1
|
Intragenomic variation in nuclear ribosomal markers and its implication in species delimitation, identification and barcoding in fungi. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2
|
Camacho JPM, Cabrero J, López-León MD, Martín-Peciña M, Perfectti F, Garrido-Ramos MA, Ruiz-Ruano FJ. Satellitome comparison of two oedipodine grasshoppers highlights the contingent nature of satellite DNA evolution. BMC Biol 2022; 20:36. [PMID: 35130900 PMCID: PMC8822648 DOI: 10.1186/s12915-021-01216-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The full catalog of satellite DNA (satDNA) within a same genome constitutes the satellitome. The Library Hypothesis predicts that satDNA in relative species reflects that in their common ancestor, but the evolutionary mechanisms and pathways of satDNA evolution have never been analyzed for full satellitomes. We compare here the satellitomes of two Oedipodine grasshoppers (Locusta migratoria and Oedaleus decorus) which shared their most recent common ancestor about 22.8 Ma ago. RESULTS We found that about one third of their satDNA families (near 60 in every species) showed sequence homology and were grouped into 12 orthologous superfamilies. The turnover rate of consensus sequences was extremely variable among the 20 orthologous family pairs analyzed in both species. The satDNAs shared by both species showed poor association with sequence signatures and motives frequently argued as functional, except for short inverted repeats allowing short dyad symmetries and non-B DNA conformations. Orthologous satDNAs frequently showed different FISH patterns at both intra- and interspecific levels. We defined indices of homogenization and degeneration and quantified the level of incomplete library sorting between species. CONCLUSIONS Our analyses revealed that satDNA degenerates through point mutation and homogenizes through partial turnovers caused by massive tandem duplications (the so-called satDNA amplification). Remarkably, satDNA amplification increases homogenization, at intragenomic level, and diversification between species, thus constituting the basis for concerted evolution. We suggest a model of satDNA evolution by means of recursive cycles of amplification and degeneration, leading to mostly contingent evolutionary pathways where concerted evolution emerges promptly after lineages split.
Collapse
Affiliation(s)
| | - Josefa Cabrero
- Departamento de Genética, Universidad de Granada, 18071, Granada, Spain
| | | | | | - Francisco Perfectti
- Departamento de Genética, Universidad de Granada, 18071, Granada, Spain.,Research Unit Modeling Nature, Universidad de Granada, Granada, Spain
| | | | - Francisco J Ruiz-Ruano
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, SE-752 36, Uppsala, Sweden. .,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK.
| |
Collapse
|
3
|
Sakamoto T, Innan H. Muller's ratchet of the Y chromosome with gene conversion. Genetics 2022; 220:iyab204. [PMID: 34791206 PMCID: PMC8733426 DOI: 10.1093/genetics/iyab204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Muller's ratchet is a process in which deleterious mutations are fixed irreversibly in the absence of recombination. The degeneration of the Y chromosome, and the gradual loss of its genes, can be explained by Muller's ratchet. However, most theories consider single-copy genes, and may not be applicable to Y chromosomes, which have a number of duplicated genes in many species, which are probably undergoing concerted evolution by gene conversion. We developed a model of Muller's ratchet to explore the evolution of the Y chromosome. The model assumes a nonrecombining chromosome with both single-copy and duplicated genes. We used analytical and simulation approaches to obtain the rate of gene loss in this model, with special attention to the role of gene conversion. Homogenization by gene conversion makes both duplicated copies either mutated or intact. The former promotes the ratchet, and the latter retards, and we ask which of these counteracting forces dominates under which conditions. We found that the effect of gene conversion is complex, and depends upon the fitness effect of gene duplication. When duplication has no effect on fitness, gene conversion accelerates the ratchet of both single-copy and duplicated genes. If duplication has an additive fitness effect, the ratchet of single-copy genes is accelerated by gene duplication, regardless of the gene conversion rate, whereas gene conversion slows the degeneration of duplicated genes. Our results suggest that the evolution of the Y chromosome involves several parameters, including the fitness effect of gene duplication by increasing dosage and gene conversion rate.
Collapse
Affiliation(s)
- Takahiro Sakamoto
- Department of Evolutionary Studies of Biosystems, SOKENDAI, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
| | - Hideki Innan
- Department of Evolutionary Studies of Biosystems, SOKENDAI, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193, Japan
| |
Collapse
|
4
|
INNAN H, SAKAMOTO T. Multi-dimensional diffusion process of allele frequencies in population genetics. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:134-143. [PMID: 33692229 PMCID: PMC8019856 DOI: 10.2183/pjab.97.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
One of the ultimate goals of population genetics is to theoretically describe the behavior of allele frequency. Diffusion theory has been commonly used for this purpose mainly in one-locus one-population models, although it is not easy to handle diffusion theory in models with multiple loci or with multiple populations. This review introduces several successful cases, where multi-dimensional diffusion equations contributed to addressing evolutionary questions, thereby demonstrating its strong potential in population genetics.
Collapse
Affiliation(s)
- Hideki INNAN
- The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan
| | - Takahiro SAKAMOTO
- The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan
| |
Collapse
|
5
|
Rogozin IB, Charyyeva A, Sidorenko IA, Babenko VN, Yurchenko V. Frequent Recombination Events in Leishmania donovani: Mining Population Data. Pathogens 2020; 9:pathogens9070572. [PMID: 32679679 PMCID: PMC7400496 DOI: 10.3390/pathogens9070572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 11/21/2022] Open
Abstract
The Leishmania donovani species complex consists of all L. donovani and L. infantum strains mainly responsible for visceral leishmaniasis (VL). It was suggested that genome rearrangements in Leishmania spp. occur very often, thus enabling parasites to adapt to the different environmental conditions. Some of these rearrangements may be directly linked to the virulence or explain the reduced efficacy of antimonial drugs in some isolates. In the current study, we focused on a large-scale analysis of putative gene conversion events using publicly available datasets. Previous population study of L. donovani suggested that population variability of L. donovani is relatively low, however the authors used masking procedures and strict read selection criteria. We decided to re-analyze DNA-seq data without masking sequences, because we were interested in the most dynamic fraction of the genome. The majority of samples have an excess of putative gene conversion/recombination events in the noncoding regions, however we found an overall excess of putative intrachromosomal gene conversion/recombination in the protein coding genes, compared to putative interchromosomal gene conversion/recombination events.
Collapse
Affiliation(s)
- Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA;
| | - Arzuv Charyyeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic;
| | - Ivan A. Sidorenko
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (I.A.S.); (V.N.B.)
| | - Vladimir N. Babenko
- Institute of Cytology and Genetics, 630090 Novosibirsk, Russia; (I.A.S.); (V.N.B.)
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia
- Correspondence:
| |
Collapse
|
6
|
Yamada K, Davydov II, Besnard G, Salamin N. Duplication history and molecular evolution of the rbcS multigene family in angiosperms. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:6127-6139. [PMID: 31498865 PMCID: PMC6859733 DOI: 10.1093/jxb/erz363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/12/2019] [Indexed: 05/22/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is considered to be the main enzyme determining the rate of photosynthesis. The small subunit of the protein, encoded by the rbcS gene, has been shown to influence the catalytic efficiency, CO2 specificity, assembly, activity, and stability of RuBisCO. However, the evolution of the rbcS gene remains poorly studied. We inferred the phylogenetic tree of the rbcS gene in angiosperms using the nucleotide sequences and found that it is composed of two lineages that may have existed before the divergence of land plants. Although almost all species sampled carry at least one copy of lineage 1, genes of lineage 2 were lost in most angiosperm species. We found the specific residues that have undergone positive selection during the evolution of the rbcS gene. We detected intensive coevolution between each rbcS gene copy and the rbcL gene encoding the large subunit of RuBisCO. We tested the role played by each rbcS gene copy on the stability of the RuBisCO protein through homology modelling. Our results showed that this evolutionary constraint could limit the level of divergence seen in the rbcS gene, which leads to the similarity among the rbcS gene copies of lineage 1 within species.
Collapse
Affiliation(s)
- Kana Yamada
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
| | - Iakov I Davydov
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Guillaume Besnard
- Laboratoire Evolution et Diversité Biologique (EDB UMR5174), CNRS-UPS-IRD, University of Toulouse III, Toulouse Cedex, France
| | - Nicolas Salamin
- Department of Computational Biology, Génopode, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Kuamsab N, Putaporntip C, Jongwutiwes S. Polymorphism and natural selection in the merozoite surface protein 3F2 (PVX_97710) locus of Plasmodium vivax among field isolates. INFECTION GENETICS AND EVOLUTION 2019; 78:104058. [PMID: 31706081 DOI: 10.1016/j.meegid.2019.104058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/25/2019] [Accepted: 09/29/2019] [Indexed: 11/24/2022]
Abstract
Plasmodium vivax, the chronic relapsing human malaria parasite with the most widespread distribution, possesses proteins associated with the merozoite surface that could be targets for host immune responses and potential vaccine candidates. Of these, the merozoite surface protein 3 of P. vivax (PvMSP3) is an attractive vaccine target as well as a genetic marker for epidemiological surveillance. PvMSP3 comprises a group of protein members encoded by a multigene family. Although some protein members, i.e. PvMSP3α and PvMSP3β, have been targets for molecular and immunological investigations, the most abundantly expressed protein member during late asexual erythrocytic stages, PvMSP3F2 (PVX_97710), remains unexplored. To address domain organization and evolution of this locus, the complete coding sequences of 31 P. vivax isolates from diverse malaria endemic areas of Thailand were analyzed and compared with 10 previously reported sequences. Results revealed that all PvMSP3F2 sequences differed but could be divided into 5 repeat-containing domains flanked by 6 non-repeat domains. Repeat domains II and IV at the 5' portion and domain X at the 3' portion exhibited extensive sequence and length variation whereas repeat domains VI and VIII located at the central region were relatively conserved. Despite a repertoire of PvMSP3F2 variants, predicted coiled-coil tertiary structure and predicted B-cell epitopes seem to be maintained. Evidence of intragenic recombination has been detected among field isolates in Thailand that could enhance sequence diversity at this locus. Non-repeat domains I and IX located at the 5' end and at the 3' portion, respectively, seem to have evolved under purifying selection. Evidence of positive selection was found in non-repeat domains III, V and VII where a number of predicted HLA class I epitopes were identified. Amino acid substitutions in these predicted epitopes could alter predicted peptide binding affinity or abolish peptide epitope property, suggesting that polymorphism in these epitopes conferred host immune evasion. Further studies on PvMSP3F2 are warranted, particularly on interaction with host immune system and the potential role of this PvMSP3 protein member as a vaccine target.
