1
|
Baldwin WS. Phase 0 of the Xenobiotic Response: Nuclear Receptors and Other Transcription Factors as a First Step in Protection from Xenobiotics. NUCLEAR RECEPTOR RESEARCH 2019; 6:101447. [PMID: 31815118 PMCID: PMC6897393 DOI: 10.32527/2019/101447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This mini-review examines the crucial importance of transcription factors as a first line of defense in the detoxication of xenobiotics. Key transcription factors that recognize xenobiotics or xenobiotic-induced stress such as reactive oxygen species (ROS), include AhR, PXR, CAR, MTF, Nrf2, NF-κB, and AP-1. These transcription factors constitute a significant portion of the pathways induced by toxicants as they regulate phase I-III detoxication enzymes and transporters as well as other protective proteins such as heat shock proteins, chaperones, and anti-oxidants. Because they are often the first line of defense and induce phase I-III metabolism, could these transcription factors be considered the phase 0 of xenobiotic response?
Collapse
Affiliation(s)
- William S Baldwin
- Clemson University, Biological Sciences/Environmental Toxicology, 132 Long Hall, Clemson, SC 29634
| |
Collapse
|
2
|
Regulations and Advisories. Toxicol Ind Health 2016. [DOI: 10.1177/074823370001600312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Chen YY, Chan KM. Regulation of vitellogenin (vtg1) and estrogen receptor (er) gene expression in zebrafish (Danio rerio) following the administration of Cd²⁺ and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). CHEMOSPHERE 2016; 147:467-476. [PMID: 26799766 DOI: 10.1016/j.chemosphere.2015.12.083] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 06/05/2023]
Abstract
We evaluated the individual and joint estrogenic effects of cadmium (Cd(2+)) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in the zebrafish liver (ZFL) cell line, zebrafish embryo, larvae and the liver of adult zebrafish. The mRNA expression of vtg1 was inhibited by Cd(2+), but unaffected by TCDD in ZFL cells. Similar changes in the mRNA levels of ERα, ERβ1, ERβ2 and GPER (G protein coupled estrogen receptor) in ZFL cells were also observed. Deletion mutants of vtg1 gene promoters were constructed to investigate transcriptional regulation, and we found that all of the constructs failed to respond to TCDD or Cd(2+). However, after co-transfection with a vtg1 promoter-luciferase construct to the ERα, ERβ1, ERβ2 and GPER expression vectors, decreased luciferase activity was observed in the ERα co-transfection group after treatment with Cd(2+), suggesting that ERα participates in vtg1 transcriptional regulation and is affected by Cd(2+). Differences in the regulation of the mRNA levels of these genes were also observed between different developmental stages and between the livers of male and female zebrafish.
Collapse
Affiliation(s)
- Ying Ying Chen
- School of Life Sciences, Chinese University, Sha Tin, Hong Kong SAR, China
| | - King Ming Chan
- School of Life Sciences, Chinese University, Sha Tin, Hong Kong SAR, China.
