1
|
Özçete ÖD, Banerjee A, Kaeser PS. Mechanisms of neuromodulatory volume transmission. Mol Psychiatry 2024; 29:3680-3693. [PMID: 38789677 PMCID: PMC11540752 DOI: 10.1038/s41380-024-02608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
A wealth of neuromodulatory transmitters regulate synaptic circuits in the brain. Their mode of signaling, often called volume transmission, differs from classical synaptic transmission in important ways. In synaptic transmission, vesicles rapidly fuse in response to action potentials and release their transmitter content. The transmitters are then sensed by nearby receptors on select target cells with minimal delay. Signal transmission is restricted to synaptic contacts and typically occurs within ~1 ms. Volume transmission doesn't rely on synaptic contact sites and is the main mode of monoamines and neuropeptides, important neuromodulators in the brain. It is less precise than synaptic transmission, and the underlying molecular mechanisms and spatiotemporal scales are often not well understood. Here, we review literature on mechanisms of volume transmission and raise scientific questions that should be addressed in the years ahead. We define five domains by which volume transmission systems can differ from synaptic transmission and from one another. These domains are (1) innervation patterns and firing properties, (2) transmitter synthesis and loading into different types of vesicles, (3) architecture and distribution of release sites, (4) transmitter diffusion, degradation, and reuptake, and (5) receptor types and their positioning on target cells. We discuss these five domains for dopamine, a well-studied monoamine, and then compare the literature on dopamine with that on norepinephrine and serotonin. We include assessments of neuropeptide signaling and of central acetylcholine transmission. Through this review, we provide a molecular and cellular framework for volume transmission. This mechanistic knowledge is essential to define how neuromodulatory systems control behavior in health and disease and to understand how they are modulated by medical treatments and by drugs of abuse.
Collapse
Affiliation(s)
- Özge D Özçete
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Aditi Banerjee
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Nimmervoll B, Flucher BE, Obermair GJ. Dominance of P/Q-type calcium channels in depolarization-induced presynaptic FM dye release in cultured hippocampal neurons. Neuroscience 2013; 253:330-40. [PMID: 24012836 PMCID: PMC3824072 DOI: 10.1016/j.neuroscience.2013.08.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 08/09/2013] [Accepted: 08/27/2013] [Indexed: 11/26/2022]
Abstract
We analyzed depolarization-induced synaptic FM dye release in hippocampal neurons. We pharmacologically isolated the contribution of voltage-gated Ca2+ channels. 85% of synapses utilize N- and P/Q-type channels, 15% only P/Q-type channels. In both groups of synapses release kinetics are determined by P/Q-type channels. We propose a more direct coupling of P/Q-type channels to synaptic release.
Neurotransmitter release probability is related by high power to the local concentration of calcium in presynaptic terminals, which in turn is controlled by voltage-gated calcium channels. P/Q- and N-type channels trigger synaptic transmission in the majority of neurons of the central nervous system. However, whether and under which conditions both channel types act cooperatively or independently is still insufficiently understood. Previous studies suggested either a dominance of N- or P/Q-type channels, or a synergistic action of both channels, depending on the experimental paradigms. Thus, to provide insight into the properties of neurotransmitter release in cultured mouse hippocampal neurons, we used quantitative analysis of FM dye release from presynaptic boutons induced by high potassium membrane depolarization. Increasing extracellular potassium concentrations revealed a sigmoid dependence of FM dye release to the stimulation strength. Individual and combined application of the P/Q- and N-type channel-specific blockers ω-agatoxin-IVA and ω-conotoxin-GVIA, respectively, allowed us to specifically isolate the contribution of both channel types to release triggered with 40 mM KCl. Analysis of the release kinetics and the fractional release amplitude demonstrate that, whereas in only 15% of the synapses release depended exclusively on P/Q-type channels, the majority of synapses (85%) contained both N- and P/Q-type channels. Nevertheless, the kinetics of FM dye release in synapses containing both channel types was determined by the P/Q-type channels. Together, our data suggest a more direct coupling of P/Q-type channels to synaptic release compared to N-type channels, which may explain the high prevalence of neurological P/Q-type channelopathies.
Collapse
Affiliation(s)
- B Nimmervoll
- Division of Physiology, Medical University Innsbruck, Fritz-Pregl-Str. 3, 6020 Innsbruck, Austria
| | | | | |
Collapse
|
3
|
Maejima T, Masseck OA, Mark MD, Herlitze S. Modulation of firing and synaptic transmission of serotonergic neurons by intrinsic G protein-coupled receptors and ion channels. Front Integr Neurosci 2013; 7:40. [PMID: 23734105 PMCID: PMC3661940 DOI: 10.3389/fnint.2013.00040] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/03/2013] [Indexed: 11/13/2022] Open
Abstract
Serotonergic neurons project to virtually all regions of the central nervous system and are consequently involved in many critical physiological functions such as mood, sexual behavior, feeding, sleep/wake cycle, memory, cognition, blood pressure regulation, breathing, and reproductive success. Therefore, serotonin release and serotonergic neuronal activity have to be precisely controlled and modulated by interacting brain circuits to adapt to specific emotional and environmental states. We will review the current knowledge about G protein-coupled receptors and ion channels involved in the regulation of serotonergic system, how their regulation is modulating the intrinsic activity of serotonergic neurons and its transmitter release and will discuss the latest methods for controlling the modulation of serotonin release and intracellular signaling in serotonergic neurons in vitro and in vivo.
Collapse
Affiliation(s)
- Takashi Maejima
- Department of Zoology and Neurobiology, Ruhr-University Bochum Bochum, Germany
| | | | | | | |
Collapse
|
4
|
Levetiracetam-mediated emotional behavior in heterozygous rolling Nagoya CaV2.1 channel mutant mice. Pharmacol Biochem Behav 2010; 96:294-300. [DOI: 10.1016/j.pbb.2010.05.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/06/2010] [Accepted: 05/23/2010] [Indexed: 11/22/2022]
|
5
|
Emotional behavior in heterozygous rolling mouse Nagoya Ca v 2.1 channel mutant mice. Neurobiol Aging 2009; 32:486-96. [PMID: 19345443 DOI: 10.1016/j.neurobiolaging.2009.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Revised: 02/08/2009] [Accepted: 03/02/2009] [Indexed: 11/20/2022]
Abstract
Although rolling mouse Nagoya, a Ca(v)2.1α(1) mutant, exhibits ataxia and elevated serotonin concentrations, heterozygous mice have not been examined in detail. Patients with heterozygous mutations in this orthologous gene exhibit neurological disorders. To examine the emotional behavior of heterozygous mice, we used behavioral tasks and examined Ca(v)2.1α(1) message levels, tryptophan hydroxylase expression patterns, and monoamine concentrations in 2- and 22-month-old mice. Reduced anxiety in the elevated plus maze, light-dark exploration, and marble-burying behavioral tests and reduced depression in the forced swimming and tail suspension tests were observed in 22-month-old heterozygous mice compared to aged-matched wild-type mice. The levels of mutant-type Ca(v)2.1α(1) message, phosphorylation of tryptophan hydroxylase, and serotonin increased in the brainstems of 22-month-old heterozygous mice. No difference was observed between 2-month-old heterozygous and wild-type mice in these analyses. These findings suggest that heterozygous mice show age-related emotional changes due to alterations in the serotonin system associated with mutant-type Ca(v)2.1α(1), and that heterozygous mice may represent a novel model to delineate the interaction between Ca(v)2.1 function and synaptic transmission.
