1
|
D'Aquila PS. Dopamine, activation of ingestion and evaluation of response efficacy: a focus on the within-session time-course of licking burst number. Psychopharmacology (Berl) 2024; 241:1111-1124. [PMID: 38702473 PMCID: PMC11106101 DOI: 10.1007/s00213-024-06600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
RATIONALE Evidence on the effect of dopamine D1-like and D2-like receptor antagonists on licking microstructure and the forced swimming response led us to suggest that (i) dopamine on D1-like receptors plays a role in activating reward-directed responses and (ii) the level of response activation is reboosted based on a process of evaluation of response efficacy requiring dopamine on D2-like receptors. A main piece of evidence in support of this hypothesis is the observation that the dopamine D2-like receptor antagonist raclopride induces a within-session decrement of burst number occurring after the contact with the reward. The few published studies with a detailed analysis of the time-course of this measure were conducted in our laboratory. OBJECTIVES The aim of this review is to recapitulate and discuss the evidence in support of the analysis of the within-session burst number as a behavioural substrate for the study of the mechanisms governing ingestion, behavioural activation and the related evaluation processes, and its relevance in the analysis of drug effects on ingestion. CONCLUSIONS The evidence gathered so far suggests that the analysis of the within-session time-course of burst number provides an important behavioural substrate for the study of the mechanisms governing ingestion, behavioural activation and the related evaluation processes, and might provide decisive evidence in the analysis of the effects of drugs on ingestion. However, further evidence from independent sources is necessary to validate the use and the proposed interpretation of this measure.
Collapse
Affiliation(s)
- Paolo S D'Aquila
- Dipartimento di Scienze Biomediche, Università di Sassari, Viale S. Pietro 43/b, Sassari, 07100, Italy.
| |
Collapse
|
2
|
Liyanagamage DSNK, McColl LK, Glasgow LNM, Levine AS, Olszewski PK. Effect of intranasal oxytocin on palatable food consumption and c-Fos immunoreactivity in relevant brain areas in rats. Physiol Behav 2023; 271:114318. [PMID: 37543105 DOI: 10.1016/j.physbeh.2023.114318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Peripheral and central injections of oxytocin (OT) in laboratory animals decrease eating for energy and palatability, but the hypophagic response is dependent on the administration route. Human studies rely on intranasal (IN) administration of the peptide, the route underutilized in OT animal feeding studies thus far. Therefore, we examined the effect of IN OT on various aspects of food consumption in rats: (a) overnight deprivation-induced standard chow intake, (b) episodic (2-h) consumption of calorie-dense and palatable high-fat high-sugar (HFHS) chow, (c) 2-h episodic intake of palatable and calorie-dilute sucrose and Intralipid solutions, and (d) 2-h sucrose solution intake in rats habituated to ingesting this solution daily for several weeks. Finally, we assessed c-Fos changes in response to the acute IN OT administration in rats habituated to daily sugar consumption. We found that IN 20μg OT decreased deprivation-induced intake of standard chow and HFHS chow in nondeprived rats without affecting water consumption. IN OT also reduced 2-hour episodic fluid consumption of sucrose, but not Intralipid. In the habitual sugar consumption paradigm, acute IN OT diminished sucrose solution intake in animals accustomed to the 2-hour/day sucrose meal regimen. In rats habitually consuming sucrose, IN OT altered c-Fos immunoreactivity in brain areas related to energy homeostasis and reward, including the central nucleus of the amygdala, the hypothalamic paraventricular and the arcuate nuclei. We conclude that IN OT is an effective appetite suppressant for carbohydrate/sugar diets in rats and its effects involve feeding-related brain circuits.
Collapse
Affiliation(s)
| | - Laura K McColl
- Faculty of Science and Engineering, University of Waikato, Hamilton 3240, New Zealand
| | - Lisa N M Glasgow
- Faculty of Science and Engineering, University of Waikato, Hamilton 3240, New Zealand
| | - Allen S Levine
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, United States of America
| | - Pawel K Olszewski
- Faculty of Science and Engineering, University of Waikato, Hamilton 3240, New Zealand; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, United States of America; Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN 55414, United States of America.
| |
Collapse
|
3
|
Levine AS, Jewett DC, Kotz CM, Olszewski PK. Behavioral plasticity: Role of neuropeptides in shaping feeding responses. Appetite 2022; 174:106031. [PMID: 35395362 DOI: 10.1016/j.appet.2022.106031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/12/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022]
Abstract
Behavioral plasticity refers to changes occurring due to external influences on an organism, including adaptation, learning, memory and enduring influences from early life experience. There are 2 types of behavioral plasticity: "developmental", which refers to gene/environment interactions affecting a phenotype, and "activational" which refers to innate physiology and can involve structural physiological changes of the body. In this review, we focus on feeding behavior, and studies involving neuropeptides that influence behavioral plasticity - primarily opioids, orexin, neuropeptide Y, and oxytocin. In each section of the review, we include examples of behavioral plasticity as it relates to actions of these neuropeptides. It can be concluded from this review that eating behavior is influenced by a number of external factors, including time of day, type of food available, energy balance state, and stressors. The reviewed work underscores that environmental factors play a critical role in feeding behavior and energy balance, but changes in eating behavior also result from a multitude of non-environmental factors, such that there can be no single mechanism or variable that can explain ingestive behavior.
Collapse
Affiliation(s)
- Allen S Levine
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, 55113, USA.
| | - David C Jewett
- Department of Psychology, University of Wisconsin-Eau Claire, Eau Claire, WI, USA
| | - Catherine M Kotz
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA; Geriatric, Research, Education and Clinical Center, Minneapolis Veterans Affairs Health, Minneapolis, MN, 55417, USA
| | - Pawel K Olszewski
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, 55113, USA; Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN, 55414, USA; Faculty of Science and Engineering, University of Waikato, Hamilton, 3240, New Zealand
| |
Collapse
|
4
|
Jewett DC, Liyanagamage DSNK, Avond MAV, Anderson MAB, Twaroski KA, Marek MA, James KF, Pal T, Klockars A, Olszewski PK, Levine AS. Chronic Intermittent Sucrose Consumption Facilitates the Ability to Discriminate Opioid Receptor Blockade with Naltrexone in Rats. Nutrients 2022; 14:nu14050926. [PMID: 35267900 PMCID: PMC8912831 DOI: 10.3390/nu14050926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 12/20/2022] Open
Abstract
The opioid antagonist naltrexone (NTX) decreases intake of preferred diets in rats at very low doses relative to doses needed to decrease intake of "bland" laboratory chow. In the absence of an opioid agonist, NTX is not discriminable using operant techniques. In the current study, we found that rats given intermittent access to a 25% sucrose solution learned to discriminate between various naltrexone doses and saline. None of the rats given only water learned to discriminate between naltrexone and saline. When access to the sucrose solution was discontinued for 14 days, the rats lost the ability to discriminate between NTX and saline. We also studied the changes of c-Fos IR in selected brain regions in rats treated with saline versus NTX that were drinking water or 25% sucrose. An injection of NTX or saline resulted in a significant drug, diet, and interaction effect in various brain regions associated with feeding behavior, particularly the amygdala, accumbens, and hypothalamic sites. Thus, we found that ingestion of a sucrose solution results in the ability of rats to reliably discriminate naltrexone administration. In addition, sucrose and naltrexone altered c-Fos IR in an interactive fashion in brain regions known to be involved in ingestion behavior.
Collapse
Affiliation(s)
- David C. Jewett
- Department of Psychology, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (D.C.J.); (M.A.V.A.); (M.A.B.A.); (K.A.T.); (M.A.M.); (K.F.J.)
| | - Donisha S. N. K. Liyanagamage
- Faculty of Science and Engineering, University of Waikato, Hamilton 3240, New Zealand; (D.S.N.K.L.); (T.P.); (A.K.); (P.K.O.)
| | - Mark A. Vanden Avond
- Department of Psychology, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (D.C.J.); (M.A.V.A.); (M.A.B.A.); (K.A.T.); (M.A.M.); (K.F.J.)
| | - Molly A. B. Anderson
- Department of Psychology, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (D.C.J.); (M.A.V.A.); (M.A.B.A.); (K.A.T.); (M.A.M.); (K.F.J.)
| | - Kyleigh A. Twaroski
- Department of Psychology, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (D.C.J.); (M.A.V.A.); (M.A.B.A.); (K.A.T.); (M.A.M.); (K.F.J.)
| | - Morgan A. Marek
- Department of Psychology, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (D.C.J.); (M.A.V.A.); (M.A.B.A.); (K.A.T.); (M.A.M.); (K.F.J.)
| | - Kimberly F. James
- Department of Psychology, University of Wisconsin-Eau Claire, Eau Claire, WI 54701, USA; (D.C.J.); (M.A.V.A.); (M.A.B.A.); (K.A.T.); (M.A.M.); (K.F.J.)
| | - Tapasya Pal
- Faculty of Science and Engineering, University of Waikato, Hamilton 3240, New Zealand; (D.S.N.K.L.); (T.P.); (A.K.); (P.K.O.)
| | - Anica Klockars
- Faculty of Science and Engineering, University of Waikato, Hamilton 3240, New Zealand; (D.S.N.K.L.); (T.P.); (A.K.); (P.K.O.)
| | - Pawel K. Olszewski
- Faculty of Science and Engineering, University of Waikato, Hamilton 3240, New Zealand; (D.S.N.K.L.); (T.P.); (A.K.); (P.K.O.)
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, MN 55414, USA
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Allen S. Levine
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
- Correspondence:
| |
Collapse
|
5
|
Garfield JBB, Lubman DI. Associations between opioid dependence and sweet taste preference. Psychopharmacology (Berl) 2021; 238:1473-1484. [PMID: 33527169 DOI: 10.1007/s00213-021-05774-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
RATIONALE Past research suggests that people with opioid dependence show increased consumption of sweet food, but it is unclear if this is influenced by altered taste preference and/or taste perception. OBJECTIVES We tested whether people prescribed opioid substitution therapy (OST) exhibited a shift in preference towards sweeter flavours, and altered perception of sweetness, and explored whether these measures of taste preference/perception were associated with measures of opioid use. METHODS Three groups of participants (people prescribed OST, n=36; people with past opioid dependence, but now abstinent from all opioids, n=18; and controls with no history of substance dependence other than nicotine, n=29) provided ratings of "sweetness", "liking", and "desire" of 4 solutions with varying concentrations of sucrose. RESULTS We did not find significant differences between groups in the effect of sucrose concentration on "sweetness", "liking", or "desire" ratings. However, among those prescribed OST, frequency of recent illicit opioid use was associated with reduced perception of "sweetness" of low sucrose concentrations. Higher methadone dose was associated with a shift towards liking sweeter concentrations. Among those with past opioid dependence, longer duration of abstinence from opioids was associated with a shift towards liking sweeter concentrations. CONCLUSIONS Among people currently dependent on opioids, reduced sensitivity to low levels of sweetness and increased preference for sweeter flavours may be associated with increased dependence on opioids. Among those who have ceased opioid use, the association between preference for sweeter flavours and duration of abstinence is a novel finding that deserves further investigation.