| |
Collapse
|
4
|
Ghisari M, Long M, Tabbo A, Bonefeld-Jørgensen EC. Effects of currently used pesticides and their mixtures on the function of thyroid hormone and aryl hydrocarbon receptor in cell culture. Toxicol Appl Pharmacol 2015; 284:292-303. [PMID: 25684042 DOI: 10.1016/j.taap.2015.02.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/27/2015] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
Abstract
Evidence suggest that exposure to pesticides can interfere with the endocrine system by multiple mechanisms. The endocrine disrupting potential of currently used pesticides in Denmark was analyzed as single compounds and in an equimolar mixture of 5 selected pesticides. The pesticides were previously analyzed for effects on the function of estrogen and androgen receptors, the aromatase enzyme and steroidogenesis in vitro. In this study, the effect on thyroid hormone (TH) function and aryl hydrocarbon receptor (AhR) transactivity was assessed using GH3 cell proliferation assay (T-screen) and AhR responsive luciferase reporter gene bioassay, respectively. Thirteen pesticides were analyzed as follows: 2-methyl-4-chlorophenoxyacetic acid, terbuthylazine, iodosulfuron-methyl-sodium, mesosulfuron-methyl, metsulfuron-methyl, chlormequat chloride, bitertanol, propiconazole, prothioconazole, mancozeb and its metabolite ethylene thiourea, cypermethrin, tau-fluvalinate, and malathion (currently banned in DK). In the T-screen, prothioconazole, malathion, tau-fluvalinate, cypermethrin, terbuthylazine and mancozeb significantly stimulated and bitertanol and propiconazole slightly reduced the GH3 cell proliferation. In the presence of triiodothyronine (T3), prothioconazole, tau-fluvalinate, propiconazole, cypermethrin and bitertanol significantly antagonized the T3-induced GH3 cell proliferation. Eleven of the tested pesticides agonized the AhR function, and bitertanol and prothioconazole inhibited the basal AhR activity. Bitertanol, propiconazole, prothioconazole and cypermethrin antagonized the TCDD-induced AhR transactivation at the highest tested concentration. The 5-component mixture had inducing effect but the combined effect could not be predicted due to the presence of bitertanol eliciting inhibitory effect. Upon removal of bitertanol from the mixture, the remaining four pesticides acted additively. In conclusion, our data suggest that pesticides currently used in Denmark can interfere with TH signaling and AhR function in vitro and might have the potential to cause endocrine disruption.
Collapse
Affiliation(s)
- Mandana Ghisari
- Centre for Arctic Health & Unit of Cellular and Molecular Toxicology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Manhai Long
- Centre for Arctic Health & Unit of Cellular and Molecular Toxicology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Agnese Tabbo
- Centre for Arctic Health & Unit of Cellular and Molecular Toxicology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Unit of Cellular and Molecular Toxicology, Department of Public Health, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
5
|
Liu KC, Wu RSS, Ge W. Luteinizing hormone receptor (lhcgr) as a marker gene for characterizing estrogenic endocrine-disrupting chemicals in zebrafish ovarian follicle cells. Gen Comp Endocrinol 2013; 192:89-94. [PMID: 23851042 DOI: 10.1016/j.ygcen.2013.06.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 10/26/2022]
Abstract
The adverse effects of endocrine-disrupting chemicals (EDCs) have been well documented; however, the action mechanisms of many EDCs remain elusive and controversial. Furthermore, the highly diversified chemical structures and low environmental concentrations of EDCs present a major challenge to their chemical detection. Clearly, there is an urgent need for simple and reliable bioassays to detect EDCs in the environment and unravel their action mechanisms. We have recently identified luteinizing hormone receptor (lhcgr) as a robust estradiol (E2)-responsive gene in cultured zebrafish ovarian follicle cells. The expression of lhcgr exhibited a distinct biphasic response to E2 over a 24-h time-course treatment, making this a unique system for characterizing estrogenic EDCs. This study was undertaken to validate this platform by testing a wide range of EDCs, including 17α-ethinylestradiol (EE2), diethylstilbestrol (DES), bisphenol A (BPA), genistein (GEN), 1,1,1-trichloro-2-(2-chlorophenyl)-2-(4-chlorophenyl)ethane (o,p'-DDT), vinclozolin (VIN), bis(2-ethylhexyl) phthalate (DEHP), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47). Diethylstilbestrol (DES), EE2 and o,p'-DDT mimicked E2 and induced a biphasic expression of lhcgr while BPA and GEN stimulated a monophasic expression in the 24-h time-course. In contrast, BDE-47, DEHP and VIN had no effect, whereas TCDD decreased lhcgr expression. Dose-response experiment showed that E2, EE2 and DES had the highest potency, which was followed by GEN, BPA and o,p'-DDT. The effects of estrogenic EDCs were further confirmed by their potentiation of hCG-induced activin βA2 subunit (inhbab) expression. In conclusion, the present study showed that the expression of lhcgr in cultured zebrafish follicle cells and its biphasic response to estrogens provide a unique in vitro platform for screening and categorizing estrogenic substances and deciphering their action mechanisms.
Collapse
Affiliation(s)
- Ka-Cheuk Liu
- School of Life Sciences and Centre for Cell and Development Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | | | | |
Collapse
|
6
|
Burns KA, Zorrilla LM, Hamilton KJ, Reed CE, