1
|
Alqahtani MA, El-Ghiaty MA, El-Kadi AOS. Mercury and methylmercury differentially modulate hepatic cytochrome P450 1A1 and 1A2 in vivo and in vitro. J Biochem Mol Toxicol 2023; 37:e23243. [PMID: 36245390 DOI: 10.1002/jbt.23243] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 08/16/2022] [Accepted: 10/06/2022] [Indexed: 11/08/2022]
Abstract
The cytochrome P450 1 A (CYP1A) subfamily enzymes are involved in the metabolic activation of several xenobiotics to toxic metabolites and reactive intermediates, resulting ultimately in carcinogenesis. Mercury and halogenated aromatic hydrocarbons (HAHs), typified by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), are persistent environmental pollutants involved in the modulation of aryl hydrocarbon receptor (AHR) gene battery, including cytochrome P450 (CYP) genes. We previously investigated the effect of coexposure to either inorganic or organic mercury (Hg+2 and MeHg) with TCDD on CYP1A1 in vitro. Thus, we examined the impact of coexposure to Hg+2 or MeHg and TCDD on AHR-regulated genes (Cyp1a1/1a2) in vivo and in vitro. Therefore, male C57BL/6 mice were injected intraperitoneally with MeHg or Hg+2 (2.5 mg/kg) in the absence and presence of TCDD (15 μg/kg) for 6 or 24 h. The concentration-dependent effect of MeHg was examined in murine hepatoma Hepa1c1c7 cells. In vivo, both MeHg and Hg2+ inhibited the TCDD-mediated induction of Cyp1a1/1a2 mRNA levels. However, Only Hg2+ was able to inhibit the TCDD-mediated induction at posttranscriptional levels of CYP1A1/1A2 protein and catalytic activity, suggesting differential modulation effects by Hg+2 and MeHg. In addition, the inhibitory role of HO-1 (Heme oxygenase-1) on CYP1A activity induced by TCDD was investigated using a HO-1 competitive inhibitor, tin-mesoporphyrin, that partially restored the MeHg-mediated decrease in CYP1A1 activity. This study demonstrates that MeHg, alongside Hg2+ , can differentially modulate the TCDD-induced AHR-regulated genes (Cyp1a1/1a2) at different expression levels in C57BL/6 mice liver and Hepa1c1c7 cells.
Collapse
Affiliation(s)
- Mohammed A Alqahtani
- Department of Pharmaceutical Sciences, 2142 J Katz Group-Rexall Centre for Pharmacy and Health Research Edmonton, University of Alberta Ringgold Standard Institution, Edmonton, Alberta, Canada
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142 J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Regulations and Advisories. Toxicol Ind Health 2016. [DOI: 10.1177/074823370001600312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Anwar-Mohamed A, Abdelhamid G, Amara IEA, El-Kadi AOS. Differential modulation of cytochrome P450 1a1 by arsenite in vivo and in vitro in C57BL/6 mice. Free Radic Biol Med 2013; 58:52-63. [PMID: 23369756 DOI: 10.1016/j.freeradbiomed.2013.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 01/14/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
Abstract
Heavy metals, typified by arsenite (As(III)), have been implicated in altering the carcinogenicity of aryl hydrocarbon receptor (AhR) ligands, typified by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), by modulating the induction of the Cyp1a1 enzyme, but the mechanism remains unresolved. In this study, the effects of As(III) on Cyp1a1 expression and activity were investigated in C57BL/6 mouse livers and isolated hepatocytes. For this purpose, C57BL/6 mice were injected intraperitoneally with As(III) (12.5 mg/kg) in the absence and presence of TCDD (15 μg/kg) for 6 and 24 h. Furthermore, isolated hepatocytes from C57BL/6 mice were treated with As(III) (1, 5, and 10 μM) in the absence and presence of TCDD (1 nM) for 3, 6, 12, and 24 h. At the in vivo level, As(III) decreased the TCDD-mediated induction of Cyp1a1 mRNA at 6h while potentiating its mRNA, protein, and catalytic activity levels at 24 h. At the in vitro level, As(III) decreased the TCDD-mediated induction of Cyp1a1 mRNA in a concentration- and time-dependent manner. Moreover, As(III) decreased the TCDD-mediated induction of Cyp1a1 protein and catalytic activity levels at 24 h. Interestingly, As(III) increased the serum hemoglobin (Hb) levels in animals treated for 24 h. Upon treatment of isolated hepatocytes with Hb alone, there was an increase in the nuclear accumulation of AhR and AhR-dependent luciferase activity. Furthermore, Hb potentiated the TCDD-induced AhR-dependent luciferase activity. Importantly, when isolated hepatocytes were treated for 5h with As(III) in the presence of TCDD and the medium was then replaced with new medium containing Hb, there was potentiation of the TCDD-mediated effect. Taken together, these results demonstrate for the first time that there is a differential modulation of the TCDD-mediated induction of Cyp1a1 by As(III) in C57BL/6 mouse livers and isolated hepatocytes. Thus, this study implicates Hb as an in vivo-specific modulator.
Collapse
Affiliation(s)
- Anwar Anwar-Mohamed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | | | | | | |
Collapse
|
4
|
Amara IE, Anwar-Mohamed A, Abdelhamid G, El-Kadi AO. Mercury modulates the cytochrome P450 1a1, 1a2 and 1b1 in C57BL/6J mice: in vivo and in vitro studies. Toxicol Appl Pharmacol 2013; 266:419-29. [DOI: 10.1016/j.taap.2012.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/17/2012] [Accepted: 11/30/2012] [Indexed: 10/27/2022]
|
5
|
Anwar-Mohamed A, El-Sherbeni AA, Kim SH, Althurwi HN, Zordoky BNM, El-Kadi AOS. Acute arsenic toxicity alters cytochrome P450 and soluble epoxide hydrolase and their associated arachidonic acid metabolism in C57Bl/6 mouse heart. Xenobiotica 2012; 42:1235-47. [PMID: 22680237 DOI: 10.3109/00498254.2012.693971] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acute arsenic (As(III)) exposure has been reported to cause cardiac toxicity, however this toxicity was never linked to the disturbance in cytochrome P450 (P450)-mediated arachidonic acid metabolism. Therefore, we investigated the effect of acute As(III) toxicity on the expression of P450 and soluble epoxide hydrolase (sEH) and their associated arachidonic acid metabolism in mice hearts. As(III) toxicity was induced by a single intraperitoneal injection of 12.5 mg/kg of As(III). Our results showed that As(III) treatment caused a significant induction of the cardiac hypertrophic markers in addition to Cyp1b1, Cyp2b, Cyp2c, Cyp4f, and sEH gene expression in mice hearts. Furthermore, As(III) increased sEH protein expression and activity in hearts with a consequent decrease in 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs) formation. Whereas the formation of 8,9-, 11,12-, 14,15-dihydroxyeicosatrienoic acids (DHETs) was significantly increased. As(III) also increased sEH mRNA and protein expression levels in addition to the hypertrophic markers which was reversed by knockdown of sEH in H9c2 cells. In conclusion, acute As(III) toxicity alters the expression of several P450s and sEH enzymes with a consequent decrease in the cardioprotective EETs which may represent a novel mechanism by which As(III) causes progressive cardiotoxicity. Furthermore, inhibiting sEH might represent a novel therapeutic approach to prevent As(III)-induced hypertrophy.