Collapse
Affiliation(s)
- Joshua B B Garfield
- Monash Addiction Research Centre, Eastern Health Clinical School, Monash University, 110 Church Street, Richmond, Victoria, 3121, Australia. .,Turning Point, Eastern Health, 110 Church Street, Richmond, Victoria, 3121, Australia.
| | - Dan I Lubman
- Monash Addiction Research Centre, Eastern Health Clinical School, Monash University, 110 Church Street, Richmond, Victoria, 3121, Australia.,Turning Point, Eastern Health, 110 Church Street, Richmond, Victoria, 3121, Australia
| |
Collapse
|
6
|
Briggs SB, Hannapel R, Ramesh J, Parent MB. Inhibiting ventral hippocampal NMDA receptors and Arc increases energy intake in male rats. ACTA ACUST UNITED AC 2021; 28:187-194. [PMID: 34011515 PMCID: PMC8139633 DOI: 10.1101/lm.053215.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/02/2021] [Indexed: 11/24/2022]
Abstract
Research into the neural mechanisms that underlie higher-order cognitive control of eating behavior suggests that ventral hippocampal (vHC) neurons, which are critical for emotional memory, also inhibit energy intake. We showed previously that optogenetically inhibiting vHC glutamatergic neurons during the early postprandial period, when the memory of the meal would be undergoing consolidation, caused rats to eat their next meal sooner and to eat more during that next meal when the neurons were no longer inhibited. The present research determined whether manipulations known to interfere with synaptic plasticity and memory when given pretraining would increase energy intake when given prior to ingestion. Specifically, we tested the effects of blocking vHC glutamatergic N-methyl-D-aspartate receptors (NMDARs) and activity-regulated cytoskeleton-associated protein (Arc) on sucrose ingestion. The results showed that male rats consumed a larger sucrose meal on days when they were given vHC infusions of the NMDAR antagonist APV or Arc antisense oligodeoxynucleotides than on days when they were given control infusions. The rats did not accommodate for that increase by delaying the onset of their next sucrose meal (i.e., decreased satiety ratio) or by eating less during the next meal. These data suggest that vHC NMDARs and Arc limit meal size and inhibit meal initiation.
Collapse
Affiliation(s)
- Sherri B Briggs
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303, USA
| | - Reilly Hannapel
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303, USA
| | - Janavi Ramesh
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303, USA
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303, USA.,Department of Psychology, Georgia State University, Atlanta, Georgia 30303, USA
| |
Collapse
|
7
|
The convergence of psychology and neurobiology in flavor-nutrient learning. Appetite 2018; 122:36-43. [DOI: 10.1016/j.appet.2017.03.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 12/15/2022]
|
8
|
A High-fat, High-sugar 'Western' Diet Alters Dorsal Striatal Glutamate, Opioid, and Dopamine Transmission in Mice. Neuroscience 2017; 372:1-15. [PMID: 29289718 DOI: 10.1016/j.neuroscience.2017.12.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/28/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
Understanding neuroadaptations involved in obesity is critical for developing new approaches to treatment. Diet-induced neuroadaptations within the dorsal striatum have the capacity to drive excessive food seeking and consumption. Five-week-old C57BL/6J mice consumed a high-fat, high-sugar 'western diet' (WD) or a control 'standard diet' (SD) for 16 weeks. Weight gain, glucose tolerance, and insulin tolerance were measured to confirm an obese-like state. Following these 16 weeks, electrophysiological recordings were made from medium spiny neurons (MSNs) in the medial (DMS) and lateral (DLS) portions of dorsal striatum to evaluate diet effects on neuronal excitability and synaptic plasticity. In addition, fast-scan cyclic voltammetry evaluated dopamine transmission in these areas. WD mice gained significantly more weight and consumed more calories than SD mice and demonstrated impaired glucose tolerance. Electrophysiology data revealed that MSNs from WD mice demonstrated increased AMPA-to-NMDA receptor current ratio and prolonged spontaneous glutamate-mediated currents, specifically in the DLS. Evoked dopamine release was also significantly greater and reuptake slower in both subregions of WD striatum. Finally, dorsal striatal MSNs from WD mice were significantly less likely to demonstrate mu-opioid receptor-mediated synaptic plasticity. Neuronal excitability and GABAergic transmission were unaffected by diet in either striatal subregion. Our results demonstrate that a high-fat, high-sugar diet alters facets of glutamate, dopamine, and opioid signaling within the dorsal striatum, with some subregion specificity. These alterations within a brain area known to play a role in food motivation/consumption and habitual behavior are highly relevant for the clinical condition of obesity and its treatment.
Collapse
|
9
|
Henderson YO, Nalloor R, Vazdarjanova A, Murphy AZ, Parent MB. Sex-dependent effects of early life inflammatory pain on sucrose intake and sucrose-associated hippocampal Arc expression in adult rats. Physiol Behav 2017; 173:1-8. [PMID: 28108332 DOI: 10.1016/j.physbeh.2017.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 12/14/2022]
Abstract
We hypothesize that dorsal hippocampal (dHC) neurons, which are critical for episodic memory, form a memory of a meal and inhibit the initiation of the next meal and the amount ingested during that meal. In support, we showed previously that (1) consuming a sucrose meal induces expression of the synaptic plasticity marker activity-regulated cytoskeleton-associated protein (Arc) in dHC neurons and (2) reversible inactivation of these neurons immediately following a sucrose meal accelerates the onset of the next meal and increases the size of that meal. These data suggest that hippocampal-dependent memory inhibits intake; therefore, the following experiments were conducted to determine whether hippocampal-dependent memory impairments are associated with increased intake. We reported recently that one episode of early life inflammatory pain impairs dHC-dependent memory in adult rats. The present study determined whether neonatal inflammatory pain also increases sucrose intake and attenuates sucrose-associated Arc expression. Male and female Sprague-Dawley rats were given an intraplantar injection of the inflammatory agent carrageenan (1%) on the day of birth and sucrose intake and sucrose-associated dHC Arc expression were measured in adulthood. Neonatal inflammatory pain increased sucrose intake in adult female and male rats, decreased sucrose-associated dHC Arc expression in female rats, and tended to have a similar effect on Arc expression in male rats. Neonatal inflammatory pain significantly decreased the interval between two sucrose meals in female but not in male rats. Morphine administration at the time of insult attenuated the effects of injury on sucrose intake. Collectively, these findings indicate that one brief episode of inflammatory pain on the day of birth has a long long-lasting, sex-dependent impact on intake of a palatable food in adulthood.
Collapse
Affiliation(s)
- Yoko O Henderson
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30302, United States.
| | - Rebecca Nalloor
- Augusta Biomedical Research Corporation, Charlie Norwood VA Medical Center, 950 15th Street, Augusta, GA 30901, United States.
| | - Almira Vazdarjanova
- Department of Pharmacology and Toxicology, Augusta University, 1120 15th Street, CB 3526, Augusta, GA 30912, United States; VA Research Service, Charlie Norwood VA Medical Center, 950 15th Street, Augusta, GA 30901, United States.
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30302, United States.
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, P.O. Box 5030, Atlanta, GA 30302, United States; Department of Psychology, Georgia State University, P.O. Box 5030, Atlanta, GA 30302, United States.
| |
Collapse
|
10
|
Aizawa F, Nishinaka T, Yamashita T, Nakamoto K, Kurihara T, Hirasawa A, Kasuya F, Miyata A, Tokuyama S. GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior. J Pharmacol Sci 2016; 132:249-254. [PMID: 27979701 DOI: 10.1016/j.jphs.2016.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/08/2016] [Accepted: 09/28/2016] [Indexed: 11/17/2022] Open
Abstract
The free fatty acid receptor 1 (GPR40/FFAR1) is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO) mice. The emotional behavior in wild and KO male mice was evaluated at 9-10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC-MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain.
Collapse
Affiliation(s)
- Fuka Aizawa
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Takashi Nishinaka
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Takuya Yamashita
- Biochemical Toxicology Laboratory, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Kazuo Nakamoto
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Takashi Kurihara
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Akira Hirasawa
- Department of Pharmacogenomics, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumiyo Kasuya
- Biochemical Toxicology Laboratory, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan
| | - Atsuro Miyata
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe 650-8586, Japan.
| |
Collapse
|
11
|
Kanarek RB, D'anci KE. Diet and Lighting Conditions Modify the Effects of the Kappa Opioid Agonist U50,488H on Feeding Behavior in Rats. Nutr Neurosci 2016. [DOI: 10.1080/1028415x.2000.11747321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Parent MB. Cognitive control of meal onset and meal size: Role of dorsal hippocampal-dependent episodic memory. Physiol Behav 2016; 162:112-9. [PMID: 27083124 DOI: 10.1016/j.physbeh.2016.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 12/17/2022]
Abstract
There is a large gap in our understanding of how top-down cognitive processes, such as memory, influence energy intake. Similarly, there is limited knowledge regarding how the brain controls the timing of meals and meal frequency. Understanding how cognition influences ingestive behavior and how the brain controls meal frequency will provide a more complete explanation of the neural mechanisms that regulate energy intake and may also increase our knowledge of the factors that contribute to diet-induced obesity. We hypothesize that dorsal hippocampal neurons, which are critical for memory of personal experiences (i.e., episodic memory), form a memory of a meal, inhibit meal onset during the period following a meal, and limit the amount ingested at the next meal. In support, we describe evidence from human research suggesting that episodic memory of a meal inhibits intake and review data from human and non-human animals showing that impaired hippocampal function is associated with increased intake. We then describe evidence from our laboratory showing that inactivation of dorsal hippocampal neurons decreases the interval between sucrose meals and increases intake at the next meal. We also describe our evidence suggesting that sweet orosensation is sufficient to induce synaptic plasticity in dorsal hippocampal neurons and raise the possibility that impaired dorsal hippocampal function and episodic memory deficits contribute to the development and/or maintenance of diet-induced obesity. Finally, we raise some critical questions that need to be addressed in future research.
