1
|
Clark EA, Wang L, Hanania T, Kretschmannova K, Bianchi M, Jagger E, Hu T, Li F, Gallero-Salas Y, Koblan KS, Dedic N, Bristow LJ. 5-HT 1B receptor activation produces rapid antidepressant-like effects in rodents. Pharmacol Biochem Behav 2025; 247:173917. [PMID: 39608648 DOI: 10.1016/j.pbb.2024.173917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Ketamine is noted for its rapid onset antidepressant response and effectiveness in patients with treatment resistant depression. While most research has focused on glutamatergic mechanisms, recent studies show that antidepressant-like effects in rodents are dependent upon the serotonergic (5-HT) system and suggest a potential contribution of the 5-HT1B receptor. In this study we utilized CP-94253 to examine whether 5-HT1B receptor agonism produces rapid and sustained antidepressant-like effects, focusing on rodent models and treatment approaches commonly used to demonstrate the differentiated response to ketamine. We first confirmed that CP-94253 is a potent 5-HT1B agonist in vitro and that CP-94253 occupies brain 5-HT1B receptors at the doses tested. CP-94253 reduced immobility in the mouse forced swim test (FST) and exhibited a prominent antidepressant signature in the mouse-behavior phenotyping platform SmartCube®. When examined 24 h after acute treatment, CP-94253 reduced FST immobility in both naïve rats and in rats receiving chronic interferon alpha treatment. Ex vivo hippocampal long-term potentiation was also enhanced in naïve rats receiving acute CP-94253 treatment, 24 h prior to the recordings. In mice exposed to chronic social defeat stress, antidepressant-like effects in the tail suspension and sucrose preference tests were seen 1 h and 24 h after acute treatment, respectively. Finally, whole brain c-fos imaging in mice showed that CP-94253 modulates neuronal activity in discrete brain regions including the lateral habenula circuit implicated in depression and the ketamine treatment response. Collectively these results support the further investigation of 5-HT1B agonism as a novel treatment approach for major depressive disorder.
Collapse
Affiliation(s)
- Erin A Clark
- Sumitomo Pharma America, Inc., 84 Waterford Drive, Marlborough, MA 01752, USA.
| | - Lien Wang
- Sumitomo Pharma America, Inc., 84 Waterford Drive, Marlborough, MA 01752, USA
| | - Taleen Hanania
- Psychogenics Inc., 215 College Road, Paramus, NJ 07652, USA
| | | | - Massimiliano Bianchi
- Ulysses Neuroscience Ltd., Trinity College Institute of Neuroscience, Lloyd Institute, Trinity College Dublin, Ireland
| | - Elizabeth Jagger
- Sygnature Discovery, BioCity, Pennyfoot Street, Nottingham NG1 1GR, UK
| | - Tingting Hu
- HD Biosciences Company Ltd., 590 Ruiqing Road, Pudong, Shanghai 201201, China
| | - Fugang Li
- HD Biosciences Company Ltd., 590 Ruiqing Road, Pudong, Shanghai 201201, China
| | | | - Kenneth S Koblan
- Sumitomo Pharma America, Inc., 84 Waterford Drive, Marlborough, MA 01752, USA
| | - Nina Dedic
- Sumitomo Pharma America, Inc., 84 Waterford Drive, Marlborough, MA 01752, USA
| | - Linda J Bristow
- Sumitomo Pharma America, Inc., 84 Waterford Drive, Marlborough, MA 01752, USA
| |
Collapse
|
2
|
Tian J, Stucky CS, Wang T, Muma NA, Johnson M, Du H. Mitochondrial Dysfunction Links to Impaired Hippocampal Serotonin Release in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2023; 93:605-619. [PMID: 37066917 PMCID: PMC10416312 DOI: 10.3233/jad-230072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND Deprivation of extracellular serotonin has been linked to cognitive decline and neuropsychiatric disturbances in Alzheimer's disease (AD). However, despite degeneration of serotonin-producing neurons, whether serotonin release is affected in AD-sensitive brain regions is unknown. OBJECTIVE This study investigated the impact of mitochondrial dysfunction in decreased hippocampal serotonin release in AD amyloidosis mouse model 5xFAD mice. METHODS Electrochemical assays were applied to examine hippocampal serotonin release. We also employed multidisciplinary techniques to determine the role of oligomeric amyloid-β (Aβ) in hippocampal mitochondrial deficits and serotonin release deficiency. RESULTS 5xFAD mice exhibited serotonin release decrease and relatively moderate downregulation of serotonergic fiber density as well as serotonin content in the hippocampal region. Further experiments showed an inhibitory effect of oligomeric amyloid-β (Aβ) on hippocampal serotonin release without affecting the density of serotonergic fibers. Pharmaceutical uncoupling of mitochondrial oxidative phosphorylation (OXPHOS) disrupted hippocampal serotonin release in an ex vivo setting. This echoes the mitochondrial defects in serotonergic fibers in 5xFAD mice and oligomeric Aβ-challenged primary serotonergic neuron cultures and implicates a link between mitochondrial dysfunction and serotonin transmission defects in AD-relevant pathological settings. CONCLUSION The most parsimonious interpretation of our findings is that mitochondrial dysfunction is a phenotypic change of serotonergic neurons, which potentially plays a role in the development of serotonergic failure in AD-related conditions.
Collapse
Affiliation(s)
- Jing Tian
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | | | - Tienju Wang
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Nancy A. Muma
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Michael Johnson
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Heng Du
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA
- Alzheimer’s Disease Center, University of Kansas Medical Center, Lawrence, KS, USA
| |
Collapse
|
3
|
Helman TJ, Headrick JP, Vider J, Peart JN, Stapelberg NJC. Sex-specific behavioral, neurobiological, and cardiovascular responses to chronic social stress in mice. J Neurosci Res 2022; 100:2004-2027. [PMID: 36059192 DOI: 10.1002/jnr.25115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023]
Abstract
Psychosocial stress promotes and links mood and cardiovascular disorders in a sex-specific manner. However, findings in animal models are equivocal, in some cases opposing human dimorphisms. We examined central nervous system (CNS), behavioral, endocrine, cardiac, and hepatic outcomes in male or female C57Bl/6 mice subjected to chronic social stress (56 days of social isolation, with intermittent social confrontation encounters twice daily throughout the final 20 days). Females exhibited distinct physiological and behavioral changes, including relative weight loss, and increases in coronary resistance, hepatic inflammation, and thigmotaxic behavior in the open field. Males evidence reductions in coronary resistance and cardiac ischemic tolerance, with increased circulating and hippocampal monoamine levels and emerging anhedonia. Shared CNS gene responses include reduced hippocampal Maoa and increased Htr1b expression, while unique responses include repression of hypothalamic Ntrk1 and upregulation of cortical Nrf2 and Htr1b in females; and repression of hippocampal Drd1 and hypothalamic Gabra1 and Oprm in males. Declining cardiac stress resistance in males was associated with repression of cardiac leptin levels and metabolic, mitochondrial biogenesis, and anti-inflammatory gene expression. These integrated data reveal distinct biological responses to social stress in males and females, and collectively evidence greater biological disruption or allostatic load in females (consistent with propensities to stress-related mood and cardiovascular disorders in humans). Distinct stress biology, and molecular to organ responses, emphasize the importance of sex-specific mechanisms and potential approaches to stress-dependent disease.
Collapse
Affiliation(s)
- Tessa J Helman
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - John P Headrick
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - Jelena Vider
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - Jason N Peart
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, Australia
| | - Nicolas J C Stapelberg
- Faculty of Health Sciences and Medicine, Bond University, Robina, Queensland, Australia.,Gold Coast Hospital and Health Service, Southport, Queensland, Australia
| |
Collapse
|
4
|
Osuch E, Ursano R, Li H, Webster M, Hough C, Fullerton C, Leskin G. Brain Environment Interactions: Stress, Posttraumatic Stress Disorder, and the Need for a Postmortem Brain Collection. Psychiatry 2022; 85:113-145. [PMID: 35588486 DOI: 10.1080/00332747.2022.2068916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Stress, especially the extreme stress of traumatic events, can alter both neurobiology and behavior. Such extreme environmental situations provide a useful model for understanding environmental influences on human biology and behavior. This paper will review some of the evidence of brain alterations that occur with exposure to environmental stress. This will include recent studies using neuroimaging and will address the need for histological confirmation of imaging study results. We will review the current scientific approaches to understanding brain environment interactions, and then make the case for the collection and study of postmortem brain tissue for the advancement of our understanding of the effects of environment on the brain.Creating a brain tissue collection specifically for the investigation of the effects of extreme environmental stressors fills a gap in the current research; it will provide another of the important pieces to the puzzle that constitutes the scientific investigation of negative effects of environmental exposures. Such a resource will facilitate new discoveries related to the psychiatric illnesses of acute stress disorder and posttraumatic stress disorder, and can enable scientists to correlate structural and functional imaging findings with tissue abnormalities, which is essential to validate the results of recent imaging studies.
Collapse
|
5
|
Żmudzka E, Sałaciak K, Sapa J, Pytka K. Serotonin receptors in depression and anxiety: Insights from animal studies. Life Sci 2018; 210:106-124. [PMID: 30144453 DOI: 10.1016/j.lfs.2018.08.050] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
Abstract
Serotonin regulates many physiological processes including sleep, appetite, and mood. Thus, serotonergic system is an important target in the treatment of psychiatric disorders, such as major depression and anxiety. This natural neurotransmitter interacts with 7 families of its receptors (5-HT1-7), which cause a variety of pharmacological effects. Using genetically modified animals and selective or preferential agonists and antagonist, numerous studies demonstrated the involvement of almost all serotonin receptor subtypes in antidepressant- or anxiolytic-like effects. In this review, based on animal studies, we discuss the possible involvement of serotonin receptor subtypes in depression and anxiety.