Collapse
|
6
|
Hirota K, Kudo M, Tose R, Yoshida H, Kudo T, Kushikata T. Lack of interaction between orexinergic and α2-adrenergic neuronal systems in rat cerebrocortical slices. Neurosci Lett 2005; 387:49-52. [PMID: 16085362 DOI: 10.1016/j.neulet.2005.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 07/07/2005] [Accepted: 07/12/2005] [Indexed: 11/17/2022]
Abstract
Orexinergic and norepinephrinergic alpha2-adrenoceptor expressing neurons contribute to the regulation of the sleep-wakefulness cycle. In the present study, we have examined a possible interaction between orexinergic and alpha2-adrenergic systems in orexin-A (100 nM)- and K+ (25 mM)-evoked norepinephrine release from slices of rat cerebrocortex. In this tissue norepinephrinergic neurons are predominantly innervated via the locus coeruleus. Clonidine concentration-dependently inhibited K+-evoked norepinephrine release with pIC50 (Imax) of 6.44+/-0.38 (48.8+/-6.9%). A selective orexin-1 receptor antagonist, SB-334867 was ineffective. SB-334867 concentration-dependently inhibited orexin A-evoked norepinephrine release with pIC50 (Imax) of 6.05+/-0.14 (86.4+/-5.4%); clonidine (alpha2-agonist) was ineffective. In contrast, yohimbine reversed the inhibitory effects of clonidine (1 microM) on K+-evoked norepinephrine release with pIC50 (Imax) of 6.50+/-0.34 (77.6+/-10.9%); orexin A was ineffective. The present data suggest a lack of interaction between orexinergic and alpha2-adrenergic neurons in rat cerebral cortex.
Collapse
Affiliation(s)
- Kazuyoshi Hirota
- Department of Anesthesiology, University of Hirosaki School of Medicine, Hirosaki 036-8563, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Fernandes VMV, Romano-Silva MA, Gomes DA, Prado MAM, Santos TM, Gomez MV. Dopamine release evoked by beta scorpion toxin, tityus gamma, in prefrontal cortical slices is mediated by intracellular calcium stores. Cell Mol Neurobiol 2004; 24:757-67. [PMID: 15672678 DOI: 10.1007/s10571-004-6917-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. We have investigated the effect of tityus gamma (TiTX gamma) scorpion toxin on the release of [3H]dopamine in rat brain prefrontal cortical slices. The stimulatory effect of TiTX gamma on the release of [3H]dopamine was dose/time-dependent with an EC50 of 0.01 microM. 2. Tetrodotoxin blocked the TiTX gamma-induced release of [3H]dopamine, indicating the dependency for Na+ channels. 3. EGTA had no effect on the TiTX gamma-induced release of [3H]dopamine, indicating the process is independent of extracellular calcium. Release of [3H]dopamine evoked by TiTX gamma was inhibited by 57% by BAPTA, a chelator of intracellular calcium. 4. Xestospongin and 2-APB, putative blockers of IP3-sensitive release of intracellular calcium stores, caused an equal and significant inhibition of 24% of the TiTX gamma-induced release of [3H]dopamine, while the slight inhibition evoked by dantrolene, a putative blocker of ryanodine-sensitive calcium store was not significant. 5. Nomifensine and ascorbic acid, blockers of dopamine transporter (DAT), caused an inhibition of 27 and 29%, respectively, on the toxin-induced release of [3H]dopamine suggesting that most of the TiTX gamma-induced release of dopamine is not due to the reversal of Na+ gradient. 6. In conclusion the majority of the TiTX gamma-induced release of [3H]dopamine is exocytotic and mobilizes calcium from the intracellular IP3-sensitive calcium stores.
Collapse
|
8
|
Carageorgiou H, Tzotzes V, Pantos C, Mourouzis C, Zarros A, Tsakiris S. In vivo and in vitro effects of cadmium on adult rat brain total antioxidant status, acetylcholinesterase, (Na+, K+)-ATPase and Mg2+-ATPase activities: protection by L-cysteine. Basic Clin Pharmacol Toxicol 2004; 94:112-8. [PMID: 15049340 DOI: 10.1111/j.1742-7843.2004.pto940303.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study was undertaken in order to investigate a) the short- and long-term in vivo effects of cadmium (Cd) on brain acetylcholinesterase (AChE), (Na+, K+)-ATPase activities in adult rats, b) the concentration-dependent in vitro and in vivo (acute experiment) effects of Cd on the activity of those enzymes, c) the in vivo and in vitro effects of the antioxidant L-cysteine (Cys) on the above enzyme activities, and d) the evaluation of brain total antioxidant status after in vivo Cd, L-cysteine, or L-cysteine+Cd administration in rats. In vitro, CdSO4 inhibited pure and brain AChE in concentrations higher than 0.1 mM, while it activated by approximately 70% (P<0.001) brain Na+, K+ -ATPase in concentrations up to 0.1 mM and inhibited its activity in higher concentrations. Mg2+ -ATPase was not influenced up to 0.1 mM concentration, while it was inactivated (40%, P<0.001) in higher CdSO4 concentrations. A dose-response study of brain CdSO4 (1,2 and 5 mg/kg once 8 hr before decapitation) revealed a dose-dependent decrease (-14 to -30%, P<0.001) of brain AChE activity, an increase of Na+, K+ -ATPase activity (+47 to +200%, P<0.001) and an increase of Mg2+ -ATPase only after the highest dose (5mg/kg) in the short-term treatment of rats. Long-term Cd administration (1 mg/kg rat daily for 4 months) activated brain AChE and Na+, K+ -ATPase about 50-65% (P<0.001) but not Mg2+ -ATPase. Brain total antioxidant status was decreased by Cd (30%, P<0.01), while it was increased by L-cysteine or L-cysteine+Cd (50%, P<0.001) in the short-term in vivo treatment. L-cysteine reversed the enzymatic activity changes observed with Cd alone in the high-dose short-term in vivo treatment of rats, as well as the brain AChE inhibition induced by Cd in the in vitro experiments. These results indicate that: a) Cd can influence in a different way the examined enzyme activities after short- and long-term administration, b) Cd may modulate brain cholinergic mechanism(s), neural excitability and metabolic energy production, and c) L-cysteine can have a protective antioxidant effect on the oxidative stress of the brain induced by Cd.
Collapse
Affiliation(s)
- Haris Carageorgiou
- Department of Experimental Pharmacology, Medical School, University of Athens, Athens, Greece
| | | | | | | | | | | |
Collapse
|
9
|
de O Beleboni R, Pizzo AB, Fontana ACK, de O G Carolino R, Coutinho-Netto J, Dos Santos WF. Spider and wasp neurotoxins: pharmacological and biochemical aspects. Eur J Pharmacol 2004; 493:1-17. [PMID: 15189759 DOI: 10.1016/j.ejphar.2004.03.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 03/25/2004] [Indexed: 10/26/2022]
Abstract
Venoms from several arthropods are recognized as useful sources of bioactive substances, such as peptides, acylpolyamines, and alkaloids, which show a wide range of pharmacological effects on synaptic transmission. In this work, we summarize and compile several biochemical and pharmacological aspects related to spider and wasp neurotoxins. Their inhibitory and stimulatory actions on ion channels, receptors, and transporters involved in mammalian and insect neurotransmission are considered.
Collapse
Affiliation(s)
- Renê de O Beleboni
- Department of Biochemistry and Immunology, School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Bartsch T, Knight YE, Goadsby PJ. Activation of 5-HT1B/1D receptor in the periaqueductal gray inhibits nociception. Ann Neurol 2004; 56:371-81. [PMID: 15349864 DOI: 10.1002/ana.20193] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
It is considered that the site of action of the abortive antimigraine compounds acting at serotonin, 5-HT(1B/1D,) receptors (triptans) is the trigeminovascular system. We tested whether there is a non-trigeminal site of action. The 5-HT(1B/1D) agonist, naratriptan, was microinjected into the ventrolateral periaqueductal gray (vlPAG), and activity in the trigeminal nucleus caudalis (TNC) was monitored. Recordings were made from 20 nociceptive neurons in the dorsal horn of the TNC that received convergent input from the dura mater and face. Responses of neurons to dural, facial cutaneous and corneal stimulation were studied before and after injection of naratriptan. Naratriptan decreased the excitability to electrical stimulation of the dura mater as the A-fiber response decreased by 24 +/- 4.1% (p < 0.001) and the C-fiber response decreased by 42 +/- 8.2% (p < 0.001). Spontaneous activity was decreased by 38 +/- 7.5% (p < 0.001). After injection, the mechanical thresholds of the dura mater increased from (n = 14, p < 0.01). Responses to stimulation of the face and cornea were not altered by injection of naratriptan. These results suggest that 5-HT(1B/1D) receptor activation in the vlPAG activates descending pain-modulating pathways that inhibit dural, but not facial and corneal nociceptive input. These findings have implications for the understanding of the action of triptans in migraine and cluster headache, suggesting that brain loci other than the trigeminal nucleus may play a role in the clinical action of triptans.
