; 11:183-8. [PMID: 15035820 DOI: 10.1163/156856003765764353] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prompted by the findings that smokers have lowered brain and blood platelet monoamine oxidase-A and -B activities compared to non-smokers and that smokers have a lowered incidence of Parkinson's disease, we have examined the neuroprotective properties of an MAO inhibitor, 2,3,6-trimethyl-1,4-naphthoquinone (TMN), which is present in the tobacco plant and smoke in the MPTP C57BL/6 mouse model of neurodegeneration. Dopamine (DA) levels in the striata of mice treated with TMN prior to the administration of MPTP were significantly higher than DA levels in the striata of mice receiving MPTP only, thus indicating a degree of neuroprotection in this model of Parkinson's disease. The potential consequences on MAO activity of long term exposure to this compound need to be evaluated. Furthermore, there is evidence for the presence of other inhibitors in the tobacco leaf and smoke, including compounds with irreversible MAO inhibitory properties. Although there is no evidence to link the lowered activities of MAO to the lowered incidence of Parkinson's disease in smokers, the neuroprotective effects of TMN in the MPTP mouse model suggest that such a relationship is worthy of further evaluation.
Collapse
Affiliation(s)
- K Castagnoli
- Harvey W. Peters Center, Department of Chemistry, Virginia Tech, Blacksburg, VA 24061-0212, USA.
| | | | | | | | | |
Collapse
|
20
|
Parain K, Hapdey C, Rousselet E, Marchand V, Dumery B, Hirsch EC. Cigarette smoke and nicotine protect dopaminergic neurons against the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine Parkinsonian toxin. Brain Res 2003; 984:224-32. [PMID: 12932857 DOI: 10.1016/s0006-8993(03)03195-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epidemiological studies have found a negative association between cigarette smoking and Parkinson's disease (PD). In order to analyze the putative neuroprotective effect of cigarette smoke and nicotine, one of its major constituents, we examined their effects in an animal model of PD provoked by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication. Two groups of mice were chronically exposed to cigarette smoke (a low exposure subgroup and a high exposure subgroup; 5 exposures per day at 2-h intervals), two other groups received nicotine treatment (two doses tested 0.2 and 2 mg/kg, 5 injections i.p. per day at 2-h intervals) and one group placebo. On day 8 after the beginning of the treatment, 4 injections of MPTP hydrochloride (15 mg/kg, i.p., at 2-h intervals) or saline were administered to these animals. Nicotine and cotinine plasmatic concentration was quantified by the HPLC method, and degeneration of the nigrostriatal system was assessed by tyrosine hydroxylase (TH) immunohistochemistry. The loss of dopaminergic neurons induced by MPTP in the substantia nigra was significantly less severe in the chronic nicotine treatment groups (at 0.2 and 2 mg/kg) and the low exposure to cigarette smoke group than in the high exposure to cigarette smoke subgroup and the placebo treated subgroup. In contrast, no preservation of TH immunostaining of nerve terminals was observed in the striatum in any group. This suggests that nicotine and low exposure to cigarette smoke may have a neuroprotective effect on the dopaminergic nigrostriatal system by an as yet unknown mechanism.
Collapse
Affiliation(s)
- Karine Parain
- INSERM U289, Experimental Neurology and Therapeutics, Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | | | |
Collapse
|
21
|
Ito H, Hamajima N, Matsuo K, Okuma K, Sato S, Ueda R, Tajima K. Monoamine oxidase polymorphisms and smoking behaviour in Japanese. PHARMACOGENETICS 2003; 13:73-9. [PMID: 12563176 DOI: 10.1097/00008571-200302000-00003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although nicotine dependence is one of the primary reasons why smokers cannot quit smoking, nicotine cannot explain all of the psychopharmacological effects of tobacco smoke. Accumulating evidence points to potent inhibition of monoamine oxidase (MAO) which metabolizes neurotransmitters relating to additive behaviour. We have therefore investigated the association between smoking behaviour and MAO ( variable number of tandem repeat in the promoter region and A644G) polymorphisms. The genotypes were examined in 504 Japanese outpatients (217 men and 287 women) who visited Aichi Cancer Centre Hospital. The age-adjusted odds ratios (aORs) were estimated by a logistic model. Among males, we did not find a significant association of the smoking habit with either of the polymorphisms. The median Fargastrom test for nicotine dependence (FTND) score among male current smokers was significantly higher with than without the 4-repeat allele (5.8 and 4.7, respectively). The aOR of FTND 6 versus FTND 6 was 2.72 (95% confidence interval 1.13-6.50) for males with the 4-repeat allele. Among females, the aOR of being current smokers compared to never smokers was 0.49 (0.26-0.93) for individuals with the 4-repeat allele. Our results indicate that the polymorphisms of influence the smoking habit for female, as well as the nicotine dependence and smoking initiation for male smokers. These findings among male smokers support the view that MAO affects a smokers' requirement for nicotine and may explain why some people are predisposed to tobacco addiction and why some individuals find it difficult to stop smoking.