Collapse
Affiliation(s)
- Napaporn Kuamsab
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Inter-Department Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
MacQueen A, Tian D, Chang W, Holub E, Kreitman M, Bergelson J. Population Genetics of the Highly Polymorphic RPP8 Gene Family. Genes (Basel) 2019; 10:E691. [PMID: 31500388 PMCID: PMC6771003 DOI: 10.3390/genes10090691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
Plant nucleotide-binding domain and leucine-rich repeat containing (NLR) genes provide some of the most extreme examples of polymorphism in eukaryotic genomes, rivalling even the vertebrate major histocompatibility complex. Surprisingly, this is also true in Arabidopsis thaliana, a predominantly selfing species with low heterozygosity. Here, we investigate how gene duplication and intergenic exchange contribute to this extraordinary variation. RPP8 is a three-locus system that is configured chromosomally as either a direct-repeat tandem duplication or as a single copy locus, plus a locus 2 Mb distant. We sequenced 48 RPP8 alleles from 37 accessions of A. thaliana and 12 RPP8 alleles from Arabidopsis lyrata to investigate the patterns of interlocus shared variation. The tandem duplicates display fixed differences and share less variation with each other than either shares with the distant paralog. A high level of shared polymorphism among alleles at one of the tandem duplicates, the single-copy locus and the distal locus, must involve both classical crossing over and intergenic gene conversion. Despite these polymorphism-enhancing mechanisms, the observed nucleotide diversity could not be replicated under neutral forward-in-time simulations. Only by adding balancing selection to the simulations do they approach the level of polymorphism observed at RPP8. In this NLR gene triad, genetic architecture, gene function and selection all combine to generate diversity.
Collapse
Affiliation(s)
- Alice MacQueen
- Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Dacheng Tian
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210008, China.
| | - Wenhan Chang
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL 60637, USA.
| | - Eric Holub
- School of Life Sciences, Wellesbourne Innovation Campus, University of Warwick, Wellesbourne CV359EF, UK.
| | - Martin Kreitman
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL 60637, USA.
| | - Joy Bergelson
- Department of Ecology & Evolution, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
9
|
Tettamanti V, de Busserolles F, Lecchini D, Marshall NJ, Cortesi F. Visual system development of the spotted unicornfish, Naso brevirostris (Acanthuridae). J Exp Biol 2019; 222:jeb.209916. [DOI: 10.1242/jeb.209916] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022]
Abstract
Ontogenetic changes of the visual system are often correlated to shifts in habitat and feeding behaviour of animals. Coral reef fishes begin their lives in the pelagic zone and then migrate to the reef. This habitat transition frequently involves a change in diet and light environment as well as major morphological modifications. The spotted unicornfish, Naso brevirostris, is known to shift diet from zooplankton to algae and back to mainly zooplankton when transitioning from larval to juvenile and then to adult stages. Concurrently, N. brevirostris also moves from an open pelagic to a coral-associated habitat before migrating up in the water column when reaching adulthood. Using retinal mapping techniques, we discovered that the distribution and density of ganglion and photoreceptor cells in N. brevirostris mostly changes during the transition from the larval to the juvenile stage, with only minor modifications thereafter. Similarly, visual gene (opsin) expression based on RNA sequencing, although qualitatively similar between stages (all fishes mainly expressed the same three cone opsins; SWS2B, RH2B, RH2A), also showed the biggest quantitative difference when transitioning from larvae to juveniles. The juvenile stage in particular seems mismatched with its reef-associated ecology, which may be due to this stage only lasting a fraction of the lifespan of these fishes. Hence, the visual ontogeny found in N. brevirostris is very different from the progressive changes found in other reef fishes calling for a thorough analysis of visual system development of the reef fish community.
Collapse
Affiliation(s)
- Valerio Tettamanti
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
- Swiss Federal Institute of Technology Zurich, 8092 Zurich, Switzerland
| | - Fanny de Busserolles
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
| | - David Lecchini
- PSL Research University: EPHE-UPVD-CNRS, USR3278 CRIOBE, BP 1013, 98729 Papetoai, Moorea, French Polynesia
- Laboratoire d'Excellence “CORAIL”, Paris, France
| | - N. Justin Marshall
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
| | - Fabio Cortesi
- Queensland Brain Institute, The University of Queensland, 4072 Brisbane, Australia
| |
Collapse
|
10
|
Lee MO, Dobson L, Davis BW, Skow L, Derr J, Womack JE. Genomic Structure and Tissue Expression of the NK-Lysin Gene Family in Bison. J Hered 2018; 109:598-603. [PMID: 29718298 DOI: 10.1093/jhered/esy022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/26/2018] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a class of natural peptides with varying numbers of amino acids. They are principal components of innate immunity in vertebrates, encoding natural antibiotics and providing a protective response against a broad range of microbes including those responsible for tuberculosis, an important disease in bison. NK-lysins are AMPs that have been described in various organisms and are coded by a single gene in several mammalian species, including human. Recently, we described a family of 4 NK-lysin genes in cattle. Here, we examined NK-lysin genes in bison and identified 4 bison paralogs (NK1, NK2A, NK2B, and NK2C), although the current bison genome assembly annotates only 2 (NK1 and NK2). Sequence and phylogenetic analysis support the triplication of NK2 prior to the most recent common ancestor of bison and cattle. Comparative mapping of bison and cattle paralogs indicates that the NK-lysin family is located on bison chromosome 11 with well-conserved synteny of flanking genes relative to cattle. The 3 bison NK-lysin2 genes share high sequence similarity with each other. RNA-seq analysis demonstrates that NK2A, NK2B, and NK2C are expressed primarily in the lung, whereas NK1 is expressed at low levels in all tissues studied. This tissue expression pattern differs from that previously reported for cattle, suggesting some divergence in function since the evolutionary separation of the 2 species.
Collapse
Affiliation(s)
- Mi Ok Lee
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A & M University, College Station, TX
| | - Lauren Dobson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A & M University, College Station, TX
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX
| | - Loren Skow
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX
| | - James Derr
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A & M University, College Station, TX
| | - James E Womack
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A & M University, College Station, TX
| |
Collapse
|
11
|
Goebel J, Promerová M, Bonadonna F, McCoy KD, Serbielle C, Strandh M, Yannic G, Burri R, Fumagalli L. 100 million years of multigene family evolution: origin and evolution of the avian MHC class IIB. BMC Genomics 2017; 18:460. [PMID: 28610613 PMCID: PMC5470263 DOI: 10.1186/s12864-017-3839-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 06/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene duplication has led to a most remarkable adaptation involved in vertebrates' host-pathogen arms-race, the major histocompatibility complex (MHC). However, MHC duplication history is as yet poorly understood in non-mammalian vertebrates, including birds. RESULTS Here, we provide evidence for the evolution of two ancient avian MHC class IIB (MHCIIB) lineages by a duplication event prior to the radiation of all extant birds >100 million years ago, and document the role of concerted evolution in eroding the footprints of the avian MHCIIB duplication history. CONCLUSIONS Our results suggest that eroded footprints of gene duplication histories may mimic birth-death evolution and that in the avian MHC the presence of the two lineages may have been masked by elevated rates of concerted evolution in several taxa. Through the presence of a range of intermediate evolutionary stages along the homogenizing process of concerted evolution, the avian MHCIIB provides a remarkable illustration of the erosion of multigene family duplication history.