Collapse
Affiliation(s)
- T Bartsch
- Headache Group, Institute of Neurology and The National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | | | | |
Collapse
|
11
|
Fernandes VMV, Massensini AR, Prado MAM, Silva MAR, Moraes-Santos T, Gomez MV. Effects of alpha-scorpion toxin, tityustoxin on the release of [3H] dopamine of rat brain prefrontal cortical slices. Neurochem Int 2004; 44:91-7. [PMID: 12971911 DOI: 10.1016/s0197-0186(03)00114-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effect of tityustoxin (TsTX) on the release of [3H] dopamine in rat brain prefrontal cortical slices was investigated. The stimulatory effect of TsTX was dependent on incubation time and TsTX concentration with an EC50 of 0.05 microM. The release of [3H] dopamine stimulated by TsTX is dependent of Na+ channels and thus, was completely, inhibited by tetrodotoxin. Tityustoxin-induced release of [3H] dopamine was not blocked by ethylene glycol-bis(beta-aminoethyl) ether (EGTA) and thus was independent of extracellular calcium. However, [3H] dopamine release induced by TsTX was inhibited by 52% by BAPTA, a calcium chelator. Moreover, dantrolene (100 microM) and tetracaine (500 microM) partially inhibited by 38 and 29%, respectively, the tityustoxin-induced release of [3H] dopamine from prefrontal cortical slices suggesting a role from intracellular calcium increase. In conclusion, part of the TsTX-induced release [3H] dopamine may be due to an effect of the toxin on the reversal of the dopamine transporter (DAT), but the majority of the toxin stimulated release of [3H] dopamine involves the mobilization of intracellular calcium stores.
Collapse
|
12
|
Abstract
Fear is an adaptive component of the acute "stress" response to potentially-dangerous (external and internal) stimuli which threaten to perturb homeostasis. However, when disproportional in intensity, chronic and/or irreversible, or not associated with any genuine risk, it may be symptomatic of a debilitating anxious state: for example, social phobia, panic attacks or generalized anxiety disorder. In view of the importance of guaranteeing an appropriate emotional response to aversive events, it is not surprising that a diversity of mechanisms are involved in the induction and inhibition of anxious states. Apart from conventional neurotransmitters, such as monoamines, gamma-amino-butyric acid (GABA) and glutamate, many other modulators have been implicated, including: adenosine, cannabinoids, numerous neuropeptides, hormones, neurotrophins, cytokines and several cellular mediators. Accordingly, though benzodiazepines (which reinforce transmission at GABA(A) receptors), serotonin (5-HT)(1A) receptor agonists and 5-HT reuptake inhibitors are currently the principle drugs employed in the management of anxiety disorders, there is considerable scope for the development of alternative therapies. In addition to cellular, anatomical and neurochemical strategies, behavioral models are indispensable for the characterization of anxious states and their modulation. Amongst diverse paradigms, conflict procedures--in which subjects experience opposing impulses of desire and fear--are of especial conceptual and therapeutic pertinence. For example, in the Vogel Conflict Test (VCT), the ability of drugs to release punishment-suppressed drinking behavior is evaluated. In reviewing the neurobiology of anxious states, the present article focuses in particular upon: the multifarious and complex roles of individual modulators, often as a function of the specific receptor type and neuronal substrate involved in their actions; novel targets for the management of anxiety disorders; the influence of neurotransmitters and other agents upon performance in the VCT; data acquired from complementary pharmacological and genetic strategies and, finally, several open questions likely to orientate future experimental- and clinical-research. In view of the recent proliferation of mechanisms implicated in the pathogenesis, modulation and, potentially, treatment of anxiety disorders, this is an opportune moment to survey their functional and pathophysiological significance, and to assess their influence upon performance in the VCT and other models of potential anxiolytic properties.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Centre de Rescherches de Croissy, Institut de Recherches (IDR) Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, Paris, France.
| |
Collapse
|
13
|
Goggi J, Pullar IA, Carney SL, Bradford HF. The control of [125I]BDNF release from striatal rat brain slices. Brain Res 2003; 967:201-9. [PMID: 12650981 DOI: 10.1016/s0006-8993(03)02225-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The depolarisation-induced release of brain-derived neurotrophic factor (BDNF) from adult rat striatal slices was studied in vitro. The slices were preloaded with [125I]BDNF and exposed to depolarising stimulation with varying concentrations of veratrine (up to 50 microM) and potassium (up to 50 mM) which caused activity-dependent short-term release of [125I]BDNF. The results indicate that this stimulated release of [125I]BDNF is not regulated by a feedback mechanism mediated via the TrkB receptor. The release of [125I]BDNF was found to be dependent on the concentrations of both extracellular and intracellular calcium, since BDNF release was modulated by the addition of both EGTA and BAPTA-AM, agents chelating either external or internal Ca(2+), respectively. BDNF release also proved to be dependent on activation of IP(3) mediated Ca(2+) release from intracellular stores. [125I]BDNF release was also modulated by 5HT(3) receptor ligands and by receptors coupled to adenylate cyclase. Taken together, these results indicate that [125I]BDNF release is activity dependent, and is modulated by changes in Ca(2+) levels. Moreover the release occurs via a mechanism involving cAMP.
Collapse
Affiliation(s)
- Julian Goggi
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, South Kensington, London SW7 2AY, UK
| | | | | | | |
Collapse
|
14
|
Timmermann DB, Westenbroek RE, Schousboe A, Catterall WA. Distribution of high-voltage-activated calcium channels in cultured gamma-aminobutyric acidergic neurons from mouse cerebral cortex. J Neurosci Res 2002; 67:48-61. [PMID: 11754080 DOI: 10.1002/jnr.10074] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The localization of voltage-gated calcium channel (VGCC) alpha(1) subunits in cultured GABAergic mouse cortical neurons was examined by immunocytochemical methods. Ca(v)1.2 and Ca(v)1.3 subunits of L-type VGCCs were found in cell bodies and dendrites of GABA-immunopositive neurons. Likewise, the Ca(v)2.3 subunit of R-type VGCCs was expressed in a somatodendritic pattern. Ca(v)2.2 subunits of N-type channels were found exclusively in small varicosities that were identified as presynaptic nerve terminals based on their expression of synaptic marker proteins. Two splice variants of the Ca(v)2.1 subunit of P/Q-type VGCCs showed widely differing expression patterns. The rbA isoform displayed a purely somatodendritic staining pattern, whereas the BI isoform was confined to axon-like fibers and nerve terminals. The nerve terminals of these cultured GABAergic neurons express Ca(v)2.2 either alone or in combination with Ca(v)2.1 (BI isoform) but never express Ca(v)2.1 alone. The functional association between VGCCs and the neurotransmitter release machinery was probed using the FM1-43 dye-labeling technique. N-type VGCCs were found to be tightly coupled to exocytosis in these cultured cortical neurons, and P-type VGCCs were also important in a fraction of the cells. The predominant role of N-type VGCCs in neurotransmitter release and the specific localization of the BI isoform of Ca(v)2.1 in the nerve terminals of these neurons distinguish them from previously studied central neurons. The complementary localization patterns observed for two different isoforms of the Ca(v)2.1 subunits provide direct evidence for alternative splicing as a means of generating functional diversity among neuronal calcium channels.