Collapse
Affiliation(s)
- Marise B Parent
- Neuroscience Institute, Department of Psychology, Georgia State University, PO Box 5030, Atlanta, GA 30303-5030, United States.
| |
Collapse
|
13
|
Alvarado-Bañuelos M, Barrios De Tomasi E, Juárez J. Changes in the incentive value of food after naltrexone treatment depend on a differential preference for a palatable food in male rats. Nutr Neurosci 2016; 20:416-423. [DOI: 10.1080/1028415x.2016.1162389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Mariana Alvarado-Bañuelos
- Laboratorio de Farmacología y Conducta, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco CP 44130, México
| | - Eliana Barrios De Tomasi
- Laboratorio de Farmacología y Conducta, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco CP 44130, México
| | - Jorge Juárez
- Laboratorio de Farmacología y Conducta, Instituto de Neurociencias, CUCBA, Universidad de Guadalajara, Guadalajara, Jalisco CP 44130, México
| |
Collapse
|
14
|
Abstract
BACKGROUND This systematic review is an evaluation of the empirical literature relating to the disordered eating behaviour Chew and Spit (CHSP). Current theories postulate that CHSP is a symptom exhibited by individuals with recurrent binge eating and Bulimia Nervosa. AIMS The review aimed to identify and critically assess studies that have examined the distribution of CHSP behaviour, its relationship to eating disorders, its physical and psychosocial consequences and treatment. METHODS A systematic database search with broad inclusion criteria, dated to January 2016 was conducted. Data were extracted by two authors and papers appraised for quality using a modified Downs and Black Quality Index. RESULTS Nine studies met the inclusion criteria. All were of clinical samples and majority (n = 7) were of low quality. The pathological action of chewing food but not swallowing was reported more often in those with restrictive type eating disorders, such as Anorexia Nervosa, than binge eating type disorders. CHSP also was reported to be an indicator of overall severity of an eating disorder and to appear more often in younger individuals. No studies of treatment were found. CONCLUSIONS Conclusions were limited due to the low quality and small numbers of studies based on clinical samples only. Further research is needed to address gaps in knowledge regarding the physiological, psychological, social, socioeconomic impact and treatment for those engaging in CHSP.
Collapse
Affiliation(s)
- Phillip Aouad
- School of Medicine, University of Sydney, Sydney, Australia
| | - Phillipa Hay
- Centre for Health Research, School of Medicine, Western Sydney University, Penrith, Australia
| | - Nerissa Soh
- School of Medicine, University of Sydney, Sydney, Australia
| | - Stephen Touyz
- School of Psychology, University of Sydney, Sydney, Australia
| |
Collapse
|
15
|
Henderson YO, Nalloor R, Vazdarjanova A, Parent MB. Sweet orosensation induces Arc expression in dorsal hippocampal CA1 neurons in an experience-dependent manner. Hippocampus 2015; 26:405-13. [PMID: 26386270 DOI: 10.1002/hipo.22532] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/20/2015] [Accepted: 09/16/2015] [Indexed: 01/09/2023]
Abstract
There is limited knowledge regarding how the brain controls the timing of meals. Similarly, there is a large gap in our understanding of how top-down cognitive processes, such as memory influence energy intake. We hypothesize that dorsal hippocampal (dHC) neurons, which are critical for episodic memory, form a memory of a meal and inhibit meal onset during the postprandial period. In support, we showed previously that reversible inactivation of these neurons during the period following a sucrose meal accelerates the onset of the next meal. If dHC neurons form a memory of a meal, then consumption should induce synaptic plasticity in dHC neurons. To test this, we determined (1) whether a sucrose meal increases the expression of the synaptic plasticity marker activity-regulated cytoskeleton-associated protein (Arc) in dHC CA1 neurons, (2) whether previous experience with sucrose influences sucrose-induced Arc expression, and (3) whether the orosensory stimulation produced by the noncaloric sweetener saccharin is sufficient to induce Arc expression. Male Sprague-Dawley rats were trained to consume a sweetened solution at a scheduled time daily. On the experimental day, they were given a solution for 7 min, euthanized, and then fluorescence in situ hybridization procedures were used to measure meal-induced Arc mRNA. Compared to caged control rats, Arc expression was significantly higher in rats that consumed sucrose or saccharin. Interestingly, rats given additional experience with sucrose had less Arc expression than rats with less sucrose experience, even though both groups consumed similar amounts on the experimental day. Thus, this study is the first to suggest that orosensory stimulation produced by consuming a sweetened solution and possibly the hedonic value of that sweet stimulation induces synaptic plasticity in dHC CA1 neurons in an experience-dependent manner. Collectively, these findings are consistent with our hypothesis that dHC neurons form a memory of a meal.
Collapse
Affiliation(s)
- Yoko O Henderson
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Rebecca Nalloor
- Augusta Biomedical Research Corporation, Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Almira Vazdarjanova
- Department of Pharmacology and Toxicology, Georgia Regents University, Augusta, GA, United States.,VA Research Service, Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States.,Department of Psychology, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
16
|
Kraft TT, Yakubov Y, Huang D, Fitzgerald G, Natanova E, Sclafani A, Bodnar RJ. Dopamine D1 and opioid receptor antagonists differentially reduce the acquisition and expression of fructose-conditioned flavor preferences in BALB/c and SWR mice. Physiol Behav 2015. [PMID: 26220464 DOI: 10.1016/j.physbeh.2015.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Sugar appetite is influenced by unlearned and learned preferences in rodents. The present study examined whether dopamine (DA) D1 (SCH23390: SCH) and opioid (naltrexone: NTX) receptor antagonists differentially altered the expression and acquisition of fructose-conditioned flavor preferences (CFPs) in BALB/c and SWR mice. In expression experiments, food-restricted mice alternately (10 sessions, 1h) consumed a flavored (e.g., cherry) 8% fructose+0.2% saccharin solution (CS+) and a differently-flavored (e.g., grape) 0.2% saccharin solution (CS-). Two-bottle CS choice tests (1h) occurred 0.5h following vehicle: SCH (200 or 800 nmol/kg) or NTX (1 or 5mg/kg). SCH, but not NTX significantly reduced CS+ preference in both strains. In acquisition experiments, 0.5h prior to 10 acquisition training sessions, vehicle, SCH (50 nmol/kg), NTX (1 mg/kg) or Limited Control vehicle treatments were administered, followed by two-bottle CS choice tests without injections. SCH and NTX reduced training intakes in both strains. BALB/c mice displayed hastened extinction of the fructose-CFP following training with SCH, but not NTX. SCH eliminated fructose-CFP acquisition in SWR mice, whereas NTX hastened extinction of the CFP. These results are compared to previous drug findings obtained with sucrose-CFPs in SWR and BALB/c mice, and are discussed in terms of differential effects of these sugars on oral and post-oral conditioning.
Collapse
Affiliation(s)
- Tamar T Kraft
- Behavioral and Cognitive Neuroscience Cluster of the Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, USA
| | - Yakov Yakubov
- Department of Psychology, Queens College, City University of New York, New York, NY, USA
| | - Donald Huang
- Department of Psychology, Queens College, City University of New York, New York, NY, USA
| | - Gregory Fitzgerald
- Department of Psychology, Queens College, City University of New York, New York, NY, USA
| | - Elona Natanova
- Department of Psychology, Queens College, City University of New York, New York, NY, USA
| | - Anthony Sclafani
- Behavioral and Cognitive Neuroscience Cluster of the Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, USA; Department of Psychology, Brooklyn College, City University of New York, New York, NY, USA
| | - Richard J Bodnar
- Behavioral and Cognitive Neuroscience Cluster of the Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, USA; Department of Psychology, Queens College, City University of New York, New York, NY, USA.
| |
Collapse
|
17
|
Kraft TT, Huang D, Natanova E, Lolier M, Yakubov Y, La Magna S, Warshaw D, Sclafani A, Bodnar RJ. Dopamine D1 and opioid receptor antagonist-induced reductions of fructose and saccharin intake in BALB/c and SWR inbred mice. Pharmacol Biochem Behav 2015; 131:13-8. [DOI: 10.1016/j.pbb.2015.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/13/2015] [Accepted: 01/19/2015] [Indexed: 11/15/2022]
|
18
|
van Gestel MA, Kostrzewa E, Adan RAH, Janhunen SK. Pharmacological manipulations in animal models of anorexia and binge eating in relation to humans. Br J Pharmacol 2014; 171:4767-84. [PMID: 24866852 PMCID: PMC4209941 DOI: 10.1111/bph.12789] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/07/2014] [Accepted: 05/16/2014] [Indexed: 12/22/2022] Open
Abstract
Eating disorders, such as anorexia nervosa (AN), bulimia nervosa (BN) and binge eating disorders (BED), are described as abnormal eating habits that usually involve insufficient or excessive food intake. Animal models have been developed that provide insight into certain aspects of eating disorders. Several drugs have been found efficacious in these animal models and some of them have eventually proven useful in the treatment of eating disorders. This review will cover the role of monoaminergic neurotransmitters in eating disorders and their pharmacological manipulations in animal models and humans. Dopamine, 5-HT (serotonin) and noradrenaline in hypothalamic and striatal regions regulate food intake by affecting hunger and satiety and by affecting rewarding and motivational aspects of feeding. Reduced neurotransmission by dopamine, 5-HT and noradrenaline and compensatory changes, at least in dopamine D2 and 5-HT(2C/2A) receptors, have been related to the pathophysiology of AN in humans and animal models. Also, in disorders and animal models of BN and BED, monoaminergic neurotransmission is down-regulated but receptor level changes are different from those seen in AN. A hypofunctional dopamine system or overactive α2-adrenoceptors may contribute to an attenuated response to (palatable) food and result in hedonic binge eating. Evidence for the efficacy of monoaminergic treatments for AN is limited, while more support exists for the treatment of BN or BED with monoaminergic drugs.