Collapse
Affiliation(s)
- Hidemi Ito
- Division of Epidemiology and Prevention, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya Aichi 464-8681, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Current cigarette smokers have reduced monoamine oxidase (MAO) and there is evidence that this is a pharmacological effect of tobacco smoke exposure rather than a biological characteristic of smokers. This article summarizes human and animal studies documenting the inhibitory effects of tobacco smoke on MAO and discusses MAO inhibition in the context of smoking epidemiology, MAO inhibitor compounds in tobacco, reinvestigations of low platelet MAO in psychiatric disorders and smoking cessation.
Collapse
Affiliation(s)
- Joanna S Fowler
- Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
Activation of neuronal nicotinic acetylcholine receptors (nAChRs) has been shown to maintain cognitive function following aging or the development of dementia. Nicotine and nicotinic agonists have been shown to improve cognitive function in aged or impaired subjects. Smoking has also been shown in some epidemiological studies to be protective against the development of neurodegenerative diseases. This is supported by animal studies that have shown nicotine to be neuroprotective both in vivo and in vitro. Treatment with nicotinic agonists may therefore be useful in both slowing the progression of neurodegenerative illnesses, and improving function in patients with the disease. While increased nicotinic function has been shown to be beneficial, loss of cholinergic markers is often seen in patients with dementia, suggesting that decreased cholinergic function could contribute to both the cognitive deficits, and perhaps the neuronal degeneration, associated with dementia. In this article we will review the literature on each of these areas. We will also present hypotheses that might address the mechanisms underlying the ability of nAChR function to protect against neurodegeneration or improve cognition, two potentially distinct actions of nicotine.
Collapse
Affiliation(s)
- Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, New Haven, Connecticut 06508, USA.
| | | |
Collapse
|
24
|
Upadhyaya HP, Deas D, Brady KT, Kruesi M. Cigarette smoking and psychiatric comorbidity in children and adolescents. J Am Acad Child Adolesc Psychiatry 2002; 41:1294-305. [PMID: 12410071 DOI: 10.1097/00004583-200211000-00010] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To review the current state of knowledge of psychiatric comorbidity in adolescent cigarette smokers. METHOD assisted literature search was conducted and seminal articles were cross-referenced for comprehensiveness of the search. For each disorder, a synopsis of knowledge in adults is provided and compared with the knowledge in adolescents. RESULTS Psychiatric comorbidity is common in adolescent cigarette smokers, especially disruptive behavior disorders (such as oppositional defiant disorder, conduct disorder, and attention-deficit/hyperactivity disorder), major depressive disorders, and drug and alcohol use disorders. Anxiety disorders are modestly associated with cigarette smoking. Both early onset (<13 years) cigarette smoking and conduct problems seem to be robust markers of increased psychopathology, including substance abuse, later in life. In spite of the high comorbidity, very few adolescents have nicotine dependence diagnosed or receive smoking cessation treatment in child and adolescent psychiatric treatment settings. CONCLUSIONS There is increasing evidence for high rates of psychiatric comorbidity in adolescent cigarette smokers. Cigarette smoking in adolescence appears to be a strong marker of future psychopathology. Child and adolescent psychiatry treatment programs may be a good setting for prevention efforts and treatment, which should focus on both nicotine dependence and psychiatric disorders.