Collapse
Affiliation(s)
- Elżbieta Żmudzka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Jacek Sapa
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
6
|
The 5-HT 1B receptor - a potential target for antidepressant treatment. Psychopharmacology (Berl) 2018; 235:1317-1334. [PMID: 29546551 PMCID: PMC5919989 DOI: 10.1007/s00213-018-4872-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/26/2018] [Indexed: 11/23/2022]
Abstract
Major depressive disorder (MDD) is the leading cause of disability worldwide. The serotonin hypothesis may be the model of MDD pathophysiology with the most support. The majority of antidepressants enhance synaptic serotonin levels quickly, while it usually takes weeks to discern MDD treatment effect. It has been hypothesized that the time lag between serotonin increase and reduction of MDD symptoms is due to downregulation of inhibitory receptors such as the serotonin 1B receptor (5-HT1BR). The research on 5-HT1BR has previously been hampered by a lack of selective ligands for the receptor. The last extensive review of 5-HT1BR in the pathophysiology of depression was published 2009, and based mainly on findings from animal studies. Since then, selective radioligands for in vivo quantification of brain 5-HT1BR binding with positron emission tomography has been developed, providing new knowledge on the role of 5-HT1BR in MDD and its treatment. The main focus of this review is the role of 5-HT1BR in relation to MDD and its treatment, although studies of 5-HT1BR in obsessive-compulsive disorder, alcohol dependence, and cocaine dependence are also reviewed. The evidence outlined range from animal models of disease, effects of 5-HT1B receptor agonists and antagonists, case-control studies of 5-HT1B receptor binding postmortem and in vivo, with positron emission tomography, to clinical studies of 5-HT1B receptor effects of established treatments for MDD. Low 5-HT1BR binding in limbic regions has been found in MDD patients. When 5-HT1BR ligands are administered to animals, 5-HT1BR agonists most consistently display antidepressant-like properties, though it is not yet clear how 5-HT1BR is best approached for optimal MDD treatment.
Collapse
|
7
|
Ishikawa C, Li H, Ogura R, Yoshimura Y, Kudo T, Shirakawa M, Shiba D, Takahashi S, Morita H, Shiga T. Effects of gravity changes on gene expression of BDNF and serotonin receptors in the mouse brain. PLoS One 2017; 12:e0177833. [PMID: 28591153 PMCID: PMC5462371 DOI: 10.1371/journal.pone.0177833] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/03/2017] [Indexed: 02/01/2023] Open
Abstract
Spaceflight entails various stressful environmental factors including microgravity. The effects of gravity changes have been studied extensively on skeletal, muscular, cardiovascular, immune and vestibular systems, but those on the nervous system are not well studied. The alteration of gravity in ground-based animal experiments is one of the approaches taken to address this issue. Here we investigated the effects of centrifugation-induced gravity changes on gene expression of brain-derived neurotrophic factor (BDNF) and serotonin receptors (5-HTRs) in the mouse brain. Exposure to 2g hypergravity for 14 days showed differential modulation of gene expression depending on regions of the brain. BDNF expression was decreased in the ventral hippocampus and hypothalamus, whereas increased in the cerebellum. 5-HT1BR expression was decreased in the cerebellum, whereas increased in the ventral hippocampus and caudate putamen. In contrast, hypergravity did not affect gene expression of 5-HT1AR, 5-HT2AR, 5-HT2CR, 5-HT4R and 5-HT7R. In addition to hypergravity, decelerating gravity change from 2g hypergravity to 1g normal gravity affected gene expression of BDNF, 5-HT1AR, 5-HT1BR, and 5-HT2AR in various regions of the brain. We also examined involvement of the vestibular organ in the effects of hypergravity. Surgical lesions of the inner ear's vestibular organ removed the effects induced by hypergravity on gene expression, which suggests that the effects of hypergravity are mediated through the vestibular organ. In summary, we showed that gravity changes induced differential modulation of gene expression of BDNF and 5-HTRs (5-HT1AR, 5-HT1BR and 5-HT2AR) in some brain regions. The modulation of gene expression may constitute molecular bases that underlie behavioral alteration induced by gravity changes.
Collapse
MESH Headings
- Animals
- Brain/metabolism
- Brain/physiology
- Brain Mapping
- Brain-Derived Neurotrophic Factor/biosynthesis
- Brain-Derived Neurotrophic Factor/metabolism
- Gene Expression Regulation
- Gravitation
- Hippocampus/metabolism
- Humans
- Mice
- Receptor, Serotonin, 5-HT1A/biosynthesis
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1B/biosynthesis
- Receptor, Serotonin, 5-HT1B/metabolism
- Receptor, Serotonin, 5-HT2A/biosynthesis
- Receptor, Serotonin, 5-HT2A/metabolism
- Space Flight
- Vestibule, Labyrinth/metabolism
- Vestibule, Labyrinth/physiology
Collapse
Affiliation(s)
- Chihiro Ishikawa
- Laboratory of Neurobiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Haiyan Li
- Laboratory of Neurobiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Rin Ogura
- Laboratory of Neurobiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuko Yoshimura
- Laboratory of Neurobiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takashi Kudo
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
| | - Masaki Shirakawa
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Ibaraki, Japan
| | - Dai Shiba
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
| | - Hironobu Morita
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takashi Shiga
- Laboratory of Neurobiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
- Department of Neurobiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
8
|
Vidal R, Diaz A, Pazos A, Castro E. Region-specific regulation of 5-HT1B receptors in the rat brain by chronic venlafaxine treatment. Psychopharmacology (Berl) 2013; 229:177-85. [PMID: 23609771 DOI: 10.1007/s00213-013-3104-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 03/26/2013] [Indexed: 11/29/2022]
Abstract
RATIONALE Venlafaxine is a non-selective serotonin and noradrenaline reuptake inhibitor antidepressant drug for which clinical studies have suggested a high level efficacy and a possible early action onset compared to the classical antidepressants. Its therapeutic effects might be due, at least in part, to adaptive changes in serotonergic neurotransmission, through the activation of the different 5-HT receptor subtypes. 5-HT(1B) receptors are located in the axon terminals of both serotonergic and non-serotonergic neurons, where they act as inhibitory autoreceptors or heteroreceptors, respectively. However, the information about the involvement of this subtype in the mechanism of action of antidepressants is limited and quite controversial. OBJECTIVES The aim of this study was to evaluate the effect of venlafaxine (10 mg kg⁻¹ day⁻¹, p.o.) after 21 days of treatment on the density of 5-HT(1B) receptors and their functionality in rat brain. METHODS Effects of chronic venlafaxine were evaluated at different levels of 5-HT(1B) receptor by using receptor autoradiography, [³⁵S]GTPγS binding, and the regulation of body temperature induced by selective 5-HT(1B) agonist. RESULTS Our results show that venlafaxine induced an increase in sensitivity of 5-HT(1B) receptors in hypothalamus both at G-protein level and the control of core temperature without affecting the receptor density. CONCLUSIONS These results demonstrate that adaptive changes on 5-HT(1B) receptors induced by chronic administration of venlafaxine exhibit regional differences suggesting that the hypothalamus might be an important site of drug action.
Collapse
Affiliation(s)
- R Vidal
- Instituto de Biomedicina y Biotecnología-IBBTEC, UC-CSIC-SODERCAN, Santander, Cantabria, Spain
| | | | | | | |
Collapse
|
9
|
Abstract
Modern medicine has progressed in parallel with the advancement of biochemistry, anatomy, and physiology. By using the tools of modern medicine, the physician today can treat and prevent a number of diseases through pharmacology, genetics, and physical interventions. Besides this materia medica, the patient's mind, cognitions, and emotions play a central part as well in any therapeutic outcome, as investigated by disciplines such as psychoneuroendocrinoimmunology. This review describes recent findings that give scientific evidence to the old tenet that patients must be both cured and cared for. In fact, we are today in a good position to investigate complex psychological factors, like placebo effects and the doctor-patient relationship, by using a physiological and neuroscientific approach. These intricate psychological factors can be approached through biochemistry, anatomy, and physiology, thus eliminating the old dichotomy between biology and psychology. This is both a biomedical and a philosophical enterprise that is changing the way we approach and interpret medicine and human biology. In the first case, curing the disease only is not sufficient, and care of the patient is of tantamount importance. In the second case, the philosophical debate about the mind-body interaction can find some important answers in the study of placebo effects. Therefore, maybe paradoxically, the placebo effect and the doctor-patient relationship can be approached by using the same biochemical, cellular and physiological tools of the materia medica, which represents an epochal transition from general concepts such as suggestibility and power of mind to a true physiology of the doctor-patient interaction.
Collapse
Affiliation(s)
- Fabrizio Benedetti
- Department of Neuroscience, University of Turin Medical School, and National Institute of Neuroscience, Turin, Italy.
| |
Collapse
|
10
|
Carr GV, Lucki I. The role of serotonin receptor subtypes in treating depression: a review of animal studies. Psychopharmacology (Berl) 2011; 213:265-87. [PMID: 21107537 PMCID: PMC3374933 DOI: 10.1007/s00213-010-2097-z] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 11/04/2010] [Indexed: 01/22/2023]
Abstract
RATIONALE Serotonin reuptake inhibitors (SSRIs) are effective in treating depression. Given the existence of different families and subtypes of 5-HT receptors, multiple 5-HT receptors may be involved in the antidepressant-like behavioral effects of SSRIs. OBJECTIVE Behavioral pharmacology studies investigating the role of 5-HT receptor subtypes in producing or blocking the effects of SSRIs were reviewed. RESULTS Few animal behavior tests were available to support the original development of SSRIs. Since their development, a number of behavioral tests and models of depression have been developed that are sensitive to the effects of SSRIs, as well as to other types of antidepressant treatments. The rationale for the development and use of these tests is reviewed. Behavioral effects similar to those of SSRIs (antidepressant-like) have been produced by agonists at 5-HT(1A), 5-HT(1B), 5-HT(2C), 5-HT(4), and 5-HT(6) receptors. Also, antagonists at 5-HT(2A), 5-HT(2C), 5-HT(3), 5-HT(6), and 5-HT(7) receptors have been reported to produce antidepressant-like responses. Although it seems paradoxical that both agonists and antagonists at particular 5-HT receptors can produce antidepressant-like effects, they probably involve diverse neurochemical mechanisms. The behavioral effects of SSRIs and other antidepressants may also be augmented when 5-HT receptor agonists or antagonists are given in combination. CONCLUSIONS The involvement of 5-HT receptors in the antidepressant-like effects of SSRIs is complex and involves the orchestration of stimulation and blockade at different 5-HT receptor subtypes. Individual 5-HT receptors provide opportunities for the development of a newer generation of antidepressants that may be more beneficial and effective than SSRIs.
