1
|
Lankhuijzen LM, Ridler T. Opioids, microglia, and temporal lobe epilepsy. Front Neurol 2024; 14:1298489. [PMID: 38249734 PMCID: PMC10796828 DOI: 10.3389/fneur.2023.1298489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
A lack of treatment options for temporal lobe epilepsy (TLE) demands an urgent quest for new therapies to recover neuronal damage and reduce seizures, potentially interrupting the neurotoxic cascades that fuel hyper-excitability. Endogenous opioids, along with their respective receptors, particularly dynorphin and kappa-opioid-receptor, present as attractive candidates for controlling neuronal excitability and therapeutics in epilepsy. We perform a critical review of the literature to evaluate the role of opioids in modulating microglial function and morphology in epilepsy. We find that, in accordance with anticonvulsant effects, acute opioid receptor activation has unique abilities to modulate microglial activation through toll-like 4 receptors, regulating downstream secretion of cytokines. Abnormal activation of microglia is a dominant feature of neuroinflammation, and inflammatory cytokines are found to aggravate TLE, inspiring the challenge to alter microglial activation by opioids to suppress seizures. We further evaluate how opioids can modulate microglial activation in epilepsy to enhance neuroprotection and reduce seizures. With controlled application, opioids may interrupt inflammatory cycles in epilepsy, to protect neuronal function and reduce seizures. Research on opioid-microglia interactions has important implications for epilepsy and healthcare approaches. However, preclinical research on opioid modulation of microglia supports a new therapeutic pathway for TLE.
Collapse
Affiliation(s)
| | - Thomas Ridler
- Hatherly Laboratories, Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
2
|
Abstract
Temporal lobe epilepsy is considered to be one of the most common and severe forms of focal epilepsies. Patients frequently develop cognitive deficits and emotional blunting along progression of the disease. The high incidence of refractoriness to antiepileptic drugs and a frequent lack of admissibility to surgery pose an unmet medical challenge. In the urgent quest for novel treatment strategies, neuropeptides and their receptors are interesting candidates. However, their therapeutic potential has not yet been fully exploited. This chapter focuses on the functional role of the dynorphins (Dyns) and the kappa opioid receptor (KOR) system in temporal lobe epilepsy and the hippocampus.Genetic polymorphisms in the prepro-dynorphin (pDyn) gene causing lower levels of Dyns in humans and pDyn gene knockout in mice increase the risk to develop epilepsy. This suggests a role of Dyns and KOR as modulators of neuronal excitability. Indeed, KOR agonists induce inhibition of presynaptic neurotransmitter release, as well as postsynaptic hyperpolarization in glutamatergic neurons, both producing anticonvulsant effects.The development of new approaches to modulate the complex KOR signalling cascade (e.g. biased agonism and gene therapy) opens up new exciting therapeutic opportunities with regard to seizure control and epilepsy. Potential adverse side effects of KOR agonists may be minimized through functional selectivity or locally restricted treatment. Preclinical data suggest a high potential of such approaches to control seizures.
Collapse
Affiliation(s)
- Luca Zangrandi
- Institute of Virology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
- Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
3
|
Effects of thienorphine on the contraction of isolated ureter and bladder of guinea pigs. Eur J Pharmacol 2016; 789:144-151. [DOI: 10.1016/j.ejphar.2016.07.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/08/2016] [Accepted: 07/16/2016] [Indexed: 11/19/2022]
|
4
|
Zeynalov E, Nemoto M, Hurn PD, Koehler RC, Bhardwaj A. Neuroprotective effect of selective kappa opioid receptor agonist is gender specific and linked to reduced neuronal nitric oxide. J Cereb Blood Flow Metab 2006; 26:414-20. [PMID: 16049424 DOI: 10.1038/sj.jcbfm.9600196] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have previously shown that treatment with selective kappa-opioid receptor agonist BRL 52537 hydrochloride [(+/-)-1-(3,4-dichlorophenyl) acetyl-2-(1-pyrrolidinyl) methylpiperidine] (1) has a long therapeutic window for providing ischemic neuroprotection and (2) attenuates ischemia-evoked nitric oxide (NO) production in vivo in rats. Neuronally derived NO has been shown to be deleterious in the male, but not in the female, rodent model of focal ischemic stroke. We sought to determine if the agent fails to protect ischemic brain when neuronal NO synthase (nNOS) is genetically deleted in male, but not female, mice. Halothane-anesthetized adult male and female nNOS null mutants (nNOS(-/-)) and the genetically matched wildtype (WT) strain were subjected to transient (2 h) middle cerebral artery occlusion by the intraluminal filament technique. Vehicle or BRL 52537 treatment with continuous intravenous infusion was instituted at the onset of reperfusion and continued for 22 h. In WT male mice, infarct volumes measured at 72 h of reperfusion were robustly decreased with BRL 52537 treatment. In contrast, BRL 52537 did not decrease infarct volume in male nNOS(-/-) mice. BRL 52537 had no effect in the WT or nNOS(-/-) female mice. These data support that BRL 52537's mechanism of neuroprotection in vivo is through attenuation of nNOS activity and ischemia-evoked NO production. Neuroprotective effects of BRL 52537 are lost in the male when nNOS is not present; therefore, BRL 52537 likely acts upstream from NO generation and its subsequent neurotoxicity.
Collapse
Affiliation(s)
- Emil Zeynalov
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
5
|
Abstract
Cerebral ischemia results in a rapid depletion of energy stores that triggers a complex cascade of cellular events such as cellular depolarization and Ca2+ influx, resulting in excitotoxic cell death. The critical determinant of severity of brain injury is the duration and severity of the ischemic insult and early restoration of CBF. Induced therapeutic hypothermia following CA is the only strategy that has demonstrated improvement in outcomes in prospective, randomized clinical trials. Although pharmacologic neuro-protection has been disappointing thus far in a variety of experimental animal models, further research efforts are directed at using some agents that demonstrate marginal or moderate efficacy in combination with hypothermia. Although the signal transduction pathways and intracellular molecular events during cerebral ischemia and reperfusion are complex, potential therapeutic neuroprotective strategies hold promise for the future.
Collapse
Affiliation(s)
- Izumi Harukuni
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Division of Cardiac Anesthesiology, Tower 711, Johns Hopkins Hospital, 600 N. Wolfe Street, Baltimore, MD 21287, USA
| | | |
Collapse
|
6
|
Hauser KF, Aldrich JV, Anderson KJ, Bakalkin G, Christie MJ, Hall ED, Knapp PE, Scheff SW, Singh IN, Vissel B, Woods AS, Yakovleva T, Shippenberg TS. Pathobiology of dynorphins in trauma and disease. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2005; 10:216-35. [PMID: 15574363 PMCID: PMC4304872 DOI: 10.2741/1522] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dynorphins, endogenous opioid neuropeptides derived from the prodynorphin gene, are involved in a variety of normative physiologic functions including antinociception and neuroendocrine signaling, and may be protective to neurons and oligodendroglia via their opioid receptor-mediated effects. However, under experimental or pathophysiological conditions in which dynorphin levels are substantially elevated, these peptides are excitotoxic largely through actions at glutamate receptors. Because the excitotoxic actions of dynorphins require supraphysiological concentrations or prolonged tissue exposure, there has likely been little evolutionary pressure to ameliorate the maladaptive, non-opioid receptor mediated consequences of dynorphins. Thus, dynorphins can have protective and/or proapoptotic actions in neurons and glia, and the net effect may depend upon the distribution of receptors in a particular region and the amount of dynorphin released. Increased prodynorphin gene expression is observed in several disease states and disruptions in dynorphin processing can accompany pathophysiological situations. Aberrant processing may contribute to the net negative effects of dysregulated dynorphin production by tilting the balance towards dynorphin derivatives that are toxic to neurons and/or oligodendroglia. Evidence outlined in this review suggests that a variety of CNS pathologies alter dynorphin biogenesis. Such alterations are likely maladaptive and contribute to secondary injury and the pathogenesis of disease.
Collapse
Affiliation(s)
- Kurt F Hauser
- Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhang Z, Chen TY, Kirsch JR, Toung TJK, Traystman RJ, Koehler RC, Hurn PD, Bhardwaj A. Kappa-Opioid Receptor Selectivity for Ischemic Neuroprotection with BRL 52537 in Rats. Anesth Analg 2003; 97:1776-1783. [PMID: 14633559 DOI: 10.1213/01.ane.0000087800.56290.2e] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED Kappa-opioid receptors (KOR) have been implicated in neuroprotection from ischemic neuronal injury, but less work has been performed with transient focal cerebral ischemia to determine the role of KOR during reperfusion. We tested the effects of a selective and specific KOR agonist, BRL 52537 hydrochloride [(+/-)-1-(3,4-dichlorophenyl)acetyl-2-(1-pyrrolidinyl)methylpiperidine], and the standard KOR antagonist, nor-binaltorphimine dihydrochloride [nor-BNI; 17,17'-(dicyclopropylmethyl)-6,6',7,7'-6,6'-imino-7,7'-binorphinan-3,4',14,14'-tetrol], on functional and histological outcome after transient focal ischemia in the rat. By use of the intraluminal filament technique, halothane-anesthetized adult male Wistar rats were subjected to 2 h of middle cerebral artery occlusion confirmed by laser Doppler flowmetry. In a blinded, randomized fashion, rats were treated with 1). saline (vehicle) 15 min before reperfusion followed by saline at reperfusion for 22 h, 2). saline 15 min before reperfusion followed by BRL 52537 (1 mg x kg(-1) x h(-1)) at reperfusion for 22 h, 3). saline 15 min before reperfusion followed by nor-BNI (1 mg x kg(-1) x h(-1)) at reperfusion for 22 h, or 4) nor-BNI (1 mg/kg) 15 min before reperfusion followed by BRL 52537 (1 mgx kg(-1)x h(-1)) and nor-BNI (1 mg x kg(-1) x h(-1)) at reperfusion for 22 h. Infarct volume (percentage of ipsilateral structure) analyzed at 4 days of reperfusion was significantly attenuated in saline/BRL 52537 rats (n = 8; cortex, 10.2% +/- 4.3%; caudoputamen [CP], 23.8% +/- 6.7%) (mean +/- SEM) compared with saline/saline treatment (n = 8; cortex, 28.6% +/- 4.9%; CP, 53.3% +/- 5.8%). Addition of the specific KOR antagonist nor-BNI to BRL 52537 completely prevented the neuroprotection (n = 7; cortex, 28.6% +/- 5.3%; CP, 40.9% +/- 6.2%) conferred by BRL 52537. BRL 52537 did not produce postischemic hypothermia. These data demonstrate that KORs may provide a therapeutic target during early reperfusion after ischemic stroke. IMPLICATIONS The neuroprotective effect of selective kappa-opioid agonists in transient focal ischemia is via a selective action at the kappa-opioid receptors.