Collapse
Affiliation(s)
- Daniel B Timmermann
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
15
|
El Ayadi A, Afailal I, Errami M. Effects of voltage-sensitive calcium channel blockers on extracellular dopamine levels in rat striatum. Metab Brain Dis 2001; 16:121-31. [PMID: 11769325 DOI: 10.1023/a:1012549225235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Various subtypes of voltage-sensitive calcium channels (VSCCs) support the release of dopamine (DA) in the central nervous system. Using in vivo microdialysis, we investigate the influence of these subtypes of calcium channels on dopaminergic terminals in the rat striatum. L-type (nifedipine-sensitive), N-type (omega-conotoxin GVIA-sensitive), or N- and P/Q-type (omega-conotoxin MVIIC-sensitive) Ca2+ channels were blocked using selective antagonists injected locally, and K+-evoked DA release was measured in freely moving animals. K+ (100 mM) induced a massive increase of basal DA extracellular levels (930%) and was without significant effect on extracellular levels of DA metabolites DOPAC and HVA, and on the serotonin metabolite 5HIAA. Omega-conotoxin GVIA (1 microM) and omega-conotoxin MVIIC (1 microM) significantly reduced the K+-evoked DA release by 55 and 62%, respectively. The simultaneous application of the two conotoxins at the same concentration reduced K+-evoked DA release by 66%. Nifedipine (10 microM) had no significant effect on K-evoked DA release, while neomycin, a nonspecific VSCC blocker, produced a highly significant decrease when applied at 250 and 500 microM (56 and 75%, respectively). The compounds. however, had no effect on basal DA release and on the levels of extracellular DOPAC, HVA, and 5HIAA. These results suggest that under high and persistent conditions of membrane depolarization (15 min, 10 mM K+), striatal DA release is mainly mediated by N-type VSCCs.
Collapse
Affiliation(s)
- A El Ayadi
- Abdelmalek Essâadi University, Laboratory of Neuropharmacology, Faculty of Sciences, Tétouan, Morocco
| | | | | |
Collapse
|
16
|
Inazu M, Kubota N, Takeda H, Oguchi K, Koizumi M, Kimura S, Matsumiya T. Methyl-4-phenylpyridinium (MPP(+))-evoked dopamine release from rat striatal slices: possible roles of voltage-dependent calcium channels and reverse dopamine transport. Neurochem Int 2001; 39:253-60. [PMID: 11434982 DOI: 10.1016/s0197-0186(01)00015-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We examined the properties of voltage-dependent Ca(2+) channels (VDCCs) mediating 1-methyl-4-phenylpyridinium (MPP(+))-evoked [3H]DA release from rat striatal slices. In some cases, the Ca(2+)-independent efflux of neurotransmitters is mediated by the high-affinity neurotransmitter-uptake systems. To determine whether such a mechanism might be involved in MPP(+)-evoked [3H]DA release. MPP(+) (1,10 and 100 microM) evoked the release of [3H]DA from rat striatal slices in a concentration-dependent manner. In the absence of Ca(2+), MPP(+) (10 and 100 microM)-evoked [3H]DA release was significantly decreased to approximately 50% of control (a physiological concentration of Ca(2+)). In the presence of Ca(2+), nomifensine (0.1,1 and 10 microM) dose-dependently and significantly inhibited the MPP(+)-evoked release of [3H]DA. Nomifensine (1 and 10 microM) also dose-dependently and significantly inhibited the MPP(+)-evoked release of [3H]DA under Ca(2+)-free conditions. MPP(+)-evoked [3H]DA release was partly inhibited by nicardipine (1 and 10 microM), an L-type Ca(2+) channel blocker. On the other hand, the N-type Ca(2+) channel blocker omega-conotoxin-GVIA (omega-CTx-GVIA) (1 and 3 microM) did not affect this release. omega-agatoxin-IVA (omega-Aga-IVA) at low concentrations (0.1 microM), which are sufficient to block P-type Ca(2+) channels alone, also had no effect. On the other hand, MPP(+)-evoked [3H]DA release was significantly decreased by high concentrations of omega-Aga-IVA (0.3 microM) that would inhibit Q-type Ca(2+) channels. In addition, application of the Q-type Ca(2+) channel blocker omega-conotoxin-MVIIC (omega-CTx-MVIIC) (0.3 and 1 microM) also significantly inhibited MPP(+)-evoked [3H]DA release. These results suggest that MPP(+)-evoked [3H]DA release from rat striatal slices is largely mediated by Q-type Ca(2+) channels, and the Ca(2+)-independent component is mediated by reversal of the DA transport system.
Collapse
Affiliation(s)
- M Inazu
- Department of Pharmacology and Intractable Diseases Research Center, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Yan Z, Flores-Hernandez J, Surmeier DJ. Coordinated expression of muscarinic receptor messenger RNAs in striatal medium spiny neurons. Neuroscience 2001; 103:1017-24. [PMID: 11301208 DOI: 10.1016/s0306-4522(01)00039-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The postsynaptic effects of acetylcholine in the striatum are largely mediated by muscarinic receptors. Two of the five cloned muscarinic receptors (M1 and M4) are expressed at high levels by the medium spiny neurons-the principal projection neurons of the striatum. Previous studies have suggested that M4 muscarinic receptors are found primarily in medium spiny neurons that express substance P and participate in the "direct" striatonigral pathway. This view is difficult to reconcile with electrophysiological studies suggesting that nearly all medium spiny neurons exhibit responses characteristic of M4 receptors. To explore this apparent discrepancy, the coordinated expression of M1-M5 receptor messenger RNAs in identified medium spiny neurons was assayed using single-cell reverse transcription-polymerase chain reaction techniques. Nearly all medium spiny neurons had detectable levels of M1 receptor messenger RNA. Although M4 receptor messenger RNA was detected more frequently in substance P-expressing neurons (70%), it was readily seen in a substantial population of enkephalin-expressing neurons (50%). To provide a quantitative estimate of transcript abundance, quantitative reverse transcription-polymerase chain reaction experiments were performed. These studies revealed that M4 messenger RNA was expressed by both substance P and enkephalin neurons, but was roughly five-fold higher in abundance in substance P-expressing neurons. This quantitative difference provides a means of reconciling previous estimates of M4 receptor distribution and function.
Collapse
Affiliation(s)
- Z Yan
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214-3005, USA
| | | | | |
Collapse
|
18
|
Kawata Y, Okada M, Murakami T, Kamata A, Zhu G, Kaneko S. Pharmacological discrimination between effects of carbamazepine on hippocampal basal, Ca(2+)- and K(+)-evoked serotonin release. Br J Pharmacol 2001; 133:557-67. [PMID: 11399673 PMCID: PMC1572811 DOI: 10.1038/sj.bjp.0704104] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To elucidate mechanisms of hippocampal serotonin release and possible mechanisms of clinical action of carbamazepine (CBZ), we determined interaction between antagonists of N-type (omega-conotoxin GVIA:GVIA), P-type (omega-agatoxin IVA:IVA) Ca(2+) channels, Na(+) channel (tetrodotoxin: TTX) and CBZ on hippocampal basal, Ca(2+)- and K(+)-evoked serotonin releases, using microdialysis in freely moving rats. Basal release was reduced by TTX, GVIA and IVA (GVIA>IVA). Ca(2+)-evoked release was reduced by GVIA but unaffected by TTX and IVA. K(+)-evoked release was reduced by TTX, GVIA and IVA (GVIA<IVA). TTX inhibited actions of IVA and GVIA on respective basal and K(+)-evoked releases, without affecting Ca(2+)-evoked release. Perfusion with 100 microM CBZ (estimated-concentration in hippocampal tissue: 19+/-2 microM) enhanced basal and Ca(2+)-evoked releases, but reduced K(+)-evoked release, whereas 1000 microM CBZ (estimated-concentration in hippocampal tissue: 188+/-16 microM) reduced three types of releases. Under condition of pretreatment with 100 and 1000 microM CBZ, TTX unaffected basal and K(+)-evoked releases. Under condition of pretreatment with 100 microM CBZ, IVA and GVIA unaffected basal and K(+)-evoked releases, respectively, but GVIA reduced basal, Ca(2+)-evoked releases and IVA also reduced K(+)-evoked release. Under condition of pretreatment with 1000 microM CBZ, GVIA unaffected three types of releases, and IVA unaffected basal release but reduced K(+)-evoked release. These findings contribute towards the possible mechanisms of concentration-dependent antiepileptic action of CBZ, which possibly inhibits Na(+) channel related neurotransmitter release mechanisms during K(+)-evoked stage, and simultaneously enhances N-type Ca(2+) channel related basal serotonin release at the resting stage.