Collapse
|
11
|
|
12
|
Holmes A. Genetic variation in cortico-amygdala serotonin function and risk for stress-related disease. Neurosci Biobehav Rev 2008; 32:1293-314. [PMID: 18439676 PMCID: PMC2561331 DOI: 10.1016/j.neubiorev.2008.03.006] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 02/20/2008] [Indexed: 01/09/2023]
Abstract
The serotonin system is strongly implicated in the pathophysiology and therapeutic alleviation of stress-related disorders such as anxiety and depression. Serotonergic modulation of the acute response to stress and the adaptation to chronic stress is mediated by a myriad of molecules controlling serotonin neuron development (Pet-1), synthesis (tryptophan hydroxylase 1 and 2 isozymes), packaging (vesicular monoamine transporter 2), actions at presynaptic and postsynaptic receptors (5-HT1A, 5-HT1B, 5-HT2A, 5-HT2C, 5-HT3A, 5-HT4, 5-HT5A, 5-HT6, 5-HT7), reuptake (serotonin transporter), and degradation (monoamine oxidase A). A growing body of evidence from preclinical rodents models, and especially genetically modified mice and inbred mouse strains, has provided significant insight into how genetic variation in these molecules can affect the development and function of a key neural circuit between the dorsal raphe nucleus, medial prefrontal cortex and amygdala. By extension, such variation is hypothesized to have a major influence on individual differences in the stress response and risk for stress-related disease in humans. The current article provides an update on this rapidly evolving field of research.
Collapse
Affiliation(s)
- Andrew Holmes
- Section on Behavioral Science and Genetics, Laboratory for Integrative Neuroscience, National Institute on Alcoholism and Alcohol Abuse, NIH, 5625 Fishers Lane Room 2N09, Rockville, MD 20852-9411, USA.
| |
Collapse
|
13
|
Abstract
Presynaptic receptors for dopamine, histamine and serotonin that are located on dopaminergic, histaminergic and sertonergic axon terminals, respectively, function as autoreceptors. Presynaptic receptors also occur as heteroreceptors on other axon terminals. Auto- and heteroreceptors mainly affect Ca(2+) -dependent exocytosis from the receptor-bearing nerve ending. Some additionally subserve other presynaptic functions.Presynaptic dopamine, histamine and serotonin receptors are involved in various (patho)physiological conditions. Examples are the following:Dopamine autoreceptors play a role in Parkinson's disease, schizophrenia and drug addiction. Dopamine heteroreceptors affecting the release of acetylcholine and of amino acid neurotransmitters in the basal ganglia are also relevant for Parkinson's disease. Peripheral dopamine heteroreceptors on postganglionic sympathetic terminals influence heart rate and vascular resistance through modulation of noradrenaline release. Blockade of histamine autoreceptors increases histamine synthesis and release and may support higher CNS functions such as arousal, cognition and learning. Peripheral histamine heteroreceptors on C fiber and on postganglionic sympathetic fiber terminals diminish neuropeptide and noradrenaline release, respectively. Both inhibititory effects are beneficial in myocardial ischemia. The inhibition of neuropeptide release also explains the antimigraine effects of some agonists of presynaptic histamine receptors. Upregulation of presynaptic serotonin autoreceptors is probably involved in the pathogenesis of major depression. Correspondingly, antidepressant treatments can be linked with a reduced density of 5-HT autoreceptors. 5-HT Heteroreceptor activation diminishes acetylcholine and GABA release and may therefore increase anxiety. In the periphery, presynaptic 5-HT heteroreceptor agonists shorten migraine attacks by inhibition of the release of neuropeptides from trigeminal afferents, apart from their constrictive action on meningeal vessels.
Collapse
MESH Headings
- Animals
- Dopamine/metabolism
- Dopamine Agents/pharmacology
- Dopamine Agents/therapeutic use
- Histamine Antagonists/pharmacology
- Histamine Antagonists/therapeutic use
- Humans
- Nervous System Diseases/drug therapy
- Receptors, Dopamine/drug effects
- Receptors, Dopamine/metabolism
- Receptors, Dopamine/physiology
- Receptors, Histamine/drug effects
- Receptors, Histamine/metabolism
- Receptors, Histamine/physiology
- Receptors, Presynaptic/drug effects
- Receptors, Presynaptic/metabolism
- Receptors, Presynaptic/physiology
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/metabolism
- Receptors, Serotonin/physiology
- Serotonin Agents/pharmacology
- Serotonin Agents/therapeutic use
Collapse
Affiliation(s)
- Thomas J Feuerstein
- Neurochirurgische Universitätsklinik Breisacherstrasse, 64 D - 79106, Freiburg, Germany.
| |
Collapse
|
14
|
O'Dell LE, Manzardo AM, Polis I, Stouffer DG, Parsons LH. Biphasic alterations in Serotonin-1B (5-HT1B) receptor function during abstinence from extended cocaine self-administration. J Neurochem 2006; 99:1363-76. [PMID: 17074068 DOI: 10.1111/j.1471-4159.2006.04163.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alterations in 5-HT1B receptor function during cocaine abstinence were evaluated in rats given either limited- or extended access (LA and EA, respectively) to cocaine self-administration. The locomotor response to the 5-HT1B/1A agonist RU24969 was significantly reduced in cocaine-experienced animals relative to cocaine-naïve controls following 6 h of abstinence but became sensitized over the subsequent 14 days of abstinence. Both the early phase subsensitivity and later phase supersensivity to RU 24969-induced activity were greater in EA versus LA animals. Intra-nucleus accumbens administration of the 5-HT1B agonist CP 93, 129 produced significantly greater increases in dialysate dopamine levels in EA versus control animals following 14 days of abstinence. However, there was no difference between EA and cocaine-naïve control animals in the augmentation of cocaine-induced increases in nucleus accumbens DA produced by intra-VTA CP 93, 129. Collectively these findings demonstrate that 5-HT1B receptor function is persistently altered by cocaine self-administration.
Collapse
Affiliation(s)
- Laura E O'Dell
- Department of Psychology, The University of Texas at El Paso, El Paso, Texas, USA
| | | | | | | | | |
Collapse
|
15
|
Kohen R, Kirov S, Navaja GP, Happe HK, Hamblin MW, Snoddy JR, Neumaier JF, Petty F. Gene expression profiling in the hippocampus of learned helpless and nonhelpless rats. THE PHARMACOGENOMICS JOURNAL 2005; 5:278-91. [PMID: 16010284 DOI: 10.1038/sj.tpj.6500322] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In the learned helplessness (LH) animal model of depression, failure to attempt escape from avoidable environmental stress, LH, indicates behavioral despair, whereas nonhelpless (NH) behavior reflects behavioral resilience to the effects of environmental stress. Comparing hippocampal gene expression with large-scale oligonucleotide microarrays, we found that stress-resilient (NH) rats, although behaviorally indistinguishable from controls, showed a distinct gene expression profile compared to LH, sham stressed, and naïve control animals. Genes that were confirmed as differentially expressed in the NH group by quantitative PCR strongly correlated in their levels of expression across all four animal groups. Differential expression could not be confirmed at the protein level. We identified several shared degenerate sequence motifs in the 3' untranslated region (3'UTR) of differentially expressed genes that could be a factor in this tight correlation of expression levels among differentially expressed genes.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport
- Animals
- Behavior, Animal/physiology
- Depression/genetics
- Depression/physiopathology
- Disease Models, Animal
- Electroshock
- Gene Expression
- Gene Expression Profiling
- Helplessness, Learned
- Hippocampus/metabolism
- Male
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Mitogen-Activated Protein Kinase 9/genetics
- Mitogen-Activated Protein Kinase 9/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Oligonucleotide Array Sequence Analysis
- Promoter Regions, Genetic
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Stress, Psychological/genetics
- Stress, Psychological/physiopathology
- Untranslated Regions
Collapse
Affiliation(s)
- R Kohen
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, 98108, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Dwivedi Y, Mondal AC, Payappagoudar GV, Rizavi HS. Differential regulation of serotonin (5HT)2A receptor mRNA and protein levels after single and repeated stress in rat brain: role in learned helplessness behavior. Neuropharmacology 2005; 48:204-14. [PMID: 15695159 DOI: 10.1016/j.neuropharm.2004.10.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 09/20/2004] [Accepted: 10/15/2004] [Indexed: 01/07/2023]
Abstract
Stress-induced learned helplessness in animals serves as a model of behavioral depression and other stress-related disorders. Our recent report that repeated stress prolongs the duration of learned helplessness behavior in rats may be important since acute and recurrent disorders may have different responsive mechanisms. To examine the role of serotonergic (5HT) mechanisms in such behavior, we studied the expression of 5HT2A receptors in different brain areas of rats, and further investigated whether the alterations in expression of 5HT2A receptors are similar after single versus repeated stress. Rats exposed to inescapable shock once on day 1, or twice, on day 1 and day 7, were tested for escape latency on days 2 and 4, or day 14, respectively. Higher escape latencies were observed on day 2 after single, and on day 14 after repeated shock. Whereas the single-stress paradigm produced a significant decrease of 5HT2A receptor mRNA and protein expression in hippocampus of non-learned helpless and learned helpless rats as compared with tested controls, repeated stress resulted in increase in frontal cortex but decrease in hippocampus and hypothalamus of learned helpless rats only, as compared with tested control rats. These results demonstrate differential regulation of 5HT2A receptors in LH rats after single and repeated stress, which may be critical in the pathophysiology of depression/other stress-related disorders.