Collapse
Affiliation(s)
- Himanshu P Upadhyaya
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
25
|
Castagnoli K, Steyn SJ, Magnin G, Van Der Schyf CJ, Fourie I, Khalil A, Castagnoli N. Studies on the interactions of tobacco leaf and tobacco smoke constituents and monoamine oxidase. Neurotox Res 2002; 4:151-60. [PMID: 12829416 DOI: 10.1080/10298420290015854] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Studies have demonstrated that smokers have lower levels of brain monoamine oxidase (MAO) A and B activity and lower MAO-B platelet activity than non-smokers. Recent speculations suggest that in addition to nicotine, tobacco components which are MAO inhibitors, may contribute to some tobacco related psychopharmacological effects. Furthermore, epidemiological evidence indicates a lower incidence of Parkinson's disease in smokers than in non-smokers. This relationship also might be linked to MAO inhibition. These intriguing observations prompted studies on the effects of tobacco leaf and tobacco smoke constituents on MAO activity. Studies reported here demonstrate that crude hexane tobacco leaf and hexane and aqueous leaf extracts have MAO inhibitory properties. Rat brain mitochondrial MAO-A and MAO-B activity are not altered following continuous 28 day exposure to (osmotic minipump) to two tobacco alkaloids, (S)-nicotine or (R,S)-N-methylanatabine. However, earlier studies in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated parkinsonian C57BL/6 mouse model have provided indirect evidence that the tobacco derived 2,3,6-trimethyl-1,4-naphthoquinone (an MAO-A and B inhibitor) is effective in inhibiting MAO-B in vivo and is neuroprotective. Results reported here from more extensive tobacco leaf extractions provide evidence for three additional compounds with MAO-B inhibitory properties. One contains a chromone system, another a polyunsaturated macro-cycle and the third we have identified as farnesylacetone. These findings provide support to the thesis that components of tobacco smoke may be responsible for the inhibition of brain MAO-A and brain and platelet MAO-B in human smokers.
Collapse
Affiliation(s)
- Kay Castagnoli
- Harvey W. Peters Center, Department of Chemistry, Virginia Tech., Blacksburg, VA 24061-0212, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Arinami T, Ishiguro H, Onaivi ES. Polymorphisms in genes involved in neurotransmission in relation to smoking. Eur J Pharmacol 2000; 410:215-226. [PMID: 11134671 DOI: 10.1016/s0014-2999(00)00816-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Smoking behavior is influenced by both genetic and environmental factors. The genetic contribution to smoking behavior is at least as great as its contribution to alcoholism. Much progress has been achieved in genomic research related to cigarette-smoking within recent years. Linkage studies indicate that there are several loci linked to smoking, and candidate genes that are related to neurotransmission have been examined. Possible associated genes include cytochrome P450 subfamily polypeptide 6 (CYP2A6), dopamine D(1), D(2), and D(4) receptors, dopamine transporter, and serotonin transporter genes. There are other important candidate genes but studies evaluating the link with smoking have not been reported. These include genes encoding the dopamine D(3) and D(5) receptors, serotonin receptors, tyrosine hydroxylase, trytophan 2,3-dioxygenase, opioid receptors, and cannabinoid receptors. Since smoking-related factors are extremely complex, studies of diverse populations and of many aspects of smoking behavior including initiation, maintenance, cessation, relapse, and influence of environmental factors are needed to identify smoking-associated genes. We now review genetic polymorphisms reported to be involved in neurotransmission in relation to smoking.
Collapse
Affiliation(s)
- T Arinami
- Department of Medical Genetics, Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Tsukuba, Japan.
| | | | | |
Collapse
|
27
|
Abstract
Cloning of MAO (monoamine oxidase) A and B has demonstrated unequivocally that these enzymes are made up of different polypeptides, and our understanding of MAO structure, regulation, and function has been significantly advanced by studies using their cDNA. MAO A and B genes are located on the X-chromosome (Xp11.23) and comprise 15 exons with identical intron-exon organization, which suggests that they are derived from the same ancestral gene. MAO A and B knock-out mice exhibit distinct differences in neurotransmitter metabolism and behavior. MAO A knock-out mice have elevated brain levels of serotonin, norephinephrine, and dopamine and manifest aggressive behavior similar to human males with a deletion of MAO A. In contrast, MAO B knock-out mice do not exhibit aggression and only levels of phenylethylamine are increased. Mice lacking MAO B are resistant to the Parkinsongenic neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine. Both MAO A and B knock-out mice show increased reactivity to stress. These knock-out mice are valuable models for investigating the role of monoamines in psychoses and neurodegenerative and stress-related disorders.