Collapse
Affiliation(s)
- Julien Goebel
- Laboratory for Conservation Biology, Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Marta Promerová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Kvetna 8, 60365 Brno, Czech Republic
- Present address: Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, D-07745 Jena, Germany
| | - Francesco Bonadonna
- CNRS, UMR 5175, Centre for Functional and Evolutionary Ecology, F-34293 Montpellier, France
| | - Karen D. McCoy
- MIVEGEC UMR 5290 CNRS-IRD University of Montpellier, Centre IRD, F-34394 Montpellier, France
| | - Céline Serbielle
- MIVEGEC UMR 5290 CNRS-IRD University of Montpellier, Centre IRD, F-34394 Montpellier, France
| | - Maria Strandh
- CNRS, UMR 5175, Centre for Functional and Evolutionary Ecology, F-34293 Montpellier, France
- Present address: Molecular Ecology and Evolution Lab, Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
| | - Glenn Yannic
- LECA – Laboratoire d’Écologie Alpine, UMR CNRS 5553, Université Savoie Mont Blanc, F-73376 Le Bourget-du-Lac, France
| | - Reto Burri
- Department of Population Ecology, Institute of Ecology, Friedrich Schiller University Jena, Dornburger Strasse 159, D-07743 Jena, Germany
| | - Luca Fumagalli
- Laboratory for Conservation Biology, Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Ohta T. FURTHER SIMULATION STUDIES ON EVOLUTION BY GENE DUPLICATION. Evolution 2017; 42:375-386. [PMID: 28567848 DOI: 10.1111/j.1558-5646.1988.tb04140.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/1986] [Accepted: 09/30/1987] [Indexed: 11/29/2022]
Abstract
In order to understand the origin of multigene families, Monte Carlo simulations were performed to see how a genetic system evolves under unequal crossing-over, mutation, random genetic drift and natural selection, starting from a single gene copy. Both haploid and diploid models were examined. Beneficial, neutral, and detrimental mutations were incorporated, and "positive" selection favors those chromosomes (haploid) or individuals (diploid) with more beneficial mutations than others. The same model for haploids was previously investigated with special reference to the evolution of gene organization, and the ratio of the numbers of beneficial genes to pseudogenes was found to be a rough indicator of the relative strengths of positive and negative (against deleterious alleles) natural selection (Ohta, 1987b). In the present paper, the evolution of gene organization and of sequence divergence among genes in the multigene family is examined. It is shown that positive selection accelerates the accumulation of arrays containing different beneficial mutations, but that total divergence including both neutral and beneficial mutations is not very sensitive to positive selection, under this model. The proportion of beneficial mutations in the total mutations accumulated is a better indicator of positive selection than is the total divergence. It is pointed out that various observed examples in which amino-acid substitutions are accelerated, as compared with synonymous substitutions in duplicated genes (Li, 1985), may reflect the effect of selection similar to the present scheme. The diploid model is shown to be more efficient for accumulating beneficial mutations in duplicated genes than the haploid one, and the relevance of this finding to the advantage of sexual reproduction is discussed.
Collapse
Affiliation(s)
- Tomoko Ohta
- National Institute of Genetics, Mishima 411, Japan
| |
Collapse
|
13
|
Tachida H. DIFFERENTIATION OF A MULTIGENE FAMILY BETWEEN POPULATIONS. Evolution 2017; 41:190-198. [DOI: 10.1111/j.1558-5646.1987.tb05781.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/1986] [Accepted: 07/10/1986] [Indexed: 11/26/2022]
Affiliation(s)
- Hidenori Tachida
- Department of Statistics; North Carolina State University; Box 8203 Raleigh NC 27695-8203
| |
Collapse
|
14
|
Gorilla MHC class I gene and sequence variation in a comparative context. Immunogenetics 2017; 69:303-323. [PMID: 28332079 PMCID: PMC5400801 DOI: 10.1007/s00251-017-0974-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/04/2017] [Indexed: 12/13/2022]
Abstract
Comparisons of MHC gene content and diversity among closely related species can provide insights into the evolutionary mechanisms shaping immune system variation. After chimpanzees and bonobos, gorillas are humans’ closest living relatives; but in contrast, relatively little is known about the structure and variation of gorilla MHC class I genes (Gogo). Here, we combined long-range amplifications and long-read sequencing technology to analyze full-length MHC class I genes in 35 gorillas. We obtained 50 full-length genomic sequences corresponding to 15 Gogo-A alleles, 4 Gogo-Oko alleles, 21 Gogo-B alleles, and 10 Gogo-C alleles including 19 novel coding region sequences. We identified two previously undetected MHC class I genes related to Gogo-A and Gogo-B, respectively, thereby illustrating the potential of this approach for efficient and highly accurate MHC genotyping. Consistent with their phylogenetic position within the hominid family, individual gorilla MHC haplotypes share characteristics with humans and chimpanzees as well as orangutans suggesting a complex history of the MHC class I genes in humans and the great apes. However, the overall MHC class I diversity appears to be low further supporting the hypothesis that gorillas might have experienced a reduction of their MHC repertoire.
Collapse
|
15
|
Abstract
The distribution of the number of alleles in samples fromrchromosomes is studied. The stochastic model used includes gene conversion within chromosomes and mutation at loci on the chromosomes. A method is described for simulating the distribution of alleles and an algorithm given for computing lower bounds for the mean number of alleles.A formula is derived for the expected number of samples fromrchromosomes which contain the allele type of a locus chosen at random.
Collapse
|
16
|
Distribution of the number of alleles in multigene families. J Appl Probab 2016. [DOI: 10.1017/s0021900200043655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The distribution of the number of alleles in samples from r chromosomes is studied. The stochastic model used includes gene conversion within chromosomes and mutation at loci on the chromosomes. A method is described for simulating the distribution of alleles and an algorithm given for computing lower bounds for the mean number of alleles.
A formula is derived for the expected number of samples from r chromosomes which contain the allele type of a locus chosen at random.
Collapse
|
17
|
Interplay of interlocus gene conversion and crossover in segmental duplications under a neutral scenario. G3-GENES GENOMES GENETICS 2014; 4:1479-89. [PMID: 24906640 PMCID: PMC4132178 DOI: 10.1534/g3.114.012435] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Interlocus gene conversion is a major evolutionary force that drives the concerted evolution of duplicated genomic regions. Theoretical models successfully have addressed the effects of interlocus gene conversion and the importance of crossover in the evolutionary fate of gene families and duplications but have not considered complex recombination scenarios, such as the presence of hotspots. To study the interplay between interlocus gene conversion and crossover, we have developed a forward-time simulator that allows the exploration of a wide range of interlocus gene conversion rates under different crossover models. Using it, we have analyzed patterns of nucleotide variation and linkage disequilibrium within and between duplicate regions, focusing on a neutral scenario with constant population size and validating our results with the existing theoretical models. We show that the interaction of gene conversion and crossover is nontrivial and that the location of crossover junctions is a fundamental determinant of levels of variation and linkage disequilibrium in duplicated regions. We also show that if crossover activity between duplications is strong enough, recurrent interlocus gene conversion events can break linkage disequilibrium within duplicates. Given the complex nature of interlocus gene conversion and crossover, we provide a framework to explore their interplay to help increase knowledge on molecular evolution within segmental duplications under more complex scenarios, such as demographic changes or natural selection.
Collapse
|
18
|
Gjini E, Haydon DT, David Barry J, Cobbold CA. Revisiting the diffusion approximation to estimate evolutionary rates of gene family diversification. J Theor Biol 2014; 341:111-22. [PMID: 24120993 DOI: 10.1016/j.jtbi.2013.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/21/2013] [Accepted: 10/02/2013] [Indexed: 11/18/2022]
Abstract
Genetic diversity in multigene families is shaped by multiple processes, including gene conversion and point mutation. Because multi-gene families are involved in crucial traits of organisms, quantifying the rates of their genetic diversification is important. With increasing availability of genomic data, there is a growing need for quantitative approaches that integrate the molecular evolution of gene families with their higher-scale function. In this study, we integrate a stochastic simulation framework with population genetics theory, namely the diffusion approximation, to investigate the dynamics of genetic diversification in a gene family. Duplicated genes can diverge and encode new functions as a result of point mutation, and become more similar through gene conversion. To model the evolution of pairwise identity in a multigene family, we first consider all conversion and mutation events in a discrete manner, keeping track of their details and times of occurrence; second we consider only the infinitesimal effect of these processes on pairwise identity accounting for random sampling of genes and positions. The purely stochastic approach is closer to biological reality and is based on many explicit parameters, such as conversion tract length and family size, but is more challenging analytically. The population genetics approach is an approximation accounting implicitly for point mutation and gene conversion, only in terms of per-site average probabilities. Comparison of these two approaches across a range of parameter combinations reveals that they are not entirely equivalent, but that for certain relevant regimes they do match. As an application of this modelling framework, we consider the distribution of nucleotide identity among VSG genes of African trypanosomes, representing the most prominent example of a multi-gene family mediating parasite antigenic variation and within-host immune evasion.
Collapse
Affiliation(s)
- Erida Gjini
- Instituto Gulbenkian de Ciência Oeiras, Portugal.
| | - Daniel T Haydon
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom; Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - J David Barry
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Christina A Cobbold
- School of Mathematics and Statistics, College of Science and Engineering, University of Glasgow, Glasgow, United Kingdom; The Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
19
|
Hanikenne M, Kroymann J, Trampczynska A, Bernal M, Motte P, Clemens S, Krämer U. Hard selective sweep and ectopic gene conversion in a gene cluster affording environmental adaptation. PLoS Genet 2013; 9:e1003707. [PMID: 23990800 PMCID: PMC3749932 DOI: 10.1371/journal.pgen.1003707] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/22/2013] [Indexed: 12/27/2022] Open
Abstract
Among the rare colonizers of heavy-metal rich toxic soils, Arabidopsis halleri is a compelling model extremophile, physiologically distinct from its sister species A. lyrata, and A. thaliana. Naturally selected metal hypertolerance and extraordinarily high leaf metal accumulation in A. halleri both require Heavy Metal ATPase4 (HMA4) encoding a PIB-type ATPase that pumps Zn(2+) and Cd(2+) out of specific cell types. Strongly enhanced HMA4 expression results from a combination of gene copy number expansion and cis-regulatory modifications, when compared to A. thaliana. These findings were based on a single accession of A. halleri. Few studies have addressed nucleotide sequence polymorphism at loci known to govern adaptations. We thus sequenced 13 DNA segments across the HMA4 genomic region of multiple A. halleri individuals from diverse habitats. Compared to control loci flanking the three tandem HMA4 gene copies, a gradual depletion of nucleotide sequence diversity and an excess of low-frequency polymorphisms are hallmarks of positive selection in HMA4 promoter regions, culminating at HMA4-3. The accompanying hard selective sweep is segmentally eclipsed as a consequence of recurrent ectopic gene conversion among HMA4 protein-coding sequences, resulting in their concerted evolution. Thus, HMA4 coding sequences exhibit a network-like genealogy and locally enhanced nucleotide sequence diversity within each copy, accompanied by lowered sequence divergence between paralogs in any given individual. Quantitative PCR corroborated that, across A. halleri, three genomic HMA4 copies generate overall 20- to 130-fold higher transcript levels than in A. thaliana. Together, our observations constitute an unexpectedly complex profile of polymorphism resulting from natural selection for increased gene product dosage. We propose that these findings are paradigmatic of a category of multi-copy genes from a broad range of organisms. Our results emphasize that enhanced gene product dosage, in addition to neo- and sub-functionalization, can account for the genomic maintenance of gene duplicates underlying environmental adaptation.
Collapse
Affiliation(s)
- Marc Hanikenne
- Functional Genomics and Plant Molecular Imaging, Center for Protein Engineering (CIP), Department of Life Sciences, University of Liège, Liège, Belgium
| | - Juergen Kroymann
- Laboratoire d'Ecologie, Systématique et Evolution, Université Paris-Sud/CNRS, Orsay, France
| | | | - María Bernal
- Department of Plant Physiology, Ruhr University Bochum, Bochum, Germany
| | - Patrick Motte
- Functional Genomics and Plant Molecular Imaging, Center for Protein Engineering (CIP), Department of Life Sciences, University of Liège, Liège, Belgium
| | - Stephan Clemens
- Department of Plant Physiology, University of Bayreuth, Bayreuth, Germany
| | - Ute Krämer
- Department of Plant Physiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
20
|
Comparative study of genome divergence in salmonids with various rates of genetic isolation. Int J Genomics 2013; 2013:629543. [PMID: 23984311 PMCID: PMC3742046 DOI: 10.1155/2013/629543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/22/2013] [Accepted: 05/15/2013] [Indexed: 12/03/2022] Open
Abstract
The aim of the study is a comparative investigation of changes that certain genome parts undergo during speciation. The research was focused on divergence of coding and noncoding sequences in different groups of salmonid fishes of the Salmonidae (Salmo, Parasalmo, Oncorhynchus, and Salvelinus genera) and the Coregonidae families under different levels of reproductive isolation. Two basic approaches were used: (1) PCR-RAPD with a 20–22 nt primer design with subsequent cloning and sequencing of the products and (2) a modified endonuclease restriction analysis. The restriction fragments were shown with sequencing to represent satellite DNA. Effects of speciation are found in repetitive sequences. The revelation of expressed sequences in the majority of the employed anonymous loci allows for assuming the adaptive selection during allopatric speciation in isolated char forms.
Collapse
|
21
|
Nydam ML, De Tomaso AW. The fester locus in Botryllus schlosseri experiences selection. BMC Evol Biol 2012; 12:249. [PMID: 23259925 PMCID: PMC3549757 DOI: 10.1186/1471-2148-12-249] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 12/19/2012] [Indexed: 11/14/2022] Open
Abstract
Background Allorecognition, the ability of an organism to distinguish self from non-self, occurs throughout the entire tree of life. Despite the prevalence and importance of allorecognition systems, the genetic basis of allorecognition has rarely been characterized outside the well-known MHC (Major Histocompatibility Complex) in vertebrates and SI (Self-Incompatibility) in plants. Where loci have been identified, their evolutionary history is an open question. We have previously identified the genes involved in self/non-self recognition in the colonial ascidian Botryllus schlosseri, and we can now begin to investigate their evolution. In B. schlosseri, colonies sharing 1 or more alleles of a gene called FuHC (Fusion Histocompatibility) will fuse. Protein products of a locus called fester, located ~300 kb from FuHC, have been shown to play multiple roles in the histocompatibility reaction, as activating and/or inhibitory receptors. We test whether the proteins encoded by this locus are evolving neutrally or are experiencing balancing, directional, or purifying selection. Results Nearly all of the variation in the fester locus resides within populations. The 13 housekeeping genes (12 nuclear genes and mitochondrial cytochrome oxidase I) have substantially more structure among populations within groups and among groups than fester. All polymorphism statistics (Tajima's D, Fu and Li's D* and F*) are significantly negative for the East Coast A-type alleles, and Fu and Li's F* statistic is significantly negative for the West Coast A-type alleles. These results are likely due to selection rather than demography, given that 10 of the housekeeping loci have no populations with significant values for any of the polymorphism statistics. The majority of codons in the fester proteins have ω values < 1, but 15–27 codons have > 95% posterior probability of ω values > 1. Conclusion Fester proteins are evolving non-neutrally. The polymorphism statistics are consistent with either purifying selection or directional selection. The ω statistics show that the majority of the protein is experiencing purifying selection (ω < 1), but that 15–27 codons are undergoing either balancing or directional selection: ω > 1 is compatible with either scenario. The distribution of variation within and among populations points towards balancing selection and away from directional selection. While these data do not provide unambiguous support for a specific type of selection, they contribute to our evolutionary understanding of a critical biological process by determining the forces that affect loci involved in allorecognition.
Collapse
Affiliation(s)
- Marie L Nydam
- Division of Science and Mathematics, Centre College, Danville, KY 40422, USA.
| | | |
Collapse
|
22
|
Karn RC, Laukaitis CM. The roles of gene duplication, gene conversion and positive selection in rodent Esp and Mup pheromone gene families with comparison to the Abp family. PLoS One 2012; 7:e47697. [PMID: 23094077 PMCID: PMC3477143 DOI: 10.1371/journal.pone.0047697] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/18/2012] [Indexed: 11/22/2022] Open
Abstract
Three proteinaceous pheromone families, the androgen-binding proteins (ABPs), the exocrine-gland secreting peptides (ESPs) and the major urinary proteins (MUPs) are encoded by large gene families in the genomes of Mus musculus and Rattus norvegicus. We studied the evolutionary histories of the Mup and Esp genes and compared them with what is known about the Abp genes. Apparently gene conversion has played little if any role in the expansion of the mouse Class A and Class B Mup genes and pseudogenes, and the rat Mups. By contrast, we found evidence of extensive gene conversion in many Esp genes although not in all of them. Our studies of selection identified at least two amino acid sites in β-sheets as having evolved under positive selection in the mouse Class A and Class B MUPs and in rat MUPs. We show that selection may have acted on the ESPs by determining K(a)/K(s) for Exon 3 sequences with and without the converted sequence segment. While it appears that purifying selection acted on the ESP signal peptides, the secreted portions of the ESPs probably have undergone much more rapid evolution. When the inner gene converted fragment sequences were removed, eleven Esp paralogs were present in two or more pairs with K(a)/K(s) >1.0 and thus we propose that positive selection is detectable by this means in at least some mouse Esp paralogs. We compare and contrast the evolutionary histories of all three mouse pheromone gene families in light of their proposed functions in mouse communication.
Collapse
Affiliation(s)
- Robert C Karn
- Department of Medicine, College of Medicine, University of Arizona, Tucson, Arizona, United States of America.
| | | |
Collapse
|
23
|
Molecular bases of genetic diversity and evolution of the immunoglobulin heavy chain variable region (IGHV) gene locus in leporids. Immunogenetics 2011; 63:397-408. [PMID: 21594770 DOI: 10.1007/s00251-011-0533-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/02/2011] [Indexed: 10/18/2022]
Abstract
The rabbit has long been a model for studies of the immune system. Work using rabbits contributed both to the battle against infectious diseases such as rabies and syphilis, and to our knowledge, of antibodies' structure, function, and regulated expression. With the description of rabbit Ig allotypes, the discovery of different gene segments encoding immunoglobulins became possible. This challenged the "one gene-one protein" dogma. The observation that rabbit allotypic specificities of the variable regions were present on IgM and IgG molecules also led to the hypothesis of Ig class switching. Rabbit allotypes contributed to the documentation of phenomena such as allelic exclusion and imbalance in production of allelic gene products. During the last 30 years, the rabbit Ig allotypes revealed a number of unique features, setting them apart from mice, humans, and other mammals. Here, we review the most relevant findings concerning the rabbit IGHV. Among these are the preferential usage of one VH gene in VDJ rearrangements, the existence of trans-species polymorphism in the IGHV locus revealed by serology and confirmed by sequencing IGHV genes in Lepus, the unusually large genetic distances between allelic lineages and the fact that the antibody repertoire is diversified in this species only after birth. The whole genome sequence of a rabbit, plus re-sequencing of additional strains and related genera, will allow further evolutionary investigations of antibody variation. Continued research will help define the roles that genetic, allelic, and population diversity at antibody loci may play in host-parasite interactions.
Collapse
|
24
|
Ohta T. Gene conversion and evolution of gene families: an overview. Genes (Basel) 2010; 1:349-56. [PMID: 24710091 PMCID: PMC3966226 DOI: 10.3390/genes1030349] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/27/2010] [Accepted: 09/28/2010] [Indexed: 11/17/2022] Open
Abstract
The importance of gene conversion for the evolution of gene families is reviewed. Four problems concerning gene conversion, i.e., concerted evolution, generation of useful variation, deleterious effects, and relation to neofunctionalization, are discussed by surveying reported examples of evolving gene families. Emphasis is given toward understanding interactive effects of gene conversion and natural selection.
Collapse
Affiliation(s)
- Tomoko Ohta
- National Institute of Genetics, Mishima, 411-8540, Japan.
| |
Collapse
|
25
|
Rane HS, Smith JM, Bergthorsson U, Katju V. Gene conversion and DNA sequence polymorphism in the sex-determination gene fog-2 and its paralog ftr-1 in Caenorhabditis elegans. Mol Biol Evol 2010; 27:1561-9. [PMID: 20133352 DOI: 10.1093/molbev/msq039] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Gene conversion, a form of concerted evolution, bears enormous potential to shape the trajectory of sequence and functional divergence of gene paralogs subsequent to duplication events. fog-2, a sex-determination gene unique to Caenorhabditis elegans and implicated in the origin of hermaphroditism in this species, resulted from the duplication of ftr-1, an upstream gene of unknown function. Synonymous sequence divergence in regions of fog-2 and ftr-1 (excluding recent gene conversion tracts) suggests that the duplication occurred 46 million generations ago. Gene conversion between fog-2 and ftr-1 was previously discovered in experimental fog-2 knockout lines of C. elegans, whereby hermaphroditism was restored in mutant obligately outcrossing male-female populations. We analyzed DNA-sequence variation in fog-2 and ftr-1 within 40 isolates of C. elegans from diverse geographic locations in order to evaluate the contribution of gene conversion to genetic variation in the two gene paralogs. The analysis shows that gene conversion contributes significantly to DNA-sequence diversity in fog-2 and ftr-1 (22% and 34%, respectively) and may have the potential to alter sexual phenotypes in natural populations. A radical amino acid change in a conserved region of the F-box domain of fog-2 was found in natural isolates of C. elegans with significantly lower fecundity. We hypothesize that the lowered fecundity is due to reduced masculinization and less sperm production and that amino acid replacement substitutions and gene conversion in fog-2 may contribute significantly to variation in the degree of inbreeding and outcrossing in natural populations.
Collapse
Affiliation(s)
- Hallie S Rane
- Department of Biology, University of New Mexico, NM, USA
| | | | | | | |
Collapse
|
26
|
Gießler S, Englbrecht CC. Dynamic reticulate evolution in aDaphniamultispecies complex. ACTA ACUST UNITED AC 2009; 311:530-48. [DOI: 10.1002/jez.550] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Duplicate gene evolution toward multiple fates at the Drosophila melanogaster HIP/HIP-Replacement locus. J Mol Evol 2009; 68:337-50. [PMID: 19333534 DOI: 10.1007/s00239-009-9213-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 02/10/2009] [Accepted: 02/16/2009] [Indexed: 10/20/2022]
Abstract
Hsc/Hsp70-interacting protein (HIP) is a rapidly evolving Hsp70 cofactor. Analyses of multiple Drosophila species indicate that the HIP gene is duplicated only in D. melanogaster. The HIP region, in fact, contains seven distinctly evolving duplicated genes. The regional duplication occurred in two steps, fixed rapidly, and illustrates multiple modes of duplicate gene evolution. HIP and its duplicate HIP-R are adaptively evolving in a manner unique to the region: they exhibit elevated divergence from other drosophilids and low polymorphism within D. melanogaster. HIP and HIP-R are virtually identical, share polymorphisms, and are subject to gene conversion. In contrast, two other duplicate genes in the region, CG33221 and GP-CG32779, are pseudogenes, and the chimeric gene Crg1 is subject to balancing selection. HIP and HIP-R are evolving rapidly and adaptively; however, positive selection is not sufficient to explain the molecular evolution of the region as a whole.
Collapse
|
28
|
Population genetic models of duplicated genes. Genetica 2009; 137:19-37. [PMID: 19266289 DOI: 10.1007/s10709-009-9355-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 12/28/2008] [Indexed: 01/08/2023]
Abstract
Various population genetic models of duplicated genes are introduced. The problems covered in this review include the fixation process of a duplicated copy, copy number polymorphism, the fates of duplicated genes and single nucleotide polymorphism in duplicated genes. Because of increasing evidence for concerted evolution by gene conversion, this review introduces recently developed gene conversion models. In the first half, models assuming independent evolution of duplicated genes are introduced, and then the effect of gene conversion is considered in the second half.
Collapse
|
29
|
Feder JL, Velez S. Intergenic exchange, geographic isolation, and the evolution of bioluminescent color for Pyrophorus click beetles. Evolution 2009; 63:1203-16. [PMID: 19154393 DOI: 10.1111/j.1558-5646.2009.00623.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Gene duplication is an evolutionary process in which the emergent property of the whole can become greater and different than the sum of its parts. One potential outcome for gene duplication is for loci to evolve different, yet related functions. In this case, intergenic exchange can shuffle blocks of differentiated nucleotides between paralogues to create new alleles and phenotypes rather than simply homogenize loci. Bioluminescent click beetles in the genus Pyrophorus (Coleoptera: Elateridae) provide an opportunity to explore the creative potential of intergenic exchange for gene family evolution. Pyrophorus beetles bioluminesce different light colors from a pair of dorsal light organs and a ventral light organ. The light organs are under the separate genetic control of dorsal and ventral luciferase loci. Here, we report that intergenic exchange is common between dorsal and ventral loci for beetles from Jamaica (P. plagiophthalamus), the Dominican Republic (P. mellifluous), Belize (P. luscus), and Trinidad (P. noctilucus). We also present evidence that periods of past geographic isolation for beetles on Jamaica, probably acting in concert with selection, built differentiated blocks of substitutions within dorsal and ventral P. plagiophthalamus luciferase loci. Gene flow and intergenic exchange subsequently shuffled these substitutions between dorsal and ventral loci to produce new color phenotypes on Jamaica, including a yellow-green polymorphism. We discuss the possibility of a previously unrecognized emergent evolutionary property of intergenic exchange for luciferase involving cycles of bioluminescent color change related to differences in selective constrains acting on dorsal versus ventral loci. We also explore whether intergenic exchange may commonly create novel variation and the potential for cyclic evolution in other multigene family systems.
Collapse
Affiliation(s)
- Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.
| | | |
Collapse
|
30
|
Eirín-López JM, González-Romero R, Dryhurst D, Méndez J, Ausió J. Long-Term Evolution of Histone Families: Old Notions and New Insights into Their Mechanisms of Diversification Across Eukaryotes. Evol Biol 2009. [DOI: 10.1007/978-3-642-00952-5_8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Abstract
The effect of directional selection on the fixation process of a single mutation that spreads in a multigene family by gene conversion is investigated. A simple two-locus model with two alleles, A and a, is first considered in a random-mating diploid population with size N. There are four haplotypes, AA, Aa, aA, and aa, and selection works on the number of alleles A in a diplod (i = 0, 1, 2, 3, 4). Because gene conversion is allowed between the two loci, when the mutation rate is very low, either AA or aa will fix in the population eventually. We consider a situation where a single mutant, A, arises in one locus when a is fixed in both loci. Then, we derive the fixation probability analytically, and the fixation time is investigated by simulations. It is found that gene conversion has an effect to increase the "effective" population size, so that weak selection works more efficiently in a multigene family. With these results, we discuss the effect of gene conversion on the rate of molecular evolution in a multigene family undergoing concerted evolution. We also argue about the applicability of the theoretical results to models of multigene families with more than two loci.
Collapse
|
32
|
Pettersson ME, Sun S, Andersson DI, Berg OG. Evolution of new gene functions: simulation and analysis of the amplification model. Genetica 2008; 135:309-24. [PMID: 18568430 DOI: 10.1007/s10709-008-9289-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 05/19/2008] [Indexed: 11/29/2022]
Abstract
Creation of new genes and functions is a central feature of evolution. Duplication of existing genes has long been assumed to be the source of new genes, but the precise mechanism has remained unclear. One suggestion is that new genes are created via temporary amplifications, which simultaneously increase both the selective advantage of weak, pre-existing secondary functions and the target for optimizing mutations. This paper examines the amplification model by formalizing it into a mathematical framework. This framework is used to perform stochastic (Monte Carlo) simulations. In addition, experimental data from Salmonella typhimurium LT2 are used to support the modelling, by providing estimates for parameter values. The results show that amplification of tandem repeats is likely to contribute to creation of new genes in nature.
Collapse
Affiliation(s)
- Mats E Pettersson
- Department of Molecular Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, SE-752 36, Sweden.
| | | | | | | |
Collapse
|
33
|
Cornman RS, Willis JH. Extensive gene amplification and concerted evolution within the CPR family of cuticular proteins in mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:661-76. [PMID: 18510978 PMCID: PMC4276373 DOI: 10.1016/j.ibmb.2008.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 03/27/2008] [Accepted: 04/03/2008] [Indexed: 05/03/2023]
Abstract
Annotation of the Anopheles gambiae genome has revealed a large increase in the number of genes encoding cuticular proteins with the Rebers and Riddiford Consensus (the CPR gene family) relative to Drosophila melanogaster. This increase reflects an expansion of the RR-2 group of CPR genes, particularly the amplification of sets of highly similar paralogs. Patterns of nucleotide variation indicate that extensive concerted evolution is occurring within these clusters. The pattern of concerted evolution is complex, however, as sequence similarity within clusters is uncorrelated with gene order and orientation, and no comparable clusters occur within similarly compact arrays of the RR-1 group in mosquitoes or in either group in D. melanogaster. The dearth of pseudogenes suggests that sequence clusters are maintained by selection for high gene-copy number, perhaps due to selection for high expression rates. This hypothesis is consistent with the apparently parallel evolution of compact gene architectures within sequence clusters relative to single-copy genes. We show that RR-2 proteins from sequence-cluster genes have complex repeats and extreme amino-acid compositions relative to single-copy CPR proteins in An. gambiae, and that the amino-acid composition of the N-terminal and C-terminal sequence flanking the chitin-binding consensus region evolves in a correlated fashion.
Collapse
Affiliation(s)
- R Scott Cornman
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Judith H Willis
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| |
Collapse
|
34
|
José López-Piñón M, Freire R, Insua A, Méndez J. Sequence characterization and phylogenetic analysis of the 5S ribosomal DNA in some scallops (Bivalvia: Pectinidae). Hereditas 2008; 145:9-19. [DOI: 10.1111/j.0018-0661.2008.2034.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
35
|
José López-Piñón M, Freire R, Insua A, Méndez J. Sequence characterization and phylogenetic analysis of the 5S ribosomal DNA in some scallops (Bivalvia: Pectinidae). Hereditas 2008. [DOI: 10.1111/j.2007.0018-0661.02034x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
36
|
Yang S, Arguello JR, Li X, Ding Y, Zhou Q, Chen Y, Zhang Y, Zhao R, Brunet F, Peng L, Long M, Wang W. Repetitive element-mediated recombination as a mechanism for new gene origination in Drosophila. PLoS Genet 2007; 4:e3. [PMID: 18208328 PMCID: PMC2211543 DOI: 10.1371/journal.pgen.0040003] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 11/27/2007] [Indexed: 01/05/2023] Open
Abstract
Previous studies of repetitive elements (REs) have implicated a mechanistic role in generating new chimerical genes. Such examples are consistent with the classic model for exon shuffling, which relies on non-homologous recombination. However, recent data for chromosomal aberrations in model organisms suggest that ectopic homology-dependent recombination may also be important. Lack of a dataset comprising experimentally verified young duplicates has hampered an effective examination of these models as well as an investigation of sequence features that mediate the rearrangements. Here we use ∼7,000 cDNA probes (∼112,000 primary images) to screen eight species within the Drosophila melanogaster subgroup and identify 17 duplicates that were generated through ectopic recombination within the last 12 mys. Most of these are functional and have evolved divergent expression patterns and novel chimeric structures. Examination of their flanking sequences revealed an excess of repetitive sequences, with the majority belonging to the transposable element DNAREP1 family, associated with the new genes. Our dataset strongly suggests an important role for REs in the generation of chimeric genes within these species. In numerous organisms, many new genes have been found to originate through dispersed gene duplication and exon/domain shuffling. What recombination mechanisms were involved in the duplication and the shuffling processes? Lack of the intermediate products of recombination that share adequate sequence identity between homologous sequences, or the parental sequences from which the new genes were derived, often makes answering these questions difficult. We identified a number of young genes that originated in recently diverged branches in the evolutionary tree of the eight Drosophila melanogaster subgroup species, by using fluorescence in situ hybridization with polytene chromosomes. We analyzed the genomic regions surrounding 17 new dispersed duplicate genes and observed that most of these genes are flanked by repetitive elements (REs), including a large and diverged transposable element family, DNAREP1. Several copies of these REs are kept in both new and parental gene regions, and their degeneration is correlated with the increasing ages of the identified new genes. These data suggest that REs mediate the recombination responsible for the new gene origination.
Collapse
Affiliation(s)
- Shuang Yang
- Chinese Academy of Sciences (CAS)—Max Planck Junior Research Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Graduate School of Chinese Academy Sciences, Beijing, China
| | - J. Roman Arguello
- Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Xin Li
- Chinese Academy of Sciences (CAS)—Max Planck Junior Research Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Graduate School of Chinese Academy Sciences, Beijing, China
| | - Yun Ding
- Chinese Academy of Sciences (CAS)—Max Planck Junior Research Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Graduate School of Chinese Academy Sciences, Beijing, China
| | - Qi Zhou
- Chinese Academy of Sciences (CAS)—Max Planck Junior Research Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Graduate School of Chinese Academy Sciences, Beijing, China
| | - Ying Chen
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Yue Zhang
- Chinese Academy of Sciences (CAS)—Max Planck Junior Research Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ruoping Zhao
- Chinese Academy of Sciences (CAS)—Max Planck Junior Research Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Frédéric Brunet
- Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Lixin Peng
- Chinese Academy of Sciences (CAS)—Max Planck Junior Research Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Manyuan Long
- Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
- * To whom correspondence should be addressed. E-mail: (ML); (WW)
| | - Wen Wang
- Chinese Academy of Sciences (CAS)—Max Planck Junior Research Group, Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- * To whom correspondence should be addressed. E-mail: (ML); (WW)
| |
Collapse
|
37
|
Guzik MT, Norman MD, Crozier RH. Molecular phylogeny of the benthic shallow-water octopuses (Cephalopoda: Octopodinae). Mol Phylogenet Evol 2006; 37:235-48. [PMID: 16009571 DOI: 10.1016/j.ympev.2005.05.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 05/09/2005] [Accepted: 05/13/2005] [Indexed: 11/28/2022]
Abstract
Octopus has been regarded as a "catch all" genus, yet its monophyly is questionable and has been untested. We inferred a broad-scale phylogeny of the benthic shallow-water octopuses (subfamily Octopodinae) using amino acid sequences of two mitochondrial DNA genes: Cytochrome oxidase subunit III and Cytochrome b apoenzyme, and the nuclear DNA gene Elongation Factor-1alpha. Sequence data were obtained from 26 Octopus species and from four related genera. Maximum likelihood and Bayesian approaches were implemented to estimate the phylogeny, and non-parametric bootstrapping was used to verify confidence for Bayesian topologies. Phylogenetic relationships between closely related species were generally well resolved, and groups delineated, but the genes did not resolve deep divergences well. The phylogenies indicated strongly that Octopus is not monophyletic, but several monophyletic groups were identified within the genus. It is therefore clear that octopodid systematics requires major revision.
Collapse
Affiliation(s)
- Michelle T Guzik
- School of Tropical Biology, James Cook University, Townsville, Qld, Australia
| | | | | |
Collapse
|
38
|
Abstract
Until around 1990, most multigene families were thought to be subject to concerted evolution, in which all member genes of a family evolve as a unit in concert. However, phylogenetic analysis of MHC and other immune system genes showed a quite different evolutionary pattern, and a new model called birth-and-death evolution was proposed. In this model, new genes are created by gene duplication and some duplicate genes stay in the genome for a long time, whereas others are inactivated or deleted from the genome. Later investigations have shown that most non-rRNA genes including highly conserved histone or ubiquitin genes are subject to this type of evolution. However, the controversy over the two models is still continuing because the distinction between the two models becomes difficult when sequence differences are small. Unlike concerted evolution, the model of birth-and-death evolution can give some insights into the origins of new genetic systems or new phenotypic characters.
Collapse
Affiliation(s)
- Masatoshi Nei
- Institute of Molecular Evolutionary Genetics and1 Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802;
| | - Alejandro P. Rooney
- U.S. Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, Illinois 61604;
| |
Collapse
|
39
|
Joly E, Rouillon V. The orthology of HLA-E and H2-Qa1 is hidden by their concerted evolution with other MHC class I molecules. Biol Direct 2006; 1:2. [PMID: 16542007 PMCID: PMC1403747 DOI: 10.1186/1745-6150-1-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 01/31/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whether MHC molecules undergo concerted evolution or not has been the subject of a long-standing debate. RESULTS By comparing sequences of eight functional homologues of HLA-E from primates and rodents with those of MHC class Ia molecules from the same eight species, we find that different portions of MHC class I molecules undergo different patterns of evolution. By focusing our analyses sequentially on these various portions, we have obtained clear evidence for concerted evolution of MHC class I molecules, suggesting the occurrence of extensive interallelic and intergenic exchanges. Intra-species homogenisation of sequences is particularly noticeable at the level of exon 4, which codes for the alpha3 domain, but our results suggest that homogenisation also concerns certain residues of the alpha1-alpha2 codomain that lie outside the antigen recognition site. CONCLUSION A model is presented in which Darwinian selective pressures due to pathogens could, at the same time, favour diversification of MHC class Ia molecules and promote concerted evolution of separate loci by spreading advantageous motifs arising by mutations in individual MHC molecules to other alleles and to other loci of the MHC region. This would also allow MHC molecules to co-evolve with the proteins with which they interact to fulfil their functions of antigen presentation and regulation of NK cell activity. One of the raisons d'être of the MHC may therefore be to favour at the same time both diversification of MHC class Ia molecules and homogenisation of the whole pool of MHC class I molecules (Ia and Ib) involved in antigen presentation. REVIEWERS This article was reviewed by Stephan Beck, Lutz Walter and Pierre Pontarotti.
Collapse
Affiliation(s)
- Etienne Joly
- Equipe de Neuro-Immuno-Génétique Moléculaire, IPBS, UMR CNRS 5089, 205 route de Narbonne, 31077 Toulouse Cedex, France
| | - Virginie Rouillon
- Equipe de Neuro-Immuno-Génétique Moléculaire, IPBS, UMR CNRS 5089, 205 route de Narbonne, 31077 Toulouse Cedex, France
| |
Collapse
|
40
|
Hancock JM. Gene factories, microfunctionalization and the evolution of gene families. Trends Genet 2005; 21:591-5. [PMID: 16153739 DOI: 10.1016/j.tig.2005.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 07/18/2005] [Accepted: 08/17/2005] [Indexed: 11/17/2022]
Abstract
Gene duplication has long been considered an important force in genome evolution. In this article, I consider families of tandemly duplicated genes that show 'microfunctionalization' - genes encoding similar proteins with subtly different functions, such as olfactory receptors. I discuss the genomic processes giving rise to such microfunctionalized gene families and suggest that, like sites of chromosomal rearrangement and breakage, they are associated with relatively high concentrations of repetitive elements. I suggest that microfunctionalized gene families arise within gene factories: genomic regions rich in repetitive elements that undergo increased levels of unequal crossing-over.
Collapse
Affiliation(s)
- John M Hancock
- Medical Research Council Mammalian Genetics Unit, Harwell, Oxfordshire, UK, OX11 0RD.
| |
Collapse
|
41
|
Sugino RP, Innan H. Estimating the time to the whole-genome duplication and the duration of concerted evolution via gene conversion in yeast. Genetics 2005; 171:63-9. [PMID: 15972458 PMCID: PMC1456531 DOI: 10.1534/genetics.105.043869] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 06/13/2005] [Indexed: 11/18/2022] Open
Abstract
A maximum-likelihood (ML) method is developed to estimate the duration of concerted evolution and the time to the whole-genome duplication (WGD) event in baker's yeast (Saccharomyces cerevisiae). The models with concerted evolution fit the data significantly better than the molecular clock model, indicating a crucial role of concerted evolution via gene conversion after gene duplication in yeast. Our ML estimate of the time to the WGD is nearly identical to the time to the speciation event between S. cerevisiae and Kluyveromyces waltii, suggesting that the WGD occurred in very early stages after speciation or the WGD might have been involved in the speciation event.
Collapse
Affiliation(s)
- Ryuichi P Sugino
- Human Genetics Center, School of Public Health, Unversity of Texas Health Science Center, Houston 77030, USA
| | | |
Collapse
|
42
|
Eirín-López JM, Ruiz MF, González-Tizón AM, Martínez A, Ausió J, Sánchez L, Méndez J. Common evolutionary origin and birth-and-death process in the replication-independent histone H1 isoforms from vertebrate and invertebrate genomes. J Mol Evol 2005; 61:398-407. [PMID: 16082565 DOI: 10.1007/s00239-004-0328-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Accepted: 04/12/2005] [Indexed: 12/01/2022]
Abstract
The H1 histone multigene family shows the greatest diversity of isoforms among the five histone gene families, including replication-dependent (RD) and replication-independent (RI) genes, according to their expression patterns along the cell cycle and their genomic organization. Although the molecular characterization of the RI isoforms has been well documented in vertebrates, similar information is lacking in invertebrates. In this work we provide evidence for a polyadenylation signature in the Mytilus "orphon" H1 genes similar to the polyadenylation characteristic of RI H1 genes. These mussel genes, together with the sea urchin H1delta genes, are part of a lineage of invertebrate "orphon" H1 genes that share several control elements with vertebrate RI H1 genes. These control elements include the UCE element, H1-box and H4-box. We provide evidence for a functional evolution of vertebrate and invertebrate RI H1 genes, which exhibit a clustering pattern by type instead of by species, with a marked difference from the somatic variants. In addition, these genes display an extensive silent divergence at the nucleotide level which is always significantly larger than the nonsilent. It thus appears that RI and RD H1 isoforms display similar long-term evolutionary patterns, best described by the birth-and-death model of evolution. Notably, this observation is in contrast with the theoretical belief that clustered RD H1 genes evolve in a concerted manner. The split of the RI group from the main RD group must therefore have occurred before the divergence between vertebrates and invertebrates about 815 million years ago. This was the result of the transposition of H1 genes to solitary locations in the genome.
Collapse
Affiliation(s)
- José M Eirín-López
- Departamento de Biología Celular y Molecular, Universidade da Coruña, Campus de A Zapateira s/n, E-15071, A Coruña, Spain.
| | | | | | | | | | | | | |
Collapse
|
43
|
Kim HN, Yamazaki T. Nonconcerted evolution of histone 3 genes in a liverwort, Conocephalum conicum. Genes Genet Syst 2005; 79:331-44. [PMID: 15729001 DOI: 10.1266/ggs.79.331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To estimate the extent of genetic variation at the DNA level, the histone 3 (H3) genes were sequenced from single individual each from the three cryptic species recognized based on allozyme analyses, YFS, J and T types of Conocephalum conicum and two closely related species, C. japonicum and Marchantia polymorpha. Although the H3 genes are known to be highly conserved, the nucleotide diversities were 0.128, 0.109, 0.108, 0.049 and 0.034. These values are 30 to 100 times higher than that in Drosophila melanogaster (0.001). Besides, there were considerable differences in the position, length and number of introns among the loci of H3 genes. The observed high level of nucleotide diversities was explained by the fixation of many random mutations, and non-concerted evolution that resulted from low rates of unequal crossing-over and gene conversion probably due to the dispersed structure of H3 genes on genome in this species. The non-concerted evolutionary pattern was established by the analysis of phylogenetic tree and divergence rates. This study confirmed previous results suggesting that natural populations of liverwort maintains high extent of variation at DNA level.
Collapse
Affiliation(s)
- Hong Nam Kim
- Laboratory of Molecular Population Genetics, Department of Molecular Biology, Faculty of Medicine, Kyushu University, Fukuoka 812-8581, Japan.
| | | |
Collapse
|
44
|
McLellan AS, Zimmermann W, Moore T. Conservation of pregnancy-specific glycoprotein (PSG) N domains following independent expansions of the gene families in rodents and primates. BMC Evol Biol 2005; 5:39. [PMID: 15987510 PMCID: PMC1185527 DOI: 10.1186/1471-2148-5-39] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 06/29/2005] [Indexed: 11/10/2022] Open
Abstract
Background Rodent and primate pregnancy-specific glycoprotein (PSG) gene families have expanded independently from a common ancestor and are expressed virtually exclusively in placental trophoblasts. However, within each species, it is unknown whether multiple paralogs have been selected for diversification of function, or for increased dosage of monofunctional PSG. We analysed the evolution of the mouse PSG sequences, and compared them to rat, human and baboon PSGs to attempt to understand the evolution of this complex gene family. Results Phylogenetic tree analyses indicate that the primate N domains and the rodent N1 domains exhibit a higher degree of conservation than that observed in a comparison of the mouse N1 and N2 domains, or mouse N1 and N3 domains. Compared to human and baboon PSG N domain exons, mouse and rat PSG N domain exons have undergone less sequence homogenisation. The high non-synonymous substitution rates observed in the CFG face of the mouse N1 domain, within a context of overall conservation, suggests divergence of function of mouse PSGs. The rat PSG family appears to have undergone less expansion than the mouse, exhibits lower divergence rates and increased sequence homogenisation in the CFG face of the N1 domain. In contrast to most primate PSG N domains, rodent PSG N1 domains do not contain an RGD tri-peptide motif, but do contain RGD-like sequences, which are not conserved in rodent N2 and N3 domains. Conclusion Relative conservation of primate N domains and rodent N1 domains suggests that, despite independent gene family expansions and structural diversification, mouse and human PSGs retain conserved functions. Human PSG gene family expansion and homogenisation suggests that evolution occurred in a concerted manner that maintains similar functions of PSGs, whilst increasing gene dosage of the family as a whole. In the mouse, gene family expansion, coupled with local diversification of the CFG face, suggests selection both for increased gene dosage and diversification of function. Partial conservation of RGD and RGD-like tri-peptides in primate and rodent N and N1 domains, respectively, supports a role for these motifs in PSG function.