Collapse
Affiliation(s)
- Yogesh Dwivedi
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
17
|
Greenwood BN, Foley TE, Burhans D, Maier SF, Fleshner M. The consequences of uncontrollable stress are sensitive to duration of prior wheel running. Brain Res 2005; 1033:164-78. [PMID: 15694921 DOI: 10.1016/j.brainres.2004.11.037] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2004] [Indexed: 11/28/2022]
Abstract
The behavioral consequences of uncontrollable stress, or learned helplessness (LH) behaviors, are thought to involve hyperactivity of serotonergic (5-HT) neurons in the dorsal raphe nucleus (DRN). Other brain regions implicated in LH and capable of affecting 5-HT systems, such as the bed nucleus of the stria terminalis (BNST), amygdala, and habenula, could contribute to DRN 5-HT hyperactivity during uncontrollable stress. Six weeks of wheel running prevents LH and attenuates uncontrollable stress-induced c-Fos expression in DRN 5-HT neurons, although the duration of wheel running necessary for these effects is unknown. In the current study, 6 but not 3, weeks of wheel running blocked the shuttle box escape deficit and exaggerated fear produced by uncontrollable tail shock in sedentary rats. Corresponding to the duration-dependent effects of wheel running on LH behaviors, 6 weeks of wheel running was required to attenuate uncontrollable stress-induced 5-HT neural activity, indexed by c-Fos protein expression, in the DRN and c-Fos expression in the lateral ventral region of the BNST. Wheel running, regardless of duration, did not affect c-Fos expression anywhere in the amygdala or habenula. These data indicate that the behavioral effects of uncontrollable stress are sensitive to the duration of prior physical activity and are consistent with the hypothesis that attenuation of DRN 5-HT activity contributes to the prevention of LH by wheel running. The potential role of the BNST in the prevention of LH by wheel running is discussed.
Collapse
Affiliation(s)
- Benjamin N Greenwood
- Department of Integrative Physiology, University of Colorado, Boulder, 80309-0354, USA
| | | | | | | | | |
Collapse
|
18
|
Urani A, Chourbaji S, Gass P. Mutant mouse models of depression: Candidate genes and current mouse lines. Neurosci Biobehav Rev 2005; 29:805-28. [PMID: 15925701 DOI: 10.1016/j.neubiorev.2005.03.020] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Depression is a multifactorial and multigenetic disease. At present, three main theories try to conceptualize its molecular and biochemical mechanisms, namely the monoamine-, the hypothalamus-pituitary-adrenal- (HPA-) system- and the neurotrophin-hypotheses. One way to explore, validate or falsify these hypotheses is to alter the expression of genes that are involved in these systems and study their respective role in animal behavior and neuroendocrinological parameters. Following an introduction in which we briefly describe each hypothesis, we review here the different mouse lines generated to study the respective molecular pathways. Among the many mutant lines generated, only a few can be regarded as genetic depression models or as models of predisposition for a depressive syndrome after stress exposure. However, this is likely to reflect the human situation where depressive syndromes are complex, can vary to a great extent with respect to their symptomatology, and may be influenced by a variety of environmental factors. Mice with mutations of candidate genes showing depression-like features on behavioral or neurochemical levels may help to define a complex molecular framework underlying depressive syndromes. Because it is conceivable that manipulation of one single genetic function may be necessary but not sufficient to cause complex behavioral alterations, strategies for improving genetic modeling of depression-like syndromes in animals possibly require a simultaneous targeted dysregulation of several genes involved in the pathogenesis of depression. This approach would correspond to the new concept of 'endophenotypes' in human depression research trying to identify behavioral traits which are thought to be encoded by a limited set of genes.
Collapse
Affiliation(s)
- Alexandre Urani
- Central Institute of Mental Health Mannheim, University of Heidelberg, J 5, D-68159 Mannheim, Germany
| | | | | |
Collapse
|
19
|
Vollmayr B, Bachteler D, Vengeliene V, Gass P, Spanagel R, Henn F. Rats with congenital learned helplessness respond less to sucrose but show no deficits in activity or learning. Behav Brain Res 2004; 150:217-21. [PMID: 15033295 DOI: 10.1016/s0166-4328(03)00259-6] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2003] [Revised: 07/23/2003] [Accepted: 07/23/2003] [Indexed: 11/29/2022]
Abstract
Inbred rat strains for congenital learned helplessness (cLH) and for congenital resistance to learned helplessness (cNLH) were investigated as a model to study genetic predisposition to major depression. Congenitally helpless rats respond less to sucrose under a progressive ratio schedule. This is not confounded by locomotor hypoactivity: in contrast, cLH rats show a slight hyperactivity during the first 5 min of an open field test. cLH rats acquire operant responding to sucrose as readily as cNLH rats and exhibit normal memory acquisition and retrieval in the Morris water maze, thus ruling out general learning deficits as the cause of the decreased response to sucrose. Reduced total responses and reduced breaking points for sucrose in the cLH strain argue for anhedonia, which is an analogue to loss of pleasure essential for the diagnosis of major depressive episodes, and thus confirm the validity of congenitally learned helpless rats as a model of major depression.
Collapse
Affiliation(s)
- Barbara Vollmayr
- Department of Psychiatry, Central Institute of Mental Health J5, D-68159 Mannheim, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Osuch E, Ursano R, Li H, Webster M, Hough C, Fullerton C, Leskin G. Brain environment interactions: stress, posttraumatic stress disorder, and the need for a postmortem brain collection. Psychiatry 2004; 67:353-83. [PMID: 15801377 DOI: 10.1521/psyc.67.4.353.56565] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stress, especially the extreme stress of traumatic events, can alter both neurobiology and behavior. Such extreme environmental situations provide a useful model for understanding environmental influences on human biology and behavior. This paper will review some of the evidence of brain alterations that occur with exposure to environmental stress. This will include recent studies using neuroimaging and will address the need for histological confirmation of imaging study results. We will review the current scientific approaches to understanding brain environment interactions, and then make the case for the collection and study of postmortem brain tissue for the advancement of our understanding of the effects of environment on the brain. Creating a brain tissue collection specifically for the investigation of the effects of extreme environmental stressors fills a gap in the current research; it will provide another of the important pieces to the puzzle that constitutes the scientific investigation of negative effects of environmental exposures. Such a resource will facilitate new discoveries related to the psychiatric illnesses of acute stress disorder and posttraumatic stress disorder, and can enable scientists to correlate structural and functional imaging findings with tissue abnormalities, which is essential to validate the results of recent imaging studies.
Collapse
MESH Headings
- Acoustic Stimulation/adverse effects
- Axons/physiology
- Brain/metabolism
- Brain/pathology
- Brain/physiopathology
- Environment
- Epinephrine/blood
- Epinephrine/urine
- Humans
- Limbic System/anatomy & histology
- Limbic System/metabolism
- Limbic System/pathology
- Limbic System/physiopathology
- Norepinephrine/blood
- Norepinephrine/urine
- Reflex, Startle
- Stress Disorders, Post-Traumatic/metabolism
- Stress Disorders, Post-Traumatic/physiopathology
- Stress Disorders, Post-Traumatic/psychology
- Stress Disorders, Traumatic, Acute/metabolism
- Stress Disorders, Traumatic, Acute/physiopathology
- Stress Disorders, Traumatic, Acute/psychology
- Tissue Banks
Collapse
Affiliation(s)
- Elizabeth Osuch
- Department of Psychiatry, Uniformed Services Universityof the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Chou-Green JM, Holscher TD, Dallman MF, Akana SF. Repeated stress in young and old 5-HT(2C) receptor knockout mice. Physiol Behav 2003; 79:217-26. [PMID: 12834793 DOI: 10.1016/s0031-9384(03)00096-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Serotonin (5-HT)(2C) receptor null mutant (knockout, KO) mice develop hyperphagia and midlife obesity. Based upon previous observations indicating altered responsiveness to stressful environmental conditions in these mice, we hypothesized that this KO mouse was hyperresponsive to repeated stress. To test this, we examined the effect of two intensities of repeated stress on food intake and body weight in 5-HT(2C) receptor KO and wild-type (WT) mice. The stressors involved daily cage change (including handling) for 3 days then daily restraint for 4 days. On the final day, mice were immediately decapitated after restraint to assess levels of plasma hormones. Two ages were used: young (12 weeks) and old (32-34 weeks). Basally, young KO were prehyperphagic and weighed the same as WT. In the old mice, KO were frankly hyperphagic and heavier than WT. In response to repeated cage change alone, the genotype-specific difference in food intake in the young group was enhanced, whereas in the old group it was diminished. This stressor did not significantly affect body weight change or caloric efficiency with respect to age or genotype. Repeated restraint had little effect on the young mice. However, in the old mice, KO had decreases in relative body weight and caloric efficiency compared with WT. In the old KO mice, adrenocorticotrophic hormone (ACTH), corticosterone and insulin were increased compared with WT mice. Together, these findings indicate that 5-HT(2C) receptor KO mice are hyperresponsive to repeated stress and this effect is influenced by stressor intensity and initial metabolic state of the mouse.