Collapse
Affiliation(s)
- J C Shih
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles 90033, USA.
| | | | | |
Collapse
|
28
|
Court JA, Lloyd S, Thomas N, Piggott MA, Marshall EF, Morris CM, Lamb H, Perry RH, Johnson M, Perry EK. Dopamine and nicotinic receptor binding and the levels of dopamine and homovanillic acid in human brain related to tobacco use. Neuroscience 1998; 87:63-78. [PMID: 9722142 DOI: 10.1016/s0306-4522(98)00088-8] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Reports of a reduction in the risk of developing Parkinson's disease and Alzheimer's disease in tobacco smokers, together with the loss of high-affinity nicotine binding in these diseases, suggest that consequences of nicotinic cholinergic transmission may be neuroprotective. Changes in brain dopaminergic parameters and nicotinic receptors in response to tobacco smoking have been assessed in this study of autopsy samples from normal elderly individuals with known smoking histories and apolipoprotein E genotype. The ratio of homovanillic acid to dopamine, an index of dopamine turnover, was reduced in elderly smokers compared with age matched non-smokers (P<0.05) in both the caudate and putamen. Dopamine levels were significantly elevated in the caudate of smokers compared with non-smokers (P<0.05). However there was no significant change in the numbers of dopamine (D1, D2 and D3) receptors or the dopamine transporter in the striatum, or for dopamine D1 and D2 receptors in the hippocampus in smokers compared with non-smokers or ex-smokers. The density of high-affinity nicotine binding was higher in smokers than non-smokers in the hippocampus, entorhinal cortex and cerebellum (elevated by 51-221%) and to a lesser extent in the striatum (25-55%). The density of high-affinity nicotine binding in ex-smokers was similar to that of the non-smokers in all the areas investigated. The differences in high-affinity nicotine binding between smokers and the non- and ex-smokers could not be explained by variation in apolipoprotein E genotype. There were no differences in alpha-bungarotoxin binding, measured in hippocampus and cerebellum, between any of the groups. These findings suggest that chronic cigarette smoking is associated with a reduction of the firing of nigrostriatal dopaminergic neurons in the absence of changes in the numbers of dopamine receptors and the dopamine transporter. Reduced dopamine turnover associated with increased numbers of high-affinity nicotine receptors is consistent with attenuated efficacy of these receptors in smokers. A decrease in striatal dopamine turnover may be a mechanism of neuroprotection in tobacco smokers that could delay basal ganglia pathology. The current findings are also important in the interpretation of measurements of nicotinic receptors and dopaminergic parameters in psychiatric conditions such as schizophrenia, in which there is a high prevalence of cigarette smoking.
Collapse
Affiliation(s)
- J A Court
- MRC Neurochemical Pathology Unit, Newcastle General Hospital, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Fowler JS, Volkow ND, Logan J, Pappas N, King P, MacGregor R, Shea C, Garza V, Gatley SJ. An acute dose of nicotine does not inhibit MAO B in baboon brain in vivo. Life Sci 1998; 63:PL19-23. [PMID: 9674950 DOI: 10.1016/s0024-3205(98)00251-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tobacco smoke exposure has been shown to inhibit brain and platelet MAO B in animals and in humans. Though the mechanism(s) responsible for MAO B inhibition are not known, studies in rodents have shown that nicotine administration does not inhibit brain MAO B. In this study we investigated whether brain MAO B is also unaffected by nicotine in the living primate. Brain MAO B was measured with positron emission tomography (PET) and deuterium substituted [11C]L-deprenyl ([11C]L-deprenyl-D2) in three baboons at baseline and 5 minutes after the injection of (-)-nicotine (0.3 mg administered intravenously). A three-compartment model was used to calculate the plasma to brain transfer constant K1 which is related to blood flow, and lambda k3, which is a function of the concentration of catalytically active MAO B molecules. Nicotine administration did not produce significant changes in either of these parameters. This study in living baboons confirms previous studies in rodents and solidifies the notion that other mechanisms for MAO B inhibition observed in smokers need to be considered.