Collapse
Affiliation(s)
- Zhizheng Zhang
- *Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon; and Departments of †Anesthesiology/Critical Care Medicine and ‡Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Goyagi T, Toung TJK, Kirsch JR, Traystman RJ, Koehler RC, Hurn PD, Bhardwaj A. Neuroprotective kappa-opioid receptor agonist BRL 52537 attenuates ischemia-evoked nitric oxide production in vivo in rats. Stroke 2003; 34:1533-8. [PMID: 12738895 DOI: 10.1161/01.str.0000072512.30658.e7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Kappa-opioid receptors (KOR) have been implicated in neuroprotection from ischemic neuronal injury. We tested the effects of a selective and specific KOR agonist, BRL 52537 hydrochloride [(+/-)-1-(3,4-dichlorophenyl)acetyl-2-(1-pyrrolidinyl) methylpiperidine], on infarct volume and nitric oxide production after transient focal ischemia in the rat. METHODS With the use of the intraluminal filament technique, halothane-anesthetized male Wistar rats (weight, 250 to 300 g) were subjected to 2 hours of focal cerebral ischemia confirmed by Doppler flowmetry. In a blinded randomized fashion, rats were treated with intravenous saline or 1 mg/kg per hour BRL 52537 infusion, initiated 15 minutes before occlusion and maintained until 2 hours of reperfusion. In a second experiment, rats were treated during reperfusion with saline or 1 mg/kg per hour BRL 52537, initiated at onset of reperfusion and continued for 22 hours. In a final experiment, in vivo striatal nitric oxide production was estimated via microdialysis by quantification of citrulline recovery after labeled arginine infusion in striatum of intravenous BRL 52537- or saline-treated rats. RESULTS In rats treated with BRL 52537 during ischemia and early reperfusion, infarct volume was significantly attenuated in cortex (16+/-6% versus 40+/-7% of ipsilateral cortex in saline group) and in caudoputamen (30+/-8% versus 66+/-6% of ipsilateral caudoputamen in saline group). Infarct volume was also reduced by treatment administered only during reperfusion in cortex (19+/-8% in BRL 52537 group [n=10] versus 38+/-6% in saline group) and in caudoputamen (35+/-9% versus 66+/-4% in saline group). BRL 52537 treatment markedly attenuated NO production in ischemic striatum compared with saline-treated controls. CONCLUSIONS These data demonstrate that (1) the selective KOR agonist BRL 52537 provides significant neuroprotection from focal cerebral ischemia when given as a pretreatment or as a posttreatment and (2) attenuation of ischemia-evoked nitric oxide production in vivo may represent one mechanism of ischemic neuroprotection.
Collapse
Affiliation(s)
- Toru Goyagi
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Md, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Neurologic complications from cerebral ischemia occur frequently following cardiac arrest, as well as in the perioperative period in cardiac surgery. The cellular and molecular mechanisms of cerebral ischemia are complex. This article discusses several important cell death and salvage pathways that are important in experimental cerebral ischemia that may be critical to outcome in clinical brain injury.
Collapse
Affiliation(s)
- Anish Bhardwaj
- Meyer 8-140, Neuroscience Critical Care Division, Johns Hopkins Hospital, 600 N. Wolfe Street, Baltimore, MD 21287, USA.
| | | | | | | |
Collapse
|
10
|
Martin-Kleiner I, Gabrilovac J. The kappa-opioid agonist U-69593 affects intracellular calcium level in R1.1 mouse thymoma cell line. Int Immunopharmacol 2002; 2:975-80. [PMID: 12188038 DOI: 10.1016/s1567-5769(02)00051-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, the effect of the kappa-opioid agonist U-69593 on the intracellular calcium level in R1.1. cells was investigated using FURA 2-AM dye. In the previous study, calcium transport into R1.1 cells was not affected by the kappa-opioid agonist (-)U50,488 [Int. J. Immunopharmacol. 21 (1999) 133]. In this study, the kappa-opioid agonist U-69593 (10(-10)-10(-6) M), decreased intracellular calcium level in unstimulated cells. This decrease could not be reversed by the kappa-opioid antagonist NBI (10(-5) or 10(-6) M). Ionophore A23187 was used to increase intracellular calcium level. Stimulation of intracellular calcium level by Ionophore A23187 was potentiated by the kappa-opioid agonist U-69593. Thus, we have shown that basal intracellular calcium level was decreased in R1.1 by the kappa-opioid agonist U-69593 and increased in R1.1 cells stimulated by Ionophore A23187.
Collapse
Affiliation(s)
- Irena Martin-Kleiner
- Division of Molecular Medicine, Ruder Bosković Institute, Zagreb 10002, Croatia.
| | | |
Collapse
|
11
|
Sbrenna S, Marti M, Morari M, Calo' G, Guerrini R, Beani L, Bianchi C. Modulation of 5-hydroxytryptamine efflux from rat cortical synaptosomes by opioids and nociceptin. Br J Pharmacol 2000; 130:425-33. [PMID: 10807682 PMCID: PMC1572081 DOI: 10.1038/sj.bjp.0703321] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/1999] [Revised: 01/05/2000] [Accepted: 02/25/2000] [Indexed: 11/09/2022] Open
Abstract
The modulation of [(3)H]-5-hydroxytryptamine ([(3)H]-5-HT) efflux from superfused rat cortical synaptosomes by delta, kappa, mu and ORL(1) opioid receptor agonists and antagonists was studied. Spontaneous [(3)H]-5-HT efflux was reduced (20% inhibition) by either 0.5 microM tetrodotoxin or Ca(2+)-omission. Ten mM K(+)-evoked [(3)H]-5-HT overflow was largely Ca(2+)-dependent (90%) and tetrodotoxin-sensitive (50%). The delta receptor agonist, deltorphin-I, failed to modulate the K(+)-evoked neurotransmitter efflux up to 0.3 microM. The kappa and the mu receptor agonists, U-50,488 and endomorphin-1, inhibited K(+)-evoked [(3)H]-5-HT overflow (EC(50)=112 and 7 nM, respectively; E(max)=28 and 29% inhibition, respectively) in a norBinaltorphimine- (0.3 microM) and naloxone- (1 microM) sensitive manner, respectively. None of these agonists significantly affected spontaneous [(3)H]-5-HT efflux. The ORL(1) receptor agonist nociceptin inhibited both spontaneous (EC(50)=67 nM) and K(+)-evoked (EC(50)=13 nM; E(max)=52% inhibition) [(3)H]-5-HT efflux. The effect of NC was insensitive to naloxone (up to 10 microM), but was antagonized by [Nphe(1)]nociceptin(1-13)NH(2) (a novel selective ORL(1) receptor antagonist; pA(2)=6.7) and by naloxone benzoylhydrazone (pA(2)=6.3). The ORL(1) ligand [Phe(1)psi(CH(2)-NH)Gly(2)]nociceptin(1-13)NH(2) also inhibited K(+) stimulated [(3)H]-5-HT overflow (EC(50)=64 nM; E(max)=31% inhibition), but its effect was partially antagonized by 10 microM naloxone. It is concluded that the ORL(1) receptor is the most important presynaptic modulator of neocortical 5-HT release within the opioid receptor family. This suggests that the ORL(1)/nociceptin system may have a powerful role in the control of cerebral 5-HT-mediated biological functions.
Collapse
Affiliation(s)
- S Sbrenna
- Department of Experimental and Clinical Medicine, Section of Pharmacology, via Fossato di Mortara 17-19, University of Ferrara, 44100 Ferrara, Italy
| | - M Marti
- Department of Experimental and Clinical Medicine, Section of Pharmacology, via Fossato di Mortara 17-19, University of Ferrara, 44100 Ferrara, Italy
| | - M Morari
- Department of Experimental and Clinical Medicine, Section of Pharmacology, via Fossato di Mortara 17-19, University of Ferrara, 44100 Ferrara, Italy
| | - G Calo'
- Department of Experimental and Clinical Medicine, Section of Pharmacology, via Fossato di Mortara 17-19, University of Ferrara, 44100 Ferrara, Italy
| | - R Guerrini
- Department of Pharmaceutical Sciences, via Fossato di Mortara 17-19, University of Ferrara, 44100 Ferrara, Italy
| | - L Beani
- Department of Experimental and Clinical Medicine, Section of Pharmacology, via Fossato di Mortara 17-19, University of Ferrara, 44100 Ferrara, Italy
| | - C Bianchi
- Department of Experimental and Clinical Medicine, Section of Pharmacology, via Fossato di Mortara 17-19, University of Ferrara, 44100 Ferrara, Italy
| |
Collapse
|
12
|
Ikeda Y, Toda S, Kawamoto T, Teramoto A. Arginine vasopressin release inhibitor RU51599 attenuates brain oedema following transient forebrain ischaemia in rats. Acta Neurochir (Wien) 2000; 139:1166-71; discussion 1171-2. [PMID: 9479424 DOI: 10.1007/bf01410978] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RU51599 is an arginine vasopressin (AVP) release inhibitor and a selective kappa opioid agonist which has a pure water diuresis effect without associated electrolyte excretion. The effect of RU51599 on brain oedema following transient forebrain ischaemia in rats was examined. Under microscopy, the visible vertebral arteries at the second vertebra could be easily electrocauterized and completely cut by microscissors to yield complete cessation of circulation of both vertebral arteries. Transient forebrain ischaemia was induced by this improved highly reproducible technique of four-vessel occlusion model. Forty-three male Wistar rats were separated into six groups; saline-treated (1 ml/kg) normal rats (n = 10), RU51599-treated (1 mg/kg) normal rats (n = 4), saline-treated (1 ml/kg) rats with complete occlusion of both vertebral arteries (n = 5), RU51599-treated (1 mg/kg) rats with complete occlusion of both vertebral arteries (n = 5), saline-treated (1 ml/kg) rats with both complete occlusion of both vertebral arteries and carotid occlusion bilaterally during 45 minutes followed by 60 minutes of reperfusion (n = 11), RU51599-treated (1 mg/kg) rats with both complete occlusion of both vertebral arteries and carotid occlusion bilaterally during 45 minutes followed by 60 minutes of reperfusion (n = 8). The brain water content was determined by the dry-wet weight method. Cerebral blood flow was monitored during ischaemia and reperfusion was performed by laser Doppler flowmetry to make sure to obtain reversible forebrain ischaemia. Effects of RU51599 on concentration of glutamate released from the hippocampal CA1 of rats subjected to 5 minutes four-vessel occlusion and 60 minutes of reperfusion were also investigated by the microdialysis method. This modified four-vessel occlusion method produced reversible forebrain ischaemia with a high level of success. Bilateral carotid occlusion followed by 60 minutes reperfusion caused a significant increase in brain water content (P < 0.01), which was significantly attenuated by RU51599 (P < 0.01). These findings indicate that the AVP-release inhibitor RU51599 reduced brain oedema following transient forebrain ischaemia in rats.
Collapse
Affiliation(s)
- Y Ikeda
- Department of Critical Care Medicine, Nippon Medical School, Tokyo, Japan
| | | | | | | |
Collapse
|
13
|
Atamer-Simsek S, Olmez-Salvarli H, Güc O, Eroglu L. Antinociceptive effect of amikacin and its interaction with morphine and naloxone. Pharmacol Res 2000; 41:355-60. [PMID: 10675289 DOI: 10.1006/phrs.1999.0599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amikacin sulphate (30 mg kg(-1)) administered either intraperitoneally (i.p.) or subcutaneously (s.c.) produced antinociceptive effect in BALB/c mice in the acetic acid writhing test which is employed as an inflammatory pain model. The lack of difference between two routes with regard to antinociceptive potency was taken as evidence for the absence of a local effect. Amikacin sulphate-induced antinociception seems unlikely to be due to non-specific behaviour alteration, since this drug, at a dose range of 15-100 mg kg(-1)did not affect motor coordination of mice in rot-a-rod test. Morphine (1 mg kg(-1)) also caused antinociception when administered i.p. or s.c. but the effect was greater with the latter route. At the i.p. site; the concurrent use of amikacin and morphine produced more remarkable antinociception compared to their individual usages. Besides, naloxone (2 mg kg(-1)) significantly decreased antinociceptive effect of amikacin but itself also exerted antinociception. At present, we have no plausible explanation for these findings at the i.p. site.
Collapse
Affiliation(s)
- S Atamer-Simsek
- Pharmacology Unit of Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | | | | | | |
Collapse
|
14
|
Lohmann AB, Welch SP. ATP-gated K(+) channel openers enhance opioid antinociception: indirect evidence for the release of endogenous opioid peptides. Eur J Pharmacol 1999; 385:119-27. [PMID: 10607867 DOI: 10.1016/s0014-2999(99)00618-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ATP-gated K(+) channel openers - diazoxide, levcromakalim and morphine - enhance K(+) efflux by opening ATP-gated K(+) channels, thereby inducing cell hyperpolarization. Hyperpolarization decreases intracellular Ca(2+) levels, which leads to a decrease in neurotransmitter release contributing to the antinociceptive effects of the drugs. Previous findings implicate the release of endogenous opioids as the mediator of the antinociceptive effects of ATP-gated K(+) channel openers. Diazoxide and levcromakalim, administered intracerebroventricularly (i.c.v.), produced dose-dependent antinociception as determined by the tail-flick method ¿ED(50) 44 microg/mouse [95% confidence limits (CLs) from 28 to 68 microg/mouse] for diazoxide¿. Glyburide (10 microg/mouse), an ATP-gated K(+) channel antagonist, attenuated the effects of diazoxide, levcromakalim and morphine. Diazoxide- and levcromakalim-induced antinociception were both antagonized by CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr amide), a mu-opioid receptor selective antagonist, and ICI 174,864 (N, N-diallyl-Tyr-Aib-Aib-Phe-Leu), a delta-opioid receptor antagonist, but were differentially attenuated by the kappa-opioid receptor antagonist, nor-Binaltorphimine. Combinations of inactive doses of the K(+) channel openers and opioid receptor agonists produced significant antinociceptive enhancement. Diazoxide (2 microg/mouse) shifted morphine's dose-response curve 47-fold, while levcromakalim (0.1 microg/mouse) shifted the curve 27-fold. The dose-response curve of kappa-opioid receptor agonist U50,488H (trans-(+/-)-3, 4 Dichloro-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzeneacetamide methane sulfonate) was shifted 106-fold by diazoxide in a parallel manner, while levcromakalim administration increased the potency of U50,488H by 15-fold. Diazoxide shifted the dose-response curve of the delta-opioid receptor agonist, DPDPE [(D-Pen(2,5))-enkephalin], leftward in a non-parallel manner, while DPDPE was 6-fold more potent when combined with levcromakalim. We hypothesize that endogenous opioids mediate ATP-gated K(+) channel opener-induced antinociception and enhancement of opioids.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Adenosine Triphosphate/physiology
- Analgesics/pharmacology
- Animals
- Cromakalim/pharmacology
- Diazoxide/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Enkephalin, Leucine/analogs & derivatives
- Enkephalin, Leucine/pharmacology
- Glyburide/pharmacology
- Injections, Intraventricular
- Ion Channel Gating/physiology
- Male
- Mice
- Mice, Inbred ICR
- Morphine/pharmacology
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists
- Nociceptors/drug effects
- Opioid Peptides/drug effects
- Opioid Peptides/metabolism
- Pain/prevention & control
- Potassium Channels/drug effects
- Potassium Channels/physiology
- Receptors, Opioid/agonists
- Receptors, Opioid/physiology
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, mu/antagonists & inhibitors
- Somatostatin/analogs & derivatives
- Somatostatin/pharmacology
Collapse
Affiliation(s)
- A B Lohmann
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, P.O. Box 980613, Richmond, VA 23298-0613, USA
| | | |
Collapse
|
15
|
Hauser KF, Foldes JK, Turbek CS. Dynorphin A (1-13) neurotoxicity in vitro: opioid and non-opioid mechanisms in mouse spinal cord neurons. Exp Neurol 1999; 160:361-75. [PMID: 10619553 PMCID: PMC4868554 DOI: 10.1006/exnr.1999.7235] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dynorphin A is an endogenous opioid peptide that preferentially activates kappa-opioid receptors and is antinociceptive at physiological concentrations. Levels of dynorphin A and a major metabolite, dynorphin A (1-13), increase significantly following spinal cord trauma and reportedly contribute to neurodegeneration associated with secondary injury. Interestingly, both kappa-opioid and N-methyl-D-aspartate (NMDA) receptor antagonists can modulate dynorphin toxicity, suggesting that dynorphin is acting (directly or indirectly) through kappa-opioid and/or NMDA receptor types. Despite these findings, few studies have systematically explored dynorphin toxicity at the cellular level in defined populations of neurons coexpressing kappa-opioid and NMDA receptors. To address this question, we isolated populations of neurons enriched in both kappa-opioid and NMDA receptors from embryonic mouse spinal cord and examined the effects of dynorphin A (1-13) on intracellular calcium concentration ([Ca2+]i) and neuronal survival in vitro. Time-lapse photography was used to repeatedly follow the same neurons before and during experimental treatments. At micromolar concentrations, dynorphin A (1-13) elevated [Ca2+]i and caused a significant loss of neurons. The excitotoxic effects were prevented by MK-801 (Dizocilpine) (10 microM), 2-amino-5-phosphopentanoic acid (100 microM), or 7-chlorokynurenic acid (100 microM)--suggesting that dynorphin A (1-13) was acting (directly or indirectly) through NMDA receptors. In contrast, cotreatment with (-)-naloxone (3 microM), or the more selective kappa-opioid receptor antagonist nor-binaltorphimine (3 microM), exacerbated dynorphin A (1-13)-induced neuronal loss; however, cell losses were not enhanced by the inactive stereoisomer (+)-naloxone (3 microM). Neuronal losses were not seen with exposure to the opioid antagonists alone (10 microM). Thus, opioid receptor blockade significantly increased toxicity, but only in the presence of excitotoxic levels of dynorphin. This provided indirect evidence that dynorphin also stimulates kappa-opioid receptors and suggests that kappa receptor activation may be moderately neuroprotective in the presence of an excitotoxic insult. Our findings suggest that dynorphin A (1-13) can have paradoxical effects on neuronal viability through both opioid and non-opioid (glutamatergic) receptor-mediated actions. Therefore, dynorphin A potentially modulates secondary neurodegeneration in the spinal cord through complex interactions involving multiple receptors and signaling pathways.
Collapse
Affiliation(s)
- Kurt F. Hauser
- Department of Anatomy and Neurobiology, University of Kentucky, College of Medicine, Lexington, KY 40536-0084
- Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, KY 40536-0084
| | - Jane K. Foldes
- Department of Anatomy and Neurobiology, University of Kentucky, College of Medicine, Lexington, KY 40536-0084
| | - Carol S. Turbek
- Department of Anatomy and Neurobiology, University of Kentucky, College of Medicine, Lexington, KY 40536-0084
| |
Collapse
|
16
|
Jeub M, Lie A, Blümcke I, Elger CE, Beck H. Loss of dynorphin-mediated inhibition of voltage-dependent Ca2+ currents in hippocampal granule cells isolated from epilepsy patients is associated with mossy fiber sprouting. Neuroscience 1999; 94:465-71. [PMID: 10579209 DOI: 10.1016/s0306-4522(99)00249-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The endogenous kappa receptor selective opioid peptide dynorphin has been shown to inhibit glutamate receptor-mediated neurotransmission and voltage-dependent Ca2+ channels. It is thought that dynorphin can be released from hippocampal dentate granule cells in an activity-dependent manner. Since actions of dynorphin may be important in limiting excitability in human epilepsy, we have investigated its effects on voltage-dependent Ca2+ channels in dentate granule cells isolated from hippocampi removed during epilepsy surgery. One group of patients showed classical Ammon's horn sclerosis characterized by segmental neuronal cell loss and astrogliosis. Prominent dynorphin-immunoreactive axon terminals were present in the inner molecular layer of the dentate gyrus, indicating pronounced recurrent mossy fiber sprouting. A second group displayed lesions in the temporal lobe that did not involve the hippocampus proper. All except one of these specimens showed a normal pattern of dynorphin immunoreactivity confined to dentate granule cell somata and their mossy fiber terminals in the hilus and CA3 region. In patients without mossy fiber sprouting the application of the kappa receptor selective opioid agonist dynorphin A ([D-Arg6]1-13, 1 microM) caused a reversible and dose-dependent depression of voltage-dependent Ca2+ channels in most granule cells. These effects could be antagonized by the non-selective opioid antagonist naloxone (1 microM). In contrast, significantly less dentate granule cells displayed inhibition of Ca2+ channels by dynorphin A in patients with mossy fiber sprouting (Chi-square test, P < 0.0005). The lack of dynorphin A effects in patients showing mossy fiber sprouting compares well to the loss of kappa receptors on granule cells in Ammon's horn sclerosis but not lesion-associated epilepsy. Our data suggest that a protective mechanism exerted by dynorphin release and activation of kappa receptors may be lost in hippocampi with recurrent mossy fiber sprouting.