Collapse
MESH Headings
- Adrenocorticotropic Hormone/blood
- Aging/blood
- Animals
- Body Weight
- Corticosterone/blood
- Eating
- Energy Metabolism
- Handling, Psychological
- Housing
- Hyperphagia/genetics
- Insulin/blood
- Male
- Mice
- Mice, Knockout
- Receptor, Serotonin, 5-HT2C
- Receptors, Serotonin/deficiency
- Recurrence
- Restraint, Physical
- Stress, Physiological/blood
- Stress, Physiological/etiology
- Stress, Physiological/pathology
- Stress, Physiological/physiopathology
Collapse
Affiliation(s)
- Jennifer M Chou-Green
- Department of Physiology, University of California, San Francisco, 513 Parnassus Avenue, Box 0444, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
22
|
Kaiyala KJ, Vincow ES, Sexton TJ, Neumaier JF. 5-HT1B receptor mRNA levels in dorsal raphe nucleus: inverse association with anxiety behavior in the elevated plus maze. Pharmacol Biochem Behav 2003; 75:769-76. [PMID: 12957218 DOI: 10.1016/s0091-3057(03)00152-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Serotonergic neurons in the dorsal raphe nucleus, the major source of forebrain serotonin projections, synthesize a terminal autoreceptor that inhibits serotonin release-the 5-HT(1B) autoreceptor. Overexpression of this autoreceptor is hypothesized to contribute to anxiety. Antidepressants decrease (while learned helplessness increases) 5-HT(1B) mRNA in dorsal raphe neurons, and viral-mediated overexpression of 5-HT(1B) here increases anxiety behavior after stress. However, 5-HT(1B) mRNA levels in dorsal raphe are substantially elevated in unstressed rats in two models of stress resistance. Thus, the role of dorsal raphe 5-HT(1B) autoreceptors in anxiety is complex. Therefore, we tested whether different stressors differentially affect dorsal raphe 5-HT(1B) mRNA [via in situ hybridization histochemistry] and anxiety behavior (using the elevated plus maze). Rats were assigned to a stressor (either forced swim, water restraint, dry restraint, or electric tail shock) or a control condition, then were tested and sacrificed 24 h later. Overall, controls exhibited less anxiety than stressed rats as indicated by a higher ratio of open arm to total arm entries (OTR). The stressors did not differentially affect the OTR, nor did any alter dorsal raphe 5-HT(1B) mRNA levels. There was, however, a significant positive correlation between the OTR and 5HT(1B) mRNA intensity in controls (r=.64; P=.006), but not in stressed rats (r=.16, P=.36), providing further evidence that elevated dorsal raphe 5-HT(1B) levels are associated with reduced anxiety in animals that have not been exposed to stress.
Collapse
Affiliation(s)
- Karl J Kaiyala
- Department of Psychiatry and Behavioral Sciences and Harborview Medical Center, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
23
|
Freewheel running prevents learned helplessness/behavioral depression: role of dorsal raphe serotonergic neurons. J Neurosci 2003. [PMID: 12684476 DOI: 10.1523/jneurosci.23-07-02889.2003] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN) are implicated in mediating learned helplessness (LH) behaviors, such as poor escape responding and expression of exaggerated conditioned fear, induced by acute exposure to uncontrollable stress. DRN 5-HT neurons are hyperactive during uncontrollable stress, resulting in desensitization of 5-HT type 1A (5-HT1A) inhibitory autoreceptors in the DRN. 5-HT1A autoreceptor downregulation is thought to induce transient sensitization of DRN 5-HT neurons, resulting in excessive 5-HT activity in brain areas that control the expression of learned helplessness behaviors. Habitual physical activity has antidepressant/anxiolytic properties and results in dramatic alterations in physiological stress responses, but the neurochemical mediators of these effects are unknown. The current study determined the effects of 6 weeks of voluntary freewheel running on LH behaviors, uncontrollable stress-induced activity of DRN 5-HT neurons, and basal expression of DRN 5-HT1A autoreceptor mRNA. Freewheel running prevented the shuttle box escape deficit and the exaggerated conditioned fear that is induced by uncontrollable tail shock in sedentary rats. Furthermore, double c-Fos/5-HT immunohistochemistry revealed that physical activity attenuated tail shock-induced activity of 5-HT neurons in the rostral-mid DRN. Six weeks of freewheel running also resulted in a basal increase in 5-HT1A inhibitory autoreceptor mRNA in the rostral-mid DRN. Results suggest that freewheel running prevents behavioral depression/LH and attenuates DRN 5-HT neural activity during uncontrollable stress. An increase in 5-HT1A inhibitory autoreceptor expression may contribute to the attenuation of DRN 5-HT activity and the prevention of LH in physically active rats.
Collapse
|
24
|
Overexpression of 5-HT1B receptor in dorsal raphe nucleus using Herpes Simplex Virus gene transfer increases anxiety behavior after inescapable stress. J Neurosci 2002. [PMID: 12040062 DOI: 10.1523/jneurosci.22-11-04550.2002] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
5-HT(1B) autoreceptors have been implicated in animal models of stress and are regulated selectively by serotonin-selective reuptake inhibitors such as fluoxetine. These terminal autoreceptors regulate serotonin release from dorsal raphe nucleus (DRN) projections throughout rat forebrain. However, it has not been previously possible to manipulate 5-HT(1B) autoreceptor activity selectively without also changing 5-HT(1B) activity in other neurons mediating different behavioral responses. Therefore, we have developed a viral-mediated gene transfer strategy to express hemagglutinin-tagged 5-HT(1B) and manipulate these autoreceptors in DRN. Green fluorescent protein (GFP) was coexpressed from a separate transcriptional unit on the same amplicon to assist in monitoring infection and expression. We confirmed the expression and biological activity of both transgenic proteins in vitro. When injected directly into DRN using stereotaxic procedure, HA-5-HT(1B) receptors were expressed in serotonergic neurons and translocated to the forebrain. The effect of DRN expression of HA-5-HT(1B) on stress-induced behaviors was compared with control rats that received GFP-only amplicons. There was no change in immobility in the forced swim test. However, HA-5-HT(1B) expression significantly reduced entrances into the central region of an open-field arena after water-restraint stress without altering overall locomotor activity, but not in the absence of stress exposure. HA-5-HT(1B) expression also reduced entries into the open arms of the elevated plus maze after water restraint. Because these tests are sensitive to increases in anxiety-like behavior, our results suggest that overactivity of 5-HT(1B) autoreceptors in DRN neurons may be an important mediator of pathological responses to stressful events.
Collapse
|
25
|
Varnäs K, Hall H, Bonaventure P, Sedvall G. Autoradiographic mapping of 5-HT(1B) and 5-HT(1D) receptors in the post mortem human brain using [(3)H]GR 125743. Brain Res 2001; 915:47-57. [PMID: 11578619 DOI: 10.1016/s0006-8993(01)02823-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The distribution of 5-HT(1B) and 5-HT(1D) receptors in the human post mortem brain was examined using whole hemisphere autoradiography and the radioligand [(3)H]GR 125743. [(3)H]GR 125743 binding was highest in the substantia nigra and the globus pallidus. Lower levels were detected in the striatum, with the highest densities in the ventromedial parts. In the amygdala, the hippocampus, the septal region and the hypothalamus, lower [(3)H]GR 125743 binding was observed, reflecting low densities of 5-HT(1B/1D) receptors. In the cerebral cortex, binding was similar in most regions, although restricted parts of the medial occipital cortex were markedly more densely labeled. Binding densities were very low in the cerebellar cortex and in the thalamus. Two methods were used to distinguish between the two receptor subtypes, the first using ketanserin to block 5-HT(1D) receptors and the second using SB 224289 to inhibit 5-HT(1B) receptor binding. The autoradiograms indicated that in the human brain, the 5-HT(1B) receptor is much more abundant than the 5-HT(1D) receptor, which seemed to occur only in low amounts mainly in the ventral pallidum. Although [(3)H]GR 125743 is a suitable radioligand to examine the distribution of 5-HT(1B) receptors in the human brain in vitro, the selectivities of ketanserin and SB 224289 are not sufficiently high to give definite evidence for the occurrence of the 5-HT(1D) receptor in the human brain.
Collapse
Affiliation(s)
- K Varnäs
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, Karolinska Institutet, S-17176 Stockholm, Sweden
| | | | | | | |
Collapse
|
26
|
Gur E, Dremencov E, Lerer B, Newman ME. Functional effects of corticosterone on 5-HT(1A) and 5-HT(1B) receptor activity in rat brain: in vivo microdialysis studies. Eur J Pharmacol 2001; 411:115-122. [PMID: 11137865 DOI: 10.1016/s0014-2999(00)00911-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoid hormones are known to be elevated in depression, and to interact with serotonin 5-HT(1A) receptors at both the presynaptic and postsynaptic levels. Since one of the presumed mechanisms of action of antidepressant drugs is induction of changes in sensitivity of 5-HT(1A) and also 5-HT(1B) receptors, the effects of repeated administration of corticosterone (50 mg/kg s.c. b.i.d. for 10 days) on activities of these receptors were determined using in vivo microdialysis in freely moving rats. Presynaptic 5-HT(1A) receptor activity, as measured by the effect of a challenge dose (0.2 mg/kg s.c.) of the 5-HT(1A) agonist 8-hydroxy-2 (di-n-propylamino) tetralin (8-OH-DPAT) to reduce 5-HT levels in the hypothalamus, was not affected by corticosterone administration. Presynaptic 5-HT(1B) receptor activity, as measured by the effect of the 5-HT(1B) receptor antagonist (N-[4-methoxy-3-(4-methyl-1-piperizinyl)phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazole-3-yl)[1,1'-biphenyl]-carboxamide (GR 127935) (5 mg/kg s.c.) to increase 5-HT levels, was increased in hypothalamus but not hippocampus of corticosterone-treated rats. Postsynaptic 5-HT(1A) receptor activity, as measured by the effect of 8-OH-DPAT to increase cyclic AMP levels in the hippocampus, was not affected by corticosterone administration. The decrease in presynaptic 5-HT(1B) receptor activity after chronic administration of antidepressant drugs complements the increases in 5-HT(1B) receptor number observed in animal models of depression.