Collapse
Affiliation(s)
- Andrew S McLellan
- Department of Biochemistry, Biosciences Institute, University College Cork, College Road, Cork, Ireland
| | - Wolfgang Zimmermann
- Tumor Immunology Group, LIFE Center, University Clinic Grosshadern, Ludwig-Maximilians-University Muenchen, Marchioninistrasse 23, D-81377 Muenchen, Germany
| | - Tom Moore
- Department of Biochemistry, Biosciences Institute, University College Cork, College Road, Cork, Ireland
| |
Collapse
|
45
|
Johannesson H, Townsend JP, Hung CY, Cole GT, Taylor JW. Concerted evolution in the repeats of an immunomodulating cell surface protein, SOWgp, of the human pathogenic fungi Coccidioides immitis and C. posadasii. Genetics 2005; 171:109-17. [PMID: 15965255 PMCID: PMC1456504 DOI: 10.1534/genetics.105.040923] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genome dynamics that allow pathogens to escape host immune responses are fundamental to our understanding of host-pathogen interactions. Here we present the first population-based study of the process of concerted evolution in the repetitive domain of a protein-coding gene. This gene, SOWgp, encodes the immunodominant protein in the parasitic phase of the human pathogenic fungi Coccidioides immitis and C. posadasii. We sequenced the entire gene from strains representing the geographic ranges of the two Coccidioides species. By using phylogenetic and genetic distance analyses we discovered that the repetitive part of SOWgp evolves by concerted evolution, predominantly by the mechanism of unequal crossing over. We implemented a mathematical model originally developed for multigene families to estimate the rate of homogenization and recombination of the repetitive array, and the results indicate that the pattern of concerted evolution is a result of homogenization of repeat units proceeding at a rate close to the nucleotide point mutation rate. The release of the SOWgp molecules by the pathogen during proliferation may mislead the host: we speculate that the pathogen benefits from concerted evolution of repeated domains in SOWgp by an enhanced ability to misdirect the host's immune system.
Collapse
Affiliation(s)
- Hanna Johannesson
- Department of Evolution, Genomics and Systematics, Evolutionary Biology Centre, Uppsala University, Sweden.
| | | | | | | | | |
Collapse
|
46
|
Freire R, Insua A, Méndez J. Cerastodermaglaucum5S ribosomal DNA: characterization of the repeat unit, divergence with respect toCerastoderma edule, and PCR–RFLPs for the identification of both cockles. Genome 2005; 48:427-42. [PMID: 16121240 DOI: 10.1139/g04-123] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 5S rDNA repeat unit of the cockle Cerastoderma glaucum from the Mediterranean and Baltic coasts was PCR amplified and sequenced. The length of the units was 539–568 bp, of which 120 bp were assigned to the 5S rRNA gene and 419–448 bp to the spacer region, and the G/C content was 46%–49%, 54%, and 44%–47%, respectively. Two types of units (A and B), differing in the spacer, were distinguished based on the percentage of differences and clustering in phylogenetic trees. A PCR assay with specific primers for each unit type indicated that the occurrence of both units is not restricted to the sequenced individuals. The 5S rDNA units of C. glaucum were compared with new and previously reported sequences of Cerastoderma edule. The degree of variation observed in C. edule was lower than that in C. glaucum and evidence for the existence of units A and B in C. edule was not found. The two cockles have the same coding region but displayed numerous fixed differences in the spacer region and group separately in the phylogenetic trees. Digestion of the 5S rDNA PCR product with the restriction enzymes HaeIII and EcoRV revealed two RFLPs useful for cockle identification.Key words: Cerastoderma, cockle identification, 5S ribosomal DNA, nontranscribed spacer variation, PCR-RFLP.
Collapse
Affiliation(s)
- Ruth Freire
- Departamento de Biología Celular y Molecular, Universidade de Coruña, Spain
| | | | | |
Collapse
|
47
|
Aguileta G, Bielawski JP, Yang Z. Gene conversion and functional divergence in the beta-globin gene family. J Mol Evol 2005; 59:177-89. [PMID: 15486692 DOI: 10.1007/s00239-004-2612-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Accepted: 02/16/2004] [Indexed: 11/26/2022]
Abstract
Different models of gene family evolution have been proposed to explain the mechanism whereby gene copies created by gene duplications are maintained and diverge in function. Ohta proposed a model which predicts a burst of nonsynonymous substitutions following gene duplication and the preservation of duplicates through positive selection. An alternative model, the duplication-degeneration-complementation (DDC) model, does not explicitly require the action of positive Darwinian selection for the maintenance of duplicated gene copies, although purifying selection is assumed to continue to act on both copies. A potential outcome of the DDC model is heterogeneity in purifying selection among the gene copies, due to partitioning of subfunctions which complement each other. By using the d(N)/ d(S) (omega) rate ratio to measure selection pressure, we can distinguish between these two very different evolutionary scenarios. In this study we investigated these scenarios in the beta-globin family of genes, a textbook example of evolution by gene duplication. We assembled a comprehensive dataset of 72 vertebrate beta-globin sequences. The estimated phylogeny suggested multiple gene duplication and gene conversion events. By using different programs to detect recombination, we confirmed several cases of gene conversion and detected two new cases. We tested evolutionary scenarios derived from Ohta's model and the DDC model by examining selective pressures along lineages in a phylogeny of beta-globin genes in eutherian mammals. We did not find significant evidence for an increase in the omega ratio following major duplication events in this family. However, one exception to this pattern was the duplication of gamma-globin in simian primates, after which a few sites were identified to be under positive selection. Overall, our results suggest that following gene duplications, paralogous copies of beta-globin genes evolved under a nonepisodic process of functional divergence.
Collapse
Affiliation(s)
- Gabriela Aguileta
- Department of Biology, University College London, Darwin Building, Gower Street, WC1E 6BT, London, England
| | | | | |
Collapse
|
48
|
Abstract
Nonindependent evolution of duplicated genes is called concerted evolution. In this article, we study the evolutionary process of duplicated regions that involves concerted evolution. The model incorporates mutation and gene conversion: the former increases d, the divergence between two duplicated regions, while the latter decreases d. It is demonstrated that the process consists of three phases. Phase I is the time until d reaches its equilibrium value, d(0). In phase II d fluctuates around d(0), and d increases again in phase III. Our simulation results demonstrate that the length of concerted evolution (i.e., phase II) is highly variable, while the lengths of the other two phases are relatively constant. It is also demonstrated that the length of phase II approximately follows an exponential distribution with mean tau, which is a function of many parameters including gene conversion rate and the length of gene conversion tract. On the basis of these findings, we obtain the probability distribution of the level of divergence between a pair of duplicated regions as a function of time, mutation rate, and tau. Finally, we discuss potential problems in genomic data analysis of duplicated genes when it is based on the molecular clock but concerted evolution is common.
Collapse
Affiliation(s)
- Kosuke M Teshima
- Center for Genome Information, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | |
Collapse
|
49
|
Kuang H, Woo SS, Meyers BC, Nevo E, Michelmore RW. Multiple genetic processes result in heterogeneous rates of evolution within the major cluster disease resistance genes in lettuce. THE PLANT CELL 2004; 16:2870-94. [PMID: 15494555 PMCID: PMC527186 DOI: 10.1105/tpc.104.025502] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Accepted: 09/02/2004] [Indexed: 05/05/2023]
Abstract
Resistance Gene Candidate2 (RGC2) genes belong to a large, highly duplicated family of nucleotide binding site-leucine rich repeat (NBS-LRR) encoding disease resistance genes located at a single locus in lettuce (Lactuca sativa). To investigate the genetic events occurring during the evolution of this locus, approximately 1.5- to 2-kb 3' fragments of 126 RGC2 genes from seven genotypes were sequenced from three species of Lactuca, and 107 additional RGC2 sequences were obtained from 40 wild accessions of Lactuca spp. The copy number of RGC2 genes varied from 12 to 32 per genome in the seven genotypes studied extensively. LRR number varied from 40 to 47; most of this variation had resulted from 13 events duplicating two to five LRRs because of unequal crossing-over within or between RGC2 genes at one of two recombination hot spots. Two types of RGC2 genes (Type I and Type II) were initially distinguished based on the pattern of sequence identities between their 3' regions. The existence of two types of RGC2 genes was further supported by intron similarities, the frequency of sequence exchange, and their prevalence in natural populations. Type I genes are extensive chimeras caused by frequent sequence exchanges. Frequent sequence exchanges between Type I genes homogenized intron sequences, but not coding sequences, and obscured allelic/orthologous relationships. Sequencing of Type I genes from additional wild accessions confirmed the high frequency of sequence exchange and the presence of numerous chimeric RGC2 genes in nature. Unlike Type I genes, Type II genes exhibited infrequent sequence exchange between paralogous sequences. Type II genes from different genotype/species within the genus Lactuca showed obvious allelic/orthologous relationships. Trans-specific polymorphism was observed for different groups of orthologs, suggesting balancing selection. Unequal crossover, insertion/deletion, and point mutation events were distributed unequally through the gene. Different evolutionary forces have impacted different parts of the LRR.
Collapse
Affiliation(s)
- Hanhui Kuang
- Department of Vegetable Crops, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
50
|
Redner O, Baake M. Unequal crossover dynamics in discrete and continuous time. J Math Biol 2004; 49:201-26. [PMID: 15293019 DOI: 10.1007/s00285-004-0273-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2003] [Indexed: 10/26/2022]
Abstract
We analyze a class of models for unequal crossover (UC) of sequences containing sections with repeated units that may differ in length. In these, the probability of an 'imperfect' alignment, in which the shorter sequence has d units without a partner in the longer one, scales like qd as compared to 'perfect' alignments where all these copies are paired. The class is parameterized by this penalty factor q. An effectively infinite population size and thus deterministic dynamics is assumed. For the extreme cases q = 0 and q = 1, and any initial distribution whose moments satisfy certain conditions, we prove the convergence to one of the known fixed points, uniquely determined by the mean copy number, in both discrete and continuous time. For the intermediate parameter values, the existence of fixed points is shown.
Collapse
Affiliation(s)
- Oliver Redner
- Institut für Mathematik, Univ. Greifswald, Jahnstr. 15a, 17487, Greifswald, Germany.
| | | |
Collapse
|