Collapse
Affiliation(s)
- M Jeub
- Department of Epileptology, University of Bonn Medical Center, Germany
| | | | | | | | | |
Collapse
|
17
|
Hill MP, Brotchie JM. Control of glutamate release by calcium channels and kappa-opioid receptors in rodent and primate striatum. Br J Pharmacol 1999; 127:275-83. [PMID: 10369483 PMCID: PMC1565998 DOI: 10.1038/sj.bjp.0702523] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The modulation of depolarization (4-aminopyridine, 2 mM)-evoked endogenous glutamate release by kappa-opioid receptor activation and blockade of voltage-dependent Ca2+ -channels has been investigated in synaptosomes prepared from rat and marmoset striatum. 4-Aminopyridine (4-AP)-stimulated, Ca2+ -dependent glutamate release was inhibited by enadoline, a selective kappa-opioid receptor agonist, in a concentration-dependent and norbinaltorphimine (nor-BNI, selective kappa-opioid receptor antagonist)-sensitive manner in rat (IC50 = 4.4+/-0.4 microM) and marmoset (IC50 = 2.9+/-0.7 microM) striatal synaptosomes. However, in the marmoset, there was a significant (approximately 23%) nor-BNI-insensitive component. In rat striatal synaptosomes, the Ca2+ -channel antagonists omega-agatoxin-IVA (P/Q-type blocker), omega-conotoxin-MVIIC (N/P/Q-type blocker) and omega-conotoxin-GVIA (N-type blocker) reduced 4-AP-stimulated, Ca2+ -dependent glutamate release in a concentration-dependent manner with IC50 values of 6.5+/-0.9 nM, 75.5+5.9 nM and 106.5+/-8.7 nM, respectively. In marmoset striatal synaptosomes, 4-AP-stimulated, Ca2+ -dependent glutamate release was significantly inhibited by omega-agatoxin-IVA (30 nM, 57.6+/-2.3%, inhibition), omega-conotoxin-MVIIC (300 nM, 57.8+/-3.1%) and omega-conotoxin-GVIA (1 microM, 56.7+/-2%). Studies utilizing combinations of Ca2+ -channel antagonists suggests that in the rat striatum, two relatively distinct pools of glutamate, released by activation of either P or Q-type Ca2+ -channels, exist. In contrast, in the primate there is much overlap between the glutamate released by P and Q-type Ca2+ -channel activation. Studies using combinations of enadoline and the Ca2+ -channel antagonists suggest that enadoline-induced inhibition of glutamate release occurs primarily via reduction of Ca2+ -influx through P-type Ca2+ -channels in the rat but via N-type Ca2+ -channels in the marmoset. In conclusion, the results presented suggest that there are species differences in the control of glutamate release by kappa-opioid receptors and Ca2+ -channels.
Collapse
Affiliation(s)
- M P Hill
- Manchester Movement Disorders Laboratory, Division of Neuroscience, School of Biological Sciences, University of Manchester.
| | | |
Collapse
|
18
|
Abstract
The nucleus accumbens (Acb) is prominently involved in the aversive behavioral aspects of kappa-opioid receptor (KOR) agonists, including its endogenous ligand dynorphin (Dyn). We examined the ultrastructural immunoperoxidase localization of KOR and immunogold labeling of Dyn to determine the major cellular sites for KOR activation in this region. Of 851 KOR-labeled structures sampled from a total area of 10,457 microm2, 63% were small axons and morphologically heterogenous axon terminals, 31% of which apposed Dyn-labeled terminals or also contained Dyn. Sixty-eight percent of the KOR-containing axon terminals formed punctate-symmetric or appositional contacts with unlabeled dendrites and spines, many of which received convergent input from terminals that formed asymmetric synapses. Excitatory-type terminals that formed asymmetric synapses with dendritic spines comprised 21% of the KOR-immunoreactive profiles. Dendritic spines within the neuropil were the major nonaxonal structures that contained KOR immunoreactivity. These spines also received excitatory-type synapses from unlabeled terminals and were apposed by Dyn-containing terminals. These results provide ultrastructural evidence that in the Acb shell (AcbSh), KOR agonists play a primary role in regulating the presynaptic release of Dyn and other neuromodulators that influence the output of spiny neurons via changes in the presynaptic release of or the postsynaptic responses to excitatory amino acids. The cellular distribution of KOR complements those described previously for the reward-associated mu- and delta-opioid receptors in the Acb shell.
Collapse
|
19
|
Martin-Kleiner I, Bidlack JM. The synthetic kappa-opioid agonist (-)U50,488 does not affect calcium transport into R1.1 mouse thymoma cell line. INTERNATIONAL JOURNAL OF IMMUNOPHARMACOLOGY 1999; 21:133-40. [PMID: 10230876 DOI: 10.1016/s0192-0561(98)00075-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this paper, the effect of the synthetic kappa-opioid agonist (-)U50,488 on 45Ca2- transport into R1.1 mouse thymoma cells is presented. This thymoma cell line expresses selectively the kappa-opioid class of receptors. 45Ca2+ transport into R1.1 cells was not affected by the kappa-opioid agonist (-)U50,488 (10(-10) M-10(-4) M) alone, or in the presence of the plant lectins: PHA (250 microg/ml) and Con A (800 microg/ml), after a 60 min treatment. The plant lectins PHA and Con A stimulated 45Ca2+ transport into R1.1 cells, in high concentrations (100-800 microg/ml) and (200-1000 microg/ml) respectively, after a 60 min treatment. Thus, 45Ca2+ transport was not affected in R1.1 cells by the kappa-opioid agonist (-)U50,488 alone, or in the presence of mitogens after a 60 min treatment. This negative result does not indicate the lack of calcium channels on R1.1 cells, since the plant lectins PHA and Con A were able to stimulate 45Ca2+ transport into R1.1 cells.
Collapse
Affiliation(s)
- I Martin-Kleiner
- Ruder Bosković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | | |
Collapse
|
20
|
Kappa-opioid receptor activation modulates Ca2+ currents and secretion in isolated neuroendocrine nerve terminals. J Neurosci 1997. [PMID: 9254669 DOI: 10.1523/jneurosci.17-17-06565.1997] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Whole-cell patch-clamp recordings were performed together with time-resolved measurements of membrane capacitance (Cm) in nerve terminals acutely dissociated from neurohypophysis of adult rats to investigate modulation of Ca2+ currents and secretion by activation of opioid receptors. Bath superfusion of the kappa-opioid agonists U69,593 (0.3-1 microM), dynorphin A (1 microM), or U50,488H (1-3 microM) reversibly suppressed the peak amplitude of Ca2+ currents 32. 7 +/- 2.7% (in 41 of 56 terminals), 37.4 +/- 5.3% (in 5 of 8 terminals), and 33.5 +/- 8.1% (in 5 of 10 terminals), respectively. In contrast, tests in 11 terminals revealed no effect of the mu-opioid agonist [D-Pen2,5]-enkephalin (1-3 microM; n = 7) or of the delta-agonist Tyr-D-Ala-Gly-N-Me-Phe-Gly-ol (1 microM; n = 4) on Ca2+ currents. Three components of high-threshold current were distinguished on the basis of their sensitivity to blockade by omega-conotoxin GVIA, nicardipine, and omega-conotoxin MVIIC: N-, L-, and P/Q-type current, respectively. Administration of U69,593 inhibited N-type current in these nerve terminals on average 32%, whereas L-type current was reduced 64%, and P/Q-type current was inhibited 28%. Monitoring of changes in Cm in response to brief depolarizing steps revealed that the kappa-opioid-induced reductions in N-, L-, or P/Q-type currents were accompanied by attenuations in two kinetically distinct components of Ca2+-dependent exocytotic release. These data provide strong evidence of a functional linkage between blockade of Ca2+ influx through voltage-dependent Ca2+ channels and inhibitory modulation of release by presynaptic opioid receptors in mammalian central nerve endings.
Collapse
|
21
|
Héron A, Traiffort E, Allix M, Dimitriadou V, Schwartz JC. Prodynorphin mRNA expression in the rat dentate gyrus after cerebral ischemia. Neuropeptides 1996; 30:355-8. [PMID: 8914861 DOI: 10.1016/s0143-4179(96)90024-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The beneficial effects of exogenous kappa receptor agonists in preventing neuronal damage elicited by brain ischemia suggest a role for endogenous dynorphins. In agreement prodynorphin (PDYN) gene expression in granule cells of the dentate gyrus detected by in situ hybridization was drastically but transiently decreased 18-32 h after four-vessel cerebral ischemia for 20 min in rats. We propose that decreased dynorphin synthesis and release could contribute to the delayed neuronal death of hippocampal pyramidal cells in this model.
Collapse
Affiliation(s)
- A Héron
- Laboratoire de Physiologie, Faculté de Pharmacie, Université René Descartes, Paris, France
| | | | | | | | | |
Collapse
|
22
|
Tsuda M, Suzuki T, Misawa M, Nagase H. Involvement of the opioid system in the anxiolytic effect of diazepam in mice. Eur J Pharmacol 1996; 307:7-14. [PMID: 8831097 DOI: 10.1016/0014-2999(96)00219-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the present study, the anticonflict effect of diazepam was significantly abolished by pretreatment with naloxone, beta-funaltrexamine or nor-binaltorphimine but not naltrindole, using a Vogel-type conflict paradigm in mice. However, naloxone alone had a significant proconflict effect, and beta-funaltrexamine alone tended to produce a proconflict effect. Spontaneous drinking behavior was not affected by treatment with diazepam and nor-binaltorphimine. In addition, nor-binaltorphimine had no effect on diazepam-induced motor incoordination, hypothermia or anticonvulsant action, respectively. Moreover, the stable dynorphin analog E2078 ([N-methyl-Tyr1, N-alpha-methyl-Arg7-D-Leu8]dynorphin A-(1-8) ethylamide) and the highly selective kappa-opioid receptor agonist U50,488H (trans-3,4-dichloro-N-(2-(1-pyrrolidinyl)cyclohexyl)benzenacetamide++ + methanesulfonate hydrochloride) produced a significant anticonflict effect, which was completely antagonized by pretreatment with nor-binaltorphimine. These findings suggested that the kappa-opioid system may play an important role in the anxiolytic effect of benzodiazepine and the regulation of anxiety.