Collapse
Affiliation(s)
- E Gur
- Biological Psychiatry Laboratory, Department of Psychiatry, Hadassah-Hebrew University Medical Center, PO Box 12000, 91120, Jerusalem, Israel
| | | | | | | |
Collapse
|
27
|
Moret C, Briley M. The possible role of 5-HT(1B/D) receptors in psychiatric disorders and their potential as a target for therapy. Eur J Pharmacol 2000; 404:1-12. [PMID: 10980257 DOI: 10.1016/s0014-2999(00)00581-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is implicated in several psychiatric diseases. Is this also true for 5-HT(1B/D) receptors? These receptors are found in high density in substantia nigra, globus pallidus, striatum and basal ganglia and in other brain regions. This ubiquity makes 5-HT(1B/D) receptors responsible for many physiological and behavioural functions. This review focuses on the role of 5-HT(1B) receptors in the regulation of 5-HT release and synthesis. Microdialysis experiments performed on freely moving animals are an interesting in vivo model to study the function of the terminal 5-HT(1B) autoreceptor. Synthesis of 5-HT, estimated by the measurement of the accumulation of 5-hydroxytryptophan (5-HTP) ex vivo or in vitro, is modulated by the 5-HT(1B) autoreceptors. Many reports have shown that chronic administration with selective serotonin reuptake inhibitors leads to the desensitisation of the terminal 5-HT(1B) autoreceptors. With the help of some animal models of depression and anxiety and with some data from clinical studies it has been hypothesised that 5-HT(1B) receptors may be supersensitive in depression, anxiety and obsessive compulsive disorder. Thus, since the dysfunction of 5-HT(1B) receptors may be involved in some pathological states, particularly in the psychiatric field, these receptors represent important potential targets for drugs to treat mental diseases.
Collapse
Affiliation(s)
- C Moret
- NeuroBiz BioConsulting, Les Grèzes, La Verdarié, 81100, Castres, France
| | | |
Collapse
|
28
|
Anthony JP, Sexton TJ, Neumaier JF. Antidepressant-induced regulation of 5-HT(1b) mRNA in rat dorsal raphe nucleus reverses rapidly after drug discontinuation. J Neurosci Res 2000; 61:82-7. [PMID: 10861803 DOI: 10.1002/1097-4547(20000701)61:1<82::aid-jnr10>3.0.co;2-e] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Serotonin release from dorsal raphe projections in the forebrain is regulated by terminal 5-HT(1B) autoreceptors; dysregulation of these receptors may be involved in the pathophysiology of clinical depression. Using in situ hybridization, we have previously reported that fluoxetine reduces 5-HT(1B) mRNA in rat dorsal raphe nucleus (DRN) in a time-dependent and reversible manner. In this study we examined longer term treatment (8 weeks) with several different serotonin-selective reuptake inhibitors (SSRIs) or a tricyclic antidepressant on 5-HT(1B) mRNA regulation in DRN and hippocampus, and evaluated the stability of these drugs' effects after drug discontinuation. Fluoxetine (5 mg/kg/d), paroxetine (5 mg/kg/d), sertraline (10 mg/kg/d) or nortriptyline (10 mg/kg/d) was administered to rats via subcutaneous osmotic minipumps. Paroxetine and fluoxetine reduced DRN 5-HT(1B) mRNA by 36% and 27%, respectively whereas sertraline had a no significant effect. After 3-14 days of drug washout, DRN 5-HT(1B) mRNA levels in SSRI treated rats were no longer different from control. 5-HT(1B) mRNA levels in hippocampus were not affected by SSRI drugs at any timepoint. Nortriptyline had no significant effect on 5-HT(1B) mRNA in either DRN or hippocampus. These results confirm that SSRI antidepressants reduce presynaptic 5-HT(1B) mRNA selectively, and that this effect is maintained for at least 8 weeks of antidepressant treatment but reverses rapidly after discontinuation. Furthermore, it is possible that washout after chronic antidepressant treatment, that is routinely used in functional assays of autoreceptor action in animal models, may lead to more rapid reversal of biological effects than has previously been thought.
Collapse
Affiliation(s)
- J P Anthony
- Department of Psychiatry and Behavioral Sciences and Harborview Medical Center, University of Washington, Seattle 98104-2499, USA
| | | | | |
Collapse
|
29
|
Maswood S, Barter JE, Watkins LR, Maier SF. Exposure to inescapable but not escapable shock increases extracellular levels of 5-HT in the dorsal raphe nucleus of the rat. Brain Res 1998; 783:115-20. [PMID: 9479059 DOI: 10.1016/s0006-8993(97)01313-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effects of escapable and yoked inescapable electric tailshocks on extracellular levels of serotonin (5-HT) in the dorsal raphe nucleus were measured by in vivo microdialysis. In comparison to either control rats or to their own preshock baseline, rats exposed to inescapable shock showed an increase in extracellular 5-HT within 25 min of shock initiation, and 5-HT levels continued to rise during the remainder of the shock session. Rats that were exposed to comparable shock treatment, but that were given the opportunity to escape, did not show an increase in 5-HT. Rats that were restrained but not shocked also did not show an increase in 5-HT. These results add further support to suggestions that serotonergic changes occur in the dorsal raphe nucleus during inescapable shock and that such changes may contribute to the behavioral effects of inescapable shock.
Collapse
Affiliation(s)
- S Maswood
- Department of Psychology and Behavioral Neuroscience Program, University of Colorado, Boulder, CO 80309, USA
| | | | | | | |
Collapse
|
30
|
Blanchard RJ, Hebert M, Sakai RR, McKittrick C, Henrie A, Yudko E, McEwen BS, Blanchard DC. Chronic social stress: Changes in behavioral and physiological indices of emotion. Aggress Behav 1998. [DOI: 10.1002/(sici)1098-2337(1998)24:4<307::aid-ab6>3.0.co;2-f] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
31
|
Abstract
1. 5-Hydroxytryptamine-1B (5-HT 1B, formerly designated 5-HT 1D beta) and 5-hydroxy-tryptamine-1D (5-HT 1D, formerly designated 5-HT 1D alpha) receptors are distinct molecular entities that mediate serotonergic neurotransmission. Both are G-protein-coupled receptors without introns in their coding region, negatively coupled to adenylate cyclase; their precise function in human beings remains to be defined. In brain, they are highly enriched in the globus pallidus and the substantia nigra. 2. Presynaptic 5-HT 1B/D receptors take part in the control of the release not only of 5-HT itself, but also of other neurotransmitters-for example, acetylcholine, glutamate, dopamine, noradrenaline and gamma-aminobutyric acid. Selective blockade of central 5-HT 1B/D autoreceptors should facilitate 5-HT neurotransmission and may offer a novel approach to antidepressant therapy. Other 5-HT 1B/D receptors are located postsynaptically; those receptors may be supersensitive in the pathophysiology of obsessive-compulsive disorder and may be a potential target for its treatment. 3. Few if any ligands show selectivity for 5-HT 1B or 5-HT 1D receptors or both. Most pharmacological studies have been performed with nonselective antagonists-for example, metergoline, I-naphthylpiperazine, methiothepin, ketanserin and ritanserin. Recently, a novel series of benzanilides have been reported as the first examples of selective 5-HT 1B/D receptor antagonists. GR 127935, a representative compound of this series, displays mixed agonist-antagonist properties both in vitro and in vivo. It induces upon systemic administration in the guinea pig either an opposite (decrease) effect or a small increase (65%, 5 mg/kg) in the concentration of cortical extracellular 5-HT compared with fluoxetine (218%, 10 mg/kg). The importance of blockade of 5-HT 1B/D receptors in the raphé region, their possible interaction with 5-HT 1A receptors, and consequent inhibition of 5-HT release in terminal 5-HT 1B/D receptor-containing regions are discussed. 4. To find out whether the available so-called 5-HT 1B/D receptor antagonists are indeed antagonists and not partial agonists, efficacy was measured at recombinant human 5-HT 1B and 5-HT 1D receptor sites by using a [35S]-GTP gamma S binding assay to membrane preparations of stably transfected rat C6-glial cell lines. Metergoline and the selective 5-HT 1B/D receptor ligands GR 127935 as well as GR 125743 showed significant intrinsic activity (43% to 69%) at the 5-HT 1D receptor subtype, whereas the nonselective ligand 1-naphthylpiperazine yielded less (15% to 19%) intrinsic activity at both receptor subtypes. In contrast, the nonselective ligands methiothepin, ketanserin and ritanserin are inverse agonists because they displayed negative efficacy (-14% to -28%). Differential blockade of 5-HT 1B/D receptors by neutral antagonists and inverse agonists is discussed in relation to the 5-HT tone on 5-HT 1B/D receptors. 5. It can concluded that 5-HT 1B/D receptor ligands modulate 5-HT neurotransmission through a terminal 5-HT 1B/D receptor. Future work should be directed toward the identification of selective 5-HT 1B and 5-HT 1D receptor ligands that display either neutral antagonist or inverse agonist properties to evaluate the therapeutic potential of 5-HT 1B/D receptor blockade.
Collapse
Affiliation(s)
- P J Pauwels
- Centre de Recherche Pierre Fabre, Laboratory of Cellular and Molecular Neurobiology, Castres, France.
| |
Collapse
|
32
|
Affiliation(s)
- F Petty
- Veterans Affairs Medical Center, Dallas, TX 75216, USA.
| | | | | |
Collapse
|
33
|
Neumaier JF, Petty F, Kramer GL, Szot P, Hamblin MW. Learned helplessness increases 5-hydroxytryptamine1B receptor mRNA levels in the rat dorsal raphe nucleus. Biol Psychiatry 1997; 41:668-74. [PMID: 9066990 DOI: 10.1016/s0006-3223(96)00114-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Learned helplessness is a behavioral condition induced by exposure to inescapable stress that models aspects of stress-related disorders including depression and posttraumatic stress disorder, and has been associated with diminished serotonin release in the rat frontal cortex. Our hypothesis was that presynaptic 5-hydroxytryptamine1B (5-HT1B) receptors, which inhibit the synthesis and release of serotonin in nerve terminals, may be increased in learned helplessness. Postsynaptic 5-HT1B mRNA hybridization levels in the hippocampus or frontal cortex were unchanged following induction of learned helplessness; however, presynaptic 5-HT1B mRNA hybridization signal in the dorsal raphe nucleus of helpless rats was 25% higher than control values. There was no change in dorsal raphe serotonin transporter mRNA level. The detection of increased 5-HT1B mRNA levels in the dorsal raphe nucleus suggests an increased capacity to synthesize presynaptic 5-HT1B receptors and could account for diminished serotonin neurotransmission in learned helplessness.