Collapse
Affiliation(s)
- Anwar Anwar-Mohamed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
6
|
Anwar-Mohamed A, Abdelhamid G, Amara IEA, El-Kadi AOS. Differential modulation of aryl hydrocarbon receptor regulated enzymes by arsenite in the kidney, lung, and heart of C57BL/6 mice. Arch Toxicol 2012; 86:897-910. [DOI: 10.1007/s00204-012-0855-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
|
7
|
Kopec AK, Burgoon LD, Ibrahim-Aibo D, Burg AR, Lee AW, Tashiro C, Potter D, Sharratt B, Harkema JR, Rowlands JC, Budinsky RA, Zacharewski TR. Automated dose-response analysis and comparative toxicogenomic evaluation of the hepatic effects elicited by TCDD, TCDF, and PCB126 in C57BL/6 mice. Toxicol Sci 2010; 118:286-97. [PMID: 20702594 DOI: 10.1093/toxsci/kfq236] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The toxic equivalency factor (TEF) approach recommended by the World Health Organization is used to quantify dioxin-like exposure concentrations for mixtures of polychlorinated dibenzo-dioxins, -furans, and polychlorinated biphenyls (PCBs), including 2,3,7,8-tetrachlorodibenzofuran (TCDF) and 3,3',4,4',5-pentachlorobiphenyl (PCB126) relative to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Whole-genome microarrays were used to evaluate the hepatic gene expression potency of TCDF and PCB126 relative to TCDD with complementary histopathology, tissue level analysis, and ethoxyresorufin-O-deethylase (EROD) assay results. Immature ovariectomized C57BL/6 mice were gavaged with 0.001, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, and 300 μg/kg TCDD and TEF-adjusted doses (TEF for TCDF and PCB126 is 0.1) of TCDF or PCB126 (1, 3, 10, 30, 100, 300, 1000, and 3000 μg/kg of TCDF or PCB126) or sesame oil vehicle and sacrificed 24 h post dose. In general, TCDD, TCDF, and PCB126 tissue levels, as well as histopathological effects, were comparable when comparing TEF-adjusted doses. Automated dose-response modeling (ToxResponse Modeler) of the microarray data identified 210 TCDF and 40 PCB126 genes that exhibited sigmoidal dose-response curves with comparable slopes when compared with TCDD. These similar responses were used to calculate a median TCDF gene expression relative potency (REP) of 0.06 and a median PCB126 gene expression REP of 0.02. REPs of 0.02 were also calculated for EROD induction for both compounds. Collectively, these data suggest that differences in the ability of the liganded aryl hydrocarbon receptor:AhR nuclear translocator complex to elicit differential hepatic gene expression, in addition to pharmacokinetic differences between ligands, influence their potency in immature ovariectomized C57BL/6 mice.
Collapse
Affiliation(s)
- Anna K Kopec
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Oskam IC, Ropstad E, Smith AJ, Skaare JU, Tverdal A, Berg KA, Wiger R. Effects of PCB99 and PCB153 exposure on spermatogenesis in young adult C57BL6 mice. Reprod Toxicol 2005; 19:169-80. [PMID: 15501382 DOI: 10.1016/j.reprotox.2004.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 07/12/2004] [Accepted: 07/19/2004] [Indexed: 10/26/2022]
Abstract
This study examined the effects of acute exposure to PCB99 (2,2',4,4',5-pentachlorobiphenyl), and PCB153 (2,2',4,4'5,5'-hexachlorobiphenyl), on spermatogenesis in 8-week-old C57BL6 mice. The mice were randomly allocated to PCB99 and PCB153 and a single dose of respectively 10 and 100 mg/kg was given by oral gavage. During the 6-week experiment, six mice per treatment group were sacrificed weekly, body weights were recorded and samples with respect to the male reproductive system were collected until further analysis. None of the treatments, showed changes in body weight or reproductive endpoints. Flow cytometric analysis revealed spermatogenesis to be unaffected. However, PCB99 and PCB153 showed a significant increase in Leydig cell apoptosis. The results from the present study indicate that the male reproductive system is relatively refractory to PCB99 and PCB153 at levels exceeding those of wildlife and humans, when exposed during adult life. However, the finding of apoptotic Leydig cells merits further investigation.
Collapse
Affiliation(s)
- Irma C Oskam
- Department of Production Animal Clinical Science, Norwegian School of Veterinary Science, P.O. Box 8146, NO033 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
9
|
Brown DJ, Van Overmeire I, Goeyens L, Denison MS, De Vito MJ, Clark GC. Analysis of Ah receptor pathway activation by brominated flame retardants. CHEMOSPHERE 2004; 55:1509-1518. [PMID: 15099731 DOI: 10.1016/j.chemosphere.2003.10.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2002] [Revised: 07/15/2003] [Accepted: 10/10/2003] [Indexed: 05/24/2023]
Abstract
Brominated flame-retardants (BFRs) are used as additives in plastics to decrease the rate of combustion of these materials, leading to greater consumer safety. As the use of plastics has increased, the production and use of flame-retardants has also grown. Many BFRs are persistent and have been detected in environmental samples, raising concerns about the biological/toxicological risk associated with their use. Most BFRs appear to be non-toxic, however there is still some concern that these compounds, or possible contaminants in BFRs mixtures could interact with cellular receptors. In this study we have examined the interaction of decabromodiphenyl ether, Firemaster BP4A (tetrabromobisphenol A), Firemaster PHT4 (tetrabromophthalic anhydride), hexabromobenzene, pentabromotoluene, decabromobiphenyl, Firemaster BP-6 (2,2',4,4',5,5'-hexabromobiphenyl) and possible contaminants of BFR mixtures with the Ah receptor. Receptor binding and activation was examined using the Gel Retardation Assay and increased expression of dioxin responsive genes was detected using the reporter gene based CALUX assay. The results demonstrate the ability of BFRs to activate the AhR signal transduction pathway at moderate to high concentrations as assessed using both assays. AhR-dependent activation by BFRs may be due in part to contaminants present in commercial/technical mixtures. This was suggested by our comparative analysis of Firemaster BP-6 versus its primary component 2,2',4,4',5,5'-hexabromobiphenyl. Some technical mixtures of brominated flame-retardants contain brominated biphenyls, dioxins or dibenzofurans as contaminants. When tested in the CALUX assay these compounds were found to be equivalent to, or more active than their chlorinated analogues. Relative effective potency values were determined from dose response curves for these brominated HAHs.
Collapse
Affiliation(s)
- David J Brown
- Xenobiotic Detection Systems Inc., 1601 East Geer Street, Suite S, Durham, NC 27704, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Riddick DS, Lee C, Bhathena A, Timsit YE. The 2001 Veylien Henderson Award of the Society of Toxicology of Canada. Positive and negative transcriptional regulation of cytochromes P450 by polycyclic aromatic hydrocarbons. Can J Physiol Pharmacol 2003; 81:59-77. [PMID: 12665258 DOI: 10.1139/y03-003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Most responses to aromatic hydrocarbons such as 3-methylcholanthrene (MC) and 2,3,7,8-tetrachlorodibenzo-p-dioxin are mediated by the aromatic hydrocarbon receptor (AHR). The AHR regulates induction of drug-metabolizing enzymes such as cytochrome P450 1A1. However, the expression of several genes of biological significance is decreased by these chemicals. We are examining the mechanisms by which aromatic hydrocarbons suppress constitutive hepatic cytochromes P450, especially the male-specific rat liver cytochrome P450 2C11 (CYP2C11), which is regulated by pulsatile growth hormone (GH) secretion. Aromatic hydrocarbons suppress CYP2C11 via a transcriptional mechanism both in vivo and in cultured hepatocytes, and the AHR appears to be involved; however, studies of protein-DNA interactions and reporter genes driven by the CYP2C11 5'-flanking region have not provided a definitive mechanism for this response. MC attenuates the ability of GH to stimulate hepatic CYP2C11 expression in hypophysectomized (hypx) male rats, and this prompted studies of effects of aromatic hydrocarbons on hepatic GH signaling pathways as a novel aspect of endocrine disruption. Our studies with hypx rats also suggest that the hepatic AHR protein is regulated by a pituitary factor(s). The goal of these molecular mechanistic studies is to improve our understanding of how environmental contaminants modulate the expression of genes coding for xenobiotic- and hormone-metabolizing enzymes.
Collapse
Affiliation(s)
- David S Riddick
- Department of Pharmacology, Medical Sciences Building, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | | | | | | |
Collapse
|
11
|
Seubert JM, Webb CD, Bend JR. Acute sodium arsenite treatment induces Cyp2a5 but not Cyp1a1 in the C57Bl/6 mouse in a tissue (kidney) selective manner. J Biochem Mol Toxicol 2002; 16:96-106. [PMID: 11979426 DOI: 10.1002/jbt.10023] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Modulation of hepatic and extrahepatic detoxication enzymes Cyp1a1, Cyp2a5, glutathione S-transferse Ya (GSTYa) and NAD(P)H:quinone oxidoreductase (QOR) dependent catalytic activity and mRNA levels were investigated at 1, 2, or 4 days in liver, lung, or kidney of male, adult CD57 Bl/6 mice treated sc with a single dose (85 micromol/kg) of sodium arsenite (As3+). Maximum decreases of total hepatic cytochrome P450 (CYP) monooxygenase content and catalytic activities, occurring at 24 h, corresponded with maximum increases of heme oxygenase (HO-1) in all tissues, as well as maximum plasma total bilirubin. Extrahepatic increases in CYP were observed only in non-AHR dependent isozymes in the kidney, where both Cyp2a5 mRNA and catalytic activity increased maximally 24 h after treatment. In contrast, no significant changes in Cyp2b1/2-dependent PROD or mRNA activity and decreases in Cyp1a1-dependent-EROD activity were noted 1, 2, or 4 days after treatment. Increases in QOR catalytic activities were observed in all tissues examined with increased mRNA in kidney. On the other hand, GSTYa catalytic activity and mRNA increases were only detected in kidney. This study demonstrates the differential modulation of CYP, QOR, and GST-Ya, important drug metabolizing enzymes after acute As3+ administration. The induction of Cyp2a5, QOR, and GSTYa catalytic activity and gene expression occurred primarily in kidney during or shortly after conditions of oxidant stress.