Collapse
Affiliation(s)
- J S Fowler
- Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, MacGregor R, Alexoff D, Wolf AP, Warner D, Cilento R, Zezulkova I. Neuropharmacological actions of cigarette smoke: brain monoamine oxidase B (MAO B) inhibition. J Addict Dis 1998; 17:23-34. [PMID: 9549600 DOI: 10.1300/j069v17n01_03] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We measured the concentration of brain monoamine oxidase B (MAO B; EC 1.4.3.4) in 8 smokers and compared it with that in 8 non-smokers and in 4 former smokers using positron emission tomography (PET) and deuterium substituted [11C]L-deprenyl ([11C]L-deprenyl-D2) as a radiotracer for MAO B. Smokers had significantly lower brain MAO B than non-smokers as measured by the model term lambda k3 which is a function of MAO B activity. Reductions were observed in all brain regions. Low brain MAO B in the cigarette smoker appears to be a pharmacological rather than a genetic effect since former smokers did not differ from non-smokers. Brain MAO B inhibition by cigarette smoke is of relevance in light of the inverse association between smoking and Parkinson's disease and a high prevalence of smoking in psychiatric disorders and in substance abuse. Though nicotine is at the core of the neuropharmacological actions of tobacco smoke, MAO B inhibition may also be an important variable in understanding and treating tobacco smoke addiction.
Collapse
Affiliation(s)
- J S Fowler
- Department of Chemistry and Medicine, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Méndez-Alvarez E, Soto-Otero R, Sánchez-Sellero I, López-Rivadulla Lamas M. Inhibition of brain monoamine oxidase by adducts of 1,2,3,4-tetrahydroisoquinoline with components of cigarette smoke. Life Sci 1997; 60:1719-27. [PMID: 9129127 DOI: 10.1016/s0024-3205(97)00114-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A series of adducts of 1,2,3,4-tetrahydroisoquinoline (TIQ) and some components of tobacco smoke were investigated for their ability to inhibit rat brain monoamine oxidase. 1-Cyano-TIQ (1CTIQ), N-(1'-cyanoethyl)-TIQ (CETIQ), N-(1'-cyanopropyl)-TIQ (CPTIQ), and N-(1'-cyanobutyl)-TIQ (CBTIQ) were found to act as competitive inhibitors for both MAO-A and MAO-B. Ki values ranged from 16.4 to 37.6 microM. N-(Cyanomethyl)-TIQ (CMTIQ) was not found to be an inhibitor (Ki > 100 microM). These findings may help to explain the in vivo inhibitory effects of tobacco smoke on MAO activity and the suggested protective effect of tobacco smoking against Parkinson's disease. They also appear to reinforce the usefulness of reversible MAO inhibitors in smoking cessation and abstinence. However, different results must be expected between Burley and Bright tobacco.
Collapse
Affiliation(s)
- E Méndez-Alvarez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universidad de Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
32
|
Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, Shea C, Alexoff D, MacGregor RR, Schlyer DJ, Zezulkova I, Wolf AP. Brain monoamine oxidase A inhibition in cigarette smokers. Proc Natl Acad Sci U S A 1996; 93:14065-9. [PMID: 8943061 PMCID: PMC19495 DOI: 10.1073/pnas.93.24.14065] [Citation(s) in RCA: 296] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Several studies have documented a strong association between smoking and depression. Because cigarette smoke has been reported to inhibit monoamine oxidase (MAO) A in vitro and in animals and because MAO A inhibitors are effective antidepressants, we tested the hypothesis that MAO A would be reduced in the brain of cigarette smokers. We compared brain MAO A in 15 nonsmokers and 16 current smokers with [11C]clorgyline and positron emission tomography (PET). Four of the nonsmokers were also treated with the antidepressant MAO inhibitor drug, tranylcypromine (10 mg/day for 3 days) after the baseline PET scan and then rescanned to assess the sensitivity of [11C]clorgyline binding to MAO inhibition. MAO A levels were quantified by using the model term lambda k3 which is a function of brain MAO A concentration. Smokers had significantly lower brain MAO A than nonsmokers in all brain regions examined (average reduction, 28%). The mean lambda k3 values for the whole brain were 0.18 +/- 0.04 and 0.13 +/- 0.03 ccbrain (mlplasma)-1 min-1 for nonsmokers and smokers, respectively; P < 0.0003). Tranyl-cypromine treatment reduced lambda k3 by an average of 58% for the different brain regions. Our results show that tobacco smoke exposure is associated with a marked reduction in brain MAO A, and this reduction is about half of that produced by a brief treatment with tranylcypromine. This suggests that MAO A inhibition needs to be considered as a potential contributing variable in the high rate of smoking in depression and in the development of more effective strategies for smoking cessation.