Collapse
Affiliation(s)
- J F Neumaier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, USA
| | | | | | | | | |
Collapse
|
34
|
Scott PA, Cierpial MA, Kilts CD, Weiss JM. Susceptibility and resistance of rats to stress-induced decreases in swim-test activity: a selective breeding study. Brain Res 1996; 725:217-30. [PMID: 8836528 DOI: 10.1016/0006-8993(96)00093-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, selective breeding was used to generate two populations of rats that differed in their susceptibility to showing decreased struggling activity in a swim test after being exposed to uncontrollable electric tail-shock. After five generations of selective breeding, we obtained a population that displayed large decreases in swim-test struggling after shock (swim-test susceptible) and a population that displayed no decrease in struggling after shock (swim-test resistant). Males of this fifth generation from the two selectively-bred populations were then compared for differences in non-swim behavioral measures (home-cage 24-h spontaneous ambulatory activity and food/water intake) and several aspects of brain catecholaminergic activity, including electrophysiological activity of locus coeruleus (LC) neurons, catecholamine/metabolite concentrations in various brain regions, and in vivo tyrosine hydroxylase activity. Interestingly, swim-test resistant rats displayed larger decreases in home-cage ambulatory activity and water intake after exposure to shock than did swim-test susceptible animals. Marked differences were also seen in measures of brain noradrenergic activity. Compared to the susceptible rats, resistant rats showed higher levels of evoked activity of LC neurons, larger shock-induced depletions of norepinephrine (NE) and 3-methoxy-4-hydroxyphenylglycol (MHPG) in the LC, lower in vivo tyrosine hydroxylase (TH) activity in ventral bundle projection areas such as the hypothalamus, and larger amounts of NE in dorsal bundle projection areas. Finally, swim-test resistant rats had much higher concentrations of dopamine (DA) and dihydroxyphenylacetic acid (DOPAC) in striatum and nucleus accumbens than susceptible rats. These results appear to be explainable on the basis that differences in swim-test struggling behavior for which the two populations were selectively bred were a consequence of differences in forebrain DA whereas stress-induced differences in other behavioral measures (i.e. spontaneous ambulation and intake) occurred because swim-test resistant animals showed greater disturbance of the LC-NE system after uncontrollable shock.
Collapse
Affiliation(s)
- P A Scott
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, USA
| | | | | | | |
Collapse
|
35
|
Pandey SC, Piano MR, Pandey GN. Alterations in serotonin1B (5HT1B) receptor subtypes in the brain of ethanol-treated rats. Drug Alcohol Depend 1996; 41:219-25. [PMID: 8842634 DOI: 10.1016/0376-8716(96)01253-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of acute or chronic ethanol treatment and of withdrawal (24 h) after chronic ethanol treatment on 5HT1B receptor subtypes in different regions of the rat brain were investigated. Male Sprague-Dawley rats were fed the ethanol (9% v/v)-containing Lieber-DeCarli liquid diet or the control liquid diet for 1 day in the acute study and for 15 days in the chronic study. The ethanol-withdrawn group received the Lieber-DeCarli control liquid diet instead of the ethanol diet on the 15th night. Ethanol-withdrawn rats after 15 days of ethanol treatment were rated for withdrawal symptoms (e.g. hyperactivity, piloerection, squealing, and enhanced startle reflex) and were found to exhibit such symptoms after 24 h of ethanol withdrawal. The rats were decapitated, and cortices, cerebelli, striata, and hippocampi were separated for measurement of 5HT1B receptors by receptor binding techniques using 125I-cyanopindolol (CYP) as the ligand. It was observed that acute ethanol treatment had no significant effect on the maximum number of binding sites (Bmax) or the apparent dissociation constant (KD) of 5HT1B receptor binding sites in the various brain regions. On the other hand, chronic ethanol treatment produced a significant increase in Bmax of 125I-CYP binding to 5HT1B receptors in the rat cortex and hippocampus, which remained increased after 24 h of ethanol withdrawal. In contrast, in the striatum and the cerebellum of chronic ethanol-treated and withdrawn rats, the 5HT1B binding parameters (Bmax and KD) were unchanged. These results suggest the possible involvement of cortical and hippocampal 5HT1B receptors in ethanol dependence.
Collapse
Affiliation(s)
- S C Pandey
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago 60612, USA
| | | | | |
Collapse
|
36
|
Bolanos-Jimenez F, Manhaes de Castro RM, Seguin L, Cloez-Tayarani I, Monneret V, Drieu K, Fillion G. Effects of stress on the functional properties of pre- and postsynaptic 5-HT1B receptors in the rat brain. Eur J Pharmacol 1995; 294:531-40. [PMID: 8750715 DOI: 10.1016/0014-2999(95)00590-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Numerous studies have clearly shown that the turnover and release of serotonin (5-hydroxytryptamine, 5-HT) are increased under acute stressful conditions. Inasmuch as this latter process is under the control of a feedback mechanism involving the stimulation of presynaptic 5-HT1B autoreceptors, we have investigated the possible effects of acute restraint (40 min) on the functional properties of 5-HT1B receptors. The efficacy of the selective 5-HT1B receptor agonist 3-[1,2,5,6-tetrahydropyrid-4-yl]pyrrolo-[3,2-b]pyrid-5-one (CP-93,129) in inhibiting in vitro the K+-evoked release of [3H]5-HT, was significantly reduced in stressed rats as compared to naive animals. Similarly, the responsiveness of 5-HT1B receptors inhibiting the release of [3H]acetylcholine (presynaptic 5-HT1B heteroreceptors), was reduced by restraint. These effects were observed in the hippocampus, but using the inhibitory effect of CP-93,129 on forskolin-stimulated adenylyl cyclase activity as an index of 5-HT1B receptor function, it could be shown that the 5-HT1B receptors located in the substantia nigra are also desensitized by stress. The number as well as the apparent affinity constant of 5-HT1B binding sites labelled by [125I]iodocyanopindolol, as measured by quantitative autoradiography and membrane binding, were similar in naive and restraint-stressed rats suggesting that the stress-induced desensitization of 5-HT1B receptors is not due to a reduced number of 5-HT1B binding sites. As stress is thought to be a causal factor for the etiology of anxiety and depression, these results support the potential involvement of 5-HT1B receptor dysfunction in the development of these neurological disorders.
Collapse
Affiliation(s)
- F Bolanos-Jimenez
- Unite de Pharmacologie Neuro-Immuno-Endocrinienne de l'Institut Pasteur, Paris, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Nankai M, Yamada S, Muneoka K, Toru M. Increased 5-HT2 receptor-mediated behavior 11 days after shock in learned helplessness rats. Eur J Pharmacol 1995; 281:123-30. [PMID: 7589199 DOI: 10.1016/0014-2999(95)00222-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the learned helplessness procedure, rats can be differentiated into two distinct groups. Learned helplessness (LH) rats do not learn to escape a controllable shock while non-learned helplessness (NLH) rats learn this response. This deficit in performance in LH rats lasted for 11 days. In LH rats, pretreatment with acute desipramine (15 mg/kg i.p.) or chronic diazepam (0.95 mg/kg/day p.o. for 7 days) did not produce recovery from this deficit of performance, but pretreatment with chronic desipramine (17.7 mg/kg/day p.o. for 7 days) or chronic mianserin (6.1 mg/kg/day p.o. for 7 days) led to recovery. Before presentation of uncontrollable shock, there was no difference between LH and NLH rats, but 11 days after the shock, head shakes induced by (+/-)-1-(2,5-demethoxy-4-iodophenyl)-2-aminopropane (DOI) in LH rats was significantly more frequent than those in NLH and naive rats without change of [3H]ketanserin binding. The basal corticosterone level was higher in LH rats than in NLH rats. These findings suggest that the learned helplessness model is a reliable animal model of depression accompanied by 5-HT2 receptor hypersensitivity.
Collapse
Affiliation(s)
- M Nankai
- Department of Neuropsychiatry, Faculty of Medicine, Tokyo Medical and Dental University, Japan
| | | | | | | |
Collapse
|
38
|
Pandey SC, Ren X, Sagen J, Pandey GN. Beta-adrenergic receptor subtypes in stress-induced behavioral depression. Pharmacol Biochem Behav 1995; 51:339-44. [PMID: 7667350 DOI: 10.1016/0091-3057(94)00392-v] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The purpose of this study was to examine the role of beta-adrenergic receptors in an animal model of stress-induced behavioral depression. beta-Adrenergic receptors in several brain regions and leukocytes of rats were determined by receptor binding techniques using 125I-cyanopindolol (cyp) as ligand and propranolol as displacer for total beta-adrenergic receptors, and ICI 86,406 for beta 1- and ICI 118,551 for beta 2-adrenergic receptors. We observed that the maximum number of binding sites (Bmax) and the apparent dissociation constant (Kd) of 125I-cyp binding to total beta-adrenergic receptors were increased in hippocampus of stressed rats with escape deficits (48 h after training) as compared to control rats. This increase was due to an increase in Bmax and Kd of 125I-cyp binding to beta 1-adrenergic receptors but not to beta 2-adrenergic receptors. There was no significant difference in beta 1-adrenergic receptors in cortex and cerebellum or beta 2-adrenergic receptors in hippocampus, cortex, cerebellum, or leukocytes of stressed (48 h after training) rats with escape deficits as compared to control rats. Interestingly, it was observed that beta 1- and beta 2-adrenergic receptors in various brain regions (cortex, cerebellum, and hippocampus) and beta 2-adrenergic receptors in leukocytes of stressed rats (10 days after training) were not significantly different from control rats, although escape deficits were still present. These results suggest that abnormalities in adrenergic neurotransmission are associated with an upregulation of beta 1-adrenergic receptors, which in turn may be involved in the early stages of behavioral deficits caused by uncontrollable shock.