Collapse
Affiliation(s)
- John M Seubert
- Department of Pharmacology and Toxicology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | |
Collapse
|
12
|
Timsit YE, Riddick DS. Stimulation of hepatic signal transducer and activator of transcription 5b by GH is not altered by 3-methylcholanthrene. Endocrinology 2002; 143:3284-94. [PMID: 12193540 DOI: 10.1210/en.2002-220212] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We are investigating the mechanisms by which aromatic hydrocarbons, such as 3-methylcholanthrene (MC), suppress hepatic cytochrome P450 2C11 (CYP2C11) gene expression. CYP2C11 is an enzyme expressed in the liver of male rats and is regulated by a pulsatile pattern of GH secretion. We have previously shown that MC attenuates the stimulatory effect of GH on CYP2C11 expression in hypophysectomized male rats. In follow-up studies we evaluated the effect of MC on GH-stimulated signal transducer and activator of transcription 5b (STAT5b) phosphorylation, nuclear translocation, and DNA-binding activity. GH-stimulated increases in hepatic nuclear STAT5b and phospho-STAT5b levels were not different between groups of hypophysectomized rats receiving MC or vehicle. This observation was corroborated at the DNA-binding level by EMSA. We also measured GH-induced STAT5b activation in the H4IIE rat hepatoma cell line. STAT5b DNA-binding activity detected in GH-treated cells was not affected by MC. Immunocytochemistry experiments revealed no effect of MC on GH-stimulated STAT5b nuclear translocation in H4IIE cells. These in vivo and in vitro data suggest that interference with GH-stimulated STAT5b activation does not constitute a mechanism by which MC attenuates the stimulatory effect of GH on CYP2C11 gene expression.
Collapse
Affiliation(s)
- Yoav E Timsit
- Department of Pharmacology, Medical Sciences Building, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | |
Collapse
|
13
|
Abstract
Members of the nuclear-receptor superfamily mediate crucial physiological functions by regulating the synthesis of their target genes. Nuclear receptors are usually activated by ligand binding. Cytochrome P450 (CYP) isoforms often catalyse both formation and degradation of these ligands. CYPs also metabolize many exogenous compounds, some of which may act as activators of nuclear receptors and disruptors of endocrine and cellular homoeostasis. This review summarizes recent findings that indicate that major classes of CYP genes are selectively regulated by certain ligand-activated nuclear receptors, thus creating tightly controlled networks.
Collapse
|
14
|
Baccarelli A, Pesatori AC, Bertazzi PA. Occupational and environmental agents as endocrine disruptors: experimental and human evidence. J Endocrinol Invest 2000; 23:771-81. [PMID: 11194713 DOI: 10.1007/bf03345069] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the last few years great concern has arisen from the description of adverse endocrine effects of several occupational and environmental chemical agents on human and/or wildlife health. Such agents may exert their effects directly, specifically binding to hormone receptors, and/or indirectly, by altering the structure of endocrine glands and/or synthesis, release, transport, metabolism or action of endogenous hormones. Many studies have been focused on the outcomes of the exposure to those chemicals mimicking estrogenic or androgenic actions. Nonetheless, the disruption of other hormonal pathways is not negligible. This paper reviews the experimental and human evidence of the effects of occupational and environmental chemical agents on hypothalamus-pituitary unit, pineal gland, parathyroid and calcium metabolism and adrenal glands.
Collapse
Affiliation(s)
- A Baccarelli
- Institute of Endocrine Sciences, Ospedale Maggiore, IRCCS, and EPOCA Research Center for Occupational, Clinical and Environmental Epidemiology, University of Milan, Italy.
| | | | | |
Collapse
|
15
|
Lee C, Riddick DS. Transcriptional suppression of cytochrome P450 2C11 gene expression by 3-methylcholanthrene. Biochem Pharmacol 2000; 59:1417-23. [PMID: 10751551 DOI: 10.1016/s0006-2952(00)00249-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Aromatic hydrocarbon receptor-mediated transcriptional up-regulation of cytochrome P450 (CYP) enzymes of the CYP1A subfamily by polycyclic aromatic hydrocarbons (PAHs) such as 3-methylcholanthrene (MC) is accompanied by down-regulation of rat hepatic CYP2C11 expression at the catalytic activity, protein, and mRNA levels. To gain insight into the molecular mechanism of this CYP2C11 suppression response, we have used a nuclear run-on assay to assess directly the effect of MC on the hepatic transcription rate of the CYP2C11 gene following in vivo administration of MC to adult male rats. A single intraperitoneal dose of MC (40 mg/kg) caused a 179-fold increase in the rate of CYP1A gene transcription at 6 hr, and the rate of CYP2C11 gene transcription was reduced by 51% at this time point, compared with vehicle controls. By 48 hr after MC treatment, the rates of CYP1A and CYP2C11 gene transcription were no longer significantly different from the corresponding vehicle controls. These results indicate for the first time that the suppression of hepatic CYP2C11 caused by in vivo administration of PAHs to adult male rats is at least partially due to a decrease in the rate of transcription of the CYP2C11 gene.
Collapse
Affiliation(s)
- C Lee
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
16
|
Abstract
Members of the nuclear-receptor superfamily mediate crucial physiological functions by regulating the synthesis of their target genes. Nuclear receptors are usually activated by ligand binding. Cytochrome P450 (CYP) isoforms often catalyse both formation and degradation of these ligands. CYPs also metabolize many exogenous compounds, some of which may act as activators of nuclear receptors and disruptors of endocrine and cellular homoeostasis. This review summarizes recent findings that indicate that major classes of CYP genes are selectively regulated by certain ligand-activated nuclear receptors, thus creating tightly controlled networks.
Collapse
Affiliation(s)
- P Honkakoski
- Department of Pharmaceutics, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | | |
Collapse
|
17
|
Birnbaum LS, Tuomisto J. Non-carcinogenic effects of TCDD in animals. FOOD ADDITIVES AND CONTAMINANTS 2000; 17:275-88. [PMID: 10912242 DOI: 10.1080/026520300283351] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Exposure to TCDD and related chemicals leads to a plethora of effects in multiple species, tissues, and stages of development. Responses range from relatively simple biochemical alterations through overtly toxic responses, including lethality. The spectrum of effects shows some species variability, but many effects are seen in multiple wildlife, domestic, and laboratory species, ranging from fish through birds and mammals. The same responses can be generated regardless of the route of exposure, although the administered dose may vary. The body burden appears to be the most appropriate dosimetric. Many of the effects often attributed to TCDD are associated with relatively high doses: lethality, wasting, lymphoid and gonadal atrophy, chloracne, hepatotoxicity, adult neurotoxicity, and cardiotoxicity. Changes in multiple endocrine and growth factor systems have been reported in a manner which is tissue, sex, and age-dependent. The most sensitive adverse effects observed in multiple species appear to be developmental, including effects on the developing immune, nervous, and reproductive systems. Such effects have been observed at maternal body burdens in the range of 30-80 ng/kg in both non-human primates and rodents. Biochemical effects on cytokine expression and metabolizing enzymes occur at body burdens which are within a factor of ten of the clearly adverse developmental responses. Thus, effects on the immune system, learning, and the developing reproductive system of multiple animals occur at body burdens which are close to those present in the background human population.
Collapse
Affiliation(s)
- L S Birnbaum
- National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, NC 27711-2055, USA
| | | |
Collapse
|
18
|
Timsit YE, Riddick DS. Interference with growth hormone stimulation of hepatic cytochrome P4502C11 expression in hypophysectomized male rats by 3-methylcholanthrene. Toxicol Appl Pharmacol 2000; 163:105-14. [PMID: 10698668 DOI: 10.1006/taap.1999.8862] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome P450 2C11 (CYP2C11) is a sexually dimorphic liver enzyme whose expression is regulated by the male pulsatile pattern of growth hormone (GH) secretion. Hepatic CYP2C11 expression is down-regulated by polycyclic aromatic hydrocarbons such as 3-methylcholanthrene (MC). An attractive hypothesis as to the mechanism of CYP2C11 down-regulation by aromatic hydrocarbons is the disruption of normal GH signaling by exposure to these compounds. To evaluate the effects of MC on the ability of GH to stimulate hepatic CYP2C11 expression, our approach was to employ GH replacement in male Fischer 344 rats made GH-deficient by hypophysectomy (hypx). Groups of hypx rats received the following treatments: vehicle; GH alone (twice daily, 125 microg/kg sc, days 1-6); MC alone (20 mg/kg gavage, days 1, 3, and 5); and both GH and MC. Rats were euthanized on day 7. As a positive control response, pronounced induction of hepatic CYP1A1 apoprotein was observed in all MC-treated rats. CYP2C11 expression in hypx rats receiving GH alone was increased at the mRNA, apoprotein, and catalytic activity (testosterone 16alpha-hydroxylation) levels, with mRNA and apoprotein levels approaching that of intact male rats. The inability of GH to fully restore CYP2C11 catalytic activity was attributed to the lowered NADPH-cytochrome P450 reductase apoprotein and catalytic activity observed in all hypx rats. CYP2C11 expression in hypx rats receiving both GH and MC was significantly lower at the mRNA, apoprotein, and catalytic activity levels than that observed in hypx rats treated with GH alone, but significantly higher at the mRNA, apoprotein, and catalytic activity levels than that observed in vehicle-treated hypx rats and in hypx rats treated with MC alone. These data suggest that MC interferes with the ability of GH to stimulate CYP2C11 expression. Thus, disruption of GH signaling by aromatic hydrocarbons may represent a mechanism contributing to the suppression of CYP2C11 gene expression.
Collapse
Affiliation(s)
- Y E Timsit
- Department of Pharmacology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | | |
Collapse
|
19
|
Stephanou P, Pappas P, Vasiliou V, Marselos M. Prepubertal regulation of the rat dioxin-inducible aldehyde dehydrogenase (ALDH3). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 463:143-50. [PMID: 10352679 DOI: 10.1007/978-1-4615-4735-8_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- P Stephanou
- Department of Pharmacology, Medical School, University of Ioannina, Greece
| | | | | | | |
Collapse
|
20
|
Reinhold J. HUTZ. Reproductive Endocrine Disruption by Environmental Xenobiotics that Modulate the Estrogen-Signaling Pathway, Particularly Tetrachlorodibenzo-p-dioxin (TCDD). J Reprod Dev 1999. [DOI: 10.1262/jrd.45.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- HUTZ Reinhold J.
- Department of Biological Sciences, NIEHS Marine and Freshwater Biomedical Sciences Center, University of Wisconsin-Milwaukee, Lapham Hall, Room 308, 3209 N. Maryland Avenue, Milwaukee, WI 53211-0413, USA
| |
Collapse
|
21
|
Navas JM, Segner H. Antiestrogenic activity of anthropogenic and natural chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 1998; 5:75-82. [PMID: 19005814 DOI: 10.1007/bf02986390] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/1997] [Accepted: 10/05/1997] [Indexed: 05/27/2023]
Abstract
A number of natural and man-made chemicals possess antiestrogenic activity, i.e. they antagonize a broad spectrum of estrogen-induced responses in vertebrates. Examples of antiestrogens include dioxin, furan and PCB congeners, certain PAHs, pesticides and indol-3-carbinol derivatives. Major mechanisms of anti-estrogenicity are antagonistic action of chemicals at the estrogen receptor, or binding of chemicals to the arylhydrocarbon (Ah) receptor and subsequent interaction with estrogen-responsive genes. Toxicological consequences resulting from antiestrogenic activity have not been conclusively demonstrated to date, although antiestrogenic compounds could critically affect sensitive reproductive and developmental processes.
Collapse
Affiliation(s)
- J M Navas
- Department of Chemical Ecotoxicology, UFZ Centre for Environmental Research, Permoserstr. 15, D-04318, Leipzig, Germany
| | | |
Collapse
|
22
|
Geyer HJ, Schramm KW, Scheunert I, Schughart K, Buters J, Wurst W, Greim H, Kluge R, Steinberg CE, Kettrup A, Madhukar B, Olson JR, Gallo MA. Considerations on genetic and environmental factors that contribute to resistance or sensitivity of mammals including humans to toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Part 1: Genetic factors affecting the toxicity of TCDD. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 1997; 36:213-230. [PMID: 9143450 DOI: 10.1006/eesa.1996.1502] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The marked species differences in short-term toxicity (30-day LD50) of ca. 10,000 (LD50: guinea pigs ca. 1 microgram/kg body wt and Han/Wistar Kuopio rats more than 9600 micrograms/kg body wt) of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is one of the central issues of the controversies that have developed on the validity of risk assessment strategies for TCDD and related compounds. One of the most challenging issues that toxicologists face today is the identification of genes that contribute to or are responsible for increased resistance or sensitivity to TCDD and related compounds. It is assumed that most, if not all, toxic effects of TCDD are mediated more or less through the binding affinity to the Ah receptor. This hypothesis was extended and tries to explain the differences in sensitivity/resistance of animals including humans to TCDD by their total fat (lipid) content. In this respect the gene or genes which is or are responsible for obesity of mammals including humans are of great interest. An obvious linear positive logarithmic relationship between the oral 30-day LD50 (microgram/kg) of TCDD in different species and strains of mammals and their total body fat content (TBF%) was found: log LD50 = 5.30 x log (TBF)-3.22, or LD50 = 0.000603 x (TBF)5.30. By means of this regression the toxicity of TCDD in mammals including humans of different age and/or body weight can be predicted if their total body fat content is known. Examples of single-gene and polygenic disease models in different mammals, such as nonobese diabetic, diabetic, viable yellow, obese, and fat mice, as well as transgenic mice, and other suitable animal models, such as fatty Zucker rats, Han/Wistar (Kuopio) rats, and minipigs, are discussed, and predicted LD50 values of TCDD in these animals and humans are presented.
Collapse
Affiliation(s)
- H J Geyer
- Institute of Ecological Chemistry, GSF-National Research Center for Environment and Health, Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Safa B, Lee C, Riddick DS. Role of the aromatic hydrocarbon receptor in the suppression of cytochrome P-450 2C11 by polycyclic aromatic hydrocarbons. Toxicol Lett 1997; 90:163-75. [PMID: 9067484 DOI: 10.1016/s0378-4274(96)03843-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The aromatic hydrocarbon (AH) receptor mediates the induction of cytochromes P-450 (CYP) of the CYP1A subfamily caused by polycyclic aromatic hydrocarbons (PAHs). CYP1A induction by PAHs is accompanied by down-regulation of CYP2C11, the predominant CYP expressed constitutively in the liver of male rats. We performed a structure-activity relationship study with a series of PAHs of the anthracene class in order to determine if the AH receptor is involved in CYP2C11 down-regulation. Anthracene, benz[a]anthracene, dibenz[a,c]anthracene, dibenz[a,h]anthracene, 7,12-dimethylbenz[a]anthracene, as well as 2,3,7,8-tetrachlorodibenzo-p-dioxin and 3-methylcholanthrene decreased CYP2C11 immunoreactive protein levels to varying degrees in primary rat hepatocytes cultured on a laminin-rich extracellular matrix. The binding affinity of the PAHs for the rat liver cytosolic AH receptor correlated with the potency for transforming the cytosolic AH receptor to its DNA-binding form. In addition, the ability of the PAHs to suppress CYP2C11 correlated with both the AH receptor binding affinity and the AH receptor transformation potency. These results suggest that the AH receptor plays a role in the down-regulation of CYP2C11 caused by PAHs.