Collapse
Affiliation(s)
- M Tsuda
- Department of Pharmacology, School of Pharmacy, Hoshi University, Tokyo, Japan
| | | | | | | |
Collapse
|
23
|
MacKay KB, Patel TR, Galbraith SL, Woodruff GN, McCulloch J. The relationship between glutamate release and cerebral blood flow after focal cerebral ischaemia in the cat: effect of pretreatment with enadoline (a kappa receptor agonist). Brain Res 1996; 712:329-34. [PMID: 8814909 DOI: 10.1016/0006-8993(95)01559-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of the kappa-opioid agonist enadoline (CI-977) upon the relationship between cerebral blood flow and glutamate release was simultaneously assessed (using microdialysis and hydrogen clearance techniques respectively) at the same anatomical locus in the cerebral cortex (suprasylvian gyrus) after permanent middle cerebral artery (MCA) occlusion in halothane-anaesthetised cats. During controlled graded ischaemia, pretreatment with enadoline (0.3 mg/kg i.v. followed by continuous infusion at 0.15 mg/kg/h), initiated 30 min prior to MCA occlusion, significantly attenuated the marked increases in extracellular glutamate, aspartate and GABA observed in the focal ischaemic penumbra. The present data are consistent with the hypothesis that the neuroprotective efficacy of enadoline in focal cerebral ischaemia is due to inhibition of glutamate release in the ischaemic penumbra.
Collapse
Affiliation(s)
- K B MacKay
- Wellcome Surgical Institute, University of Glasgow, UK
| | | | | | | | | |
Collapse
|
24
|
Simmons ML, Chavkin C. Endogenous opioid regulation of hippocampal function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 1996; 39:145-96. [PMID: 8894847 DOI: 10.1016/s0074-7742(08)60666-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Endogenous opioid peptides modulate neural transmission in the hippocampus. Procnkephalin-derived peptides have been demonstrated to act at mu and delta opioid receptors to inhibit GABA release from inhibitory interneurons, resulting in increased excitability of hippocampal pyramidal cells and dentate gyrus granule cells. Prodynorphin-derived peptides primarily act at presynaptic kappa opioid receptors to inhibit excitatory amino acid release from perforant path and mossy fiber terminals. Opioid receptors reduce membrane excitability by modulating ion conductances, and in this way they may decrease voltage-dependent calcium influx and transmitter release. Synaptic plasticity in the hippocampus also is modulated by endogenous opioids. Enkephalins facilitate long-term potentiation, whereas dynorphins inhibit the induction of this type of neuroplasticity. Further, opioids may play important roles in hippocampal epilepsy. Recurrent seizures induce changes in the expression of opioid peptides and receptors. Also, enkephalins have proconvulsant effects in the epileptic hippocampus, whereas dynorphins may function as endogenous anticonvulsants.
Collapse
Affiliation(s)
- M L Simmons
- Department of Pharmacology, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
25
|
Kanemasa T, Asakura K, Ninomiya M. kappa-opioid agonist U50488 inhibits P-type Ca2+ channels by two mechanisms. Brain Res 1995; 702:207-12. [PMID: 8846078 DOI: 10.1016/0006-8993(95)01049-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of U50488, kappa-opioid agonist on P-type Ca2+ channels, were studied. U50488 inhibited depolarization-induced Ca2+ uptake into rat brain synaptosomes, which was sensitive to omega-Agatoxin IVA (omega-AgaIVA; P-type Ca2+ channel blocker) and inhibited P-type Ca2+ channel currents recorded from rat cerebellar Purkinje neurons by the whole-cell patch clamp method. Dynorphin A also inhibited P-type Ca2+ channel currents. The inhibition by U50488 was biphasic; high affinity component (21%, IC50 = 8.9 x 10(-8) M) and low affinity component (79%, IC50 = 1.1 x 10(-5) M). At low concentrations of U50488 (10(-6) M), P-type Ca2+ channel current inhibition was attenuated by norbinartorphimine (nor-BNI), kappa-opioid antagonist, and by dialysis of cells with a pipette solution containing guanosine 5'-O-(2-thiodiphosphate) (GDP-beta S). At high concentrations of U50488 (10(-5) M), P-type Ca2+ channel current inhibition was frequency-dependent. Thus U50488-induced current inhibition is mediated by two mechanisms. Its high affinity component is produced by activation of kappa-opioid receptors, whereas the low affinity component is due to its direct action on the P-type Ca2+ channel.
Collapse
Affiliation(s)
- T Kanemasa
- Discovery Research Laboratories II, Shionogi & Co. Ltd., Toyonaka, Osaka, Japan
| | | | | |
Collapse
|
26
|
Shibata S, Tominaga K, Watanabe S. kappa-Opioid receptor agonist protects against ischemic reduction of 2-deoxyglucose uptake in morphine-tolerant rats. Eur J Pharmacol 1995; 279:197-202. [PMID: 7556401 DOI: 10.1016/0014-2999(95)00152-b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We examined the effects of mu-opioid receptor agonist and antagonists, and kappa-opioid receptor agonist on the hypoxia/hypoglycemia-induced reduction in 2-deoxyglucose uptake of rat hippocampal slices. Naloxone, a mu-opioid receptor antagonist and (5,7,8)-(+)-3,4-dichloro-N-methyl-N-(7,8,1-pyrrolidinyl)-1-oxaspirol+ ++ (4,5)dec-8-yl)-benzeneacetamide methanesulfonate, U-62,066E, a kappa-opioid receptor receptor agonist, showed neuroprotective actions against the hypoxia/hypoglycemia-induced deficit in glucose uptake. In contrast, morphine exhibited an exacerbating action. These results suggest that blockade of mu-opioid receptor- and stimulation of kappa-opioid receptor-mediated functions has a protective role against the hypoxia/hypoglycemia-induced decreases in glucose metabolism in hippocampal slices. Chronic administration of morphine (10 mg/kg) for 9 days affected neither the basal nor the hypoxia/hypoglycemia-induced reduction in 2-deoxyglucose uptake. Rats treated with morphine chronically exhibited not only tolerance to the analgesic effect but also tolerance to the exacerbating action. However, chronic morphine did not modify U-62,066E-induced neuroprotection. These findings indicate that the receptor mechanisms of neuroprotection produced by the activation of kappa-opioid receptors may not be involved in mu-opioid receptor function.
Collapse
Affiliation(s)
- S Shibata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
27
|
Simmons ML, Terman GW, Gibbs SM, Chavkin C. L-type calcium channels mediate dynorphin neuropeptide release from dendrites but not axons of hippocampal granule cells. Neuron 1995; 14:1265-72. [PMID: 7605635 DOI: 10.1016/0896-6273(95)90273-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Granule cells in the guinea pig dentate gyrus release kappa opioid neuropeptides, dynorphins, from dendrites as well as from axon terminals. We have found that both L- and N-type calcium channel antagonists inhibited dendritic dynorphin release. In contrast, N-type but not L-type calcium channel antagonists inhibited axonal dynorphin release. Neither L- nor N-type channel antagonists directly altered the effects of kappa opioid receptor activation. By inhibiting dynorphin release, L-type channel antagonists also facilitated the induction of long-term potentiation of the perforant path-granule cell synapse. These studies establish that a single cell type can release a transmitter from two different cellular domains and provide new distinction between axonal and dendritic transmitter release mechanisms.
Collapse
Affiliation(s)
- M L Simmons
- Department of Pharmacology, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
28
|
Mosaddeghi M, Kapusta DR, Minor LD, Duan N, Paul D. Effects of kappa-opioid receptor agonists on stimulated phosphoinositide hydrolysis in rat kidney. Eur J Pharmacol 1995; 289:411-7. [PMID: 7556409 DOI: 10.1016/0922-4106(95)90149-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To determine the effects of kappa-opioid receptor agonists on phosphoinositide metabolism in rat renal cortex, tissue slices labelled with [3H]inositol were stimulated with norepinephrine or carbachol alone or in combination with the kappa-opioid receptor agonists, ethylketocyclazocine, trans-3,4-dichloro-N-methyl-N-[2-(pyrrolindinyl)-cyclohexyl)- benzeneacetamide (U50,488) and nalorphine. Both norepinephrine and carbachol stimulated phosphoinositide hydrolysis (measured in a LiCl buffer) concentration- and time-dependently. The EC50 and maximal stimulation of phosphoinositide hydrolysis for norepinephrine and carbachol were approximately 3 microM and 0.15 dpm released/dpm incorporated, respectively. Concentrations up to 1 mM of ethylketocyclazocine, U50,488 or nalorphine alone did not affect phosphoinositide hydrolysis. However, ethylketocyclazocine and U50,488 decreased 10 microM norepinephrine-stimulated phosphonositide hydrolysis concentration-dependently, each with an approximate IC50 of 30 microM. In contrast, nalorphine had no effect on norepinephrine-stimulated phosphoinositide hydrolysis. In addition, concentrations of up to 1 mM ethylketocyclazocine or U50,488 did not alter carbachol-stimulated phosphoinositide hydrolysis. The inhibitory effect of U50,488 and ethylketocyclazocine on norepinephrine-stimulated phosphoinositide hydrolysis was blocked by the selective kappa-opioid receptor antagonist, nor-binaltorphimine. These results indicate that kappa 1-opioid receptor stimulation may affect phosphoinositide metabolism in rat renal cortex by modulating the subcellular effects of renal alpha 1-adrenoceptor activation.
Collapse
Affiliation(s)
- M Mosaddeghi
- Department of Pharmacology, Louisiana State University Medical Center, New Orleans 70112, USA
| | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- H J Little
- Pharmacology Department, Medical School, University Walk, Bristol, UK
| |
Collapse
|
30
|
Bhargava HN, Thorat SN. Effect of dizocilpine (MK-801) on analgesia and tolerance induced by U-50,488H, a kappa-opioid receptor agonist, in the mouse. Brain Res 1994; 649:111-6. [PMID: 7953621 DOI: 10.1016/0006-8993(94)91053-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effect of dizocilpine (MK-801), an N-methyl-D-aspartate (NMDA) receptor antagonist, on the analgesic response to U-50,488H, a kappa-opioid receptor agonist, and tolerance to the analgesic effect of U-50,488H was determined in mice. The doses of MK-801 used were 0.03-0.30 mg/kg, whereas U-50,488H was administered at a dose of 25 mg/kg. Intraperitoneal (i.p.) administration of U-50,488H (25 mg/kg) produced analgesia as evidenced by the delay in the tail-flick latency in the mouse and lasted for a period of 240 min. MK-801 (0.03-0.30 mg/kg, i.p.) given 30 min prior to the injection of U-50,488H did not modify U-50,488H-induced analgesia. Twice daily administration of U-50,488H (25 mg/kg) for 9 days produced tolerance to its analgesic action. Administration of MK-801 (0.03 and 0.10 mg/kg) injected 30 min before each injection of U-50,488H prevented the development of tolerance to its analgesic effect. The higher dose, 0.3 mg/kg, of MK-801 had a minimal effect on U-50,488H tolerance. It is concluded that MK-801 in doses which do not affect U-50,488H-induced analgesia blocks the development of tolerance to its analgesic action in mice. These studies suggest that NMDA receptors play a crucial role in the development of tolerance to kappa-opioid agonist in mice.
Collapse
Affiliation(s)
- H N Bhargava
- Department of Pharmaceutics and Pharmacodynamics (m/c 865), University of Illinois at Chicago 60612
| | | |
Collapse
|
31
|
Mackay KB, Kusumoto K, Graham DI, McCulloch J. Effect of the kappa-1 opioid agonist CI-977 on ischemic brain damage and cerebral blood flow after middle cerebral artery occlusion in the rat. Brain Res 1993; 629:10-8. [PMID: 8287264 DOI: 10.1016/0006-8993(93)90474-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effects of the kappa-1 opioid agonist CI-977 upon the volume of ischemic brain damage (defined using quantitative neuropathology) and local cerebral blood flow (CBF) (defined using quantitative [14C]iodoantipyrine autoradiography) have been examined at 4 h and 30 min, respectively, after permanent middle cerebral artery (MCA) occlusion in halothane-anesthetised rats. Treatment with CI-977 (0.3 mg/kg, s.c.) 30 min before and 30 min after occlusion of the MCA reduced the volume of infarction in the cerebral hemisphere (reduced by 27% when compared to vehicle; P < 0.05) and cerebral cortex (reduced by 32%; P < 0.05), despite a marked and sustained hypotension, with only minimal effect on damage in the caudate nucleus. In the hemisphere contralateral to the occluded MCA, treatment with CI-977 (0.3 mg/kg, s.c.) 30 min prior to the induction of ischemia failed to demonstrate any significant effect on either the level of local CBF in any of the 25 regions examined or on the volume of low CBF determined by frequency distribution analysis. In the hemisphere ipsilateral to MCA occlusion, CI-977 failed to produce statistically significant alterations in either the level of local CBF in 23 of the 25 regions or on the volume of low CBF, but areas of hyperemia were observed in both the medial caudate nucleus and lateral thalamus (local CBF increased by 65% and 86%, respectively, when compared to vehicle).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K B Mackay
- Wellcome Surgical Institute & Hugh Fraser Neuroscience Labs., University of Glasgow, Scotland, UK
| | | | | | | |
Collapse
|
32
|
Ocaña M, Baeyens JM. Differential effects of K+ channel blockers on antinociception induced by alpha 2-adrenoceptor, GABAB and kappa-opioid receptor agonists. Br J Pharmacol 1993; 110:1049-54. [PMID: 7905339 PMCID: PMC2175792 DOI: 10.1111/j.1476-5381.1993.tb13919.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. The effects of several K+ channel blockers (sulphonylureas, 4-aminopyridine and tetraethylammonium) on the antinociception induced by clonidine, baclofen and U50,488H were evaluated by use of a tail flick test in mice. 2. Clonidine (0.125-2 mg kg-1, s.c.) induced a dose-dependent antinociceptive effect. The ATP-dependent K+ (KATP) channel blocker gliquidone (4-8 micrograms/mouse, i.c.v.) produced a dose-dependent displacement to the right of the clonidine dose-response line, but neither 4-aminopyridine (4-AP) (25-250 ng/mouse, i.c.v.) nor tetraethylammonium (TEA) (10-20 micrograms/mouse, i.c.v.) significantly modified clonidine-induced antinociception. 3. The order of potency of sulphonylureas in antagonizing clonidine-induced antinociception was gliquidone > glipizide > glibenclamide > tolbutamide, which is the same order of potency as these drugs block KATP channels in neurones of the CNS. 4. Baclofen (2-16 mg kg-1, s.c.) also induced a dose-dependent antinociceptive effect. Both 4-AP (2.5-25 ng/mouse, i.c.v.) and TEA (10-20 micrograms/mouse, i.c.v.) dose-dependently antagonized baclofen antinociception, producing a displacement to the right of the baclofen dose-response line. However, gliquidone (8-16 micrograms/mouse, i.c.v.) did not significantly modify the baclofen effect. 5. None of the K+ channel blockers tested (gliquidone, 8-16 micrograms/mouse; 4-AP, 25-250 ng/mouse and TEA, 10-20 micrograms/mouse, i.c.v.), significantly modified the antinociception induced by U50,488H (8 mg kg-1, s.c.). 6. These results suggest that the opening of K+ channels is involved in the antinociceptive effect of alpha 2 and GABAB, but not kappa-opioid, receptor agonists. The K+ channels opened by alpha2-adrenoceptor agonists seem to be ATP-dependent channels, whereas those opened by GABAB receptor agonists are not.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer
- 4-Aminopyridine/pharmacology
- Adrenergic alpha-Agonists/pharmacology
- Analgesics/pharmacology
- Animals
- Baclofen/pharmacology
- Clonidine/pharmacology
- Drug Interactions
- Female
- Mice
- Mice, Inbred Strains
- Nociceptors/drug effects
- Potassium Channels/drug effects
- Pyrrolidines/pharmacology
- Receptors, Adrenergic, alpha-2/physiology
- Receptors, GABA/drug effects
- Receptors, GABA/physiology
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/physiology
- Sulfonylurea Compounds/pharmacology
- Tetraethylammonium
- Tetraethylammonium Compounds/pharmacology
Collapse
Affiliation(s)
- M Ocaña
- Department of Pharmacology, School of Medicine, University of Granada, Spain
| | | |
Collapse
|
33
|
Boersma CJ, Van Leeuwen FW, O'Brien WG, Law GJ, Mason WT, Bicknell RJ. Dynorphin 1-17 delays the vasopressin induced mobilization of intracellular calcium in cultured astrocytes from the rat neural lobe. J Neuroendocrinol 1993; 5:583-90. [PMID: 8680428 DOI: 10.1111/j.1365-2826.1993.tb00525.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Opioid peptides are present in nerve terminals in the rat neural lobe where they partially coexist with vasopressin. Morphological findings suggest that these neuropeptides are released onto pituicytes, which is in agreement with a possible role for the pituicyte in oxytocin and vasopressin release from the neural lobe. Pituicytes in culture respond to vasopressin with a mobilization of calcium from intracellular stores. In the present study this vasopressin induced increase in intracellular free calcium levels was both delayed and decreased by pre-exposure to dynorphin 1-17, while dynorphin 1-17 by itself did not affect basal calcium levels. All effects of dynorphin 1-17 could be blocked with naloxone. The present results suggest that opioid receptors are present on pituicytes and are coupled to a second messenger pathway by which opioid peptides may inhibit inositol phosphate dependent calcium mobilization by other neuropeptides, such as vasopressin.
Collapse
Affiliation(s)
- C J Boersma
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Mackay KB, Kusumoto K, Graham DI, McCulloch J. Focal cerebral ischemia in the cat: pretreatment with a kappa-1 opioid receptor agonist, CI-977. Brain Res 1993; 618:213-9. [PMID: 8397047 DOI: 10.1016/0006-8993(93)91268-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effects of the kappa-1 opioid receptor agonist (5R)-(5 alpha,7 alpha,8 beta)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4,5]dec-8-yl]-4- benzofuranacetamide monohydrochloride (CI-977) upon ischemic brain damage have been examined in 15 halothane-anesthetized cats. Focal cerebral ischemia was produced by permanent occlusion of one middle cerebral artery (MCA), and the animals killed 6 h later. The amount of early ischemic brain damage was assessed in coronal sections at 16 predetermined stereotactic planes. Pretreatment with CI-977 (0.3 mg/kg i.v. followed by continuous infusion at 0.15 mg/kg/h until death), initiated 15 min prior to MCA occlusion, significantly reduced the volume of ischemic brain damage (from 2345 +/- 675 mm3 of the cerebral hemisphere in vehicle-treated cats to 1569 +/- 370 mm3 in CI-977-treated cats; P < 0.01). These data indicate that the kappa-1 opioid agonist CI-977 is neuroprotective in a model of focal cerebral ischemia in a gyrencephalic species where key systemic variables have been assessed throughout the entire post-ischemic period.
Collapse
Affiliation(s)
- K B Mackay
- Wellcome Surgical Institute & Hugh Fraser Neuroscience Labs., University of Glasgow, UK
| | | | | | | |
Collapse
|
35
|
Hayward NJ, McKnight AT, Woodruff GN. Neuroprotective effect of the kappa-agonist enadoline (CI-977) in rat models of focal cerebral ischaemia. Eur J Neurosci 1993; 5:961-7. [PMID: 8281306 DOI: 10.1111/j.1460-9568.1993.tb00947.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The neuroprotective efficacy of the kappa-opioid agonist enadoline (CI-977) was examined in two acute rat models of focal cerebral ischaemia [non-recovery (4 h) and recovery (24 h)]. In the non-recovery model, Sprague-Dawley rats were anaesthetized throughout the study period. Focal ischaemia was produced by the permanent occlusion of the left middle cerebral artery (MCA). The amount of early ischaemic damage was assessed in coronal sections at nine pre-determined stereotaxic planes. Enadoline at doses of 0.1, 0.3 and 1.0 mg/kg (n = 8), administered s.c. 30 min prior to ischaemia, produced dose-dependent amelioration of cortical damage. Importantly, enadoline had no significant effect on any of the physiological parameters monitored (blood pressure, blood gases, glucose, pH). In the recovery model the left MCA was permanently occluded under isoflurane anaesthesia. Animals were allowed to recover and were killed 24 h later. The amount of ischaemic brain damage and swelling was assessed histologically. In this model pretreatment with enadoline at either 0.1, 0.3, or 1.0 mg/kg s.c. was followed by continuous s.c. infusion at 0.017, 0.05 or 0.17 mg/kg/h respectively (n = 8-17). Enadoline produced dose-dependent reductions in the volumes of infarction and brain swelling; the greatest reductions were seen at 1.0 mg/kg plus 0.17 mg/kg/h in both infarction (reduced by 37.4% from controls) and swelling (reduced by 47.8%). Therefore the kappa-opioid agonist enadoline affords dose-dependent neuroprotection in both the non-recovery and recovery models of focal cerebral ischaemia in the rat.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- N J Hayward
- Parke-Davis Neuroscience Research Centre, Addenbrookes Hospital Site, Cambridge, UK
| | | | | |
Collapse
|
36
|
Pugsley MK, Penz WP, Walker MJA. Cardiovascular Actions of U50,488H and Related Kappa Agonists. ACTA ACUST UNITED AC 1993. [DOI: 10.1111/j.1527-3466.1993.tb00273.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Weisskopf MG, Zalutsky RA, Nicoll RA. The opioid peptide dynorphin mediates heterosynaptic depression of hippocampal mossy fibre synapses and modulates long-term potentiation. Nature 1993; 362:423-7. [PMID: 8096624 DOI: 10.1038/362423a0] [Citation(s) in RCA: 247] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mossy fibre pathway in the hippocampus uses glutamate as a neurotransmitter, but also contains the opioid peptide dynorphin. Synaptic release of dynorphin causes a presynaptic inhibition of neighbouring mossy fibres and inhibits the induction and expression of mossy fibre long-term potentiation. These findings demonstrate a physiological role for a neuropeptide in the central nervous system, provide a functional basis for the coexistence of a neuropeptide with classic neurotransmitters and demonstrate the very different roles played by these two classes of signalling molecules.
