1
|
Wang WF, Liu YX, Li CQ, Liu XY. Physical activity modified the association of blood cadmium and lead with Helicobacter pylori infection: A cross-sectional analysis with NHANES data. Medicine (Baltimore) 2024; 103:e39899. [PMID: 39465795 PMCID: PMC11479499 DOI: 10.1097/md.0000000000039899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/11/2024] [Indexed: 10/29/2024] Open
Abstract
Cadmium (Cd) and lead (Pb) exposure have been identified as risk factors for Helicobacter pylori seropositivity, possibly due to the immune suppression by Cd and Pb. Physical activity (PA) can induce an immune response. However, whether PA can reduce the effect of Cd and Pb on H pylori infection remains elusive. This study aims to investigate the association of blood Cd and Pb levels with H pylori infection and explore the intermediary effects of PA. This cross-sectional survey was conducted using the National Health and Nutrition Examination Survey (NHANES) of the 1999 to 2000 cycle (n = 9965). Participants without clear serological testing data, or absent in PA, blood Cd, and Pb information were excluded. Collinearity analysis was performed to remove the variables with high collinearity. Restricted cubic spline curve analysis was adopted to assess the nonlinear association of Cd and Pb with H pylori infection. The logistic regression analysis, generalized linear models, sensitivity analysis, and P for trend test were used to further analyze their relationship. Then, we analyzed the association of Cd and Pb with H pylori infection in 2 PA groups. Totally 3638 participants were divided into H pylori-negative (n = 2545) and H pylori-positive group (n = 1093). Pb exhibited a linear relationship but Cd had a nonlinear relationship with H pylori infection. Besides, the elevation of Cd and Pb both independently predicted H pylori infection after adjusting various variables (P < .05). The robust relationship was confirmed by the P for trend test (P for trend < .05). Under Cd exposure, the risk of H pylori infection was lower in the active PA group than in the inactive group (P < .05). A reverse result was found under the Pb exposure (P < .05). Exposure to Cd and Pb are positively linked to H pylori infection. PA may alleviate the effect of Cd on H pylori infection but may enhance H pylori infection under Pb exposure. Therefore, PA should be recommended in the appropriate season or region.
Collapse
Affiliation(s)
- Wei-Feng Wang
- Gastroenterology Department, Hangzhou Lin’an District Traditional Chinese Medicine Hospital, Hangzhou, Zhejiang, China
| | - Yu-Xiang Liu
- Gastroenterology Department, Hangzhou Lin’an District Traditional Chinese Medicine Hospital, Hangzhou, Zhejiang, China
| | - Chao-Qun Li
- Gastroenterology Department, Hangzhou Lin’an District Traditional Chinese Medicine Hospital, Hangzhou, Zhejiang, China
| | - Xian-Yong Liu
- Gastroenterology Department, Hangzhou Lin’an District Traditional Chinese Medicine Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Vasileiadou O, Nastos GG, Chatzinikolaou PN, Papoutsis D, Vrampa DI, Methenitis S, Margaritelis NV. Redox Profile of Skeletal Muscles: Implications for Research Design and Interpretation. Antioxidants (Basel) 2023; 12:1738. [PMID: 37760040 PMCID: PMC10525275 DOI: 10.3390/antiox12091738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Mammalian skeletal muscles contain varying proportions of Type I and II fibers, which feature different structural, metabolic and functional properties. According to these properties, skeletal muscles are labeled as 'red' or 'white', 'oxidative' or 'glycolytic', 'slow-twitch' or 'fast-twitch', respectively. Redox processes (i.e., redox signaling and oxidative stress) are increasingly recognized as a fundamental part of skeletal muscle metabolism at rest, during and after exercise. The aim of the present review was to investigate the potential redox differences between slow- (composed mainly of Type I fibers) and fast-twitch (composed mainly of Type IIa and IIb fibers) muscles at rest and after a training protocol. Slow-twitch muscles were almost exclusively represented in the literature by the soleus muscle, whereas a wide variety of fast-twitch muscles were used. Based on our analysis, we argue that slow-twitch muscles exhibit higher antioxidant enzyme activity compared to fast-twitch muscles in both pre- and post-exercise training. This is also the case between heads or regions of fast-twitch muscles that belong to different subcategories, namely Type IIa (oxidative) versus Type IIb (glycolytic), in favor of the former. No safe conclusion could be drawn regarding the mRNA levels of antioxidant enzymes either pre- or post-training. Moreover, slow-twitch skeletal muscles presented higher glutathione and thiol content as well as higher lipid peroxidation levels compared to fast-twitch. Finally, mitochondrial hydrogen peroxide production was higher in fast-twitch muscles compared to slow-twitch muscles at rest. This redox heterogeneity between different muscle types may have ramifications in the analysis of muscle function and health and should be taken into account when designing exercise studies using specific muscle groups (e.g., on an isokinetic dynamometer) or isolated muscle fibers (e.g., electrical stimulation) and may deliver a plausible explanation for the conflicting results about the ergogenic potential of antioxidant supplements.
Collapse
Affiliation(s)
- Olga Vasileiadou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| | - George G. Nastos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| | - Panagiotis N. Chatzinikolaou
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| | - Dimitrios Papoutsis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| | - Dimitra I. Vrampa
- Department of Nutrition Sciences and Dietetics, Faculty of Health Sciences, International Hellenic University, 57001 Thessaloniki, Greece;
| | - Spyridon Methenitis
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Nikos V. Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, 62100 Serres, Greece; (O.V.); (G.G.N.); (P.N.C.); (D.P.)
| |
Collapse
|
3
|
Miranda ER, Shahtout JL, Funai K. Chicken or Egg? Mitochondrial Phospholipids and Oxidative Stress in Disuse-Induced Skeletal Muscle Atrophy. Antioxid Redox Signal 2023; 38:338-351. [PMID: 36301935 PMCID: PMC9986029 DOI: 10.1089/ars.2022.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/25/2022] [Indexed: 11/13/2022]
Abstract
Significance: Accumulation of reactive oxygen species (ROS) is known to promote cellular damage in multiple cell types. In skeletal muscle, ROS has been implicated in disuse-induced muscle atrophy. However, the molecular origin and mechanism of how disuse promotes ROS and muscle dysfunction remains unclear. Recent Advances: Recently, we implicated membrane lipids of mitochondria to be a potential source of ROS to promote muscle atrophy. Critical Issues: In this review, we discuss evidence that changes in mitochondrial lipids represent a physiologically relevant process by which disuse promotes mitochondrial electron leak and oxidative stress. Future Directions: We further discuss lipid hydroperoxides as a potential downstream mediator of ROS to induce muscle atrophy. Antioxid. Redox Signal. 38, 338-351.
Collapse
Affiliation(s)
- Edwin R. Miranda
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| | - Justin L. Shahtout
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Powers SK, Goldstein E, Schrager M, Ji LL. Exercise Training and Skeletal Muscle Antioxidant Enzymes: An Update. Antioxidants (Basel) 2022; 12:antiox12010039. [PMID: 36670901 PMCID: PMC9854578 DOI: 10.3390/antiox12010039] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
The pivotal observation that muscular exercise is associated with oxidative stress in humans was first reported over 45 years ago. Soon after this landmark finding, it was discovered that contracting skeletal muscles produce oxygen radicals and other reactive species capable of oxidizing cellular biomolecules. Importantly, the failure to eliminate these oxidant molecules during exercise results in oxidation of cellular proteins and lipids. Fortuitously, muscle fibers and other cells contain endogenous antioxidant enzymes capable of eliminating oxidants. Moreover, it is now established that several modes of exercise training (e.g., resistance exercise and endurance exercise) increase the expression of numerous antioxidant enzymes that protect myocytes against exercise-induced oxidative damage. This review concisely summarizes the impact of endurance, high-intensity interval, and resistance exercise training on the activities of enzymatic antioxidants within skeletal muscles in humans and other mammals. We also discuss the evidence that exercise-induced up-regulation of cellular antioxidants reduces contraction-induced oxidative damage in skeletal muscles and has the potential to delay muscle fatigue and improve exercise performance. Finally, in hopes of stimulating further research, we also discuss gaps in our knowledge of exercise-induced changes in muscle antioxidant capacity.