Collapse
Affiliation(s)
- B Safa
- Department of Pharmacology, University of Toronto, Ont., Canada
| | | | | |
Collapse
|
24
|
|
25
|
Jones EJ, Riddick DS. Regulation of constitutive rat hepatic cytochromes P450 by 3-methylcholanthrene. Xenobiotica 1996; 26:995-1012. [PMID: 8905915 DOI: 10.3109/00498259609167418] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
1. Induction of cytochrome P450 (CYP) enzymes of the CYP1A subfamily by aromatic hydrocarbons such as 3-methylcholanthrene (MC) is accompanied by down-regulation of other CYPs that are expressed constitutively in rat liver. 2. We examined the time-course of the effects of MC on the expression of CYP2C11 and 3A2 in the liver of male rats at the catalytic activity, apoprotein and mRNA levels. 3. A single intraperitoneal dose of MC (50 mg/kg) caused an increase in total hepatic microsomal CYP and haem content, and a marked induction of CYP1A1 catalytic activity (7-ethoxyresorufin O-deethylase) and apoprotein. The activity of NADPH-cytochrome P450 reductase was not altered. 4. MC treatment decreased CYP2C11 and 3A catalytic activity (testosterone 16 alpha- and 6 beta-hydroxylase respectively) and apoprotein, and there was a trend for suppression of 2C11 and 3A2 mRNA. Following this initial down-regulation, CYP2C11 catalytic activity and 3A catalytic activity and apoprotein were elevated above control levels. Although CYP2C11 and 3A2 mRNA levels showed a similar trend, these effects did not achieve statistical significance. 5. CYP2C11 and 3A2 appear to be regulated by MC at a pre-translational level. CYP2C11 suppression will serve as a valuable model for study on the mechanisms by which aromatic hydrocarbons act to negatively influence gene expression.
Collapse
Affiliation(s)
- E J Jones
- Department of Pharmacology, University of Toronto, Ontario, Canada
| | | |
Collapse
|
26
|
Lai ZW, Pineau T, Esser C. Identification of dioxin-responsive elements (DREs) in the 5' regions of putative dioxin-inducible genes. Chem Biol Interact 1996; 100:97-112. [PMID: 8646792 DOI: 10.1016/0009-2797(96)03691-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an exogenous ligand for the cytosolic aryl hydrocarbon receptor (AhR), a ligand-inducible transcription factor whose exact physiological role remains elusive. TCDD has been shown to modulate the expression of a large array of genes, albeit often indirectly, by demonstration of protein or mRNA upregulation. Here, by computer analysis of available promoter sequences, we identify dioxin-responsive elements in the promoter regions of many putative AhR regulated and therefore dioxin-inducible genes.
Collapse
Affiliation(s)
- Z W Lai
- Institue of Environmental Hygiene, University of Düsseldorf, Germany
| | | | | |
Collapse
|
27
|
Gierthy JF, Spink BC, Figge HL, Pentecost BT, Spink DC. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin, 12-O-tetradecanoylphorbol-13-acetate and 17 beta-estradiol on estrogen receptor regulation in MCF-7 human breast cancer cells. J Cell Biochem 1996; 60:173-84. [PMID: 8655628 DOI: 10.1002/(sici)1097-4644(19960201)60:2<173::aid-jcb2>3.0.co;2-u] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) exhibits remarkably potent antiestrogenic activity. To further elucidate the role of estrogen receptor (ER) regulation in this response, we examined the effects of exposure to TCDD in MCF-7 human breast cancer cells on ER mRNA levels by using an RNase protection assay, on ER accumulation by using an ER immunocytochemical essay (ER-ICA), and on ER function by competitive binding assays under conditions of saturating 17 beta-estradiol (E2). Comparative studies were conducted with E2 and 12-O-tetradecanoylphorbol-13-acetate (TPA), as both compounds are known to suppress ER expression. Our results indicate that 1 nM E2 and 100 nM TPA both suppress ER mRNA levels as early as 4 h after exposure and to 33.6% and 16.5% of control levels, respectively, after 72 h. In contrast, no significant effect on ER mRNA levels was attributed to exposure to 10 nM TCDD. A greater than 50% reduction in positive staining was observed by ER-ICA after 72 h exposure to 1 nM E2 and to 100 nM TPA, while only an 11% reduction in positive staining was observed with 10 nM TCDD. Specific binding of [3H]E2 under saturating conditions (10 nM E2) in whole cells was reduced by 50% in cultures exposed to 100 nM TPA, although no effect on binding was observed with exposure to 10 nM TCDD. In contrast, specific binding using subsaturating 1 nM [3H]E2 was depressed by 49% in MCF-7 cells exposed to 10 nM TCDD for 72 h. This depression was inhibited by a 1-h treatment with 5 microM alpha-naphthoflavone, which inhibits TCDD-induced, P450-mediated, E2 metabolism, and subsequent E2 depletion. In conclusion, while TPA and E2 effectively down-regulate ER expression, TCDD, under antiestrogenic conditions, has little if any effect on total ER levels in MCF-7 cells, and thus ER modulation is probably not necessary for the suppression of estrogenic activity in MCF-7 cells by TCDD.
Collapse
Affiliation(s)
- J F Gierthy
- Wadsworth Center, New York State Department of Health, Albany 12201-0509, USA
| | | | | | | | | |
Collapse
|
28
|
Whysner J, Williams GM. 2,3,7,8-Tetrachlorodibenzo-p-dioxin mechanistic data and risk assessment: gene regulation, cytotoxicity, enhanced cell proliferation, and tumor promotion. Pharmacol Ther 1996; 71:193-223. [PMID: 8910955 DOI: 10.1016/0163-7258(96)00068-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been found to cause several tumor types in rodents, but TCDD has not been proven to cause cancer in humans, although there have been reported associations. TCDD does not bind to DNA, and indirect tests for DNA damage have been mostly negative. Tumorigenicity by TCDD in rodents has been linked to cellular necrosis, enhanced cell proliferation and tumor promotion. TCDD binds to the Ah receptor, which induces CYP1A1. This binding may be involved in tumorigenicity in rodents; however, additional TCDD-induced toxic changes appear to be required. Biopersistence and organ distribution may play an important role in TCDD dosage extrapolation to humans, but these have not been adequately determined.
Collapse
Affiliation(s)
- J Whysner
- Toxicology and Risk Assessment Program, American Health Foundation, Valhalla, NY 10595-1599, USA
| | | |
Collapse
|
29
|
Abstract
Dioxins and related compounds are chlorinated aromatic hydrocarbons that are persistent in both environmental and biological samples. Many members of this class of compounds produce a similar spectrum of toxicity which is mediated by interaction with the Ah receptor. The toxic effects of these chemicals can best be described by their actions as growth dysregulators. Dioxins disrupt normal homeostatic processes that tightly regulate cellular growth and differentiation. Disruption in these processes produce a variety of toxicities and pathologies. The available data indicate that humans are sensitive to the toxic effects of these chemicals. Clearer definition of human responses and the body burdens associated with such effects requires more research. Comprehensive risk assessments of dioxins should include all Ah receptor ligands such as the halogenated dibenzofurans and biphenyls.
Collapse
Affiliation(s)
- M J DeVito
- Center for Environmental Medicine and Lung Biology, University of North Carolina at Chapel Hill 27599, USA
| | | |
Collapse
|
30
|
De Krey GK, Kerkvliet NI. Suppression of cytotoxic T lymphocyte activity by 2,3,7,8-tetrachlorodibenzo-p-dioxin occurs in vivo, but not in vitro, and is independent of corticosterone elevation. Toxicology 1995; 97:105-12. [PMID: 7716775 DOI: 10.1016/0300-483x(94)02929-o] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previous studies have shown that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a potent immunosuppressive compound. In our laboratory, TCDD and structurally related polychlorinated biphenyls (PCBs) have been shown to suppress alloantigen-specific cytotoxic T lymphocyte (CTL) activity in C57B1/6 mice. PCB-induced CTL suppression occurs coincident with significant elevation of plasma glucocorticoid (GC) levels (> 500 ng/ml). Since GC elevation can cause immune suppression, this study was conducted to determine if TCDD-induced CTL suppression is correlated with elevation of plasma corticosterone (CS), the major GC in mice. Single oral doses of TCDD (2.5-40 micrograms/kg) induced a dose-dependent suppression of CTL activity with a calculated 50% immunosuppressive dose (ID50) occurring at 7.2 micrograms/kg. When total lytic units (LU)/spleen were calculated, the ID50 was 2.8 micrograms/kg. In contrast, plasma CS levels were not significantly altered at doses below 40 micrograms/kg. These data suggest that TCDD-induced CTL suppression is not dependent on CS elevation. The direct effect of TCDD on CTL generation was tested by adding TCDD at 10(-13)-10(-9) M to in vitro mixed lymphocyte-tumor cell (MLTC) cultures. No alteration of CTL activity was observed after 5 days of culture at any TCDD concentration. In contrast, CS alone significantly suppressed CTL activity in vitro. CS-induced CTL suppression in vitro was neither enhanced nor inhibited by the presence of TCDD. These results suggest that TCDD causes CTL suppression in vivo by a mechanism that does not involve CS.