Collapse
Affiliation(s)
- M G Weisskopf
- Neuroscience Graduate Program, University of California, San Francisco 94143-0450
| | | | | |
Collapse
|
38
|
De Sarro G, Trimarchi GR, Sinopoli S, Masuda Y, De Sarro A. Anticonvulsant effects of U-54494A and U-50488H in genetically epilepsy-prone rats and DBA/2 mice: a possible involvement of glycine/NMDA receptor complex. GENERAL PHARMACOLOGY 1993; 24:439-47. [PMID: 8387056 DOI: 10.1016/0306-3623(93)90330-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1. The effects of U-54494A and U-50488H on convulsions produced by sound have been studied in genetically epilepsy-prone DBA/2 mice and genetically epilepsy-prone rats. 2. Both compounds showed a dose-dependent anticonvulsant activity. U-54494A was less potent as an anticonvulsant than U-50488H in genetically epilepsy-prone rats and elicited a similar potency to that of U-50488H in DBA/2 mice when administered intracerebroventricularly or intraperitoneally. 3. Similar sedative and hypothermic effects were observed after the highest dose of U-54494A and U-50488H in DBA/2 mice. U-50488H seems to exhibit a greater sedative effect and to affect the rotarod test in rats much more than U-54494A. U-54494A elicited a better therapeutic index than U-50488H. 4. The anticonvulsant properties of both compounds are antagonized by high doses of naloxone and nor-binaltorphimine, a selective kappa-opioid antagonist. 5. The effects of U-50488H and U-54494A in DBA/2 mice were also antagonized by the glycine/NMDA receptor antagonist D-serine. 6. The present results suggest a possible interaction between kappa-opioid and the glycine/NMDA receptors during epileptic phenomena.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer
- Animals
- Anticonvulsants/therapeutic use
- Epilepsy/prevention & control
- Female
- Male
- Mice
- Mice, Inbred DBA
- Motor Activity/drug effects
- Naloxone/pharmacology
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Pyrrolidines/pharmacology
- Pyrrolidines/therapeutic use
- Rats
- Rats, Sprague-Dawley
- Receptors, Glycine
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/physiology
- Receptors, Neurotransmitter/drug effects
- Receptors, Neurotransmitter/physiology
- Receptors, Opioid, kappa/drug effects
- Serine/pharmacology
Collapse
Affiliation(s)
- G De Sarro
- Department of Experimental and Clinical Medicine, University of Reggio Calabria, Italy
| | | | | | | | | |
Collapse
|
39
|
Fletcher GH, Chiappinelli VA. The actions of the kappa 1 opioid agonist U-50,488 on presynaptic nerve terminals of the chick ciliary ganglion. Neuroscience 1993; 53:239-50. [PMID: 8385747 DOI: 10.1016/0306-4522(93)90302-v] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The actions of the kappa 1 opioid receptor agonist U-50,488 (trans-(+-)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-benz ene - acetamide methane sulfonate) on the membrane properties of presynaptic calyciform nerve terminals of the chick ciliary ganglion were examined using intracellular recordings obtained from intact ganglion preparations maintained in vitro. U-50,488 produced a concentration-dependent (30-1000 microM) hyperpolarization with an apparent increase in input resistance. This hyperpolarization resulted from inhibition of the Na(+)-K+ inward rectifier, since it was blocked by 3 mM Cs+ and was not observed when terminals were depolarized beyond resting potential where inward rectification was voltage inactivated. A depolarizing effect on membrane potential with a further rise in input resistance was commonly observed at the highest perfused U-50,488 concentration (1 mM). The depolarizing event appears to result from a decrease in membrane potassium conductance, as the reversal potential for the response was estimated to be between -70 and -90 mV and the potassium channel blocker Ba2+ (1 mM) abolished the response. The kappa 1 opioid receptor agonist also blocked spontaneously occurring miniature hyperpolarizations in the terminals, which are considered to be due to a Ca(2+)-dependent K+ conductance. Most of the responses to U-50,488 were abolished in the presence of the kappa 1 receptor antagonist norbinaltorphimine. In conclusion, the excitability of presynaptic nerve terminals in the chick ciliary ganglion can be modulated by the inhibition of at least three separate ion conductances following activation of kappa 1 opioid receptor sites in the nerve terminal region.
Collapse
Affiliation(s)
- G H Fletcher
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, MO 63104
| | | |
Collapse
|
40
|
Bell JA. Selective blockade of spinal reflexes by omega-conotoxin in the isolated spinal cord of the neonatal rat. Neuroscience 1993; 52:711-6. [PMID: 7680794 DOI: 10.1016/0306-4522(93)90419-g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
High-voltage-activated calcium currents can be pharmacologically separated into two components: omega-conotoxin-sensitive, dihydropyridine resistant (N-type) and dihydropyridine sensitive, omega-conotoxin-resistant (L-type). In the present study, omega-conotoxin completely blocked spinal monosynaptic responses and long-latency electrically evoked polysynaptic reflexes were 93% blocked. Short-latency electrically evoked and capsaicin-evoked polysynaptic reflexes were partially blocked (39 and 37% block, respectively). Nifedipine, a dihydropyridine type antagonist, had no effect on any evoked responses and Bay K 8644, a dihydropyridine agonist, only increased spontaneous firing. Dynorphin A blocks N currents, but its depressant effects were not altered by irreversible blockade of omega-conotoxin-sensitive N channels. These results demonstrate that omega-conotoxin-sensitive N channels play a major role in the synaptic transmission that mediates monosynaptic and electrically evoked slow polysynaptic reflexes, and a lesser but significant role in fast and capsaicin-evoked polysynaptic spinal reflexes. L-type channels play a minor role. Furthermore, dynorphin A depresses synaptic transmission by blockade of high threshold calcium channels that are distinct from the omega-conotoxin-sensitive N channel, or by a mechanism that does not directly involve calcium channels.
Collapse
Affiliation(s)
- J A Bell
- Neuroimaging and Drug Action Section, National Institute on Drug Abuse, Baltimore, MD 21224
| |
Collapse
|
41
|
Ocaña M, Del Pozo E, Baeyens JM. ATP-dependent K+ channel blockers antagonize morphine- but not U-504,88H-induced antinociception. Eur J Pharmacol 1993; 230:203-7. [PMID: 8422902 DOI: 10.1016/0014-2999(93)90803-p] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effects of four ATP-dependent K+ channel blockers (hypoglycemic sulfonylureas) against morphine- and U50488H-induced antinociception were evaluated using the tail flick test in mice. None of the sulfonylureas tested significantly modified tail flick latency in control animals. However, i.c.v. pretreatment with gliquidone (0.4-1.6 micrograms/mouse), glipizide (2.5-10 micrograms/mouse), glibenclamide (10-40 micrograms/mouse) or tolbutamide (20-80 micrograms/mouse) dose dependently antagonized morphine-induced antinociception approximately equieffectively, the only difference being in potency: gliquidone > glipizide > glibenclamide > tolbutamide. This effect of sulfonylureas was very specific, since none antagonized the antinociception elicited by U50488H even at doses twice as great as the dose that induced maximum antagonism of morphine antinociception. Because morphine, but not U50488H, opens K+ channels in neurons and because the order of potency of the different sulfonylureas for blocking ATP-dependent K+ channels in neurons and for antagonizing morphine antinociception is the same, we suggest that morphine antinociception is mediated by the opening of ATP-dependent K+ channels.
Collapse
Affiliation(s)
- M Ocaña
- Department of Pharmacology, School of Medicine, University of Granada, Spain
| | | | | |
Collapse
|
42
|
Abstract
Classification of drugs acting on the kappa-opioid receptors seems to be difficult, since some of these ligands are also sigma agonists and/or display non-opioid actions as well. Furthermore, certain benzomorphans having kappa-agonistic character, are shown to be mu-antagonists too. Therefore the classification of the kappa-opioid receptor has to be presently restricted to two subclasses that also have physiological meaning. Dynorphin and Met-enkephalin-Arg6-Phe7 are proposed as endogenous peptide ligands for kappa-receptors. Nonpeptide agonists are benzeneacetamides interacting with the kappa1 receptor. Benzomorphans bind to both subtypes of kappa-receptors. No selective nonpeptide ligand for the kappa2 receptor exists as yet. Nor-binaltorphimine, a specific kappa-antagonist also inhibits both kappa-subtypes. Further research for kappa2 selective drugs is necessary for clear distinction between the two kappa-opioid binding sites. Molecular cloning of opioid receptors including their subtypes are expected to provide direct proof of their existence.
Collapse
Affiliation(s)
- M Wollemann
- Institute of Biochemistry, Hungarian Academy of Sciences, Szeged
| | | | | |
Collapse
|
43
|
Westenbroek RE, Hell JW, Warner C, Dubel SJ, Snutch TP, Catterall WA. Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. Neuron 1992; 9:1099-115. [PMID: 1334419 DOI: 10.1016/0896-6273(92)90069-p] [Citation(s) in RCA: 462] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A site-directed anti-peptide antibody, CNB-1, that recognizes the alpha 1 subunit of rat brain class B calcium channels (rbB) immunoprecipitated 43% of the N-type calcium channels labeled by [125I]omega-conotoxin. CNB-1 recognized proteins of 240 and 210 kd, suggesting the presence of two size forms of this alpha 1 subunit. Calcium channels recognized by CNB-1 were localized predominantly in dendrites; both dendritic shafts and punctate synaptic structures upon the dendrites were labeled. The large terminals of the mossy fibers of the dentate gyrus granule neurons were heavily labeled, suggesting that the punctate labeling pattern represents calcium channels in nerve terminals. The pattern of immunostaining was cell specific. The cell bodies of some pyramidal cells in layers II, III, and V of the dorsal cortex, Purkinje cells, and scattered cell bodies elsewhere in the brain were also labeled at a low level. The results define complementary distributions of N- and L-type calcium channels in dendrites, nerve terminals, and cell bodies of most central neurons and support distinct functional roles in calcium-dependent electrical activity, intracellular calcium regulation, and neurotransmitter release for these two channel types.