Collapse
Affiliation(s)
- Yuko Kawata
- Department of Neuropsychiatry, School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan
| | - Motohiro Okada
- Department of Neuropsychiatry, School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan
- Author for correspondence:
| | - Takuya Murakami
- Department of Neuropsychiatry, School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan
| | - Akihisa Kamata
- Department of Neuropsychiatry, School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan
| | - Gang Zhu
- Department of Neuropsychiatry, School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan
| | - Sunao Kaneko
- Department of Neuropsychiatry, School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan
| |
Collapse
|
19
|
Savage DD, Galindo R, Queen SA, Paxton LL, Allan AM. Characterization of electrically evoked [3H]-D-aspartate release from hippocampal slices. Neurochem Int 2001; 38:255-67. [PMID: 11099785 DOI: 10.1016/s0197-0186(00)00077-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Electrical stimulation has certain advantages over chemical stimulation methods for the study of neurotransmitter release in brain slices. However, measuring detectable quantities of electrically evoked release of endogenous or radiolabeled markers of excitatory amino acid neurotransmitters has required current intensities or frequencies much higher than those usually required to study other transmitter systems. We demonstrate here that [3H]-D-aspartate (D-ASP) release can be detected from hippocampal slices at lower stimulation intensities in the presence of a glutamate reuptake inhibitor. Subsequently, we optimized the electrical stimulus parameters for characterizing electrically evoked D-ASP release. Under the experimental conditions described, greater than 90% of electrically evoked D-ASP release is calcium-dependent. Evoked D-ASP release is markedly reduced by pre-treating slices with the synaptic vesicle toxin bafilomycin A1 (BAF A1) or in the presence of 10-mM magnesium. Evoked D-ASP release is also reduced to variable degrees by N- and P/Q type voltage-sensitive calcium channel antagonists. Neither spontaneous efflux nor evoked D-ASP release were affected by NMDA, AMPA or group I metabotropic glutamate receptor (mGluR) antagonists. Evoked D-ASP release was reduced in the presence of an adenosine A1 receptor agonist and potentiated by treatment with a group I mGluR5 agonist. Evoked [3H]-D-ASP release was similar in magnitude to evoked [3H]-L-glutamate (L-GLU) release. Finally, in separate experiments using the same electrical stimulus parameters, more than 90% of electrically evoked endogenous L-GLU release was calcium dependent, a pattern similar to that observed for evoked [3H]-D-ASP release. Taken together, these results indicate that electrically evoked [3H]-D-ASP release mimics evoked glutamate release in brain slices under the experimental conditions employed in these studies.
Collapse
Affiliation(s)
- D D Savage
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-5223, USA.
| | | | | | | | | |
Collapse
|
20
|
Hirota K, Kudo M, Kudo T, Matsuki A, Lambert DG. Inhibitory effects of intravenous anaesthetic agents on K+-evoked norepinephrine and dopamine release from rat striatal slices: possible involvement of P/Q-type voltage-sensitive Ca2+ channels. Br J Anaesth 2000; 85:874-80. [PMID: 11732523 DOI: 10.1093/bja/85.6.874] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The role of the voltage-sensitive Ca2+ channel (VSCC) as a target for anaesthetic action remains controversial. In this study we characterized the VSCC subtypes involved in K+-evoked norepinephrine and dopamine release from rat striatal slices and used this model system to examine the effects of a range of i.v. anaesthetics on release. Nifedipine (L-channel-selective), omega-conotoxin GVI(A) (N-channel-selective), omega-agatoxin IV(A) (P-channel-selective), omega-conotoxin MVIIc (P/Q-channel-selective) and Cd2+ (non-selective), along with alphaxalone, propofol and ketamine, were used in various combinations. Omega-Agatoxin IV(A), omega-conotoxin MVIIc and Cd2+ fully (100%) inhibited norepinephrine and dopamine release. Clinically achievable concentrations of alphaxalone inhibited norepinephrine and dopamine release, with concentrations producing 25 and 50% inhibition (IC25 and IC50) of the maximum of 2.1 and 7.8 microM respectively for norepinephrine and 2.9 and 7.2 microM for dopamine. The effects of propofol were observed at the top of the clinical range and those of ketamine exceeded this range. In addition, IC50 values for alphaxalone in the presence and absence of nifedipine and omega-conotoxin GVI(A) did not differ from the control. Our data suggest that clinically achievable concentrations of alphaxalone and propofol inhibit norepinephrine and dopamine release, which is mediated predominantly through P/Q-type VSCCs, suggesting a role for these channels in anaesthetic action.
Collapse
Affiliation(s)
- K Hirota
- Department of Anesthesiology, University of Hirosaki School of Medicine, Japan
| | | | | | | | | |
Collapse
|
21
|
Phillips PE, Stamford JA. Differential recruitment of N-, P- and Q-type voltage-operated calcium channels in striatal dopamine release evoked by 'regular' and 'burst' firing. Brain Res 2000; 884:139-46. [PMID: 11082495 DOI: 10.1016/s0006-8993(00)02958-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study used the peptides omega-conotoxin GVIA, omega-agatoxin IVA and omega-conotoxin MVIIC, singly and in combination, to investigate the relative involvement of N-, P- and Q-type voltage-operated calcium channels in the control of striatal dopamine release. Electrically stimulated dopamine release was measured by fast cyclic voltammetry at carbon fibre microelectrodes in rat striatal slices. The contribution of these channel subtypes was compared in dorsolateral and medial neostriatum for 'regular' (discrete) and 'burst' stimulation modalities. In dorsolateral neostriatum, a role for N-, P- and Q-type channels was demonstrated for discrete stimulations, whilst at least one other unidentified channel was also involved in dopamine release on 'burst' stimulations. Similarly, in the medial axis of the neostriatum, N-, P- and Q-type channels were involved in dopamine release for discrete stimulations, and N-, Q- and at least one other channel type for 'burst' stimulations. However, blockade of P-type channels had no effect on dopamine release for 'burst' stimulations in the medial axis. In both regions and stimulation paradigms, N-type channels played a greater role than P/Q-type channels. In the medial axis of the neostriatum there was a smaller contribution by N- and P-type channels and the unidentified component, but a greater Q-type contribution to DA release. 'Burst' stimulations induced a lesser involvement of N- and P-type channels than discrete stimulations, and a greater role of the unidentified component. In summary, this study suggests that there is heterogeneity in the distribution of functional voltage-operated calcium channel subtypes in the neostriatum, and differences in subtype recruitment for different firing patterns.
Collapse
Affiliation(s)
- P E Phillips
- Neurotransmission Laboratory, Academic Department of Anaesthesia and Intensive Care, Saint Bartholomew's and the Royal London School of Medicine and Dentistry, Royal London Hospital, Whitechapel, E1 1BB, London, UK
| | | |
Collapse
|
22
|
Pullar IA, Carney SL, Colvin EM, Lucaites VL, Nelson DL, Wedley S. LY367265, an inhibitor of the 5-hydroxytryptamine transporter and 5-hydroxytryptamine(2A) receptor antagonist: a comparison with the antidepressant, nefazodone. Eur J Pharmacol 2000; 407:39-46. [PMID: 11050288 DOI: 10.1016/s0014-2999(00)00728-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The potential antidepressant, LY367265 (1-[2-[4-(6-fluoro-1H-indol-3-yl)-3, 6-dihydro-1(2H)-pyridinyl]ethyl]-5,6-dihydro-1H,4H-[1,2, 5]thiadiazolo[4.3.2-ij]quinoline-2,2,-dioxide) has been shown to have a higher affinity for the 5-hydroxytryptamine (5-HT) transporter (K(i)=2.3 nM) and 5-HT(2A) (K(i)=0.81 nM) receptor than the clinically effective antidepressant, nefazodone. It is a potent inhibitor of [3H]5-HT uptake into rat cortical synaptosomes (IC(50)=3.1 nM) and shows selectivity over that for [3H]noradrenaline (IC(50)>1000 nM). It potentiates potassium-induced [3H]5-HT outflow from prelabelled guinea pig cortical slices both in the presence (EC(50)=950 nM) and absence (EC(50)=250 nM) of a saturating concentration of the 5-HT transport inhibitor, paroxetine, indicating a low level of activity at the 5-HT(1B/1D) autoreceptor. These studies indicate that LY367265 is a putative antidepressant which, because of its 5-HT(2A) receptor antagonist activity, has the potential to produce less sleep disturbance and sexual dysfunction than selective serotonin uptake inhibitors.