Collapse
Affiliation(s)
- M A van Gestel
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center UtrechtUtrecht, The Netherlands
| | - E Kostrzewa
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center UtrechtUtrecht, The Netherlands
| | - R A H Adan
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center UtrechtUtrecht, The Netherlands
| | - S K Janhunen
- Orion Corporation Orion Pharma, Research and Development, CNS ResearchTurku, Finland
| |
Collapse
|
19
|
Evaluation of saccharin intake and expression of fructose-conditioned flavor preferences following opioid receptor antagonism in the medial prefrontal cortex, amygdala or lateral hypothalamus in rats. Neurosci Lett 2014; 564:94-8. [DOI: 10.1016/j.neulet.2014.02.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/04/2014] [Accepted: 02/08/2014] [Indexed: 11/17/2022]
|
20
|
Parent MB, Darling JN, Henderson YO. Remembering to eat: hippocampal regulation of meal onset. Am J Physiol Regul Integr Comp Physiol 2014; 306:R701-13. [PMID: 24573183 DOI: 10.1152/ajpregu.00496.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A wide variety of species, including vertebrate and invertebrates, consume food in bouts (i.e., meals). Decades of research suggest that different mechanisms regulate meal initiation (when to start eating) versus meal termination (how much to eat in a meal, also known as satiety). There is a very limited understanding of the mechanisms that regulate meal onset and the duration of the postprandial intermeal interval (ppIMI). In the present review, we examine issues involved in measuring meal onset and some of the limited available evidence regarding how it is regulated. Then, we describe our recent work indicating that dorsal hippocampal neurons inhibit meal onset during the ppIMI and describe the processes that may be involved in this. We also synthesize recent evidence, including evidence from our laboratory, suggesting that overeating impairs hippocampal functioning and that impaired hippocampal functioning, in turn, contributes to the development and/or maintenance of diet-induced obesity. Finally, we identify critical questions and challenges for future research investigating neural controls of meal onset.
Collapse
Affiliation(s)
- Marise B Parent
- Neuroscience Institute, Georgia State University, Atlanta, Georgia; and Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Jenna N Darling
- Neuroscience Institute, Georgia State University, Atlanta, Georgia; and
| | - Yoko O Henderson
- Neuroscience Institute, Georgia State University, Atlanta, Georgia; and
| |
Collapse
|
21
|
Treesukosol Y, Sun B, Moghadam AA, Liang NC, Tamashiro KL, Moran TH. Maternal high-fat diet during pregnancy and lactation reduces the appetitive behavioral component in female offspring tested in a brief-access taste procedure. Am J Physiol Regul Integr Comp Physiol 2014; 306:R499-509. [PMID: 24500433 DOI: 10.1152/ajpregu.00419.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maternal high-fat diet appears to disrupt several energy balance mechanisms in offspring. Here, female offspring from dams fed a high-fat diet (HF) did not significantly differ in body weight compared with those fed chow (CHOW), when weaned onto chow diet. Yet when presented with both a chow and a high-fat diet, high-fat intake was significantly higher in HF compared with CHOW offspring. To assess taste-based responsiveness, offspring (12 wk old) were tested in 30-min sessions (10-s trials) to a sucrose concentration series in a brief-access taste test. Compared with CHOW, the HF offspring initiated significantly fewer trials but did not significantly differ in the amount of concentration-dependent licking. Thus, rather than affect lick response (consummatory), maternal diet affects spout approach (appetitive), which may be attributed to motivation-related mechanisms. Consistent with this possibility, naltrexone, an opioid receptor antagonist, further reduced trial initiation, but not licking in both groups. With naltrexone administration, the group difference in trial initiation was no longer evident, suggesting differences in endogenous opioid activity between the two groups. Relative expression of μ-opioid receptor in the ventral tegmental area was significantly lower in HF rats. When trial initiation was not required in one-bottle intake tests, no main effect of maternal diet on the intake of sucrose and corn oil emulsions was observed. Thus, the maternal high-fat diet-induced difference in diet preference is not likely due to changes in the sensory orosensory component of the taste stimulus but may depend on alterations in satiety signals or absorptive mechanisms.
Collapse
Affiliation(s)
- Yada Treesukosol
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore Maryland
| | | | | | | | | | | |
Collapse
|
22
|
Henderson YO, Smith GP, Parent MB. Hippocampal neurons inhibit meal onset. Hippocampus 2012; 23:100-7. [DOI: 10.1002/hipo.22062] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2012] [Indexed: 01/29/2023]
|
23
|
Figlewicz DP, Sipols AJ. Energy regulatory signals and food reward. Pharmacol Biochem Behav 2010; 97:15-24. [PMID: 20230849 PMCID: PMC2897918 DOI: 10.1016/j.pbb.2010.03.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 02/26/2010] [Accepted: 03/09/2010] [Indexed: 12/23/2022]
Abstract
The hormones insulin, leptin, and ghrelin have been demonstrated to act in the central nervous system (CNS) as regulators of energy homeostasis, acting at medial hypothalamic sites. Here, we summarize research demonstrating that, in addition to direct homeostatic actions at the hypothalamus, CNS circuitry that subserves reward and is also a direct and indirect target for the action of these endocrine regulators of energy homeostasis. Specifically, insulin and leptin can decrease food reward behaviors and modulate the function of neurotransmitter systems and neural circuitry that mediate food reward, the midbrain dopamine (DA) and opioidergic pathways. Ghrelin can increase food reward behaviors, and support midbrain DA neuronal function. We summarize discussion of behavioral, systems, and cellular evidence in support of the contributions of reward circuitry to the homeostatic roles of these hormones in the CNS. The understanding of neuroendocrine modulation of food reward, as well as food reward modulation by diet and obesity, may point to new directions for therapeutic approaches to overeating or eating disorders.
Collapse
Affiliation(s)
- Dianne P Figlewicz
- Metabolism/Endocrinology, VA Puget Sound Health Care System, Seattle Division, Seattle, WA 98108, USA.
| | | |
Collapse
|
24
|
Bonacchi KB, Ackroff K, Touzani K, Bodnar RJ, Sclafani A. Opioid mediation of starch and sugar preference in the rat. Pharmacol Biochem Behav 2010; 96:507-14. [PMID: 20655942 DOI: 10.1016/j.pbb.2010.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/07/2010] [Accepted: 07/17/2010] [Indexed: 01/07/2023]
Abstract
In our prior studies, administration of the opioid receptor antagonist naltrexone did not block conditioned preferences for a flavor paired with a preferred sugar solution over a flavor paired with saccharin. This may be because both training solutions were sweet, and their attractiveness was reduced by naltrexone. The present study compared the effects of naltrexone on preferences for flavors paired with sugar or starch drinks that have distinctive tastes to rats. Experiment 1 assessed naltrexone's effect on the preference for unflavored 8% cornstarch and 8% sucrose aqueous solutions/suspensions. The food-restricted rats displayed a significant sucrose preference which increased following systemic treatment with naltrexone (1 or 3mg/kg) even though total intake of both solutions declined. In Experiment 2, rats were trained to drink flavored (cherry or grape) starch and sucrose solutions in separate one-bottle sessions. In a two-bottle choice test with both flavors presented in a sucrose-starch mixture, the rats significantly preferred the starch-paired flavor. Naltrexone treatment blocked the expression of this starch-conditioned preference. In Experiment 3, rats were treated with saline or naltrexone throughout one-bottle training with flavored sucrose and starch solutions. In a subsequent choice test, both the saline and naltrexone groups displayed significant preferences for the starch-paired flavor, indicating that opioid antagonism failed to alter the acquisition of this conditioned preference. In summary, novel outcomes of this study included the increased rather than the predicted decrease in sucrose preference produced by naltrexone. Also, starch unexpectedly conditioned the stronger flavor preference, although this can be explained by the differential post-oral reinforcing actions of starch and sucrose, and naltrexone blocked the expression, but not the acquisition, of this preference. These findings suggest that the reward value of starch in liquid form is more dependent upon opioid signaling than is that of sugar.
Collapse
Affiliation(s)
- Kristine B Bonacchi
- Department of Psychology, Queens College, City University of New York, Flushing, NY 11210, USA
| | | | | | | | | |
Collapse
|
25
|
Touzani K, Bodnar RJ, Sclafani A. Neuropharmacology of learned flavor preferences. Pharmacol Biochem Behav 2010; 97:55-62. [PMID: 20600253 DOI: 10.1016/j.pbb.2010.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 05/27/2010] [Accepted: 06/10/2010] [Indexed: 11/16/2022]
Abstract
Innate and learned flavor preferences influence food and fluid choices in animals. Two primary forms of learned preferences involve flavor-flavor and flavor-nutrient associations in which a particular flavor element (e.g., odor) is paired with an innately preferred flavor element (e.g., sweet taste) or with a positive post-oral nutrient consequence. This review summarizes recent findings related to the neurochemical basis of learned flavor preferences. Systemic and central injections of dopamine receptor antagonists implicate brain dopamine signaling in both flavor-flavor and flavor-nutrient conditioning by the taste and post-oral effects of sugars. Dopamine signaling in the nucleus accumbens, amygdala and lateral hypothalamus is involved in one or both forms of conditioning and selective effects are produced by D1-like and D2-like receptor antagonism. Opioid receptor antagonism, despite its suppressive action on sugar intake and reward, has little effect on the acquisition or expression of flavor preferences conditioned by the sweet taste or post-oral actions of sugars. Other studies indicate that flavor preference conditioning by sugars is differentially influenced by glutamate receptor antagonism, cannabinoid receptor antagonism and benzodiazepine receptor activation.
Collapse
Affiliation(s)
- Khalid Touzani
- Department of Psychology, Brooklyn College, City University of New York, NY 11210, USA
| | | | | |
Collapse
|
26
|
Katsuura Y, Taha SA. Modulation of feeding and locomotion through mu and delta opioid receptor signaling in the nucleus accumbens. Neuropeptides 2010; 44:225-32. [PMID: 20044138 PMCID: PMC2854292 DOI: 10.1016/j.npep.2009.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/02/2009] [Accepted: 12/04/2009] [Indexed: 12/17/2022]
Abstract
Opioid signaling has been strongly implicated in driving palatable food consumption. The nucleus accumbens (NAcc) is one important site of this effect; hyperphagia elicited by administration of exogenous mu opioid receptor (MOR) ligands in this brain region has been well documented. However, the role that endogenous opioid ligands in the NAcc play in controlling food intake remains poorly understood. Enkephalins, which signal through both the MOR and delta opioid receptor (DOR), are highly expressed within a subset of NAcc neurons, and have been shown to be sensitive to manipulations of diet and motivation. To investigate a potential role for these signaling molecules in regulating palatability-driven consumption, we measured high fat chow intake in rats following a series of pharmacological manipulations of NAcc opioid signaling. NAcc infusion of the MOR agonist [D-Ala2, N-MePHe4, Gly-ol]-enkephalin (DAMGO) robustly increased palatable food intake, as has previously been demonstrated. In contrast, neither infusion of Met-enkephalin, its synthetic analogue [D-Ala2] Met-enkephalin (DALA) nor the DOR-specific ligand [D-Pen2, Pen5]-enkephalin (DPDPE) had significant effects on food intake. However, when administered in combination with DAMGO, DPDPE significantly suppressed the magnitude of DAMGO-evoked feeding. Further analysis of DPDPE effects revealed that the drug strongly increased locomotor activity. Suppressive effects on feeding, then, may have occurred through competition between feeding and locomotion for behavioral expression.