Collapse
Affiliation(s)
- G K De Krey
- Department of Agricultural Chemistry, Oregon State University, Corvallis 97331, USA
| | | |
Collapse
|
31
|
Safe SH. Modulation of gene expression and endocrine response pathways by 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds. Pharmacol Ther 1995; 67:247-81. [PMID: 7494865 DOI: 10.1016/0163-7258(95)00017-b] [Citation(s) in RCA: 221] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aryl hydrocarbon (Ah) receptor binds several different structural classes of chemicals, including halogenated aromatics, typified by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), polynuclear aromatic and heteropolynuclear aromatic hydrocarbons. TCDD induces expression of several genes including CYP1A1, and molecular biology studies show that the Ah receptor acts as a nuclear ligand-induced transcription factor that interacts with xenobiotic or dioxin responsive elements located in 5'-flanking regions of responsive genes. TCDD also elicits diverse toxic effects, modulates endocrine pathways and inhibits a broad spectrum of estrogen (17 beta-estradiol)-induced responses in rodents and human breast cancer cell lines. Molecular biology studies show that TCDD inhibited 17 beta-estradiol-induced cathepsin D gene expression by targeted interaction of the nuclear Ah receptor with imperfect dioxin responsive elements strategically located within the estrogen receptor-Sp1 enhancer sequence of this gene.
Collapse
Affiliation(s)
- S H Safe
- Texas A&M University, College Station 77843-4466, USA
| |
Collapse
|
32
|
Okey AB, Riddick DS, Harper PA. Ah receptor role in TCDD toxicity: still some mysteries but no myth--a reply to the commentary by Dr. L.W.D. Weber and Dr. B.U. Stahl. Toxicol Lett 1995; 75:249-54. [PMID: 7863534 DOI: 10.1016/0378-4274(95)91923-i] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- A B Okey
- Department of Pharmacology, Faculty of Medicine, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
33
|
Ahlborg UG, Lipworth L, Titus-Ernstoff L, Hsieh CC, Hanberg A, Baron J, Trichopoulos D, Adami HO. Organochlorine compounds in relation to breast cancer, endometrial cancer, and endometriosis: an assessment of the biological and epidemiological evidence. Crit Rev Toxicol 1995; 25:463-531. [PMID: 8611187 DOI: 10.3109/10408449509017924] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
There is an increasing public and scientific concern that certain chlorinated compounds, recognized as environmental pollutants, may cause estrogen-related neoplastic disease in humans. The main hypothesis has been that certain organochlorines, through their estrogenic actions, might cause breast cancer. From experimental studies, both in vitro and in vivo, there is evidence that certain organochlorine compounds may cause estrogenic effects, whereas others may cause antiestrogenic effects. In limited studies, some of these compounds in high doses have also been shown to increase and reduce the frequency of estrogen-related tumors in animals. The epidemiological findings regarding the association between organochlorines and breast cancer are inconclusive. However, the largest and best designed study has been interpreted as negative with respect to DDT and polychlorinated biphenyls (PCB) in relation to breast cancer. Associations between organochlorine exposure and endometrial cancer or endometriosis have even more limited empirical basis. The hypothesis that human exposure to environmental levels or organochlorines would favor an estrogenic overactivity leading to an increase in estrogen-dependent formation of mammary or endometrial tumors is not supported by the existing in vitro, animal and epidemiological evidence. It can, however, not be conclusively rejected on the basis of available data.
Collapse
Affiliation(s)
- U G Ahlborg
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Weber LW, Palmer CD, Rozman K. Reduced activity of tryptophan 2,3-dioxygenase in the liver of rats treated with chlorinated dibenzo-p-dioxins (CDDs): dose-responses and structure-activity relationship. Toxicology 1994; 86:63-9. [PMID: 7907825 DOI: 10.1016/0300-483x(94)90053-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The activity of tryptophan 2,3-dioxygenase (TdO) was measured in the livers of male Sprague-Dawley rats after acutely toxic doses (LD20-LD80) of chlorinated dibenzo-p-dioxins (CDDs) with 4 of the up to 7 chlorine substituents occupying the 2,3,7,8-positions. Treatment with toxic doses of CDDs results in voluntary feed refusal of rats. A corresponding involuntary reduction of feed intake in naive animals (pair-feeding) causes elevated levels of TdO activity. In the CDD treated rats, however, TdO activities were dose-dependently reduced. An LD80 reduced TdO activity to about 50% of the level found in the corresponding pair-fed animals. This decrease of TdO activity explains the dose-dependent increase of serum tryptophan, which in turn is the likely cause of voluntary feed refusal observed in CDD-treated rats. The activity of another enzyme which is regulated in a fashion very similar to that of TdO, viz., tyrosine aminotransferase (TAT), was consistently, but not dose-dependently, affected by treatment with CDDs.
Collapse
Affiliation(s)
- L W Weber
- Section of Environmental Toxicology, GSF--Institut für Toxikologie, Neuherberg, Germany
| | | | | |
Collapse
|
35
|
Lucier G, Clark G, Hiermath C, Tritscher A, Sewall C, Huff J. Carcinogenicity of TCDD in laboratory animals: implications for risk assessment. Toxicol Ind Health 1993; 9:631-68. [PMID: 8296316 DOI: 10.1177/074823379300900406] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- G Lucier
- Laboratory of Biochemical Risk Analysis, N.I.E.H.S., Research Triangle Park, NC 27709
| | | | | | | | | | | |
Collapse
|
36
|
Stahl BU, Beer DG, Weber LW, Rozman K. Reduction of hepatic phosphoenolpyruvate carboxykinase (PEPCK) activity by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is due to decreased mRNA levels. Toxicology 1993; 79:81-95. [PMID: 8475501 DOI: 10.1016/0300-483x(93)90207-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have previously shown that the rate of hepatic gluconeogenesis is reduced in TCDD-treated rats and that this decrease in carbohydrate production is associated with a dose-dependent reduction of the activity of PEPCK, the rate limiting enzyme of gluconeogenesis. This derailment of glucose metabolism has been suggested to be the critical lesion in acute TCDD toxicity. To further elucidate the mechanism of decreased PEPCK activity we performed Northern blot analyses using a cDNA probe complementary to a portion of the mRNA coding for PEPCK. We have demonstrated that 4 and 8 days after TCDD treatment (125 micrograms/kg, p.o.) liver PEPCK mRNA in Sprague-Dawley rats was decreased to very low levels as compared to vehicle-treated and pair-fed control animals. This decline of PEPCK mRNA was paralleled by decreased levels of PEPCK protein, as revealed by Western blot analyses and was accompanied by a reduction in the enzymatic activity of PEPCK. These results indicate that the decrease of PEPCK activity by TCDD is most likely the result of decreased expression of the PEPCK gene. These together with previous results also suggest that many of the physiological responses occurring in TCDD-treated animals (reduced feed intake, decreased insulin, increased corticosterone, increased glucagon and cAMP levels) which would normally stimulate PEPCK gene expression, are ineffective. Furthermore tryptophan 2,3-dioxygenase (TdO) activity, which is regulated in a very similar fashion to PEPCK activity, is also reduced after TCDD treatment, suggesting a common mechanism by which TCDD alters the regulation of these enzymes. P-450 1A1 mRNA and related EROD activity were maximally induced under the conditions of these experiments and represent a positive control for TCDD-related alterations of gene expression. However, because of differences in the dose-response characteristics of TCDD-induced reduction of PEPCK activity and induction of EROD activity an involvement of the Ah receptor in the reduction of PEPCK activity cannot be postulated.
Collapse
Affiliation(s)
- B U Stahl
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City 66160-7417
| | | | | | | |
Collapse
|
37
|
Peterson RE, Theobald HM, Kimmel GL. Developmental and reproductive toxicity of dioxins and related compounds: cross-species comparisons. Crit Rev Toxicol 1993; 23:283-335. [PMID: 8260069 DOI: 10.3109/10408449309105013] [Citation(s) in RCA: 390] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Developmental toxicity to TCDD-like congeners in fish, birds, and mammals, and reproductive toxicity in mammals are reviewed. In fish and bird species, the developmental lesions observed are species dependent, but any given species responds similarly to different TCDD-like congeners. Developmental toxicity in fish resembles "blue sac disease," whereas structural malformations can occur in at least one bird species. In mammals, developmental toxicity includes decreased growth, structural malformations, functional alterations, and prenatal mortality. At relatively low exposure levels, structural malformations are not common in mammalian species. In contrast, functional alterations are the most sensitive signs of developmental toxicity. These include effects on the male reproductive system and male reproductive behavior in rats, and neurobehavioral effects in monkeys. Human infants exposed during the Yusho and Yu-Cheng episodes, and monkeys and mice exposed perinatally to TCDD developed an ectodermal dysplasia syndrome that includes toxicity to the skin and teeth. Toxicity to the central nervous system in monkey and human infants is a potential part of the ectodermal dysplasia syndrome. Decreases in spermatogenesis and the ability to conceive and carry a pregnancy to term are the most sensitive signs of reproductive toxicity in male and female mammals, respectively.