Collapse
Affiliation(s)
- Scott K. Powers
- Department of Health Sciences, Stetson University, Deland, FL 32723, USA
- Correspondence:
| | - Erica Goldstein
- Department of Health Sciences, Stetson University, Deland, FL 32723, USA
| | - Matthew Schrager
- Department of Health Sciences, Stetson University, Deland, FL 32723, USA
| | - Li Li Ji
- Department of Kinesiology, University of Minnesota, St Paul, MN 55455, USA
| |
Collapse
|
5
|
Becker CU, Sartório CL, Campos-Carraro C, Siqueira R, Colombo R, Zimmer A, Belló-Klein A. Exercise training decreases oxidative stress in skeletal muscle of rats with pulmonary arterial hypertension. Arch Physiol Biochem 2022; 128:1330-1338. [PMID: 32449880 DOI: 10.1080/13813455.2020.1769679] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The effects of exercise training on oxidative stress in gastrocnemius of rats with pulmonary hypertension were studied. Four groups were established: sedentary control (SC), sedentary monocrotaline (SM), trained control (TC), trained monocrotaline (TM). Exercise was applied for 4 weeks, 5 days/week, 50-60 min/session, at 60% of VO2 max. Right ventricular (RV) pressures were measured, heart and gastrocnemius were removed for morphometric/biochemical analysis. Lipid peroxidation (LPO), H2O2, GSH/GSSG, and activity/expression of antioxidant enzymes were evaluated. Increased RV hypertrophy, systolic and end-diastolic pressures (RVEDP) were observed in SM animals, and the RVEDP was decreased in TM vs. SM. H2O2, SOD-1, and LPO were higher in the SM group than in SC. In TM, H2O2 was further increased when compared to SM, with a rise in antioxidant defences and a decrease in LPO. GSH/GSSG was higher only in the TC group. Exercise induced an efficient antioxidant adaptation, preventing oxidative damage to lipids.
Collapse
Affiliation(s)
- C U Becker
- Cardiovascular Physiology Laboratory, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - C L Sartório
- Department of Physiological Sciences, Federal University of Espírito Santo (UFES), Vitória, Brazil
| | - C Campos-Carraro
- Cardiovascular Physiology Laboratory, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - R Siqueira
- Cardiovascular Physiology Laboratory, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - R Colombo
- Pharmacology and Physiology Laboratory, University of Caxias do Sul, Caxias do Sul, Brazil
| | - A Zimmer
- Cardiovascular Physiology Laboratory, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - A Belló-Klein
- Cardiovascular Physiology Laboratory, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
6
|
Glucose 6-P Dehydrogenase—An Antioxidant Enzyme with Regulatory Functions in Skeletal Muscle during Exercise. Cells 2022; 11:cells11193041. [PMID: 36231003 PMCID: PMC9563910 DOI: 10.3390/cells11193041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Hypomorphic Glucose 6-P dehydrogenase (G6PD) alleles, which cause G6PD deficiency, affect around one in twenty people worldwide. The high incidence of G6PD deficiency may reflect an evolutionary adaptation to the widespread prevalence of malaria, as G6PD-deficient red blood cells (RBCs) are hostile to the malaria parasites that infect humans. Although medical interest in this enzyme deficiency has been mainly focused on RBCs, more recent evidence suggests that there are broader implications for G6PD deficiency in health, including in skeletal muscle diseases. G6PD catalyzes the rate-limiting step in the pentose phosphate pathway (PPP), which provides the precursors of nucleotide synthesis for DNA replication as well as reduced nicotinamide adenine dinucleotide phosphate (NADPH). NADPH is involved in the detoxification of cellular reactive oxygen species (ROS) and de novo lipid synthesis. An association between increased PPP activity and the stimulation of cell growth has been reported in different tissues including the skeletal muscle, liver, and kidney. PPP activity is increased in skeletal muscle during embryogenesis, denervation, ischemia, mechanical overload, the injection of myonecrotic agents, and physical exercise. In fact, the highest relative increase in the activity of skeletal muscle enzymes after one bout of exhaustive exercise is that of G6PD, suggesting that the activation of the PPP occurs in skeletal muscle to provide substrates for muscle repair. The age-associated loss in muscle mass and strength leads to a decrease in G6PD activity and protein content in skeletal muscle. G6PD overexpression in Drosophila Melanogaster and mice protects against metabolic stress, oxidative damage, and age-associated functional decline, and results in an extended median lifespan. This review discusses whether the well-known positive effects of exercise training in skeletal muscle are mediated through an increase in G6PD.
Collapse
|
7
|
Silvera S, Wilkinson JA, LeBlanc PJ. Characterization of neutral sphingomyelinase activity and isoform expression in rodent skeletal muscle mitochondria. Mitochondrion 2021; 59:184-189. [PMID: 34089907 DOI: 10.1016/j.mito.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/04/2021] [Accepted: 06/01/2021] [Indexed: 12/01/2022]
Abstract
Skeletal muscle is composed of fiber types that differ in mitochondrial content, antioxidant capacity, and susceptibility to apoptosis. Ceramides have been linked to oxidative stress-mediated apoptotic intracellular signalling and the enzyme neutral sphingomyelinase (nSMase) is, in part, responsible for generating these ceramides through the hydrolysis of sphingomyelin. Despite the role of ceramides in mediating apoptosis, there is a gap in the literature regarding nSMase in skeletal muscle mitochondria. This study aimed to characterize total nSMase activity and individual isoform expression in isolated subsarcolemmal (SS) mitochondria from soleus, diaphragm, plantaris, and extensor digitorum longus (EDL). Total nSMase activity did not differ between muscle types. nSMase2 content was detectable in all muscles and higher in EDL, soleus, and plantaris compared to diaphragm whereas nSMase3 was undetectable in all muscles. Finally, total nSMase activity positively correlated to nSMase2 protein content in soleus but not the other muscles. These findings suggest that nSMase associated with SS mitochondria may play a role in intracellular signalling processes involving ceramides in skeletal muscle and nSMase2 may be the key isoform, specifically in slow twitch muscle like soleus. Further studies are needed to fully elucidate the specific contribution of nSMase, along with the role of the various isoforms and mitochondrial subpopulation in generating mitochondrial ceramides in skeletal muscle, and its potential effects on mediating apoptosis.
Collapse
Affiliation(s)
- Sebastian Silvera
- Center for Bone and Muscle Health, Faculty of Applied Health Science, Brock University, Canada
| | - Jennifer A Wilkinson
- Center for Bone and Muscle Health, Faculty of Applied Health Science, Brock University, Canada
| | - Paul J LeBlanc
- Center for Bone and Muscle Health, Faculty of Applied Health Science, Brock University, Canada.
| |
Collapse
|
8
|
Beneficial Role of Exercise in the Modulation of mdx Muscle Plastic Remodeling and Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10040558. [PMID: 33916762 PMCID: PMC8066278 DOI: 10.3390/antiox10040558] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/15/2021] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive progressive lethal disorder caused by the lack of dystrophin, which determines myofibers mechanical instability, oxidative stress, inflammation, and susceptibility to contraction-induced injuries. Unfortunately, at present, there is no efficient therapy for DMD. Beyond several promising gene- and stem cells-based strategies under investigation, physical activity may represent a valid noninvasive therapeutic approach to slow down the progression of the pathology. However, ethical issues, the limited number of studies in humans and the lack of consistency of the investigated training interventions generate loss of consensus regarding their efficacy, leaving exercise prescription still questionable. By an accurate analysis of data about the effects of different protocol of exercise on muscles of mdx mice, the most widely-used pre-clinical model for DMD research, we found that low intensity exercise, especially in the form of low speed treadmill running, likely represents the most suitable exercise modality associated to beneficial effects on mdx muscle. This protocol of training reduces muscle oxidative stress, inflammation, and fibrosis process, and enhances muscle functionality, muscle regeneration, and hypertrophy. These conclusions can guide the design of appropriate studies on human, thereby providing new insights to translational therapeutic application of exercise to DMD patients.
Collapse
|
9
|
Eshima H, Siripoksup P, Mahmassani ZS, Johnson JM, Ferrara PJ, Verkerke ARP, Salcedo A, Drummond MJ, Funai K. Neutralizing mitochondrial ROS does not rescue muscle atrophy induced by hindlimb unloading in female mice. J Appl Physiol (1985) 2020; 129:124-132. [PMID: 32552434 DOI: 10.1152/japplphysiol.00456.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Excess reactive oxygen species (ROS) induced by physical inactivity is associated with muscle atrophy and muscle weakness. However, the role of mitochondrial ROS on disuse-induced muscle atrophy is not fully understood. The purpose of this study was to utilize a genetic strategy to examine the effect of neutralizing mitochondrial ROS on disuse-induced skeletal muscle atrophy. This was accomplished by placing wild-type (WT) and mitochondrial-targeted catalase-expressing (MCAT) littermate mice on 7 days of hindlimb unloading. After assessment of body weight and composition, muscles were analyzed for individual muscle mass, force-generating capacity, fiber type, cross-sectional area, and mitochondrial function, including H2O2 production. Despite a successful attenuation of mitochondrial ROS, MCAT mice were not protected from muscle atrophy. No differences were observed in body composition, lean mass, individual muscle masses, force-generating capacity, or muscle fiber cross-sectional area. These data suggest that neutralizing mitochondrial ROS is insufficient to suppress disuse-induced loss of skeletal muscle mass and contractile function.NEW & NOTEWORTHY The premise of this study was to examine the efficacy of genetic suppression of mitochondrial reactive oxygen species (ROS) to attenuate disuse-induced muscle atrophy and muscle weakness. Neutralization of mitochondrial ROS by MCAT expression was insufficient to rescue muscle atrophy and muscle weakness.