Collapse
Affiliation(s)
- I A Pullar
- Eli Lilly and Company, Lilly Research Centre Ltd., Erl Wood Manor, Surrey GU20 6PH, Windlesham, UK.
| | | | | | | | | | | |
Collapse
|
23
|
Hirota K, Kudo M, Kudo T, Kitayama M, Kushikata T, Lambert DG, Matsuki A. Barbiturates inhibit K(+)-evoked noradrenaline and dopamine release from rat striatal slices--involvement of voltage sensitive Ca(2+) channels. Neurosci Lett 2000; 291:175-8. [PMID: 10984635 DOI: 10.1016/s0304-3940(00)01408-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cellular target site(s) for anaesthetic action remain unclear. In rat striatal slices we have previously demonstrated that K(+)-evoked noradrenaline (NA) and dopamine (DA) release is mediated predominantly via P/Q-type voltage sensitive Ca(2+) channels (VSCC). Using this model of Ca(2+) dependent transmitter release we have evaluated the effects of anaesthetic and non-anaesthetic barbiturates. Rat brain striatal slices were incubated in the absence and presence of barbiturate for 10 min at 37 degrees C. The slices were then incubated for 6 min with 40 mM KCl. All anaesthetic barbiturates produced a concentration-dependent inhibition of K(+)-evoked NA and DA release. Non-anaesthetic barbiturate, barbituric acid was ineffective. The pIC(50) for NA and DA release (thiopental: 4.90+/-0.13 and 5.00+/-0.10, pentobarbital: 4.39+/-0.07 and 4.43+/-0.14, phenobarbital: 3.85+/-0.08 and 3.59+/-0.10, respectively) correlated with lipid solubility (NA: r(2)=0.999, DA: r(2)=0.987). We therefore suggest that barbiturates inhibit catecholamine release via an interaction with P/Q VSCC further implicating this channel in anaesthetic action.
Collapse
Affiliation(s)
- K Hirota
- Department of Anesthesiology, University of Hirosaki School of Medicine, 036-8563, Hirosaki, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Dooley DJ, Mieske CA, Borosky SA. Inhibition of K(+)-evoked glutamate release from rat neocortical and hippocampal slices by gabapentin. Neurosci Lett 2000; 280:107-10. [PMID: 10686389 DOI: 10.1016/s0304-3940(00)00769-2] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Gabapentin (Neurontin((R))) has preclinical and clinical efficacy as an anticonvulsant, antihyperalgesic, anxiolytic, and neuroprotective drug. Since L-glutamic acid (GLU) is involved in various CNS (central nervous system) disorders, gabapentin may attenuate the release of this neurotransmitter possibly by interacting with the auxiliary alpha(2)delta subunit of voltage-sensitive calcium channels (VSCC). The effects of gabapentin, pregabalin (S-(+)-3-isobutylgaba) and its enantiomer R-(-)-3-isobutylgaba, and N- and P/Q-type VSCC-targeting peptide ligands (omega-conotoxin MVIIA, omega-conotoxin MVIIC, omega-agatoxin TK) were assessed in vitro on K(+)-evoked (endogenous) GLU release from rat neocortical and hippocampal slices. Gabapentin and pregabalin decreased GLU release by 11-26% with R-(-)-3-isobutylgaba being less effective than pregabalin. The reference N- and P/Q-type VSCC-targeting ligands reduced GLU release by 19-55% to implicate these VSCC in this Ca(2+)-dependent process. The inhibitory effect of gabapentin and related compounds on GLU release may reflect a subtle modulation of VSCC function which normalizes pathological changes in neurotransmitter release.
Collapse
Affiliation(s)
- D J Dooley
- Department of Neuroscience Therapeutics, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Co., Ann Arbor, MI 48105, USA.
| | | | | |
Collapse
|
25
|
Kawata Y, Okada M, Murakami T, Mizuno K, Wada K, Kondo T, Kaneko S. Effects of zonisamide on K+ and Ca2+ evoked release of monoamine as well as K+ evoked intracellular Ca2+ mobilization in rat hippocampus. Epilepsy Res 1999; 35:173-82. [PMID: 10413313 DOI: 10.1016/s0920-1211(99)00010-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To clarify the effects of zonisamide (ZNS) on neurotransmission and intracellular Ca2+ mobilization, both Ca2+ and K+ evoked hippocampal releases of dopamine (DA) and serotonin (5-HT) were determined by in vivo microdialysis, and K+ (25 and 50 mM) evoked elevation of intracellular Ca2+ level was determined by fluorescence microscopy in vitro. Therapeutic concentrations of ZNS had different effects on Ca2+ and K+ evoked release of monoamine. ZNS stimulated Ca2+ evoked monoamine release, while ZNS inhibited K+ evoked monoamine release. ZNS inhibited K+ evoked elevation of hippocampal intracellular Ca2+ levels in a concentration dependent manner. These results suggest that ZNS inhibits the depolarization induced by neuronal excitation, whereas ZNS might enhance the N-type Ca2+ channel activity or N-type Ca2+ channel related exocytosis mechanisms.
Collapse
Affiliation(s)
- Y Kawata
- Department of Neuropsychiatry, Hirosaki University, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Dobrev D, Milde AS, Andreas K, Ravens U. The effects of verapamil and diltiazem on N-, P- and Q-type calcium channels mediating dopamine release in rat striatum. Br J Pharmacol 1999; 127:576-82. [PMID: 10385261 PMCID: PMC1566043 DOI: 10.1038/sj.bjp.0702574] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The putative inhibitory effects of verapamil and diltiazem on neuronal non-L-type Ca2+ channels were studied by investigating their effects on either K+- or veratridine-evoked [3H]-dopamine ([3H]-DA) release in rat striatal slices. Involvement of N-, P- and Q-type channels was identified by sensitivity of [3H]-DA release to omega-conotoxin GVIA (omega-CTx-GVIA), omega-agatoxin IVA (omega-Aga-IVA) and omega-conotoxin MVIIC (omega-CTx-MVIIC), respectively. 2. KCl (50 mM)-evoked [3H]-DA release was abolished in the absence of Ca2+, and was insensitive to dihydropyridines (up to 30 microM). It was significantly blocked by omega-CTx-GVIA (1 microM), omega-Aga-IVA (30 nM) and was confirmed to be abolished by omega-CTx-MVIIC (3 microM), indicating involvement of N-, P- and Q-type channel subtypes. 3. Verapamil and diltiazem inhibited K+-evoked [3H]-DA release in a concentration-dependent manner. The inhibitory effects of verapamil or diltiazem (each 30 microM) were fully additive to the effect of omega-CTx-GVIA (1 microM), whereas co-application with omega-Aga-IVA (30 nM) produced similar effects to those of omega-Aga-IVA alone. 4. As shown previously, veratridine-evoked [3H]-DA release in Ca2+ containing medium exclusively involves Q-type Ca2+ channels. Here, diltiazem (30 microM) did not inhibit veratridine-evoked [3H]-DA release, whereas verapamil (30 microM) partially inhibited it, indicating possible involvement of Q-type channels in verapamil-induced inhibition. However, verapamil (30 microM) inhibited this release even in the absence of extracellular Ca2+, suggesting that Na+ rather than Q-type Ca2+ channels are involved. 5. Taken together, our results suggest that verapamil can block P- and at higher concentrations possibly N- and Q-type Ca2+ channels linked to [3H]-DA release, whereas diltiazem appears to block P-type Ca2+ channels only.