Collapse
Affiliation(s)
- R E Peterson
- School of Pharmacy, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
38
|
Bock KW. Aryl hydrocarbon or dioxin receptor: biologic and toxic responses. Rev Physiol Biochem Pharmacol 1993; 125:1-42. [PMID: 7984872 DOI: 10.1007/bfb0030908] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1. The AhR represents a ligand-activated transcription factor. Receptor agonists include planar aromatic compounds, a variety of heterocyclic plant constituents, and PCDD/PCDF. The latter lead to persistent activation of the receptor due to their strong binding affinity and long biologic half-life of over 10 years in human blood and fat. Practically every person on earth is exposed to these compounds via the diet (> 90%) and by high concentrations in mother's milk. PCDD/PCDF produced toxic responses in exposed people (primarily chloracne and immunosuppression) in the past. However, the present PCDD/PCDF levels (basal levels) in the general population are below those warranting toxicologic concern. 2. The AhR has been characterized as a helix-loop-helix transcription factor related to the Drosophila developmental genes sim and per. The cytosolic form of the receptor is present as an inactive complex with two subunits of HSP90. After ligand binding HSP90 is released and the receptor enters the nucleus as a heterodimer together with a related protein ARNT. It binds with high affinity to certain enhancer elements in the upstream region of several genes such as cytochrome P4501A1 (CYP1A1). The AhR transcriptionally activates several drug-metabolizing enzymes and proteins involved in growth/differentiation, such as the plasminogen activator inhibitor PAI-2 and IL-1 beta. In addition, it modulates the action of a number of other nuclear transcription factors such as receptors of the steroid hormone receptor superfamily and of cell surface receptors such as EGF. With the exception of CYP1A1 induction, little is known about the mechanism of transcriptional activation of the AhR-controlled genes. Many AhR-modulated biologic responses (such as modulation of the estrogen and EGF receptor) appear to be indirect. 3. Persistent activation of the AhR is probably responsible for toxic responses in experimental animals and humans. They are markedly tissue and species specific. In rodents a wasting syndrome, immunosuppression, teratogenicity, chloracne, and carcinogenicity/tumor promotion have been well studied. There is good evidence for an involvement for the AhR in these responses. However, the chain of events from receptor activation to the diverse toxic endpoints is largely unknown. Alteration of growth and differentiation of epithelial tissues may underlie most of the toxic responses. A lot has already been achieved, mostly by characterizing the AhR and transcriptional activation of CYP1A1. Still more work lies ahead of us, for example, elucidation of the physiologic roles of the AhR and of the chains of events from receptor activation to the various biologic and toxic endpoints.
Collapse
Affiliation(s)
- K W Bock
- Institute of Toxicology, University of Tübingen, Germany
| |
Collapse
|
39
|
Karageorgou M, Papadimitriou C, Marselos M. Sexual differentiation in the induction of the class 3 aldehyde dehydrogenase. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 328:123-9. [PMID: 8493890 DOI: 10.1007/978-1-4615-2904-0_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- M Karageorgou
- Department of Pharmacology, Medical School, University of Ioannina, Greece
| | | | | |
Collapse
|
40
|
Taylor MJ, Lucier GW, Mahler JF, Thompson M, Lockhart AC, Clark GC. Inhibition of acute TCDD toxicity by treatment with anti-tumor necrosis factor antibody or dexamethasone. Toxicol Appl Pharmacol 1992; 117:126-32. [PMID: 1440607 DOI: 10.1016/0041-008x(92)90227-j] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) acute toxicity is characterized in part by a wasting syndrome with depletion of adipose tissue. Tumor necrosis factor (TNF) induces a similar response during chronic infection. The similarities of these toxic effects led to a hypothesis that TNF plays a role in TCDD acute toxicity. To test this hypothesis pharmacologic doses of an antibody specific for murine TNF and the potent anti-inflammatory agent Dexamethasone (DEX) were used to inhibit TCDD toxicity in mice. TNF antibody treatment resulted in a 54% reduction in TCDD-mediated mortality while DEX treatment, a glucocorticoid agonist that inhibits transcription of TNF, reduced mortality by 92%. Cyp 1A1 induction, the most commonly measured TCDD-mediated response, was not blocked by DEX, demonstrating separation of this biochemical effect from acute toxic responses to TCDD. These data suggest that TCDD-mediated changes in the TNF pathway may be an important mechanism for acute TCDD toxicity.
Collapse
Affiliation(s)
- M J Taylor
- Syntex Research, Palo Alto, California 94303
| | | | | | | | | | | |
Collapse
|
41
|
Clark G, Tritscher A, Bell D, Lucier G. Integrated approach for evaluating species and interindividual differences in responsiveness to dioxins and structural analogs. ENVIRONMENTAL HEALTH PERSPECTIVES 1992; 98:125-32. [PMID: 1336723 PMCID: PMC1519622 DOI: 10.1289/ehp.9298125] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitous environmental contaminant that is produced inadvertently during the synthesis of some organochlorine compounds, such as the chlorinated phenoxy pesticides. It is biologically and ecologically persistent, with an estimated half-life of 7 years in humans. It possesses high acute toxicity in rodents and is a carcinogen, teratogen, and immunotoxin. In chronic bioassays for carcinogenicity, TCDD at a dose of 10 ng/kg/day increases the incidence of liver tumors in female rats, making it one of the most potent animal carcinogens ever tested. A recent study in humans has shown an increase in the incidence of respiratory tract tumors in workers in chlorinated phenoxy herbicide plants. Considerable controversy and uncertainty remain, however, concerning its carcinogenic potency in humans and the reliability of using animal data to predict human risks. It is generally accepted that most, if not all, of the effects of TCDD require its binding to the Ah receptor. In addition to its toxic effects, TCDD produces a number of biochemical effects, such as induction of CYP1A1, downregulation of binding activity of the estrogen and epidermal growth factor (EGF) receptors, and changes in cytokine pathways. These effects suggest that the Ah receptor plays an important role in regulating the cell cycle. A number of structural analogs of TCDD, such as the polychlorinated dibenzofurans, also interact with the Ah receptor, and they produce the same spectrum of responses as TCDD in animal and cell models. The potency of these compounds is strongly correlated with their binding affinity to the Ah receptor.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G Clark
- Laboratory of Biochemical Risk Analysis, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | | | | | | |
Collapse
|
42
|
Abstract
A number of non-genotoxic chemical carcinogens can recognize specific intracellular proteins. These cellular targets include members of the nuclear receptor family of ligand-activated transcription factors. Some non-genotoxic carcinogens appear to mimic the action of hormones and growth factors and perturb signal transduction pathways. Their carcinogenic activity may therefore result from the persistent stimulation of such pathways, promoting the growth of initiated cells.
Collapse
Affiliation(s)
- S Green
- Imperial Chemical Industries PLC, Central Toxicology Laboratory, Macclesfield, Cheshire, UK
| |
Collapse
|
43
|
Paustenbach DJ, Wenning RJ, Lau V, Harrington NW, Rennix DK, Parsons AH. Recent developments on the hazards posed by 2,3,7,8-tetrachlorodibenzo-p-dioxin in soil: implications for setting risk-based cleanup levels at residential and industrial sites. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH 1992; 36:103-49. [PMID: 1608067 DOI: 10.1080/15287399209531628] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since the publication of the Times Beach risk assessment in 1984, which suggested that residential soils were of concern when the level of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was in excess of 1 ppb, there has been continued interest in this topic. Studies conducted within the past 5 yr on the environmental and toxicological behavior of TCDD, as well as refinement of parameters regarding human exposure, indicate that previous assessments of the risk to humans posed by TCDD-contaminated soil were overestimated. In this paper, recent information drawn from nearly 100 recently published articles regarding the histopathology interpretation of the Kociba bioassay, environmental fate and half-life of TCDD in soil, and estimates of human exposure via soil ingestion, dermal contact, inhalation, surface runoff, and the consumption of fish were incorporated into a risk assessment. Cleanup levels for TCDD in residential and industrial soils were calculated based on most likely exposure scenarios. Probability distributions of key exposure parameters were incorporated into a Monte Carlo uncertainty analysis to predict the range and probability of TCDD uptake and corresponding cleanup levels in soil. This analysis demonstrated that the most significant route of human exposure to TCDD is through dermal contact with soil, followed by soil ingestion, fish consumption, and inhalation of airborne particulates. At residential sites, soils containing 20 parts per billion (ppb) of TCDD were found to pose a lifetime cancer risk no greater than 1 in 100,000 (10(-5) risk) under typical exposure conditions. Based on the Monte Carlo analysis, soil concentrations for the 75th and 95th percentile person were 12 and 7 ppb (10(-5) risk), respectively. In industrial soils, TCDD concentrations ranged between 131 and 582 ppb (10(-5) risk), depending on the amount of time spent outdoors under typical exposure conditions. Industrial soil concentrations of approximately 93 and 46 ppb (10(-5) risk) were calculated for the 75th and 95th percentile worker, respectively, engaged in outdoor activities. The range of TCDD concentrations in industrial soils was not reduced significantly when the consumption of fish from a neighboring waterway by off-site receptors was considered. While cleanup levels for TCDD should be derived on a site-specific basis, this analysis indicated that soil cleanup standards can be generally higher than those implemented over the past 8 yr.