Collapse
Affiliation(s)
- Hiroaki Eshima
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah.,Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Piyarat Siripoksup
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah.,Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Ziad S Mahmassani
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah.,Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Jordan M Johnson
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Patrick J Ferrara
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Anthony R P Verkerke
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Anahy Salcedo
- Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Micah J Drummond
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| | - Katsuhiko Funai
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah.,Molecular Medicine Program, University of Utah, Salt Lake City, Utah
| |
Collapse
|
10
|
Heden TD, Johnson JM, Ferrara PJ, Eshima H, Verkerke ARP, Wentzler EJ, Siripoksup P, Narowski TM, Coleman CB, Lin CT, Ryan TE, Reidy PT, de Castro Brás LE, Karner CM, Burant CF, Maschek JA, Cox JE, Mashek DG, Kardon G, Boudina S, Zeczycki TN, Rutter J, Shaikh SR, Vance JE, Drummond MJ, Neufer PD, Funai K. Mitochondrial PE potentiates respiratory enzymes to amplify skeletal muscle aerobic capacity. SCIENCE ADVANCES 2019; 5:eaax8352. [PMID: 31535029 PMCID: PMC6739096 DOI: 10.1126/sciadv.aax8352] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/15/2019] [Indexed: 05/08/2023]
Abstract
Exercise capacity is a strong predictor of all-cause mortality. Skeletal muscle mitochondrial respiratory capacity, its biggest contributor, adapts robustly to changes in energy demands induced by contractile activity. While transcriptional regulation of mitochondrial enzymes has been extensively studied, there is limited information on how mitochondrial membrane lipids are regulated. Here, we show that exercise training or muscle disuse alters mitochondrial membrane phospholipids including phosphatidylethanolamine (PE). Addition of PE promoted, whereas removal of PE diminished, mitochondrial respiratory capacity. Unexpectedly, skeletal muscle-specific inhibition of mitochondria-autonomous synthesis of PE caused respiratory failure because of metabolic insults in the diaphragm muscle. While mitochondrial PE deficiency coincided with increased oxidative stress, neutralization of the latter did not rescue lethality. These findings highlight the previously underappreciated role of mitochondrial membrane phospholipids in dynamically controlling skeletal muscle energetics and function.
Collapse
Affiliation(s)
- Timothy D. Heden
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Department of Kinesiology, East Carolina University, Greenville, NC, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jordan M. Johnson
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Department of Kinesiology, East Carolina University, Greenville, NC, USA
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA
| | - Patrick J. Ferrara
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Department of Kinesiology, East Carolina University, Greenville, NC, USA
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA
| | - Hiroaki Eshima
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
| | - Anthony R. P. Verkerke
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Department of Kinesiology, East Carolina University, Greenville, NC, USA
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA
| | - Edward J. Wentzler
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Piyarat Siripoksup
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA
| | - Tara M. Narowski
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Chanel B. Coleman
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Chien-Te Lin
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Terence E. Ryan
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Department of Physiology, East Carolina University, Greenville, NC, USA
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, USA
| | - Paul T. Reidy
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA
| | | | - Courtney M. Karner
- Department of Orthopedic Surgery & Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Charles F. Burant
- Michigan Regional Comprehensive Metabolomics Resource Core, University of Michigan, Ann Arbor, MI, USA
| | - J. Alan Maschek
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
| | - James E. Cox
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Douglas G. Mashek
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Sihem Boudina
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - Tonya N. Zeczycki
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, NC, USA
| | - Jared Rutter
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Saame Raza Shaikh
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Department of Biochemistry and Molecular Biology, East Carolina University, Greenville, NC, USA
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Jean E. Vance
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Micah J. Drummond
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - P. Darrell Neufer
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Department of Kinesiology, East Carolina University, Greenville, NC, USA
- Department of Physiology, East Carolina University, Greenville, NC, USA
| | - Katsuhiko Funai
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
- Department of Kinesiology, East Carolina University, Greenville, NC, USA
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT, USA
- Department of Physiology, East Carolina University, Greenville, NC, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
- Corresponding author.
| |
Collapse
|
11
|
OLIVEIRA ECD, SANTOS RCD, BECKER LK, COELHO DB, PEDROSA ML, SILVA ME. Physical exercise improves body weight gain and liver function in malnourished rats without disturbing the redox balance. REV NUTR 2018. [DOI: 10.1590/1678-98652018000500002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
ABSTRACT Objective To study the relationship between exercise and malnourishment because recent evidence suggests that exercise can cause the beneficial adaptation of antioxidant systems, whereas malnourishment can cause harmful adaptation of these systems. Methods Thirty-two female Fischer rats were equally divided into Sedentary Control, Trained Control, Sedentary Malnourished and Trained Malnourished groups. The training protocol consisted of swimming for 30 minutes continuously for 5 days/week for 8 weeks. Results It was demonstrated that aspartate aminotransferase and alanine aminotransferase activities increased in malnourished rats, but physical training reversed these effects by lowering the raised levels. The glutathione level was diminished by malnourishment whereas physical training increased the levels of liver carbonyl protein and increased the levels of thiobarbituric acid reactive substances that were diminished by malnourishment. In addition, Trained Malnourished rats had a higher average body weight than Sedentary Malnourished ones (62.77g vs. 55.08g, respectively). Conclusion The data show that exercise was able to reverse or reduce damage caused by malnourishment, such as weight loss and liver dysfunction by a pathway independent of the participation of enzymes involved in antioxidant defense and that there is no interaction between exercise and malnutrition.
Collapse
|
12
|
Smerdu V, Perše M. Effect of high-fat mixed lipid diet and swimming on fibre types in skeletal muscles of rats with colon tumours. Eur J Histochem 2018; 62. [PMID: 30043597 PMCID: PMC6065050 DOI: 10.4081/ejh.2018.2945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/11/2018] [Indexed: 11/23/2022] Open
Abstract
Skeletal muscle fibre types, whose characteristics are determined by myosin heavy chain (MyHC) isoforms, can adapt to changed physiological demands with changed MyHC isoform expression resulting in the fibre type transitions. The endurance training is known to induce fastto- slow transitions and has beneficial effect in carcinogenesis, whereas the effect of an excessive fat intake and its interaction with the effect of swimming are less conclusive. Therefore, we studied the effect of high-fat mixed lipid (HFML) diet and long-term (21-week) swimming on fibre type transitions and their average diameters by immunohistochemical demonstration of MyHC isoforms in slow soleus (SOL), fast extensor digitorum longus (EDL), and mixed gastrocnemius medialis and lateralis (GM, GL) muscles, divided to deep and superficial portions (GMd, GMs, GLd, GLs), of sedentary and swimming Wistar rats with experimentally (dimethylhydrazine) induced colon tumours and fed either with HFML or low-fat corn oil (LFCO) diet. HFML diet induced only a trend for fast-to-slow transitions in SOL and in the opposite direction in GMd. Swimming triggered significant transitions in unexpected slow-to-fast direction in SOL, whereas in GMs the transitions had tendency to proceed in the expected fast-toslow direction. The average diameters of fibre types were mostly unaffected. Hence, it can be concluded that if present, the effects of HFML diet and swimming on fibre type transitions were counteractive and muscle-specific implying that each muscle possesses its own adaptive range of response to changed physiological conditions.
Collapse
Affiliation(s)
- Vika Smerdu
- University of Ljubljana, Faculty of Medicine, Institute of Anatomy.
| | | |
Collapse
|
13
|
Sakellariou GK, McDonagh B. Redox Homeostasis in Age-Related Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:281-306. [PMID: 30390257 DOI: 10.1007/978-981-13-1435-3_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Muscle atrophy and weakness, characterized by loss of lean muscle mass and function, has a significant effect on the independence and quality of life of older people. The cellular mechanisms that drive the age-related decline in neuromuscular integrity and function are multifactorial. Quiescent and contracting skeletal muscle can endogenously generate reactive oxygen and nitrogen species (RONS) from various cellular sites. Excessive RONS can potentially cause oxidative damage and disruption of cellular signaling pathways contributing to the initiation and progression of age-related muscle atrophy. Altered redox homeostasis and modulation of intracellular signal transduction processes have been proposed as an underlying mechanism of sarcopenia. This chapter summarizes the current evidence that has associated disrupted redox homeostasis and muscle atrophy as a result of skeletal muscle inactivity and aging.
Collapse
Affiliation(s)
| | - Brian McDonagh
- Discipline of Physiology, School of Medicine, NUI Galway, Galway, Ireland
| |
Collapse
|
14
|
Ábrigo J, Elorza AA, Riedel CA, Vilos C, Simon F, Cabrera D, Estrada L, Cabello-Verrugio C. Role of Oxidative Stress as Key Regulator of Muscle Wasting during Cachexia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2063179. [PMID: 29785242 PMCID: PMC5896211 DOI: 10.1155/2018/2063179] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
Abstract
Skeletal muscle atrophy is a pathological condition mainly characterized by a loss of muscular mass and the contractile capacity of the skeletal muscle as a consequence of muscular weakness and decreased force generation. Cachexia is defined as a pathological condition secondary to illness characterized by the progressive loss of muscle mass with or without loss of fat mass and with concomitant diminution of muscle strength. The molecular mechanisms involved in cachexia include oxidative stress, protein synthesis/degradation imbalance, autophagy deregulation, increased myonuclear apoptosis, and mitochondrial dysfunction. Oxidative stress is one of the most common mechanisms of cachexia caused by different factors. It results in increased ROS levels, increased oxidation-dependent protein modification, and decreased antioxidant system functions. In this review, we will describe the importance of oxidative stress in skeletal muscles, its sources, and how it can regulate protein synthesis/degradation imbalance, autophagy deregulation, increased myonuclear apoptosis, and mitochondrial dysfunction involved in cachexia.
Collapse
Affiliation(s)
- Johanna Ábrigo
- 1Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| | - Alvaro A. Elorza
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
- 3Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas & Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Claudia A. Riedel
- 1Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| | - Cristian Vilos
- 4Laboratory of Nanomedicine and Targeted Delivery, Center for Integrative Medicine and Innovative Science, Faculty of Medicine, and Center for Bioinformatics and Integrative Biology, Faculty of Biological Sciences, Universidad Andres Bello, Santiago, Chile
- 5Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Simon
- 1Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| | - Daniel Cabrera
- 6Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- 7Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Lisbell Estrada
- 8Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Claudio Cabello-Verrugio
- 1Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- 2Millennium Institute of Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
15
|
Sakellariou GK, Lightfoot AP, Earl KE, Stofanko M, McDonagh B. Redox homeostasis and age-related deficits in neuromuscular integrity and function. J Cachexia Sarcopenia Muscle 2017; 8:881-906. [PMID: 28744984 PMCID: PMC5700439 DOI: 10.1002/jcsm.12223] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 04/06/2017] [Accepted: 05/22/2017] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle is a major site of metabolic activity and is the most abundant tissue in the human body. Age-related muscle atrophy (sarcopenia) and weakness, characterized by progressive loss of lean muscle mass and function, is a major contributor to morbidity and has a profound effect on the quality of life of older people. With a continuously growing older population (estimated 2 billion of people aged >60 by 2050), demand for medical and social care due to functional deficits, associated with neuromuscular ageing, will inevitably increase. Despite the importance of this 'epidemic' problem, the primary biochemical and molecular mechanisms underlying age-related deficits in neuromuscular integrity and function have not been fully determined. Skeletal muscle generates reactive oxygen and nitrogen species (RONS) from a variety of subcellular sources, and age-associated oxidative damage has been suggested to be a major factor contributing to the initiation and progression of muscle atrophy inherent with ageing. RONS can modulate a variety of intracellular signal transduction processes, and disruption of these events over time due to altered redox control has been proposed as an underlying mechanism of ageing. The role of oxidants in ageing has been extensively examined in different model organisms that have undergone genetic manipulations with inconsistent findings. Transgenic and knockout rodent studies have provided insight into the function of RONS regulatory systems in neuromuscular ageing. This review summarizes almost 30 years of research in the field of redox homeostasis and muscle ageing, providing a detailed discussion of the experimental approaches that have been undertaken in murine models to examine the role of redox regulation in age-related muscle atrophy and weakness.
Collapse
Affiliation(s)
| | - Adam P. Lightfoot
- School of Healthcare ScienceManchester Metropolitan UniversityManchesterM1 5GDUK
| | - Kate E. Earl
- MRC‐Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolL7 8TXUK
| | - Martin Stofanko
- Microvisk Technologies LtdThe Quorum7600 Oxford Business ParkOxfordOX4 2JZUK
| | - Brian McDonagh
- MRC‐Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic DiseaseUniversity of LiverpoolLiverpoolL7 8TXUK
- Department of Physiology, School of MedicineNational University of IrelandGalwayIreland
| |
Collapse
|
16
|
Lawler JM, Rodriguez DA, Hord JM. Mitochondria in the middle: exercise preconditioning protection of striated muscle. J Physiol 2016; 594:5161-83. [PMID: 27060608 PMCID: PMC5023703 DOI: 10.1113/jp270656] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 04/01/2016] [Indexed: 12/24/2022] Open
Abstract
Cellular and physiological adaptations to an atmosphere which became enriched in molecular oxygen spurred the development of a layered system of stress protection, including antioxidant and stress response proteins. At physiological levels reactive oxygen and nitrogen species regulate cell signalling as well as intracellular and intercellular communication. Exercise and physical activity confer a variety of stressors on skeletal muscle and the cardiovascular system: mechanical, metabolic, oxidative. Transient increases of stressors during acute bouts of exercise or exercise training stimulate enhancement of cellular stress protection against future insults of oxidative, metabolic and mechanical stressors that could induce injury or disease. This phenomenon has been termed both hormesis and exercise preconditioning (EPC). EPC stimulates transcription factors such as Nrf-1 and heat shock factor-1 and up-regulates gene expression of a cadre of cytosolic (e.g. glutathione peroxidase and heat shock proteins) and mitochondrial adaptive or stress proteins (e.g. manganese superoxide dismutase, mitochondrial KATP channels and peroxisome proliferator activated receptor γ coactivator-1 (PGC-1)). Stress response and antioxidant enzyme inducibility with exercise lead to protection against striated muscle damage, oxidative stress and injury. EPC may indeed provide significant clinical protection against ischaemia-reperfusion injury, Type II diabetes and ageing. New molecular mechanisms of protection, such as δ-opioid receptor regulation and mitophagy, reinforce the notion that mitochondrial adaptations (e.g. heat shock proteins, antioxidant enzymes and sirtuin-1/PGC-1 signalling) are central to the protective effects of exercise preconditioning.
Collapse
Affiliation(s)
- John M Lawler
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA.
| | - Dinah A Rodriguez
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA
| | - Jeffrey M Hord
- Redox Biology & Cell Signalling Laboratory, Department of Health and Kinesiology, Graduate Faculty of Nutrition & Food Science, Texas A&M University, College Station, TX, USA
| |
Collapse
|
17
|
Quinn CJ, Burns PD, Gibson NM, Bashore A, Hayward R, Hydock DS. Effects of Chronic Endurance Exercise on Doxorubicin-Induced Thymic Damage. Integr Cancer Ther 2015; 15:535-541. [PMID: 26590123 DOI: 10.1177/1534735415617014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The use of prior exercise training has shown promise in minimizing doxorubicin (DOX)-induced physical impairments. The purpose of this study was to compare changes in thymus mass, thymocyte (T-cell) number, and tissue peroxidation following chronic endurance exercise and DOX treatment in the rat. The thymus mass, number of viable T-cells, and levels of malondialdehyde and 4-hydroxyalkenals (MDA+4-HAE) were compared 3 days post-injection between rats assigned to the following treatment conditions: (a) 10 weeks of endurance training, followed by a saline injection 24 hours after the last training session (TM+SAL); (b) treadmill training as above, followed by a single, bolus 10-mg/kg injection of DOX (TM+10); (c) treadmill training with 12.5 mg/kg of DOX (TM+12.5); (d) sedentary (without exercise) and a saline injection (SED+SAL); (e) sedentary with 10 mg/kg of DOX (SED+10); and (f) sedentary with 12.5 mg/kg (SED+12.5). Thymic mass and T-cell numbers significantly decreased following DOX injections. TM rats exhibited significantly less lipid peroxidation compared with paired-dose SED groups. TM+10 did not significantly differ from SED+SAL in thymic levels of lipid peroxidation. We conclude that chronic endurance exercise decreases levels of lipid peroxidation in the thymus seen with acute DOX treatment.