Collapse
MESH Headings
- Animals
- Dietary Fats/administration & dosage
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalin, Methionine/pharmacology
- Feeding Behavior/drug effects
- Locomotion/drug effects
- Male
- Nucleus Accumbens/drug effects
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
| | - Sharif A. Taha
- Contact information: University of Utah School of Medicine, Department of Physiology, 420 Chipeta Way, Suite 1700, Salt Lake City, UT 84108, P: (801) 585-6214,
| |
Collapse
|
27
|
Abstract
The hormones insulin, leptin, and ghrelin have been demonstrated to act in the central nervous system (CNS) as regulators of energy homeostasis, acting at medial hypothalamic sites. Here, we summarize research demonstrating that, in addition to direct homeostatic actions at the hypothalamus, CNS circuitry that subserves reward and is also a direct and indirect target for the action of these endocrine regulators of energy homeostasis. Specifically, insulin and leptin can decrease food reward behaviors and modulate the function of neurotransmitter systems and neural circuitry that mediate food reward, the midbrain dopamine (DA) and opioidergic pathways. Ghrelin can increase food reward behaviors, and support midbrain DA neuronal function. We summarize discussion of behavioral, systems, and cellular evidence in support of the contributions of reward circuitry to the homeostatic roles of these hormones in the CNS. The understanding of neuroendocrine modulation of food reward, as well as food reward modulation by diet and obesity, may point to new directions for therapeutic approaches to overeating or eating disorders.
Collapse
|
28
|
Taha SA. Preference or fat? Revisiting opioid effects on food intake. Physiol Behav 2010; 100:429-37. [PMID: 20211638 DOI: 10.1016/j.physbeh.2010.02.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 02/16/2010] [Accepted: 02/28/2010] [Indexed: 10/19/2022]
Abstract
It is well established that opioid signaling in the central nervous system constitutes a powerful stimulus for food intake. The role of opioids in determining food preference, however, is less well defined. Opioids have been proposed to promote intake of preferred foods, or, alternatively, to preferentially increase consumption of fat. In the present manuscript, I comprehensively review results from previous studies investigating this issue. Data from these studies suggests a mechanism for opioid action that may reconcile the previously proposed hypotheses: opioid effects on food intake do appear to be largely specific for fat consumption, but individual animals' sensitivity to this effect may be dependent on baseline food preferences. In addition, I highlight the possibility that the selectivity of endogenous opioid effects may importantly differ from that of exogenous agonists in the degree to which baseline preferences, rather than macronutrient intake, are altered. The paper represents an invited review by a symposium, award winner or keynote speaker at the Society for the Study of Ingestive Behavior [SSIB] Annual Meeting in Portland, July 2009.
Collapse
Affiliation(s)
- Sharif A Taha
- University of Utah School of Medicine, 420 Chipeta Way, Suite 1700, Salt Lake City, UT 84108, United States.
| |
Collapse
|
29
|
Genetic variance contributes to dopamine and opioid receptor antagonist-induced inhibition of intralipid (fat) intake in inbred and outbred mouse strains. Brain Res 2009; 1316:51-61. [PMID: 20026311 DOI: 10.1016/j.brainres.2009.12.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 12/02/2009] [Accepted: 12/08/2009] [Indexed: 01/09/2023]
Abstract
Preference for and intake of solid and emulsified fat (intralipid) solutions vary across different mouse strains. Fat intake in rodents is inhibited by dopamine and opioid receptor antagonists, but any variation in these responses as a function of genetic background is unknown. Therefore, the present study compared the ability of dopamine D1-like (SCH23390) and general opioid (naltrexone) receptor antagonism to alter intake of fat emulsions (intralipid) in mice. Two-hour intakes of 5% intralipid were measured (5-120 min) in seven inbred (BALB/c, C57BL/6, C57BL/10, DBA/2, SJL, SWR, 129P3) and one outbred (CD-1) mouse strains following treatment with vehicle, SCH23390 (50-1600 nmol/kg, ip) and naltrexone (0.001-5 mg/kg, sc). SCH23390 significantly, dose-dependently and differentially reduced intralipid intake at all five (DBA/2, SWR, CD-1), four (SJL, C57BL/6), three (129P3) and one (C57BL/10) of the doses tested, but failed to affect intralipid intake in BALB/c mice. Naltrexone significantly, dose-dependently and differentially reduced intralipid intake at all four (DBA/2), three (SWR, SJL), two (CD-1, C57BL/10) and one (C57BL/6, 129P3) of the doses tested, and also failed to affect intralipid intake in BALB/cJ mice. SCH23390 and naltrexone were respectively 13.3-fold and 9.3-fold more potent in inhibiting intralipid intake in the most sensitive (DBA/2) relative to the least sensitive (BALB/c) mouse strains. A strong positive relationship (r=0.91) was observed for the abilities of SCH23390 and naltrexone to inhibit intralipid intake across strains. These findings indicate that dopaminergic and opioid signaling mechanisms differentially control intralipid intake across different mouse strains, suggesting important genetic and pharmacological interactions in the short-term control of rewarding and post-ingestive consequences of fat intake.
Collapse
|
30
|
Bernal SY, Touzani K, Gerges M, Abayev Y, Sclafani A, Bodnar RJ. Opioid receptor antagonism in the nucleus accumbens fails to block the expression of sugar-conditioned flavor preferences in rats. Pharmacol Biochem Behav 2009; 95:56-62. [PMID: 20006967 DOI: 10.1016/j.pbb.2009.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/04/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
Abstract
In our prior studies, systemic administration of the opioid receptor antagonist naltrexone (NTX) did not block flavor preference conditioning by the sweet taste or post-oral actions of sugar despite reducing intake. Because opioid signaling in the nucleus accumbens (NAc) is implicated in food reward, this study determined if NTX administered into the NAc would block the expression of sugar-conditioned preferences. In Experiment 1, food-restricted rats with bilateral NAc shell or core cannulae were trained to drink a fructose (8%)+saccharin (0.2%) solution mixed with one flavor (CS+) and a less-preferred 0.2% saccharin solution mixed with another flavor (CS-) during one-bottle sessions. Two-bottle tests with the two flavors mixed in saccharin solutions occurred 10 min following total bilateral NAc shell or core doses of 0, 1, 25 and 50 microg of NTX. The rats preferred the CS+ over CS- following vehicle (80%) and all NTX doses in the shell and core. The CS+ preference was reduced to 64% and 72% by 50 microg NTX in the shell and core, although only the core effect was significant. In Experiment 2, food-restricted rats were trained to drink one flavored saccharin solution (CS+) paired with an intragastic (IG) glucose (8%) infusion and a second flavored saccharin solution (CS-) paired with an IG water infusion. In subsequent two-bottle tests, the rats displayed significant preferences for the CS+ (81-91%) that were unaltered by any NTX dose in the shell or core. CS+ intake, however, was reduced by NTX in the shell, but not the core. These data indicate that accumbal opioid antagonism slightly attenuated, but did not block the expression of sugar-conditioned flavor preferences. Therefore, while opioid drugs can have potent effects on sugar intake they appear less effective in altering sugar-conditioned flavor preferences.
Collapse
Affiliation(s)
- Sonia Y Bernal
- Neuropsychology Doctoral Subprogram, Graduate Center, City University of New York, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
31
|
Norris JN, Pérez-Acosta AM, Ortega LA, Papini MR. Naloxone facilitates appetitive extinction and eliminates escape from frustration. Pharmacol Biochem Behav 2009; 94:81-7. [DOI: 10.1016/j.pbb.2009.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 07/15/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
|
32
|
Wong KJ, Wojnicki FHW, Corwin RLW. Baclofen, raclopride, and naltrexone differentially affect intake of fat/sucrose mixtures under limited access conditions. Pharmacol Biochem Behav 2009; 92:528-36. [PMID: 19217918 PMCID: PMC2841009 DOI: 10.1016/j.pbb.2009.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 01/28/2009] [Accepted: 02/07/2009] [Indexed: 01/15/2023]
Abstract
This study assessed the effects of the opioid antagonist naltrexone, the dopamine 2-like (D2) antagonist raclopride, and the GABA(B) agonist baclofen on consumption of fat/sucrose mixtures (FSM) using a limited access protocol. Sixty male Sprague-Dawley rats were grouped according to two schedules of access (Daily [D] or Intermittent [I]) to an optional FSM. Each FSM was created by whipping 3.2% (L), 10% (M), or 32% (H) powdered sugar into 100% vegetable shortening in a w/w manner (n=10 per group). One-hour intakes of the IL and IM groups were significantly greater than intakes of the respective DL and DM groups, thus fulfilling our operational definition of binge-type eating in these groups. Baclofen reduced intakes of the L and M mixtures regardless of access schedule, but failed to reduce intake of the H mixture. Naltrexone reduced intake in all groups, but potency was greater in IL rats than in DL rats. Furthermore, potency was attenuated in Intermittent rats, but enhanced in Daily rats, at higher sucrose concentrations. Raclopride reduced intake in the DL and stimulated intake in the IL groups, reduced intake in both M groups, and was without effect in both H groups. These results indicate that fat/sucrose mixtures containing relatively low concentrations of sucrose allow distinctions to be made between: 1) intakes stimulated by different access schedules and 2) opioid and dopaminergic modulation of those intakes. These results also suggest that brief bouts of food consumption involving fatty, sugar-rich foods may prove to be particularly resistant to pharmacological intervention.