Collapse
MESH Headings
- Animals
- Avoidance Learning/drug effects
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Brain Chemistry/drug effects
- Depression, Chemical
- Escape Reaction/drug effects
- Iodocyanopindolol
- Leukocytes/drug effects
- Leukocytes/metabolism
- Male
- Pindolol/analogs & derivatives
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, beta-1/drug effects
- Receptors, Adrenergic, beta-1/physiology
- Receptors, Adrenergic, beta-2/drug effects
- Receptors, Adrenergic, beta-2/physiology
- Stress, Psychological/psychology
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- S C Pandey
- Department of Psychiatry, College of Medicine, University of Illinois at Chicago 60612, USA
| | | | | | | |
Collapse
|
39
|
Devoino L, Idova G, Alperina E, Cheido M. Brain neuromediator systems in the immune response control: pharmacological analysis of pre- and postsynaptic mechanisms. Brain Res 1994; 633:267-74. [PMID: 8137161 DOI: 10.1016/0006-8993(94)91548-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The involvement of the dopaminergic (DAergic), GABAergic and serotoninergic (5-HTergic) synaptic mechanisms in neuroimmunomodulation are considered. It is shown that the central DA- and GABAergic systems exert a stimulatory influence on the immune reactivity. Activation of postsynaptic DA receptors with apomorphine and (+)(3-hydroxyphenyl)-N-n-propylpiperidine [(+)-3-PPP] at high doses, D2 receptor activation with quinpirole, as well as DA reuptake blockade with amantadine and bupropion, resulted in an increase in the immune response. The intensity of the immune response was also increased during activation of the GABAergic system with the GABA agonist muscimol or the benzodiazepine agonists diazepam and tazepam. On the other hand, decreases in the activity of either system by different drugs inhibiting DAergic and GABAergic neurotransmission (antagonists of DA postsynaptic receptors haloperidol at 1.0 mg/kg and (-)-3-PPP at 6.8 mg/kg, agonists of DA autoreceptors apomorphine at 0.02 mg/kg, (-)- and (+)-3-PPP at 1.7 and 3.4 mg/kg, antagonist of GABA receptors bicuculline, blocker of chloride channels picrotoxin, blockers of benzodiazepine receptors Ro 15-1788 and Ro 15-3505) produce suppression of the immune response. The 5-HTergic system is involved in the inhibitory mechanism of neuroimmunomodulation. 5-HT reuptake blockade with 4-(5,6-dimethyl-R-benzophuranil)-piperidine (CGP-6085A) and sertraline led to immunosuppression.
Collapse
Affiliation(s)
- L Devoino
- Institute of Physiology, Novosibirsk, Timakova, Russian Federation
| | | | | | | |
Collapse
|
40
|
Abstract
In spite of a lack of compounds acting selectively at the 5-hydroxytryptamine (5-HT)1B and 5-HT1D receptor subtypes, by cross-relating the available data, this review attempts to tentatively assign behavioural and other in vivo correlates of these receptor subtypes. In addition, a summary of data from microdialysis studies is included to develop an integrated view. Finally, a suggestion is made as to the possible pathophysiological consequences of 5-HT1D receptor dysfunction in man.
Collapse
Affiliation(s)
- P Chopin
- Division of Neurobiology I, Pierre Fabre Research Center, Castres, France
| | | | | |
Collapse
|
41
|
Lachman HM, Papolos DF, Boyle A, Sheftel G, Juthani M, Edwards E, Henn FA. Alterations in glucocorticoid inducible RNAs in the limbic system of learned helpless rats. Brain Res 1993; 609:110-6. [PMID: 7685229 DOI: 10.1016/0006-8993(93)90862-h] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glucocorticoids (GC) have an important effect on mood in humans and influence learned helplessness, an escape avoidance paradigm that is considered one of the best animal models of depression. A strong genetic component underlies the development of learned helplessness as shown by the emergence of a line of highly vulnerable rats (LH strain) through selective inbreeding. In addition, hormonal factors play a role. Adrenalectomy (adx) for example is known to increase the vulnerability to acquire learned helplessness, an effect that is reversed by glucocorticoids (GC). Since GC function primarily by modulating gene expression, hormone mediated alterations in mRNAs expressed in the brain may be important in the development of an adequate escape avoidance response. Conversely, we postulate that the deficit in escape avoidance behavior exhibited by the LH strain may be associated with an alteration in GC-mediated gene expression in the brain. To test this hypothesis, we analyzed GC-responsive mRNAs that are expressed in the hippocampus. Control Sprague-Dawley (SD) rats showed consistent alterations in mRNAs that are modulated by GC, such as type II GC receptor (GR) and metallothionein-1 (MT-1). Under our experimental conditions, both GR and MT-1 mRNA are significantly increased in the hippocampus of hormone-treated SD rats. An increase in hypothalamic GR mRNA was also observed. However, under the same experimental conditions, LH rats showed more selective hormone induced changes since GC had no effect on hypothalamic and hippocampal GR mRNA whereas a significant increase in MT-1 mRNA was observed.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H M Lachman
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | | | | | | | | | | |
Collapse
|
42
|
Chapter 19. Growth Hormone Secretagogues. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1993. [DOI: 10.1016/s0065-7743(08)60889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
43
|
Petty F, Kramer G, Wilson L. Prevention of learned helplessness: in vivo correlation with cortical serotonin. Pharmacol Biochem Behav 1992; 43:361-7. [PMID: 1438477 DOI: 10.1016/0091-3057(92)90163-a] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Learned helplessness (LH) is prevented by pretreatment with acute benzodiazepines (BDZs), subchronic tricyclic antidepressants (TCAs), or escapable stress (ES). We have investigated the role of serotonin (5-HT) in LH prevention by these three prevention paradigms, using microdialysis to measure in vivo 5-HT release in frontal cortex (FC) after LH testing. Rats receiving pretreatment before inescapable stress with any of the three methods of prevention--BDZs, TCAs, or ES--showed escape behavior in the shuttle-box test for LH comparable to naive unstressed controls. K(+)-stimulated 5-HT release in all three groups receiving pretreatment was also similar to naive unstressed controls. Rats receiving saline before inescapable stress showed significantly more LH behavior in the shuttle-box task and had significantly lower 5-HT release as well. This suggests that LH correlates with a significant decrease in intracellular releasable 5-HT in FC, and that three different techniques for LH prevention, acute BDZs, subchronic TCAs, and ES all similarly prevent this 5-HT depletion.
Collapse
Affiliation(s)
- F Petty
- Psychiatry Service (116A), Veterans Affairs Medical Center, Dallas, TX 75216
| | | | | |
Collapse
|
44
|
Edwards E, Kornrich W, van Houtten P, Henn FA. In vitro neurotransmitter release in an animal model of depression. Neurochem Int 1992; 21:29-35. [PMID: 1303140 DOI: 10.1016/0197-0186(92)90065-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sprague-Dawley rats exposed to uncontrollable shock can be separated by a subsequent shock escape test into two groups: a "helpless" (LH) group which demonstrates a deficit in escape behavior, and a "nonlearned helpless" (NLH) group which shows no escape deficit and acquires the escape response as readily as naive control rats (NC) do. The present studies were designed to examine the correlations between the behavioral differences and the changes of in vitro neurotransmitter release seen in these three groups of rats. The major finding concerned a significant increase in endogenous and K(+)-stimulated serotonin (5-HT) release in the hippocampal slices of LH rats. There were no apparent differences in acetylcholine, dopamine and noradrenaline release in the hippocampus of LH rats as compared to NLH and NC rats. These results add further support to previous studies in our laboratory which implicate presynaptic 5-HT mechanisms in the behavioral deficit caused by uncontrollable shock.
Collapse
Affiliation(s)
- E Edwards
- Department of Psychiatry and Behavioral Science, State University of New York, Stony Brook
| | | | | | | |
Collapse
|
45
|
Lachman HM, Papolos DF, Weiner ED, Ramazankhana R, Hartnick C, Edwards E, Henn FA. Hippocampal neuropeptide Y mRNA is reduced in a strain of learned helpless resistant rats. ACTA ACUST UNITED AC 1992; 14:94-100. [PMID: 1353857 DOI: 10.1016/0169-328x(92)90015-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The learned helpless rat is considered to be one of the better animal models of depression. A genetically inbred strain with a high vulnerability to develop helplessness (LH), as well as a highly resistant strain (NLH) have both been developed. Since the brain peptide neuropeptide Y (NPY) is involved in the regulation of a number of behaviors known to be altered in clinical depression as well as in learned helplessness, we measured the relative level of NPY mRNA in the hippocampus and cortex of control Sprague Dawley (SD), LH and NLH rats. We find that NLH rats have approximately a 30-35% decrease in basal hippocampal NPY mRNA compared with SD and LH rats. By contrast, cortical NPY mRNA and hippocampal pre-proenkephalin and somatostatin mRNA levels were not significantly different in the 3 strains. The data suggest that the regulation of NPY gene expression may be involved in the reduced vulnerability of NLH rats to develop learned helplessness.
Collapse
Affiliation(s)
- H M Lachman
- Department of Psychiatry, Albert Einstein College of Medicine, Bronx, NY
| | | | | | | | | | | | | |
Collapse
|
46
|
|