Collapse
Affiliation(s)
- D Dobrev
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Technology, Dresden, Germany.
| | | | | | | |
Collapse
|
27
|
Hill MP, Brotchie JM. Control of glutamate release by calcium channels and kappa-opioid receptors in rodent and primate striatum. Br J Pharmacol 1999; 127:275-83. [PMID: 10369483 PMCID: PMC1565998 DOI: 10.1038/sj.bjp.0702523] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The modulation of depolarization (4-aminopyridine, 2 mM)-evoked endogenous glutamate release by kappa-opioid receptor activation and blockade of voltage-dependent Ca2+ -channels has been investigated in synaptosomes prepared from rat and marmoset striatum. 4-Aminopyridine (4-AP)-stimulated, Ca2+ -dependent glutamate release was inhibited by enadoline, a selective kappa-opioid receptor agonist, in a concentration-dependent and norbinaltorphimine (nor-BNI, selective kappa-opioid receptor antagonist)-sensitive manner in rat (IC50 = 4.4+/-0.4 microM) and marmoset (IC50 = 2.9+/-0.7 microM) striatal synaptosomes. However, in the marmoset, there was a significant (approximately 23%) nor-BNI-insensitive component. In rat striatal synaptosomes, the Ca2+ -channel antagonists omega-agatoxin-IVA (P/Q-type blocker), omega-conotoxin-MVIIC (N/P/Q-type blocker) and omega-conotoxin-GVIA (N-type blocker) reduced 4-AP-stimulated, Ca2+ -dependent glutamate release in a concentration-dependent manner with IC50 values of 6.5+/-0.9 nM, 75.5+5.9 nM and 106.5+/-8.7 nM, respectively. In marmoset striatal synaptosomes, 4-AP-stimulated, Ca2+ -dependent glutamate release was significantly inhibited by omega-agatoxin-IVA (30 nM, 57.6+/-2.3%, inhibition), omega-conotoxin-MVIIC (300 nM, 57.8+/-3.1%) and omega-conotoxin-GVIA (1 microM, 56.7+/-2%). Studies utilizing combinations of Ca2+ -channel antagonists suggests that in the rat striatum, two relatively distinct pools of glutamate, released by activation of either P or Q-type Ca2+ -channels, exist. In contrast, in the primate there is much overlap between the glutamate released by P and Q-type Ca2+ -channel activation. Studies using combinations of enadoline and the Ca2+ -channel antagonists suggest that enadoline-induced inhibition of glutamate release occurs primarily via reduction of Ca2+ -influx through P-type Ca2+ -channels in the rat but via N-type Ca2+ -channels in the marmoset. In conclusion, the results presented suggest that there are species differences in the control of glutamate release by kappa-opioid receptors and Ca2+ -channels.
Collapse
Affiliation(s)
- M P Hill
- Manchester Movement Disorders Laboratory, Division of Neuroscience, School of Biological Sciences, University of Manchester.
| | | |
Collapse
|
28
|
Okada M, Kawata Y, Murakami T, Wada K, Mizuno K, Kondo T, Kaneko S. Differential effects of adenosine receptor subtypes on release and reuptake of hippocampal serotonin. Eur J Neurosci 1999; 11:1-9. [PMID: 9987006 DOI: 10.1046/j.1460-9568.1999.00415.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To clarify the effects of adenosine receptor subtypes (A1, A2 and A3) on hippocampal serotonin (5-HT) release and 5-HT reuptake activity, hippocampal extracellular 5-HT levels were determined in vivo by microdialysis in freely moving rats. Selective 5-HT reuptake inhibitor (SSRI) fluoxetine and DU24565 increased extracellular 5-HT levels. Adenosine and A1 receptor agonist, 2-chloro-N6-cyclopentyl-adenosine (CCPA), decreased extracellular 5-HT levels, whereas non-selective antagonist, caffeine, and A1 antagonist, 8-cyclopentyl-1,3-dimethylxanthine (CPT) increased them. When 5-HT reuptake activity was inhibited by DU24565 and fluoxetine, the effects of CPT and CCPA on 5-HT level were enhanced. A2A receptor agonist, CGS21680, A2 receptor agonist, PD125944, A2 receptor antagonist, 3,7-dimethyl-1-propargylxanthine (DMPX), and A3 receptor agonist, N6-2-(4-aminophenyl)ethyladenosine (APNEA) did not affect 5-HT levels; however, when A1 receptor was blocked by CPT, 5-HT levels were increased by adenosine, CGS21680 and PD125944, and decreased by DMPX and APNEA. Under conditions of A1 receptor blockade, pretreatment with DU24565 or fluoxetine, enhanced the stimulatory effects of CGS21680 and PD125944 as well as inhibitory effects of DMPX on 5-HT level, whereas the inhibitory effect of APNEA was abolished. These results indicate that the stimulatory effects of A2 receptor and inhibitory effects of A3 receptor on hippocampal extracellular 5-HT levels are masked or abolished by the inhibitory effects of A1 receptor. In addition, hippocampal serotonergic transmission might be modulated by hippocampal presynaptic adenosine receptor subtypes, and hippocampal 5-HT reuptake activity might be modulated by hippocampal A3 receptor.
Collapse
Affiliation(s)
- M Okada
- Department of Neuropsychiatry, Hirosaki University, Japan.
| | | | | | | | | | | | | |
Collapse
|
29
|
Kinoshita M, Kaneko S, Yasuno T, Yada N, Akaike A, Satoh M. Inhibitory effects of bifemelane on brain Ca2+ channel subtypes expressed in Xenopus oocytes. JAPANESE JOURNAL OF PHARMACOLOGY 1998; 78:39-44. [PMID: 9804060 DOI: 10.1254/jjp.78.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Effects of the cerebroprotective agent bifemelane on voltage-dependent Ca2+ channel currents were evaluated in Xenopus oocytes expressing specific Ca2+-channel subtypes. Extracellular perfusion of bifemelane showed a dose-dependent blocking action on both N-type and Q-type Ca2+ channels, but not on cardiac L-type Ca2+ channels expressed in the oocytes, and the inhibitory action on Q-type current was stronger than that on N-type current. The time course of inhibition by bifemelane was comparatively slow; a 20-min perfusion with 1 microM bifemelane was required to reduce the amplitude of the Q-type current to 80% of the control level. When bifemelane was applied intracellularly, the potency and time-course of inhibition was equivalent to that caused by the perfusion of bifemelane. The bifemelane-induced inhibition was voltage-dependent but not use-dependent in Q-type channels since it was apparent at more depolarized potentials but not influenced by the interval of depolarization. These results suggest that bifemelane inhibits the opening of the specific Ca2+ channels located at nerve terminals to suppress excessive neurotransmitter release from neurons in some pathophysiological conditions such as ischemia.
Collapse
Affiliation(s)
- M Kinoshita
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Kingston AE, Lowndes J, Evans N, Clark B, Tomlinson R, Burnett JP, Mayne NG, Cockerham SL, Lodge D. Sulphur-containing amino acids are agonists for group 1 metabotropic receptors expressed in clonal RGT cell lines. Neuropharmacology 1998; 37:277-87. [PMID: 9681926 DOI: 10.1016/s0028-3908(98)00018-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Comparison of the pharmacological effects of a range of sulphur-containing amino acids on human mGluR1alpha and mGluR5a has been undertaken. cDNAs of each mGluR were transfected into a Syrian hamster tumour cell line AV12-664 that was previously transfected with the rat glutamate-aspartate transporter protein (GLAST). The L-isomers of cysteine sulphinic acid (CSA), homocysteine sulphinic acid (HCSA), cysteic acid (CA) and serine-O-sulphate (SOS) stimulated PI hydrolysis in human mGluR1alpha and mGluR5a cells with full agonist effects. D-CSA, the only active D-isomer, was a partial agonist for mGluR5a whereas L-sulphocysteine (S-CYS) showed weak agonist-like effects at high concentrations on both mGluR1alpha and mGluR5a. L-Homocysteic acid was inactive on both mGluR1alpha and mGluR5a cells. Treatment of mGluR cultures with glutamate pyruvate transaminase did not alter the potencies of the S-amino acids on PI hydrolysis responses. Inhibitor constants (Ki) obtained for L-HCSA, L-CSA, L-CA and L-SOS in [3H]glutamate receptor binding studies with mGluR1alpha cells indicated that L-HCSA, L-CSA, L-CA and L-SOS can bind specifically to mGluR1 with L-HCSA showing the highest affinity. These results confirm that certain endogenously produced S-amino acids may interact directly with group 1 mGluRs.