Collapse
Affiliation(s)
- K J Wong
- The Pennsylvania State University, Nutritional Sciences Dept., 110 Chandlee Laboratory, University Park, PA 16802, USA
| | | | | |
Collapse
|
33
|
Davis CM, Stevenson GW, Cañadas F, Ullrich T, Rice KC, Riley AL. Discriminative stimulus properties of naloxone in Long-Evans rats: assessment with the conditioned taste aversion baseline of drug discrimination learning. Psychopharmacology (Berl) 2009; 203:421-9. [PMID: 18594795 PMCID: PMC2656383 DOI: 10.1007/s00213-008-1233-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 06/09/2008] [Indexed: 11/25/2022]
Abstract
RATIONALE The characterization of the discriminative stimulus properties of naloxone has focused primarily on its actions at the mu opioid receptor, although naloxone also displays an affinity for delta and kappa receptor subtypes. OBJECTIVES The present study extends this characterization of the naloxone cue by investigating if relatively specific antagonists for the mu (naltrexone: 0.10-0.56 mg/kg), delta (naltrindole: 1-18 mg/kg), and kappa (MR2266: 1.8-10 mg/kg) opioid receptor subtypes will substitute for naloxone in animals trained to discriminate naloxone from its vehicle. The temporal nature of the naloxone cue was examined by varying pretreatment time points (15, 30, 45, 60 min). Finally, various doses of naltrexone methobromide (1-18 mg/kg) were assessed to determine peripheral mediation of the cue. MATERIALS AND METHODS Female Long-Evans rats (N = 30) received an injection of naloxone (1 mg/kg; i.p.) 15 min prior to a pairing of saccharin (20-min access) and the emetic LiCl (1.8 mEq; i.p.; n = 16, group NL) or vehicle (n = 14, group NW); on other days, they were injected with saline prior to saccharin alone. Substitution tests with compounds with various receptor affinities and selective CNS and PNS actions were then assessed. RESULTS Only naloxone and naltrexone produced dose-dependent decreases in saccharin consumption. Naloxone administered at 15 and 30 min before saccharin produced decreases in consumption similar to that displayed on training days. Naltrexone methobromide substituted only at the highest dose tested (18 mg/kg). CONCLUSIONS Naloxone's stimulus effects appear to be mediated centrally via activity at the mu opioid receptor.
Collapse
Affiliation(s)
- Catherine M Davis
- Psychopharmacology Laboratory, Department of Psychology, American University, 4400 Massachusetts Ave. NW, Washington, DC 20016, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The ability of Cannabis sativa to promote eating has been documented for many centuries, with the drug reported by its users to promote strong cravings for, and an intensification of the sensory and hedonic properties of food. These effects are now known to result from the actions of cannabinoid molecules at specific cannabinoid receptor sites within the brain, and to reflect the physiological role of their natural ligands, the endocannabinoids, in the control of appetite. Recent developments in the biochemistry and pharmacology of endocannabinoid systems have generated convincing evidence from animal models for a normal role of endocannabinoids in the control of eating motivation. The availability of specific cannabinoid receptor agonists and antagonists raises the possibility of improved therapies for disorders of eating and body weight: not only in the suppression of appetite to counter our susceptibility to the over-consumption of highly pleasurable and energy-dense foods; but also in the treatment of conditions that involve reduced appetite and weight loss. Here, we outline some of the findings of the past decade that link endocannabinoid function appetite control, and the possible clinical applications of that knowledge.
Collapse
Affiliation(s)
- Tim C Kirkham
- School of Psychology, University of Liverpool, Liverpool, UK.
| |
Collapse
|
35
|
Abstract
The usual physiological perspective on appetite and food intake regards control of eating simplistically, as merely the reflexive behavioural component of a strict homeostatic regulatory system. Hunger is seen to arise in response to energy deficit; meal size is determined by the passage of nutrients into the gut and the stimulation of multiple satiety signals; and overall energy intake is modified to reflect the balance of fuel reserves and energy expenditure. But everyday experience shows that we rarely eat simply through need. Rather, food stimuli exert a powerful influence over consumption through their appeal to innate and learned appetites, generating the psychological experiences of hunger, craving and delight independently of energy status. That these important and influential subjective experiences are mediated through complex neurochemical processes is self-evident; but the chemical nature of our infatuation with, and subservience to, the motivating properties of foods are overshadowed by mechanistic, peripherally anchored models that take little account of psychological factors, and which consequently struggle to explain the phenomenon of obesity. This chapter discusses recent developments that suggest the endocannabinoids are key components of the central mechanisms that give rise to the emotional and motivational experiences that lead us to eat and to overconsume.
Collapse
|
36
|
Dym CT, Pinhas A, Robak M, Sclafani A, Bodnar RJ. Genetic variance contributes to dopamine receptor antagonist-induced inhibition of sucrose intake in inbred and outbred mouse strains. Brain Res 2008; 1257:40-52. [PMID: 19135035 DOI: 10.1016/j.brainres.2008.12.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 12/10/2008] [Accepted: 12/15/2008] [Indexed: 11/30/2022]
Abstract
Preference and intake of sucrose varies across inbred and outbred strains of mice. Pharmacological analyses revealed that the greatest sensitivity to naltrexone-induced inhibition of sucrose (10%) intake was observed in C57BL10/J and C57BL/6J strains, whereas 129P3/J, SWR/J and SJL/J strains displayed far less sensitivity to naltrexone-induced inhibition of sucrose intake. Given that dopamine D1 (SCH23390) and D2 (raclopride) receptor antagonism potently reduce sucrose intake in outbred rat and mouse strains, the present study examined the possibility of genetic variance in the dose-dependent (50-1600 nmol/kg) and time-dependent (5-120 min) effects of these antagonists upon sucrose (10%) intake in the eight inbred (BALB/cJ, C3H/HeJ, C57BL/6J, C57BL/10J, DBA/2J, SJL/J, SWR/J and 129P3/J) and one outbred (CD-1) mouse strains previously tested with naltrexone. SCH23390 significantly reduced sucrose intake across all five doses in 129P3/J and SJL/J mice, across four doses in C57BL/6J and BALB/cJ mice, across three doses in DBA/2J, SWR/J, C3H/HeJ and C57BL/10J mice, but only at the two highest doses in CD-1 mice. SCH23390 was 2-3-fold more potent in inhibiting sucrose intake in 129P3/J and SJL/J mice relative to CD-1 mice. In contrast, only the highest equimolar 1600 nmol/kg dose of raclopride significantly reduced sucrose intake in the BALB/cJ, C3H/HeJ, C57BL/6J, C57BL/10J, DBA/2J, SJL/J and 129P3/J, but not the SWR/J and CD-1 strains. The present and previous data demonstrate specific and differential patterns of genetic variability in inhibition of sucrose intake by dopamine and opioid antagonists, suggesting that distinct neurochemical mechanisms control sucrose intake across different mouse strains.
Collapse
Affiliation(s)
- Cheryl T Dym
- Department of Psychology, Queens College, The Graduate Center, City University of New York, Flushing, NY 11367, USA
| | | | | | | | | |
Collapse
|
37
|
|
38
|
Dym CT, Pinhas A, Ginzberg M, Kest B, Bodnar RJ. Genetic variance contributes to naltrexone-induced inhibition of sucrose intake in inbred and outbred mouse strains. Brain Res 2007; 1135:136-45. [PMID: 17204254 DOI: 10.1016/j.brainres.2006.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 11/30/2006] [Accepted: 12/06/2006] [Indexed: 10/23/2022]
Abstract
The study of genetic variance in opioid receptor antagonism of sucrose and other forms of sweet intake has been limited to reductions in sweet intake in mice that are opioid receptor-deficient or lacking either pre-pro-enkephalin or beta-endorphin. Marked genetic variance in inbred mouse strains has been observed for sucrose intake across a wide array of concentrations in terms of sensitivity, magnitude, percentages of kilocalories consumed as sucrose and compensatory chow intake. The present study examined potential genetic variance in systemic naltrexone's dose-dependent (0.01-5 mg/kg) and time-dependent (5-120 min) ability to decrease sucrose (10%) intake in eleven inbred (A/J, AKR/J, BALB/cJ, CBA/J, C3H/HeJ, C57BL/6J, C57BL/10J, DBA/2J, SJL/J, SWR/J, 129P3/J) and one outbred (CD-1) mouse strains. A minimum criterion sucrose intake (1 ml) under vehicle treatment, designed to avoid "floor effects" of antagonist treatment was not achieved in three (A/J, AKR/J, CBA/J) inbred mouse strains. Marked genetic variance in naltrexone's ability to inhibit sucrose intake was observed in the remaining strains with the greatest sensitivity observed in the C57BL/10J and C57BL/6J strains, intermediate sensitivity in BALB/cJ, C3H/HeJ, CD-1 and DBA/2J mice, and the least sensitivity in 129P3/J, SWR/J and SJL/J strains with a 7.5-36.5 fold range of greater effects in the ID(50) of naltrexone-induced inhibition in C57BL/10J relative to the three less-sensitive strains across the time course. Naltrexone primarily affected the maintenance, rather than the initiation of intake in BALB/cJ, CD-1, C3H/HeJ, DBA/2J and SJL/J mice, but significantly reduced sucrose intake at higher doses across the time course in C57BL/6J, C57BL/10J and 129P3/J mice. Whereas SWR/J mice failed to display any significant reduction in sucrose intake at any time point following any of the naltrexone doses, naltrexone's maximal magnitude of inhibitory effects was small (35-40%) in 129P3/J and SJL/J mice, moderate ( approximately 50%) in BALB/cJ, C3H/HeJ, CD-1 and DBA2/J mice, and profound (70-80%) in C57BL/6J and C57BL/10J mice. Indeed, the latter two strains displayed significantly greater percentages of naltrexone-induced inhibition of sucrose intake than virtually all other strains. These data indicate the importance of genetic variability in opioid modulation of sucrose intake.
Collapse
Affiliation(s)
- Cheryl T Dym
- Department of Psychology, Queens College, The Graduate Center, City University of New York, Flushing NY 11367, USA
| | | | | | | | | |
Collapse
|
39
|
Woolley JD, Lee BS, Taha SA, Fields HL. Nucleus accumbens opioid signaling conditions short-term flavor preferences. Neuroscience 2007; 146:19-30. [PMID: 17320293 DOI: 10.1016/j.neuroscience.2007.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 01/03/2007] [Accepted: 01/08/2007] [Indexed: 11/29/2022]
Abstract
Opioid signaling in the nucleus accumbens (NAcc) strongly modulates flavor-based food choice. To further investigate the role of opioid signaling in taste reward, we used a sensory specific satiety (SSS) paradigm to devalue specific flavors of nutritionally identical food pellets in rats. In the NAcc, infusion of a mu opioid (MOP) receptor selective agonist selectively increased consumption of a pre-fed flavor, thus reversing the SSS effect. Conversely, blockade of endogenous opioid signaling with the opioid antagonist naltrexone selectively decreased consumption of a recently consumed flavor, potentiating the SSS effect. No enhancement of consumption was observed if a delay of 3 h was imposed following the intra-NAcc MOP agonist indicating that there were no long-term changes in flavor preference. If a delay was introduced between the initial flavor exposure and the intra-NAcc MOP agonist infusion, pellet consumption was increased non-selectively (irrespective of flavor) suggesting that close temporal contiguity between flavor experience and NAcc opioid action is critical for the opioid effect on flavor preference. In contrast to opioid effects, inactivating NAcc neurons by local microinjection of muscimol (a GABAA agonist) increased consumption of both the pre-fed and non-pre-fed flavors equally. These results demonstrate that opioids released in the NAcc during consumption of palatable foods produce a selective and transient increase in preference for a recently sampled flavor.