Collapse
Affiliation(s)
| | | | | | - Alex Bashore
- University of Northern Colorado, Greeley, CO, USA
| | - Reid Hayward
- University of Northern Colorado, Greeley, CO, USA
| | | |
Collapse
|
18
|
Johnson ML, Irving BA, Lanza IR, Vendelbo MH, Konopka AR, Robinson MM, Henderson GC, Klaus KA, Morse DM, Heppelmann C, Bergen HR, Dasari S, Schimke JM, Jakaitis DR, Nair KS. Differential Effect of Endurance Training on Mitochondrial Protein Damage, Degradation, and Acetylation in the Context of Aging. J Gerontol A Biol Sci Med Sci 2014; 70:1386-93. [PMID: 25504576 DOI: 10.1093/gerona/glu221] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/21/2014] [Indexed: 12/24/2022] Open
Abstract
Acute aerobic exercise increases reactive oxygen species and could potentially damage proteins, but exercise training (ET) enhances mitochondrial respiration irrespective of age. Here, we report a differential impact of ET on protein quality in young and older participants. Using mass spectrometry we measured oxidative damage to skeletal muscle proteins before and after 8 weeks of ET and find that young but not older participants reduced oxidative damage to both total skeletal muscle and mitochondrial proteins. Young participants showed higher total and mitochondrial derived semitryptic peptides and 26S proteasome activity indicating increased protein degradation. ET however, increased the activity of the endogenous antioxidants in older participants. ET also increased skeletal muscle content of the mitochondrial deacetylase SIRT3 in both groups. A reduction in the acetylation of isocitrate dehydrogenase 2 was observed following ET that may counteract the effect of acute oxidative stress. In conclusion aging is associated with an inability to improve skeletal muscle and mitochondrial protein quality in response to ET by increasing degradation of damaged proteins. ET does however increase muscle and mitochondrial antioxidant capacity in older individuals, which provides increased buffering from the acute oxidative effects of exercise.
Collapse
Affiliation(s)
| | | | | | - Mikkel H Vendelbo
- Division of Endocrinology and Metabolism, Present address: Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | | | | | | | | | - Surendra Dasari
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | | | | |
Collapse
|
19
|
Sitagliptin ameliorates lipid profile changes and endothelium dysfunction induced by atherogenic diet in rabbits. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:433-44. [DOI: 10.1007/s00210-014-0958-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/20/2014] [Indexed: 12/25/2022]
|
20
|
Meier P, Renga M, Hoppeler H, Baum O. The impact of antioxidant supplements and endurance exercise on genes of the carbohydrate and lipid metabolism in skeletal muscle of mice. Cell Biochem Funct 2012; 31:51-9. [PMID: 22865599 DOI: 10.1002/cbf.2859] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 06/15/2012] [Accepted: 07/05/2012] [Indexed: 11/08/2022]
Abstract
To ascertain whether reactive oxygen species (ROS) contribute to training-induced adaptation of skeletal muscle, we administered ROS-scavenging antioxidants (AOX; 140 mg/l of ascorbic acid, 12 mg/l of coenzyme Q10 and 1% N-acetyl-cysteine) via drinking water to 16 C57BL/6 mice. Sixteen other mice received unadulterated tap water (CON). One cohort of both groups (CON(EXE) and AOX(EXE) ) was subjected to treadmill exercise for 4 weeks (16-26 m/min, incline of 5°-10°). The other two cohorts (CON(SED) and AOX(SED) ) remained sedentary. In skeletal muscles of the AOX(EXE) mice, GSSG and the expression levels of SOD-1 and PRDX-6 were significantly lower than those in the CON(EXE) mice after training, suggesting disturbance of ROS levels. The peak power related to the body weight and citrate synthase activity was not significantly influenced in mice receiving AOX. Supplementation with AOX significantly altered the mRNA levels of the exercise-sensitive genes HK-II, GLUT-4 and SREBF-1c and the regulator gene PGC-1alpha but not G6PDH, glycogenin, FABP-3, MCAD and CD36 in skeletal muscle. Although the administration of AOX during endurance exercise alters the expression of particular genes of the ROS metabolism, it does not influence peak power or generally shift the metabolism, but it modulates the expression of specific genes of the carbohydrate and lipid metabolism and PGC-1alpha within murine skeletal muscle.
Collapse
Affiliation(s)
- Patrick Meier
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | | | | | | |
Collapse
|
21
|
Salehi I, Mohammadi M, Mirzaei F, Soufi FG. Amlodipine attenuates oxidative stress in the heart and blood of high-cholesterol diet rabbits. Cardiovasc J Afr 2012; 23:18-22. [PMID: 22331246 PMCID: PMC3721824 DOI: 10.5830/cvja-2010-091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Accepted: 11/26/2010] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION Oxidative stress is a key component of atherosclerosis. It has been suggested that amlodipine inhibits oxidative stress. In this study, we evaluated the effects of amlodipine on the total antioxidant capacity of heart tissue and blood in 36 control and cholesterol-fed male New Zealand white rabbits. METHODS The rabbits were divided into four groups (n = 9). Group 1 rabbits were fed a regular diet, group 2 were fed a diet with 2% cholesterol, group 3 were fed a regular diet plus 5 mg/kg/day oral amlodipine, and group 4 were fed 2% cholesterol diet plus amlodipine 5 mg/kg/day. At the end of eight weeks, blood samples were drawn and at the same time heart tissue was isolated and frozen in liquid nitrogen. After homogenisation, the solution was centrifuged and the light supernatant was stored at -80°C. This was used for determination of glutathione peroxidase (GPX), superoxide dismutase (SOD) and (MDA) levels. RESULTS Eight weeks of amlodipine treatment significantly reduced the levels of total cholesterol, low-density lipoprotein cholesterol and triglycerides in the group on the hypercholesterolaemic diet (p < 0.05). In the blood, the level of thiobarbituric acid-reactive substances increased in the rabbits on the 2% cholesterol diet (group 2) and 2% cholesterol-plusamlodipine diet (group 4) and decreased in the amlodipineonly group (group 3) (p < 0.05). Lipid peroxidation in the heart tissue was similar to that in the blood, except in the amlodipine-only group (group 3). In the blood, the activity of total SOD (tSOD) decreased in the group on the 2% cholesterol diet (group 2) (p < 0.05) and markedly increased in the amlodipine-only (group 3) and 2% cholesterol-plusamlodipine groups (group 4) (p < 0.05). CONCLUSION Amlodipine decreased oxidative stress in the heart and blood and improved the lipid profile in cholesterolfed rabbits. Therefore, it may be considered a useful tool for the reduction of oxidative stress and improvement of lipid profiles in diseases related to atherosclerosis.
Collapse
Affiliation(s)
- I Salehi
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | | | | |
Collapse
|
22
|
Barreto TO, Cleto LS, Gioda CR, Silva RS, Campi-Azevedo AC, de Sousa-Franco J, de Magalhães JC, Penaforte CL, Pinto KMDC, Cruz JDS, Rocha-Vieira E. Swim training does not protect mice from skeletal muscle oxidative damage following a maximum exercise test. Eur J Appl Physiol 2011; 112:2523-30. [PMID: 22075638 DOI: 10.1007/s00421-011-2211-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 10/12/2011] [Indexed: 11/27/2022]
Abstract
We investigated whether swim training protects skeletal muscle from oxidative damage in response to a maximum progressive exercise. First, we investigated the effect of swim training on the activities of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), in the gastrocnemius muscle of C57Bl/6 mice, 48 h after the last training session. Mice swam for 90 min, twice a day, for 5 weeks at 31°C (± 1°C). The activities of SOD and CAT were increased in trained mice (P < 0.05) compared to untrained group. However, no effect of training was observed in the activity of GPx. In a second experiment, trained and untrained mice were submitted to a maximum progressive swim test. Compared to control mice (untrained, not acutely exercised), malondialdehyde (MDA) levels were increased in the skeletal muscle of both trained and untrained mice after maximum swim. The activity of GPx was increased in the skeletal muscle of both trained and untrained mice, while SOD activity was increased only in trained mice after maximum swimming. CAT activity was increased only in the untrained compared to the control group. Although the trained mice showed increased activity of citrate synthase in skeletal muscle, swim performance was not different compared to untrained mice. Our results show an imbalance in the activities of SOD, CAT and GPx in response to swim training, which could account for the oxidative damage observed in the skeletal muscle of trained mice in response to maximum swim, resulting in the absence of improved exercise performance.