Collapse
Affiliation(s)
- J S Fowler
- Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fowler JS, Volkow ND, Wang GJ, Pappas N, Logan J, MacGregor R, Alexoff D, Shea C, Schlyer D, Wolf AP, Warner D, Zezulkova I, Cilento R. Inhibition of monoamine oxidase B in the brains of smokers. Nature 1996; 379:733-6. [PMID: 8602220 DOI: 10.1038/379733a0] [Citation(s) in RCA: 425] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The massive health problem associated with cigarette smoking is exacerbated by the addictive properties of tobacco smoke and the limited success of current approaches to cessation of smoking. Yet little is known about the neuropharmacological actions of cigarette smoke that contribute to smoking behaviour, or why smoking is so prevalent in psychiatric disorders and is associated with a decreased risk of Parkinson's disease. Here we report that brains of living smokers show a 40% decrease in the level of monoamine oxidase B (MAO B; EC 1.4.3.4) relative to non-smokers or former smokers. MAO B is involved in the breakdown of dopamine, a neurotransmitter implicated in reinforcing and motivating behaviours as well as movement. MAO B inhibition is therefore associated with enhanced activity of dopamine, as well as with decreased production of hydrogen peroxide, a source of reactive oxygen species. We propose that reduction of MAO B activity may synergize with nicotine to produce the diverse behavioural and epidemiological effects of smoking.
Collapse
Affiliation(s)
- J S Fowler
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Carr LA, Basham JK, York BK, Rowell PP. Inhibition of uptake of 1-methyl-4-phenylpyridinium ion and dopamine in striatal synaptosomes by tobacco smoke components. Eur J Pharmacol 1992; 215:285-7. [PMID: 1396992 DOI: 10.1016/0014-2999(92)90040-b] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To determine whether the attenuation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity by tobacco smoke exposure is caused by inhibition of the neuronal uptake of 4-phenylpyridinium ion (MPP+), various tobacco components and a smoke extract were tested for inhibitory activity in striatal synaptosomes. A dimethylsulfoxide extract of tobacco smoke filtrate was found to inhibit the uptake of MPP+ and dopamine. These results suggest that inhibition of the neuronal dopamine uptake mechanism may account for the protective effects of smoke exposure on MPTP-induced neurotoxicity.
Collapse
Affiliation(s)
- L A Carr
- Department of Pharmacology and Toxicology, University of Louisville, KY 40292
| | | | | | | |
Collapse
|
35
|
Helander A, Löwenmo C, Wikström T, Curvall M. Inhibition of human blood aldehyde dehydrogenase activity by cigarette-smoke condensate. Life Sci 1991; 49:1901-5. [PMID: 1745106 DOI: 10.1016/0024-3205(91)90291-i] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effect of a cigarette-smoke condensate (CSC) and three CSC subfractions on the aldehyde dehydrogenase (ALDH; EC 1.2.1.3) activity in human blood cells was examined under physiological conditions in vitro. Incubation of intact or sonicated cells with different concentrations of crude CSC resulted in a dose-dependent reduction of the ALDH activity. The inactivation was only restored in part after extensive washing of the cells, indicating that the inhibition observed was mainly irreversible. The nonvolatile (NV) subfraction of the CSC caused a reduction in ALDH activity similar to that obtained with crude CSC, while the semivolatile (SV80) and volatile (SV20) subfractions did not significantly affect ALDH. The present results, showing that the human blood cell ALDH is inactivated by constituents of cigarette smoke in vitro, suggest that the blood ALDH activity reduction found in habitual smokers is also caused by components formed during the combustion of tobacco.
Collapse
Affiliation(s)
- A Helander
- Department of Psychiatry, Karolinska Institute, St. Göran's Hospital, Stockholm, Sweden
| | | | | | | |
Collapse
|