Collapse
|
44
|
DeVito MJ, Thomas T, Martin E, Umbreit TH, Gallo MA. Antiestrogenic action of 2,3,7,8-tetrachlorodibenzo-p-dioxin: tissue-specific regulation of estrogen receptor in CD1 mice. Toxicol Appl Pharmacol 1992; 113:284-92. [PMID: 1561637 DOI: 10.1016/0041-008x(92)90126-d] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a polychlorinated aromatic hydrocarbon with teratogenic and carcinogenic properties. Previous studies in our and other laboratories have demonstrated that TCDD has antiestrogenic properties. In order to elucidate the mechanism of action of TCDD on estrogen sensitive tissues, we studied its effects on serum estradiol and estrogen receptor (ER) levels in liver and uteri of CD1 mice. Treatment with TCDD did not result in alterations of serum estradiol levels at any of the doses tested (1.0-30 micrograms/kg). In contrast, TCDD treatment induced a dose-dependent decrease in hepatic and uterine ER protein as determined by an enzyme immunoassay and equilibrium binding assays. A decrease in cytosolic and nuclear ER levels in uteri occurred as early as 24 hr after initial treatment with 30 micrograms/kg TCDD and recovery occurred by 14 days. Hepatic cytosolic and nuclear ER also decreased at a dose of 30 micrograms/kg TCDD at 24 hr after treatment, but recovery occurred only by 21 days. Studies in ovariectomized mice indicate that the regulation of hepatic ER by TCDD is independent of ovarian factors, but ovariectomy inhibited the downregulation of uterine ER by TCDD. Furthermore, determination of TCDD-induced cytochrome P-450 levels indicates that the downregulation of uterine ER is uncoupled from induction of hepatic cytochrome P-450. This study indicates that the antiestrogenic effects of low doses of TCDD are mediated through its ability to decrease hepatic and uterine ER and are not due to alterations in serum estradiol levels. Our results on ovariectomized mice indicate that TCDD-induced downregulation of ER is tissue specific and may involve different mechanisms at transcriptional or posttranscriptional levels.
Collapse
Affiliation(s)
- M J DeVito
- Department of Environmental & Community Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway 08854
| | | | | | | | | |
Collapse
|
45
|
Keenan RE, Paustenbach DJ, Wenning RJ, Parsons AH. Pathology reevaluation of the Kociba et al. (1978) bioassay of 2,3,7,8-TCDD: implications for risk assessment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH 1991; 34:279-96. [PMID: 1942119 DOI: 10.1080/15287399109531568] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The chronic bioassay of 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) reported in 1978 by Kociba et al. has been considered to be the primary evidence supporting its carcinogenicity, and is the basis for most dioxin regulations in North America and Western Europe. Because the histopathological criteria for proliferative lesions in the rat liver have changed significantly since 1978, a reevaluation of the liver slides was conducted recently by an independent panel of pathologists. Using current National Toxicology Program criteria, their study showed, in contrast to the original findings, that about two-thirds fewer tumors were present in the livers of female Sprague-Dawley rats. The no-observed-adverse-effect level (NOAEL) for hepatocellular carcinomas was 0.01 micrograms/kg/d rather than 0.001 micrograms/kg/d, which had been reported in 1978. In light of these significant findings, a quantitative dose-response assessment of 2,3,7,8-TCDD was undertaken to predict the potential carcinogenic risks to humans. Risk-specific doses (RsDs) and cancer potency factors (CPFs) were calculated by applying the linearized multistage (LMS) model to the combined incidences of hepatocellular carcinomas and adenomas, classified in accordance with the 1990 histopathological criteria. Based on the weight of evidence regarding the mechanism of action of 2,3,7,8-TCDD, body weight rather than surface area was selected as the appropriate means for scaling rodent data to predict the human response. Using the survival-adjusted data, the RsD for a 1 in 1,000,000 (10(-6)) plausible upper bound (95%) lifetime incremental cancer risk was 370 fg/kg/d based only on the incidence of hepatocellular carcinomas, and 100 fg/kg/d when hepatocellular carcinomas and adenomas were combined. The corresponding upper-bound (95%) CPFs were 2700 and 9700 (mg/kg/d)-1, respectively. These results indicate that the carcinogenic risk to humans from exposure to 2,3,7,8-TCDD is at least 16-fold lower than previous estimates derived from the Kociba et al. (1978) bioassay.
Collapse
Affiliation(s)
- R E Keenan
- ChemRisk, Division of McLaren/Hart, Portland, ME 04102
| | | | | | | |
Collapse
|
46
|
Kedderis LB, Diliberto JJ, Linko P, Goldstein JA, Birnbaum LS. Disposition of 2,3,7,8-tetrabromodibenzo-p-dioxin and 2,3,7,8-tetrachlorodibenzo-p-dioxin in the rat: biliary excretion and induction of cytochromes CYP1A1 and CYP1A2. Toxicol Appl Pharmacol 1991; 111:163-72. [PMID: 1949032 DOI: 10.1016/0041-008x(91)90145-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The biologic activity and pharmacokinetic properties of 2,3,7,8-tetrabromodibenzo-p-dioxin (TBDD) are similar to those of the chlorinated congener, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Metabolism of both compounds appears to be rate-limiting for excretion, which is primarily via the feces. Therefore, the biliary elimination of TBDD and TCDD was examined as an indirect assessment of metabolism. Male F344 rats were anesthetized with pentobarbital, and 1 nmol/kg [3H]TBDD or [3H]TCDD was administered iv. Bile was collected for up to 8 hr while rats were maintained under anesthesia. The rate of biliary excretion of radioactivity was slightly greater for TCDD than TBDD (10% vs 7% in 5 hr). All biliary radioactivity was attributable to metabolites. High pressure liquid chromatographic (HPLC) profiles of biliary radioactivity were similar for [3H]TBDD and [3H]TCDD. To determine if pretreatment altered elimination kinetics, a single dose of 100 nmol/kg TBDD or TCDD was administered to rats by oral gavage 3 days prior to iv injection of 1 nmol/kg [3H]TBDD or [3H]TCDD, respectively. Biliary excretion of the radiolabeled dose was quantitatively and qualitatively unaffected by pretreatment despite a twofold increase in hepatic levels of radiolabel in the pretreated animals. Therefore, under these experimental conditions, autoinduction of TCDD and TBDD metabolism did not occur in the rat in vivo at doses which elicited enhanced hepatic uptake. In a second set of studies, the dose-response profiles for induction of cytochromes CYP1A1 and CYP1A2 by TBDD were characterized. The ED50 value for CYP1A1 induction (measured by ethoxyresorufin O-deethylase activity and radioimmunoassay (RIA) was estimated to be 0.8-1.0 nmol/kg, similar to what has been reported for TCDD. Induction of CYP1A2 (RIA) by TBDD appeared to be a more sensitive response over the dose range studied. Finally, comparison of hepatic CYP1A2 induction vs hepatic concentrations of TBDD 3 days following treatment with 10 vs 1 nmol/kg TBDD suggested that induction of CYP1A2 alone may not account for nonlinearities in dioxin disposition exemplified by dose-related increases in the ratio of dioxin concentrations in liver and adipose tissue.
Collapse
Affiliation(s)
- L B Kedderis
- Curriculum in Toxicology, University of North Carolina, Chapel Hill 27599
| | | | | | | | | |
Collapse
|