Collapse
Affiliation(s)
- Tatiane Oliveira Barreto
- Department of Biological, Environmental and Health Sciences, University Center of Belo Horizonte, Prof. Mario Werneck Av, 1685, Belo Horizonte, MG, 30455-610, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Soares E, Lima W, Machado R, Carneiro C, Silva M, Rodrigues M, De Castro U, Santos R, Campagnole-Santos M, Alzamora A. Cardiac and renal effects induced by different exercise workloads in renovascular hypertensive rats. Braz J Med Biol Res 2011; 44:573-82. [DOI: 10.1590/s0100-879x2011007500049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 04/06/2011] [Indexed: 11/22/2022] Open
Affiliation(s)
- E.R. Soares
- Universidade Federal de Ouro Preto, Brasil; Instituto Nacional de Ciência e Tecnologia em Inovação Nano-Biofarmacêutica, Brasil
| | - W.G. Lima
- Universidade Federal de Ouro Preto; Universidade Federal de Ouro Preto, Brasil; Instituto Nacional de Ciência e Tecnologia em Inovação Nano-Biofarmacêutica, Brasil
| | - R.P. Machado
- Universidade Federal de Ouro Preto; Universidade Federal de Ouro Preto, Brasil; Instituto Nacional de Ciência e Tecnologia em Inovação Nano-Biofarmacêutica, Brasil
| | | | - M.E. Silva
- Universidade Federal de Ouro Preto, Brasil; Instituto Nacional de Ciência e Tecnologia em Inovação Nano-Biofarmacêutica, Brasil
| | | | - U.G. De Castro
- Universidade Federal de Ouro Preto, Brasil; Instituto Nacional de Ciência e Tecnologia em Inovação Nano-Biofarmacêutica, Brasil
| | - R.A.S. Santos
- Universidade Federal de Minas Gerais, Brasil; Instituto Nacional de Ciência e Tecnologia em Inovação Nano-Biofarmacêutica, Brasil
| | - M.J. Campagnole-Santos
- Universidade Federal de Minas Gerais, Brasil; Instituto Nacional de Ciência e Tecnologia em Inovação Nano-Biofarmacêutica, Brasil
| | - A.C. Alzamora
- Universidade Federal de Ouro Preto; Universidade Federal de Ouro Preto, Brasil; Instituto Nacional de Ciência e Tecnologia em Inovação Nano-Biofarmacêutica, Brasil
| |
Collapse
|
24
|
Abstract
It is well established that contracting muscles produce both reactive oxygen and nitrogen species. Although the sources of oxidant production during exercise continue to be debated, growing evidence suggests that mitochondria are not the dominant source. Regardless of the sources of oxidants in contracting muscles, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Further, oxidants regulate numerous cell signaling pathways and modulate the expression of many genes. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species result in contractile dysfunction and fatigue. Ongoing research continues to explore the redox-sensitive targets in muscle that are responsible for both redox regulation of muscle adaptation and oxidant-mediated muscle fatigue.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.
| | | | | | | |
Collapse
|
25
|
da Silva LA, Pinho CA, Rocha LGC, Tuon T, Silveira PCL, Pinho RA. Effect of different models of physical exercise on oxidative stress markers in mouse liver. Appl Physiol Nutr Metab 2009; 34:60-5. [PMID: 19234586 DOI: 10.1139/h08-132] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the effect of different protocols of physical exercise on oxidative stress markers in mouse liver. Twenty-eight male CF1 mice (30-35 g) were distributed into 4 groups (n = 7) - untrained (UT), continuous running (CR), downhill running (D-HR), and intermittent running (IR) - and underwent an 8-week training program. Forty-eight hours after the last training session, the animals were killed, and their livers were removed. Blood lactate, creatine kinase, citrate synthase, thiobarbituric acid reactive species, carbonyl, superoxide dismutase (SOD), and catalase (CAT) activities were assayed. Results show a decrease in the level of lipoperoxidation and protein carbonylation in the CR and D-HR groups. SOD activity was significantly increased and CAT activity was reduced in the CR and D-HR groups. Our findings indicate that CR and D-HR may be important for decreasing oxidative damage and in the regulation of antioxidant enzymes (SOD and CAT) in the livers of trained mice.
Collapse
Affiliation(s)
- Luciano A da Silva
- Universidade do Extremo Sul Catarinense-UNESC, Laboratorio de Fisiologia e Bioquimica do Exercicio, Bloco da Saude, Av Universitaria, 1105, Bairro Universitario, 88806-000, Criciuma, Santa Catarina, Brazil.
| | | | | | | | | | | |
Collapse
|
26
|
Powers SK, Jackson MJ. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol Rev 2008; 88:1243-76. [PMID: 18923182 DOI: 10.1152/physrev.00031.2007] [Citation(s) in RCA: 1478] [Impact Index Per Article: 92.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The first suggestion that physical exercise results in free radical-mediated damage to tissues appeared in 1978, and the past three decades have resulted in a large growth of knowledge regarding exercise and oxidative stress. Although the sources of oxidant production during exercise continue to be debated, it is now well established that both resting and contracting skeletal muscles produce reactive oxygen species and reactive nitrogen species. Importantly, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Furthermore, oxidants can modulate a number of cell signaling pathways and regulate the expression of multiple genes in eukaryotic cells. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, DNA repair proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species promote contractile dysfunction resulting in muscle weakness and fatigue. Ongoing research continues to probe the mechanisms by which oxidants influence skeletal muscle contractile properties and to explore interventions capable of protecting muscle from oxidant-mediated dysfunction.
Collapse
Affiliation(s)
- Scott K Powers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida 32611, USA.
| | | |
Collapse
|
27
|
Abstract
A creatina é largamente utilizada como auxilio ergogênico, com algumas evidências quanto ao seu efeito positivo na massa magra, força/potência e resistência muscular. Entretanto, esses estudos não conseguiram identificar potenciais mecanismos bioquímicos que pudessem explicar seu efeito na fadiga ou turnover de proteína muscular, existindo a possibilidade de que alguns indivíduos não sejam responsivos a esse suplemento. Outro possível efeito da creatina, que vem sendo recentemente investigado, é a sua ação antioxidante. Mesmo com poucos trabalhos disponíveis, duas possibilidades existem para explicar esse efeito: 1) Ação indireta como tampão energético, devido ao aumento na concentração tecidual de fosfocreatina, que favoreceria a menor produção de metabólitos do ciclo de degradação de purinas (ciclo de Lowenstein), resultando em queda na formação de hipoxantina, xantina e ácido úrico, assim como em espécies reativas de oxigênio (superóxido, peróxido de hidrogênio e radical hidroxil); 2) Por ação direta, apesar de essa propriedade ser inferior à dos antioxidantes já bem conhecidos, como a glutationa reduzida. Mesmo assim, poderia atuar conjuntamente com estes. O objetivo desta comunicação é relatar dados disponíveis sobre esses dois itens.
Collapse
|
28
|
Lambertucci RH, Levada-Pires AC, Rossoni LV, Curi R, Pithon-Curi TC. Effects of aerobic exercise training on antioxidant enzyme activities and mRNA levels in soleus muscle from young and aged rats. Mech Ageing Dev 2006; 128:267-75. [PMID: 17224177 DOI: 10.1016/j.mad.2006.12.006] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 11/02/2006] [Accepted: 12/14/2006] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the effect of aerobic exercise training on activities and mRNA levels of catalase (CAT), glutathione peroxidase (GPX), Cu,Zn- and Mn-superoxide dismutases (SOD), TBARS content, and xanthine oxidase (XO) activity, in soleus muscle from young and aged rats. The antioxidant enzyme activities and mRNA levels were markedly increased in soleus muscle with aging. TBARS content of soleus muscle from the aged group was 8.3-fold higher as compared with that of young rats. In young rats, exercise training induced an increase of all antioxidant enzyme activities, except for Cu,Zn-SOD. XO also did not change. The TBARS content was also increased (2.9-fold) due to exercise training in soleus muscle from young rats. In aged rats, the activities of CAT, GPX and Cu,Zn-SOD in the soleus muscle did not change with the exercise training, whereas the activities of Mn-SOD (40%) and XO (27%) were decreased. The mRNA levels of Mn-SOD and CAT were decreased by 42% and 24%, respectively, in the trained group. Exercise training induced a significant decrease of TBARS content (81%) in the soleus muscle from aged rats. These findings support the proposition that exercise training presents an antioxidant stress effect on skeletal muscle from both young and aged rats.
Collapse
Affiliation(s)
- Rafael H Lambertucci
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 1524, 05508-900 Sao Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
29
|
Pinho RA, Silveira PC, Piazza M, Tuon T, Slva GA, Dal-Pizzol F, Moreira JC. Exercício físico regular diminui o estresse oxidativo pulmonar em ratos após exposição aguda ao carvão mineral. REV BRAS MED ESPORTE 2006. [DOI: 10.1590/s1517-86922006000200005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Estudos têm apontado o exercício físico regular de baixa a moderada intensidade como um importante agente no combate ao estresse oxidativo. O objetivo deste estudo foi investigar o efeito do exercício físico regular na resposta oxidativa pulmonar após a inalação de pó de carvão mineral. Vinte e quatro ratos Wistar machos (200-250g) foram divididos aleatoriamente em dois grupos com respectivos controles (treinado, n = 6 e não-treinado, n = 6). Os animais receberam, por instilação traqueal, pó de carvão mineral (3mg/0,5ml salina, três dias/semana, durante três semanas) ou 0,5ml de solução salina 0,9%. Quarenta e oito horas após a última instilação, o grupo treinado foi submetido a um programa de exercício progressivo em esteira durante 12 semanas (até 17m.min-1, 50min.dia-1, 10% de inclinação). Quarenta e oito horas após a última sessão de treinamento, todos os animais foram mortos por decapitação e os pulmões e sóleo foram cirurgicamente removidos para posterior análise bioquímica. A atividade da citrato-sintase foi determinada no músculo sóleo e os danos em lipídios e proteínas foram avaliados nos pulmões pela concentração de TBARS e pela determinação de grupos carbonil, respectivamente. Os resultados mostram que a prática regular de exercício físico reduz significativamente os níveis presentes de TBARS em ratos treinados e diminui os níveis de oxidação em proteínas em ambos os grupos quando comparados com os respectivos controles. Os resultados nos levam a sugerir que o exercício físico regular em esteira é um agente capaz de amenizar os danos oxidativos pulmonares induzidos pela inalação de partículas de carvão mineral.