Collapse
Affiliation(s)
- R E Westenbroek
- Department of Pharmacology, University of Washington, Seattle 98195
| | | | | | | | | | | |
Collapse
|
44
|
De Sarro G, Ascioti C, di Paola ED, Vidal MJ, De Sarro A. Effects of antiepileptic drugs, calcium channel blockers and other compounds on seizures induced by activation of voltage-dependent L calcium channel in DBA/2 mice. GENERAL PHARMACOLOGY 1992; 23:1205-16. [PMID: 1283140 DOI: 10.1016/0306-3623(92)90313-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
1. The convulsant activity of the calcium voltage L-channel agonist Bay k 8644 was studied in genetically epilepsy prone DBA/2 mice. 2. Seizures were induced by intracerebroventricular injection of Bay k 8644. 3. These seizures were reversed by some calcium channel blockers such as dihydropyridines, some excitatory amino acid antagonists such as 2-amino-7-phosphonoeptanoate and CPPene, 2-chloro-adenosine, some anticonvulsant drugs such as magnesium valproate, diazepam and clonazepam and two kappa opioid agonists (U-50488H and U-54494A). 4. The remaining antiepileptic drugs (carbamazepine, phenytoin, phenobarbital and trimethadione) were ineffective in this respect. Other anticonvulsant compounds such as dizocilpine (MK 801), ketamine and drugs enhancing GABAergic transmission did not significantly affect the clonic phase of the seizures induced by Bay k 8644. 5. These results show that Bay k 8644 seizures are relatively resistant to some anticonvulsant compounds. The role of some neurotransmitters on seizures induced by Bay k 8644 is discussed.
Collapse
Affiliation(s)
- G De Sarro
- Institute of Pharmacology, Faculty of Medicine and Surgery, University of Reggio Calabria, Italy
| | | | | | | | | |
Collapse
|
45
|
Gannon RL, Terrian DM. Kappa opioid agonists inhibit transmitter release from guinea pig hippocampal mossy fiber synaptosomes. Neurochem Res 1992; 17:741-7. [PMID: 1353613 DOI: 10.1007/bf00969007] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Opioid agonists specific for the mu, delta, and kappa opioid receptor subtypes were tested for their ability to modulate potassium-evoked release of L-glutamate and dynorphin B-like immunoreactivity from guinea pig hippocampal mossy fiber synaptosomes. The kappa opioid agonists U-62,066E and (-) ethylketocyclazocine, but not the mu agonist [D-Ala2,N-MePhe4,Gly5-ol]-enkephalin (DAGO) nor the delta agonist [D-Pen2,5]enkephalin (DPDE), inhibited the potassium-evoked release of L-glutamate and dynorphin B-like immunoreactivity. U-62,066E, but not DAGO or DPDE, also inhibited the potassium-evoked rise in mossy fiber synaptosomal cytosolic Ca2+ levels, indicating a possible mechanism for kappa agonist inhibition of transmitter release. DAGO and DPDE were found to be without any effect on cytosolic Ca2+ levels or transmitter release in this preparation. The U-62,066E inhibition of the potassium-evoked rise in synaptosomal cytosolic Ca2+ levels was partially attenuated by the opioid antagonist quadazocine and insensitive to the delta-opioid specific antagonist ICI 174,864 and the mu opioid-preferring antagonists naloxone and naltrexone. Quadazocine also reversed U-62,066E inhibition of the potassium-evoked release of L-glutamate, but not dynorphin B-like immunoreactivity. These results suggest that kappa opioid agonists inhibit transmitter release from mossy fiber terminals through both kappa opioid and non-kappa opioid receptor mediated mechanisms.
Collapse
MESH Headings
- Animals
- Azocines/pharmacology
- Calcium/metabolism
- Dynorphins/analogs & derivatives
- Dynorphins/metabolism
- Endorphins/metabolism
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
- Enkephalin, D-Penicillamine (2,5)-
- Enkephalins/pharmacology
- Ethylketocyclazocine/pharmacology
- Glutamates/metabolism
- Glutamic Acid
- Guinea Pigs
- Hippocampus/drug effects
- Hippocampus/metabolism
- Male
- Potassium/pharmacology
- Pyrrolidines/pharmacology
- Receptors, Opioid/physiology
- Receptors, Opioid, delta
- Receptors, Opioid, kappa
- Receptors, Opioid, mu
- Synaptosomes/drug effects
- Synaptosomes/metabolism
Collapse
Affiliation(s)
- R L Gannon
- Department of Anatomy and Cell Biology, East Carolina University, School of Medicine, Greenville, NC 27858
| | | |
Collapse
|
46
|
Kusumoto K, Mackay KB, McCulloch J. The effect of the kappa-opioid receptor agonist CI-977 in a rat model of focal cerebral ischaemia. Brain Res 1992; 576:147-51. [PMID: 1325235 DOI: 10.1016/0006-8993(92)90621-f] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effect of a novel, highly potent and selective kappa-opioid receptor agonist CI-977 upon ischaemic brain damage and brain swelling has been examined in a rat model of focal cerebral ischaemia. Focal ischaemia was produced by the permanent occlusion of the left middle cerebral artery (MCA) during a brief period of halothane anaesthesia. The animals were sacrificed 24 h after MCA occlusion and the amount of ischaemic brain damage and swelling was assessed in coronal sections at 8 predetermined stereotactic planes. Treatment with CI-977 (0.03, 0.3 or 3 mg/kg), initiated 30 min prior to MCA occlusion (and at multiple times thereafter) produced dose-dependent reductions in the volumes of infarction and of brain swelling, with the most marked reductions being noted with CI-977 (0.3 mg/kg) in both infarction (reduced by 38% from controls; P less than 0.02) and swelling (reduced by 31%; P less than 0.002). There was an excellent correlation between the volume of brain swelling and ischaemic damage which was similar with saline-treated and CI-977-treated animals (overall correlation coefficient r = 0.896). These results indicate that CI-977 is effective in reducing infarction in a model of focal cerebral ischaemia, and that the reduction in brain swelling occurs in parallel with the reduction in ischaemic damage.
Collapse
Affiliation(s)
- K Kusumoto
- Wellcome Surgical Institute and Hugh Fraser Neuroscience Labs., University of Glasgow, UK
| | | | | |
Collapse
|
47
|
Anderton B, Kerwin R. The Department of Neuroscience at the Institute of Psychiatry. Psychol Med 1992; 22:265-269. [PMID: 1315443 DOI: 10.1017/s0033291700032931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
During the 1988/89 academic year the Department of Neuroscience was formed at the Institute of Psychiatry from the former Departments of Biochemistry and Pharmacology. The University agreed to the establishment of a new Chair of Neuroscience to accompany this academic initiative and to which Professor Brian Anderton was appointed in 1989. In 1989, a new Lecturer in Molecular Biology, Dr John Powell, was appointed as well as a Clinical Senior Lecturer jointly with the Department of Psychiatry, Dr Robert Kerwin; this latter post was a new post under the UFC New Clinical Appointments Scheme. These changes have led to a strengthening of the molecular and cellular neurobiological interests of this new department and will influence the future academic aims of the Department of Neuroscience and Institute of Psychiatry as a whole.
Collapse
Affiliation(s)
- B Anderton
- Department of Neuroscience, Institute of Psychiatry, London
| | | |
Collapse
|
48
|
Gannon RL, Terrian DM. U-50,488H inhibits dynorphin and glutamate release from guinea pig hippocampal mossy fiber terminals. Brain Res 1991; 548:242-7. [PMID: 1678297 DOI: 10.1016/0006-8993(91)91127-m] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The selective kappa opioid agonist U-50,488H was tested for its ability to modulate the potassium-induced rise of cytosolic Ca2+ in, and transmitter release from, guinea pig hippocampal mossy fiber synaptosomes. U-50,488H dose dependently inhibited the potassium-induced rise in synaptosomal free Ca2+ levels. This inhibition was attenuated by the selective kappa opioid antagonist nor-binaltorphimine, but was insensitive to naloxone and the sigma opioid antagonist ICI 174,864. U-50,488H also dose dependently depressed the potassium-induced release of L-glutamate and dynorphin B-like immunoreactivity from mossy fiber synaptosomes in a nor-binaltorphimine-sensitive manner. This is the first report to confirm the presence of a presynaptic kappa opioid receptor in the hippocampal mossy fiber-CA3 synapse and the nature of its influence on neurotransmitter release. The present results may be used to suggest that endogenous dynorphin peptides interact with this kappa opioid receptor to autoregulate the excitatory mossy fiber synaptic input.
Collapse
Affiliation(s)
- R L Gannon
- Department of Anatomy and Cell Biology, School of Medicine, East Carolina University, Greenville, NC 27858
| | | |
Collapse
|
49
|
Ohno M, Yamamoto T, Ueki S. Effect of the kappa-receptor agonist, U-50,488H, on cerebral ischemia-induced impairment of working memory assessed in rats by a three-panel runway task. Eur J Pharmacol 1991; 193:357-61. [PMID: 1647321 DOI: 10.1016/0014-2999(91)90151-f] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effect of U-50,488H, a selective kappa-receptor agonist, on memory functions in an animal model of cerebral ischemia was investigated by use of a three-panel runway task. A 5-min period of ischemia caused a significant increase in the number of errors (pushes made on the two incorrect panels of the three panel-gates at four choice points) in a working memory task but it did not impair a reference memory task. U-50,488H at 10 and 32 mg/kg, administered i.p. immediately after blood flow restoration significantly reduced the increase in errors expected to occur in a working memory task assessed 24 h after 5 min of ischemia. This protective effect of U-50,488H on amnesia in the ischemic rat was antagonized by the kappa-receptor antagonist, MR-2266. We conclude that U-50,488H prevents the impairment of working memory following transient forebrain ischemia, an event mediated by the activation of the kappa-opioid receptor.
Collapse
Affiliation(s)
- M Ohno
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
50
|
Little HJ. The role of neuronal calcium channels in dependence on ethanol and other sedatives/hypnotics. Pharmacol Ther 1991; 50:347-65. [PMID: 1661423 DOI: 10.1016/0163-7258(91)90050-v] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review discusses the importance of neuronal calcium currents in dependence on ethanol, barbiturates, benzodiazepines and opiates. The main sections describe the actions of ethanol on control of intracellular calcium and on calcium and calcium-dependent conductance mechanisms. In particular, the effects of both acute and chronic ethanol treatment on dihydropyridine-sensitive, voltage-dependent, calcium channels are described. The later sections cover the effects of barbiturates, benzodiazepines and opiates on these systems. The conclusions suggest that dihydropyridine calcium channel antagonists may offer a new therapeutic approach to the treatment of ethanol and opiate dependence.
Collapse
Affiliation(s)
- H J Little
- Pharmacology Department, Medical School, University Walk, Bristol, U.K
| |
Collapse
|