Collapse
Affiliation(s)
- A E Kingston
- Lilly Research Centre, Eli Lilly, Windlesham, Surrey, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gardner K, Hoffman EP. Current status of genetic discoveries in migraine: familial hemiplegic migraine and beyond. Curr Opin Neurol 1998; 11:211-6. [PMID: 9642538 DOI: 10.1097/00019052-199806000-00004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Familial hemiplegic migraine (FHM) has been related to mutations in a brain calcium channel gene among Chr19p linked FHM families. Subsequent genetic Studies in different FHM families showed that additional causative genes must reside in other regions of the genome, including the long arm of Chromosome 1. Parallel discoveries in mouse mutants involving ion channel genes have also accelerated our understanding of the spectrum and functional significance of the CNS-related ion channel disorders. These studies have clear implications for migraine, epilepsy, and ataxia. An association study was suggested that other 'susceptibility' genes like the dopamine DRD2 receptor will be important in characterizing the genetic components of the larger, heterogeneous group of migraine disorders.
Collapse
Affiliation(s)
- K Gardner
- Department of Neurology, University of Pittsburgh School of Medicine 15213, USA
| | | |
Collapse
|
32
|
Kamphuis W, Hendriksen H. Expression patterns of voltage-dependent calcium channel alpha 1 subunits (alpha 1A-alpha 1E) mRNA in rat retina. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 55:209-20. [PMID: 9582423 DOI: 10.1016/s0169-328x(97)00363-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The transcript levels of the genes encoding for the different alpha1 (alpha1A-alpha1E) subunits of voltage-dependent calcium channels (VDCCs) were studied in the retina of the rat using RT-PCR, Northern blotting, and in situ hybridization. Abundant expression of alpha1A and alpha1B was found with RT-PCR and on Northern blots of total retina RNA, corresponding with high expression levels in all nuclear layers (outer and inner nuclear layers and the ganglion cell layer) of the retina. VDCC alpha1D mRNA was also present in all nuclear layers of the retina but at less abundant levels than alpha1A or alpha1B. Expression level of alpha1C in the retina was low as deduced from a faint Northern blot signal and a moderate yield after PCR amplification. VDCC alpha1E specific amplification of retinal cDNA yielded a longer product (designated alpha1E-L) than obtained from the hippocampus. Nucleotide sequencing of this PCR product revealed a 129 bp insert which is largely homologous (97%) with a previously described insert in the same position in human alpha1E cDNA. In situ hybridization in rat brain showed a differential expression pattern of the long and short variants of alpha1E mRNA. Northern blotting of retinal RNA confirmed the absence of the short variant (alpha1E-S), while alpha1E-L was present at low levels. In situ hybridization detected a significant level of expression of alpha1E-L in the inner nuclear layer. The prevalent expression of alpha1A and alpha1B, and to a lesser extent, of alpha1D, indicates that P/Q-, N-, and L-type calcium currents play a prominent role in the various cell types involved in the retinal signal-transduction pathway. The absence of alpha1C transcript in the retina suggests that the slowly inactivating L-type calcium currents involved in neurotransmitter release from the terminals of photoreceptors and bipolar cells may be encoded by the alpha1D isoform.
Collapse
Affiliation(s)
- W Kamphuis
- Graduate School for the Neurosciences Amsterdam, Netherlands Ophthalmic Research Institute, Department of Ophthalmo-Morphology, PO Box 12141, 1100 AC Amsterdam, Netherlands.
| | | |
Collapse
|
33
|
Okada M, Wada K, Kiryu K, Kawata Y, Mizuno K, Kondo T, Tasaki H, Kaneko S. Effects of Ca2+ channel antagonists on striatal dopamine and DOPA release, studied by in vivo microdialysis. Br J Pharmacol 1998; 123:805-14. [PMID: 9535007 PMCID: PMC1565231 DOI: 10.1038/sj.bjp.0701675] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
1. To elucidate the mechanisms regulating the release of striatal dopamine and its precursor, 3,4-dihydroxyphenylalanine (DOPA), we determined the effects of various Ca2+ channel antagonists, an N-type Ca2+ channel antagonist, omega-conotoxin GVIA, a P-type Ca2+ channel antagonist, omega-agatoxin IVA, and a Q-type Ca2+ channel antagonist, omega-conotoxin MVIIC, on the basal and Ca2+- and K+-evoked release of striatal dopamine and DOPA, by use of in vivo microdialysis. 2. Omega-conotoxin GVIA strongly inhibited striatal basal dopamine release (IC50 = 0.48 nM), whereas this toxin only weakly modulated basal striatal DOPA release (IC50 = 9.55 nM). Neither omega-agatoxin IVA nor omega-conotoxin MVIIC affected the basal striatal release of dopamine and DOPA. 3. Omega-conotoxin GVIA strongly inhibited Ca2+-evoked striatal dopamine release (IC50 = 0.40 nM), whereas Ca2+-evoked striatal DOPA release only was weakly modulated (IC50 = 10.51 nM). Neither omega-agatoxin IVA nor omega-conotoxin MVIIC affected the Ca2+-evoked release of striatal dopamine and DOPA. 4. Both omega-agatoxin IVA and omega-conotoxin MVIIC inhibited the K+-evoked release of striatal dopamine (IC50 of omega-agatoxin IVA = 2.65 nM; IC50 of omega-conotoxin MVIIC = 12.54 nM) and DOPA (IC50 of omega-agatoxin IVA = 0.15 nM; IC50 of omega-conotoxin MVIIC = 3.05 nM), whereas omega-conotoxin GVIA had no effect on the K+-evoked release of striatal dopamine and DOPA. 5. An increase in the extracellular Ca2+ and K+ concentrations (Ca2+- and K+-evoked stimulation) did not affect tyrosine hydroxylase activity in vivo. 6. These findings suggest that striatal DOPA release is neurotransmitter-like and that, unlike the mechanisms of striatal dopaminergic transmission, this striatal DOPA transmission is at least partly regulated by voltage-sensitive Ca2+ channels.
Collapse
Affiliation(s)
- M Okada
- Department of Neuropsychiatry, School of Medicine, Hirosaki University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Dobrev D, Andreas K. Modulation of potassium-evoked [3H]dopamine release from rat striatal slices by voltage-activated calcium channel ligands: effects of omega-conotoxin-MVIIC. Neurochem Res 1997; 22:1085-93. [PMID: 9251097 DOI: 10.1023/a:1027305016440] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We examined the involvement of voltage-activated Ca2+ channels (VACCs) on K+(50 mM)-evoked [3H]dopamine ([3H]DA) release from superfused rat striatal slices. Neither nifedipine nor nitrendipine modified K(+)-evoked [3H]DA release, indicating that L-type VACCs are not involved. K(+)-evoked [3H]DA release was partially inhibited by omega-CTx-GVIA and omega-Aga-IVA, and was abolished by 3 microM omega-CTx-MVIIC (IC50 approximately 128 nM), suggesting the involvement of N-, P-, or Q-type VACCs, respectively. Moreover, even subnanomolar concentrations of omega-CTx-MVIIC (0.1-0.5 nM) inhibited K(+)-evoked [3H]DA release by approximately 25%, suggesting the possible involvement of a still not classified (perhaps O-type?) Ca2+ channel subtype. The effects of omega-CTx-MVIIC (10-100 nM) and omega-CTx-GVIA (1 microM) were additive, suggesting that low nanomolar concentrations of omega-CTx-MVIIC does not interact with N-type VACCs. In conclusion, the K(+)-evoked [3H]DA release from rat striatal slices is mediated by entry of Ca2+ through omega-CTx-GVIA sensitive (N-type) as well as through omega-Aga-IVA (P-type) and omega-CTx-MVIIC (probably Q-type) sensitive VACCs.
Collapse
Affiliation(s)
- D Dobrev
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Technology, Dresden, Germany
| | | |
Collapse
|