Collapse
Affiliation(s)
- J D Woolley
- The Ernest Gallo Clinic & Research Center, Department of Neurology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | | | | | | |
Collapse
|
40
|
Evenden J, Ko T. The effects of anorexic drugs on free-fed rats responding under a second-order FI15-min (FR10:S) schedule for high incentive foods. Behav Pharmacol 2007; 18:61-9. [PMID: 17218798 DOI: 10.1097/fbp.0b013e32801456c6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Many similarities exist between the overconsumption of food, which results in obesity, and drug addiction. The present study investigated the effects of anorectic drugs on responding maintained by high incentive, but nutritionally unnecessary, food reinforcers using an FI15(fixed-ratio 10:S) schedule of reinforcement, similar to that used in studies on the incentive properties of drugs of abuse. Rats were trained to respond on a lever to gain access to two high incentive foods--chocolate chip cookies and cheese. Under the FI15(FR10:S) schedule, every 10th response (fixed-ratio 10) delivered a tone and light conditioned stimulus. The first ratio completed 15 min after the start of the session produced the conditioned stimulus and opened a door to give access to a piece of cookie. After 5 min to consume the high incentive food, a second 15-min interval was started, terminating in access to a second reinforcer, cheese. Once trained, the rats were given free access to laboratory chow in the home cage. They continued to work for the high incentive foods for a period of over 1 year, showing a pattern of responding appropriate to an FI(fixed-ratio) schedule. Naloxone (1.0 mg/kg), fenfluramine (1 and 2 mg/kg), D-amphetamine (0.25 and 0.5 mg/kg), and rimonabant (3 mg/kg) significantly reduced responding, especially in the second interval. In contrast, complete removal of the high incentive food from the test procedure did not immediately reduce the rate of responding, tending to increase it in the second of the intervals. Apparently, the drugs did not reduce responding by reducing the experienced magnitude of the high incentive food, but more probably by reducing the animals' motivation.
Collapse
Affiliation(s)
- John Evenden
- Department of Neuroscience Biology, CNS Discovery, AstraZeneca R&D Wilmington, Wilmington, Delaware 19850, USA.
| | | |
Collapse
|
41
|
Olszewski PK, Levine AS. Central opioids and consumption of sweet tastants: when reward outweighs homeostasis. Physiol Behav 2007; 91:506-12. [PMID: 17316713 DOI: 10.1016/j.physbeh.2007.01.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 01/21/2007] [Accepted: 01/22/2007] [Indexed: 11/25/2022]
Abstract
Numerous reports have described opioids as peptides involved in the regulation of food intake. The role of these endogenous substances appears to be linked with reward-dependent feeding, since injection of opioid receptor ligands alters consumption of palatable foods and solutions more readily than of non-palatable ones, and intake of such tastants affects the activity of the opioid system within the brain. Among a variety of available foods, those rich in sucrose and other sweet tastants, are extremely appealing to humans and laboratory animals. In the current review, we focus on the rewarding aspects of consummator behavior driven by opioids. We attempt to delineate opioid-dependent central mechanisms responsible for overconsumption of "rewarding" palatable diets, especially foods high in sugar that can potentially jeopardize homeostasis.
Collapse
Affiliation(s)
- Pawel K Olszewski
- Minnesota Obesity Center, University of Minnesota, St Paul, MN 55108, USA
| | | |
Collapse
|
42
|
Ward HG, Simansky KJ. Chronic prevention of mu-opioid receptor (MOR) G-protein coupling in the pontine parabrachial nucleus persistently decreases consumption of standard but not palatable food. Psychopharmacology (Berl) 2006; 187:435-46. [PMID: 16847679 DOI: 10.1007/s00213-006-0463-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Accepted: 05/29/2006] [Indexed: 12/01/2022]
Abstract
RATIONALE Acute pharmacological studies implicate mu-opioid receptors (MORs) in the parabrachial nucleus (PBN) of the brainstem in modulating eating. The long-term effects of preventing the cellular function of parabrachial MORs on food consumption remain to be elucidated. OBJECTIVES To determine whether (1) chronic inhibition of MOR-mediated G-protein coupling in the PBN of rats would persistently reduce eating and (2) food properties dictate the effects of MOR blockade. MATERIALS AND METHODS We microinfused the irreversible MOR antagonist, beta-funaltrexamine (beta-FNA) into the lateral PBN and measured the intake of standard and calorically dense palatable chow for 1 week. First, rats were given standard chow for 20 h daily and a calorically dense palatable chow for 4 h during the day. We infused the agonist, [D: -Ala(2), N-Me-Phe(4), Glycinol(5)]-Enkephalin (DAMGO), 1 week after beta-FNA to probe the acute effects of exogenous stimulation of MORs on palatable food intake. [(35)S]GTPgammaS autoradiography quantified regional loss of MOR cellular function. Next, we measured the actions of beta-FNA on food intake in rats given only standard or palatable chow for 1 week. RESULTS One infusion of beta-FNA persistently decreased consumption of standard but not palatable chow, regardless of feeding regimen. beta-FNA also blocked DAMGO-stimulated palatable chow intake, prevented DAMGO-stimulated G-protein coupling in the central and external lateral subnuclei of the PBN, and decreased coupling in the medial PBN. beta-FNA did not affect kappa-opioid receptors. CONCLUSIONS MORs in the lateral PBN serve a physiological role in stimulating consumption of standard food. Properties of the diet, such as high palatability or caloric density, may override the influence of inhibiting MOR function.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Behavior, Animal/drug effects
- Circadian Rhythm
- Eating/drug effects
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Feeding Behavior/drug effects
- Food Preferences/drug effects
- GTP-Binding Proteins/metabolism
- Male
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Pons/drug effects
- Pons/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Time Factors
Collapse
Affiliation(s)
- Heather G Ward
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | |
Collapse
|
43
|
Nizhnikov ME, Varlinskaya EI, Petrov ES, Spear NE. Reinforcing properties of ethanol in neonatal rats: involvement of the opioid system. Behav Neurosci 2006; 120:267-80. [PMID: 16719691 DOI: 10.1037/0735-7044.120.2.267] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Toward understanding why infant rats ingest high levels of ethanol without initiation procedures, the authors tested effects of mu and kappa receptor antagonists on ethanol reinforcement in neonatal rats. After an intracisternal injection of CTOP (micro antagonist), nor-Binaltorphimine (kappa antagonist), or saline, newborn (3-hr-old) rats were given conditioning pairings of an odor with intraorally infused ethanol or a surrogate nipple with ethanol administered intraperitoneally (to minimize ethanol's gustatory attributes). In each case, these opioid antagonists reduced or eliminated ethanol's reinforcement effect. The same effects occurred with saccharin as the reinforcer in olfactory conditioning. The results imply that activation of mu and kappa receptors, apparently acting jointly, is necessary for reinforcement or that antagonists of this activity impair basic conditioning.
Collapse
Affiliation(s)
- Michael E Nizhnikov
- Center for Developmental Psychobiology, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY 139002-6000, USA.
| | | | | | | |
Collapse
|
44
|
Ward HG, Nicklous DM, Aloyo VJ, Simansky KJ. Mu-opioid receptor cellular function in the nucleus accumbens is essential for hedonically driven eating. Eur J Neurosci 2006; 23:1605-13. [PMID: 16553624 DOI: 10.1111/j.1460-9568.2006.04674.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Acute pharmacological studies have implicated mu-opioid receptors (MORs) in the shell of the nucleus accumbens (NAC) in mediating responses for palatable food and other natural and drug-induced rewards. However, the long-term behavioral effects of inactivating signal transduction via accumbal MORs, as quantified by an anatomically defined loss of cellular activity, have never been analysed. We combined microinfusion of the irreversible MOR antagonist, beta-funaltrexamine (beta-FNA; 8.0 nmol/0.8 microL, n=9; controls, n=6) with mapping by [35S]GTPgammaS autoradiography to demonstrate an anatomically specific loss of the coupling of MORs to their G-proteins in the dorsal caudomedial shell of the NAC in rabbits. beta-FNA did not alter the stimulated coupling of kappa-opioid receptors. This selective blockade of the cellular function of MORs persistently decreased consumption of a palatable sucrose solution by 40% during a daily 4-h test conducted 2, 3 and 4 days after infusion. beta-FNA did not alter body weight or 20-h consumption of standard chow or water. In 10 different rabbits, infusion of the selective, competitive MOR antagonist, CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2) into the same locus produced a reversible decrease in sucrose consumption, with normal intakes returning on the next day. Together, these data appear to establish that MORs in this accumbal subregion support responding for orosensory reward. Overall, these results visualize a discrete brain locus where cellular actions of endogenous opioids mediate behaviors involved in self-administration of foods and perhaps other hedonically valued substances, such as ethanol and drugs of abuse.
Collapse
Affiliation(s)
- Heather G Ward
- Department of Pharmacology & Physiology, Drexel University College of Medicine, 245 N 15th Street, MS 488, Philadelphia, PA 19102, USA
| | | | | | | |
Collapse
|
45
|
Klein DA, Schebendach JS, Devlin MJ, Smith GP, Walsh BT. Intake, sweetness and liking during modified sham feeding of sucrose solutions. Physiol Behav 2006; 87:602-6. [PMID: 16434068 DOI: 10.1016/j.physbeh.2005.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 12/14/2005] [Accepted: 12/15/2005] [Indexed: 11/20/2022]
Abstract
Although sweet solids and liquids are palatable to humans and ingested frequently when readily available, the quantitative relationship between sweet taste and intake has not been reported in humans. To investigate the quantitative relationship between sweet taste and intake directly, we adapted the modified sham feeding technique, previously used in humans for the study of the orosensory control of autonomic, neuroendocrine, and metabolic mechanisms, to measure the intake of solutions both unsweetened and sweetened with four concentrations of sucrose. By limiting the sucrose stimuli to the mouth, the modified sham feeding technique measures the orosensory stimulation of intake by sucrose in the absence of inhibitory postingestive stimulation. Nine healthy women were randomly presented with two series of five solutions of cherry Kool Aid unsweetened or sweetened with one of four concentrations of sucrose (2.5%, 5%, 10%, or 20%) in a closed opaque container fitted with a straw. They were instructed to sip as much as they wanted of the liquid during 2-min trials and to spit the fluid out into another opaque container. At the end of each trial, they used Visual Analogue Scales to rate the perceived intensities of sweetness and liking of the liquid that they had just sipped and spit. Intake, liking and perceived sweetness were significantly affected by sucrose concentration (p values</=0.038). Intake at 20% was not significantly larger than 10% or 5%. The effects of sucrose were presumably due to orosensory stimulation in the absence of postingestive stimulation because the amount of liquid spit out did not differ significantly from the amount sipped.
Collapse
Affiliation(s)
- D A Klein
- Columbia University College of Physicians and Surgeons/NYSPI, New York, NY, USA.
| | | | | | | | | |
Collapse
|
46
|
Cooper SJ. Endocannabinoids and food consumption: comparisons with benzodiazepine and opioid palatability-dependent appetite. Eur J Pharmacol 2005; 500:37-49. [PMID: 15464019 DOI: 10.1016/j.ejphar.2004.07.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 01/22/2023]
Abstract
The endocannabinoid system consists of several endogenous lipids, including anandamide and 2-arachidonoyl-glycerol (2-AG), and constitute a retrograde signalling system, which modulates neurotransmitter release and synaptic plasticity. Specific brain-type cannabinoid receptors (CB(1)) are widely distributed in the central nervous system, and are localized presynaptically. Mounting evidence, reviewed here, indicates that cannabinoids can act to increase food consumption, and cannabinoid CB(1) receptor antagonists/inverse agonists reduce food intake and suppress operant responding for food rewards. Hence, endocannabinoids provide the first example of a retrograde signalling system, which is strongly implicated in the control of food intake. Benzodiazepine and opioid palatability-dependent appetite are well-established processes supported by several sources of convergent evidence; they provide pharmacological benchmarks against which to evaluate the endocannabinoids. To date, evidence that endocannabinoids specifically modulate palatability as an affective evaluative process is insufficient and not compelling. Endocannabinoids may have important clinical utility in the treatment of human obesity and forms of eating disorders.
Collapse
Affiliation(s)
- Steven J Cooper
- Kissileff Laboratory for the Study of Human Ingestive Behaviour, School of Psychology, University of Liverpool, Liverpool L69 7ZA, UK.
| |
Collapse
|
47
|
De Jonghe BC, Hajnal A, Covasa M. Increased oral and decreased intestinal sensitivity to sucrose in obese, prediabetic CCK-A receptor-deficient OLETF rats. Am J Physiol Regul Integr Comp Physiol 2004; 288:R292-300. [PMID: 15358606 DOI: 10.1152/ajpregu.00481.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CCK-A receptor-deficient Otsuka Long-Evans Tokushima fatty (OLETF) rats are hyperphagic and develop obesity and Type 2 diabetes. In this strain, taste preference functions have not been investigated. Therefore, a series of short-access, two-bottle tests were performed in age-matched prediabetic OLETF and nonmutant Long-Evans Tokushima Otsuka (LETO) rats to investigate preference for sucrose (0.03, 0.1, 0.3, or 1.0 M) presented with a choice of water. To discern orosensory from postgastric factors that may contribute to this preference, in a separate experiment, rats were allowed to sham feed sucrose in the absence or presence of duodenal sucrose infusion (0.3, 0.6, or 1.0 M). In the two-bottle real-feeding tests, OLETF rats exhibited a greater preference for 0.3 M sucrose (91.2 +/- 1.7 and 78.5 +/- 3.4% for OLETF and LETO, respectively; P < 0.01) and 1.0 M sucrose (65.3 +/- 1.2 and 57.5 +/- 2.7% for OLETF and LETO, respectively; P < 0.05) than LETO rats. OLETF rats also sham fed less of the lowest (0.03 M; 33.8 +/- 4.8 and 58.3 +/- 7.3 ml for OLETF and LETO, respectively; P < 0.05) and more of the highest (1.0 M; 109.9 +/- 6.5 and 81.0 +/- 3.9 ml for OLETF and LETO, respectively; P < 0.01) concentration of sucrose relative to LETO rats. Finally, intraduodenal sucrose infusions (0.6 and 1.0 M) produced a smaller reduction of 0.3 M sham sucrose intake [14.1 +/- 8.1 vs. 52.5 +/- 3.3 ml and 49.4 +/- 8.0 vs. 82.4 +/- 3.2 ml for 0.6 M (P < 0.01) and 1.0 M (P < 0.05) infusions in OLETF and LETO, respectively]. These findings demonstrate that OLETF rats display an increased preference for sucrose, an effect that is at least partially influenced by the orosensory stimulating effect of sucrose. This enhanced responsiveness to oral stimulation, coupled with the deficit in responding to the postingestive feedback of intestinal sucrose, may contribute additively to the development of hyperphagia and weight gain in OLETF rats.
Collapse
Affiliation(s)
- Bart C De Jonghe
- Department of Nutritional Sciences, College of Health and Human Development, The Pennsylvania State Univ., 126 South Henderson, University. Park, PA 16802, USA.
| | | | | |
Collapse
|
48
|
Levine AS, Billington CJ. Opioids as agents of reward-related feeding: a consideration of the evidence. Physiol Behav 2004; 82:57-61. [PMID: 15234591 DOI: 10.1016/j.physbeh.2004.04.032] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Accepted: 04/02/2004] [Indexed: 10/26/2022]
Abstract
Gerard Smith was one of the pioneers in the field of neuropeptidergic control of food intake. He established methodology and criteria used to determine whether a neuropeptide acts as an endogenous satiety factor. More recently, he theorized that there are direct and indirect controls of meal size. Direct controls include those that depend upon contact of food with preabsorptive receptors from the tip of the tongue to the end of the small intestine, and indirect controls include those that do not depend upon direct contact of mucosal receptors, such as learning and metabolism. In this review, we consider the evidence that opioids are mediators of reward-related feeding. We address these issues adopting Smith's approach to problem solving, including an evaluation of the opioids as controllers of the meal. We also present a novel concept of "hedonic restriction," resulting in a change in opioid gene expression. Overall, we believe the evidence supporting opioid participation in reward-driven and other types of ingestion is very strong, but much work remains before we understand how opioids contribute to the widely distributed neural network that controls ingestive behavior.
Collapse
Affiliation(s)
- Allen S Levine
- Minnesota Obesity Center, Department of Veterans Affairs Medical Center, Minneapolis, MN 55417, USA.
| | | |
Collapse
|
49
|
Guarda AS, Coughlin JW, Cummings M, Marinilli A, Haug N, Boucher M, Heinberg LJ. Chewing and spitting in eating disorders and its relationship to binge eating. Eat Behav 2004; 5:231-9. [PMID: 15135335 DOI: 10.1016/j.eatbeh.2004.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/14/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE This study examined (i) the frequency of chewing and spitting and (ii) its association with other pathological eating behaviors in eating-disordered inpatients. We hypothesized a positive association between chewing and spitting and binge eating given the phenomenological similarities between these disordered eating behaviors. METHOD Frequent chewers/spitters were compared with those who did not regularly engage in this behavior with regard to diagnosis, psychometric test results, and associated eating pathology. RESULTS Chewing and spitting was not associated with elevated bingeing. Rather, frequent chewers/spitters exhibited higher levels of restrictive eating behaviors and the behavior was more prevalent in younger patients. DISCUSSION Contrary to our predictions, chewing and spitting is more closely associated with restrictive than with binge behaviors. This suggests that most individuals chew and spit small portions of food. The behavior is frequent, occurs across diagnostic groups, and may be associated with greater psychopathology. Future studies should clarify the amount of food consumed during chew/spit episodes and the presence of a sense of loss of control.
Collapse
Affiliation(s)
- Angela S Guarda
- School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Baker RW, Li Y, Lee MG, Sclafani A, Bodnar RJ. Naltrexone does not prevent acquisition or expression of flavor preferences conditioned by fructose in rats. Pharmacol Biochem Behav 2004; 78:239-46. [PMID: 15219763 DOI: 10.1016/j.pbb.2004.03.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Revised: 02/25/2004] [Accepted: 03/15/2004] [Indexed: 11/21/2022]
Abstract
The effects of the general opioid antagonist, naltrexone, on the acquisition and expression of flavor preferences conditioned by the sweet taste of fructose were examined. Food-restricted rats were trained over eight daily alternating one-bottle sessions (2 h) to drink an 8% fructose solution containing one novel flavor (CS+/F) and a less preferred 0.2% saccharin solution containing a different flavor (CS-/S). Four groups of rats were treated daily with either saline (control group) or naltrexone doses of 0.1, 1.0, or 5.0 mg/kg during training. Preferences were assessed in two-bottle tests with the CS+/S and CS-/S flavors presented in 0.2% saccharin solutions following saline injections. Naltrexone dose-dependently reduced fructose and saccharin intakes during training, confirming the drug's well-known suppressive effect on the intake of sweet solutions. Despite their reduced training intakes, the naltrexone groups displayed preferences for the CS+/S over the CS-/S (72-86%) that were similar to that of the control group (78%). The effect of naltrexone on the expression of the CS+/S flavor preference was evaluated by treating control rats with naltrexone (0.1-5 mg/kg) prior to CS+/S vs. CS-/S choice tests. The drug doses produced a dose-dependent reduction in CS+/S intake but did not significantly attenuate the CS+/S preference. These data are consistent with the relative inability of naltrexone to reduce flavor-flavor conditioning by sucrose in sham-feeding rats and flavor-nutrient conditioning in rats receiving intragastric sucrose infusions. In contrast, dopamine antagonists reduce both sucrose- and fructose-conditioned flavor preferences, which indicates the sensitivity of these conditioning paradigms to neuropharmacological manipulations. These data indicate that the endogenous opioid system, unlike the dopamine system, does not play a major role in either the acquisition or expression of flavor preference learning as measured in two-bottle choice tests.
Collapse
Affiliation(s)
- Robert W Baker
- Department of Psychology, Queens College, City University of New York, CUNY, 65-30 Kissena Boulevard, Flushing, NY 11367, USA
| | | | | | | | | |
Collapse
|