Collapse
Affiliation(s)
| | | | | | | | | | - Felipe Dal-Pizzol
- Universidade Federal do Rio Grande do Sul; Universidade do Extremo Sul Catarinense
| | | |
Collapse
|
30
|
Steinberg JG, Faucher M, Guillot C, Kipson N, Badier M, Jammes Y. Depressed fatigue-induced oxidative stress in chronic hypoxemic humans and rats. Respir Physiol Neurobiol 2004; 141:179-89. [PMID: 15239968 DOI: 10.1016/j.resp.2004.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2004] [Indexed: 01/24/2023]
Abstract
It was already documented that acute hypoxemia reduces the oxidative stress following static as well as dynamic handgrip bouts in humans. Then, we examined if chronic hypoxemia could produce the same effect in patients suffering from chronic respiratory insufficiency. In rats, we studied the respective consequence of a one-month exposure to normobaric hypoxia on two muscles (soleus, SOL, and extensor digitorum longus, EDL) which have high and low aerobic metabolism, respectively. Compared to healthy humans, the resting level of erythrocyte reduced glutathione (GSH) was significantly lower in chronic hypoxemic patients, and after a handgrip contraction sustained at 50% of maximal until exhaustion the GSH level and plasma thiobarbituric acid reactive substances (TBARS) did not vary. A 20-min period of oxygen supplementation partly restored the post-handgrip oxidative stress. Compared to control rats, SOL muscle of hypoxemic animals had lower intra-muscular resting level of GSH; after a 3-min muscle stimulation (MS) leading to fatigue, TBARS did not vary in SOL and EDL and the GSH decrease was absent in SOL whereas it persisted in EDL. We concluded that chronic hypoxemia depressed the fatigue-induced oxidative stress, the effects prevailing in muscles having a high oxygen demand.
Collapse
Affiliation(s)
- Jean Guillaume Steinberg
- Laboratoire de Physiopathologie Respiratoire (UPRES EA 2201), Institut Jean Roche, Faculté de Médecine, Université de la Méditerranée, Blvd. Pierre Dramard, 13916 cedex 20 Marseille, France
| | | | | | | | | | | |
Collapse
|
31
|
Evangelista FS, Brum PC, Krieger JE. Duration-controlled swimming exercise training induces cardiac hypertrophy in mice. Braz J Med Biol Res 2003; 36:1751-9. [PMID: 14666261 DOI: 10.1590/s0100-879x2003001200018] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise training associated with robust conditioning can be useful for the study of molecular mechanisms underlying exercise-induced cardiac hypertrophy. A swimming apparatus is described to control training regimens in terms of duration, load, and frequency of exercise. Mice were submitted to 60- vs 90-min session/day, once vs twice a day, with 2 or 4% of the weight of the mouse or no workload attached to the tail, for 4 vs 6 weeks of exercise training. Blood pressure was unchanged in all groups while resting heart rate decreased in the trained groups (8-18%). Skeletal muscle citrate synthase activity, measured spectrophotometrically, increased (45-58%) only as a result of duration and frequency-controlled exercise training, indicating that endurance conditioning was obtained. In groups which received duration and endurance conditioning, cardiac weight (14-25%) and myocyte dimension (13-20%) increased. The best conditioning protocol to promote physiological hypertrophy, our primary goal in the present study, was 90 min, twice a day, 5 days a week for 4 weeks with no overload attached to the body. Thus, duration- and frequency-controlled exercise training in mice induces a significant conditioning response qualitatively similar to that observed in humans.
Collapse
Affiliation(s)
- F S Evangelista
- Instituto do Coração, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | |
Collapse
|
32
|
Handy RD, Abd-El Samei HA, Bayomy MFF, Mahran AM, Abdeen AM, El-Elaimy EA. Chronic diazinon exposure: pathologies of spleen, thymus, blood cells, and lymph nodes are modulated by dietary protein or lipid in the mouse. Toxicology 2002; 172:13-34. [PMID: 11844612 DOI: 10.1016/s0300-483x(01)00575-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Little is known about the immunotoxicity of the organophosphate pesticide, diazinon. This study aims at detailing the pathologies in the thymus, spleen, blood cells, and lymph nodes (brachial, mesenteric, and hind quarter gluteal nodes) during chronic oral exposure (300 mg diazinonkg-1 food for 45 days), and explore the combined toxicity with excess dietary protein (40%) or lipid (20% corn oil). Animals were allowed to recover on normal food for 2 weeks. All experimental treatments caused organ pathologies, including necrotic degeneration of the trabeculae (spleen and thymus), hyperplasia of the cortex and medulla (thymus and lymph nodes), hyperplasia of white and red pulp (spleen), and sometimes haemorrhage (all tissues). Blood smears often showed crenated/hypochromic red cells and vacuolated white cells with abnormal nuclei. The severity of lesions during exposure was generally in the following order: lipid<protein<diazinon alone<protein plus diazinon<lipid plus diazinon. Post-exposure recovery was limited, especially in the thymus and for lipid treatments. Quantitative image analysis revealed treatment and organ-specific changes in the proportions of fixed lymphocytes, PAS-positive carbohydrates, DNA, and protein staining. Histochemical changes were greatest after exposure. We conclude that the immunotoxicity of diazinon is exacerbated by excess dietary protein or lipid. The limited recovery and post-exposure histochemical changes imply deleterious effects on metabolism with oxidative stress after exposure.
Collapse
Affiliation(s)
- R D Handy
- Department of Biological Sciences and Plymouth Environmental Research Centre, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| | | | | | | | | | | |
Collapse
|
33
|
Avula CP, Muthukumar AR, Zaman K, McCarter R, Fernandes G. Inhibitory effects of voluntary wheel exercise on apoptosis in splenic lymphocyte subsets of C57BL/6 mice. J Appl Physiol (1985) 2001; 91:2546-52. [PMID: 11717217 DOI: 10.1152/jappl.2001.91.6.2546] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two-month-old mice were placed in cages with (Ex) or without exercise running wheels with free access to the wheel 24 h/day for 10 mo. An equal amount of food for both groups was provided daily. Ex mice ran an average of 33.67 km/wk initially, and exercise decreased gradually with age. Ex mice had gained an average of 43.5% less body weight at the end of the experiment. Although serum lipid peroxides were not altered by exercise, superoxide dismutase and glutathione peroxidase activities in serum were significantly increased. Flow cytometric analysis of spleen cells revealed an increased percentage of CD8+ T cells and a decreased percentage of CD19+ B cells in Ex mice (P < 0.05). Exercise decreased apoptosis in total splenocytes and CD4+ cells incubated with medium alone or with H(2)O(2), dexamethasone, tumor necrosis factor-alpha (TNF-alpha), or anti-CD3 monoclonal antibody (P < 0.05) and CD8+ cells with medium alone or with TNF-alpha (P < 0.05). Even though exercise did not alter the intracellular cytokines (TNF-alpha and interleukin-2) or Fas ligand, it did significantly lower interferon-gamma in CD4+ and CD8+ cells (P < 0.05). In summary, voluntary wheel exercise appears to decrease H(2)O(2)-induced apoptosis in immune cells as well as decrease interferon-gamma production.
Collapse
Affiliation(s)
- C P Avula
- Department of Medicine, Division of Clinical Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
34
|
Gobatto CA, de Mello MA, Sibuya CY, de Azevedo JR, dos Santos LA, Kokubun E. Maximal lactate steady state in rats submitted to swimming exercise. Comp Biochem Physiol A Mol Integr Physiol 2001; 130:21-7. [PMID: 11672680 DOI: 10.1016/s1095-6433(01)00362-2] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The higher concentration during exercise at which lactate entry in blood equals its removal is known as 'maximal lactate steady state' (MLSS) and is considered an important indicator of endurance exercise capacity. The aim of the present study was to determine MLSS in rats during swimming exercise. Adult male Wistar rats, which were adapted to water for 3 weeks, were used. After this, the animals were separated at random into groups and submitted once a week to swimming sessions of 20 min, supporting loads of 5, 6, 7, 8, 9 or 10% of body wt. for 6 consecutive weeks. Blood lactate was determined every 5 min to find the MLSS. Sedentary animals presented MLSS with overloads of 5 and 6% at 5.5 mmol/l blood lactate. There was a significant (P<0.05) increase in blood lactate with the other loads. In another set of experiments, rats of the same strain, sex and age were submitted daily to 60 min of swimming with an 8% body wt. overload, 5 days/week, for 9 weeks. The rats were then submitted to a swimming session of 20 min with an 8% body wt. overload and blood lactate was determined before the beginning of the session and after 10 and 20 min of exercise. Sedentary rats submitted to the same acute exercise protocol were used as a control. Physical training did not alter the MLSS value (P<0.05) but shifted it to a higher exercise intensity (8% body wt. overload). Taken together these results indicate that MLSS measured in rats in the conditions of the present study was reproducible and seemed to be independent of the physical condition of the animals.
Collapse
Affiliation(s)
- C A Gobatto
- Department of Physical Education, Bioscience Institute, University of São Paulo State (UNESP), Avenida 24-A, 1515 Bela Vista, Rio Claro, São Paulo, 13506-900 Brazil.
| | | | | | | | | | | |
Collapse
|
35
|
Powers SK, Ji LL, Leeuwenburgh C. Exercise training-induced alterations in skeletal muscle antioxidant capacity: a brief review. Med Sci Sports Exerc 1999; 31:987-97. [PMID: 10416560 DOI: 10.1097/00005768-199907000-00011] [Citation(s) in RCA: 286] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cellular oxidants include a variety of reactive oxygen, nitrogen, and chlorinating species. It is well established that the increase in metabolic rate in skeletal muscle during contractile activity results in an increased production of oxidants. Failure to remove these oxidants during exercise can result in significant oxidative damage of cellular biomolecules. Fortunately, regular endurance exercise results in adaptations in the skeletal muscle antioxidant capacity, which protects myocytes against the deleterious effects of oxidants and prevents extensive cellular damage. This review discusses the effects of chronic exercise on the up-regulation of both antioxidant enzymes and the glutathione antioxidant defense system. Primary antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase will be discussed as well as glutathione, which is an important nonenzymatic antioxidant. Growing evidence indicates that exercise training results in an elevation in the activities of both superoxide dismutase and glutathione peroxidase along with increased cellular concentrations of glutathione in skeletal muscles. It seems plausible that increased cellular concentrations of these antioxidants will reduce the risk of cellular injury, improve performance, and delay muscle fatigue.
Collapse
Affiliation(s)
- S K Powers
- Department of Exercise and Sport Sciences, Center for Exercise Science, University of Florida, Gainesville 32611, USA.
| | | | | |
Collapse
|
36
|
Azenabor AA, Hoffman-Goetz L. Intrathymic and intrasplenic oxidative stress mediates thymocyte and splenocyte damage in acutely exercised mice. J Appl Physiol (1985) 1999; 86:1823-7. [PMID: 10368344 DOI: 10.1152/jappl.1999.86.6.1823] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reactive oxygen species may contribute to apoptosis in lymphoid tissues observed after exercise. Thymic and splenic tissues excised from control mice (C) or mice immediately after (t0) or 24 h after (t24) a run to exhaustion (RTE) were assayed for biochemical indexes of oxidative stress [thymic and splenic membrane lipid peroxides, superoxide dismutase, catalase, plasma uric acid (UA), and ascorbic acid (AA)]. There were significant increases in membrane lipid peroxides in thymus (P < 0.001) and spleen (P < 0.001) in acutely exercised mice relative to controls (thymus: C = 2.74 +/- 0.80 microM; t0 = 7.45 +/- 0.48 microM; t24 = 9.44 +/-1.41 microM; spleen: C = 0.48 +/- 0.22 microM; t0 = 1.78 +/- 0.28 microM; t24 = 2. 81 +/- 0.34 microM). The thymic and splenic tissue antioxidant enzymes concentrations of superoxide dismutase and catalase were significantly lower in samples collected at t0 relative to C and t24 mice (P < 0.001). Plasma UA and AA levels were used to assess the impact of the RTE on the peripheral antioxidant pool. There was no significant change in UA levels and a significant reduction in plasma AA concentrations (P < 0.001); the reduction in plasma AA occurred at t24 (6.53 +/- 1.64 microM) relative to t0 (13.11 +/- 0. 71 microM) and C (13.26 +/- 1.2 microM). These results suggest that oxidative damage occurs in lymphoid tissues after RTE exercise and that such damage may contribute to lymphocyte damage observed after acute exercise.
Collapse
Affiliation(s)
- A A Azenabor
- Department of Health Studies and Gerontology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | |
Collapse
|
37
|
Hoffman-Goetz L, Zajchowski S, Aldred A. Impact of treadmill exercise on early apoptotic cells in mouse thymus and spleen. Life Sci 1999; 64:191-200. [PMID: 10027750 DOI: 10.1016/s0024-3205(98)00551-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lymphocyte apoptosis occurs in response to stressors such as thermal injury, trauma, sepsis, and surgery. This study evaluated the effect of a single bout of physical exercise stress on the induction of apoptosis in murine thymocytes and splenic lymphocytes. Female C57BL/6 mice, treadmill exercised at a submaximal intensity (35 m/min, 6% grade) for 90 min or serving as controls (walking on treadmill at 12 m/min, 6% grade, 5 min), were sacrificed 5 min or 120 min after completion of exercise. The percent of apoptotic, necrotic, and viable thymocytes and splenocytes were determined by flow cytometry using annexin V FITC and propidium iodide. There was a significantly higher percent of viable splenocytes in the mice sampled 120 min after cessation of exercise than treadmill control animals (p<0.05). In the thymus, there was a significantly lower percent of apoptotic (p<0.5) and a significantly higher percent of viable (p<0.05) cells in exercised mice sampled at 120 min after exercise relative to controls. Absolute numbers of thymocytes and splenocytes did not differ by exercise treatment condition. Plasma corticosterone levels were elevated immediately after exercise and were negatively correlated with the percent of viable lymphocytes in the spleen. During the time frame sampled, submaximal exercise is associated with a lower % of thymocytes expressing early markers of apoptosis, despite elevated plasma corticosterone levels. Retention of self-reactive, viable thymocytes which would normally be deleted or selective trafficking of apoptotic thymocytes out of the thymus may be involved in the exercise effect. Additional studies are necessary to identify the mechanisms for this shift in proportions of apoptotic and viable cells in lymphoid compartments with exercise.
Collapse
Affiliation(s)
- L Hoffman-Goetz
- Department of Health Studies and Gerontology, Faculty of Applied Health Sciences, University of Waterloo, Ontario, Canada
| | | | | |
Collapse
|
38
|
Avula CP, Fernandes G. Modulation of antioxidant enzymes and apoptosis in mice by dietary lipids and treadmill exercise. J Clin Immunol 1999; 19:35-44. [PMID: 10080103 DOI: 10.1023/a:1020562518071] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The current experiments were designed to study the effect of dietary n-6 and n-3 polyunsaturated fatty acids on antioxidant enzyme activity and dexamethasone (DEX)-induced apoptosis in spleen cells of sedentary (Sed) and treadmill-exercised (Ex) ICR male mice. Two-month-old mice maintained on AIN 76 formula diet, supplemented with either 5% corn oil (CO) or 5% fish oil (FO) diets, were trained on a treadmill to run from 45 to 50 min 1 km/day, 6 days a week for 12 weeks. After 12 weeks of exercise, both Sed and Ex groups were sacrificed. Blood and various tissues, including spleen, were collected asceptically. Increased serum and spleen homogenate peroxide [malondialdehyde (MDA)] levels were observed in mice fed FO (n-3 PUFA) diets, compared to mice fed CO (n-6 PUFA). However, exercise did not alter MDA levels in either CO- or FO-fed mice. Feeding n-3 PUFA significantly increased superoxide dismutase (SOD), catalase, and glutathione peroxidase activity of spleen homogenates. Exercise also significantly increased SOD and peroxidase in CO-fed animals, whereas catalase, glutathione peroxidase, and glutathione transferase were higher in FO-fed mice, compared to the Sed group. Apoptosis and necrosis were quantitated in splenocytes incubated with or without 1 microM Dex in RPMI medium for 8 and 24 hr. Cells were stained with Annexin V and propidium iodide (PI) for apoptotic and necrotic cells. FO-fed mice showed higher apoptosis (64 vs 50%) and necrosis (40 vs 22%) in spleen cells than CO-fed mice. Cells from FO-fed mice, incubated in medium alone, showed increased apoptosis (112%) 24 hr after incubation, and necrosis (37 and 70%) at 8 and 24 hr of incubation, compared to CO-fed mice. In Ex group, apoptosis was increased in both CO- and FO-fed mice only at 24 hr after incubation. In summary, these results indicate that FO (n-3 PUFA-enriched) diets increase apoptosis and antioxidant enzyme activity in spleen cells, probably due to elevated lipid peroxides.
Collapse
Affiliation(s)
- C P Avula
- Department of Medicine, University of Texas Health Science Center at San Antonio 78284-7874, USA
| | | |
Collapse
|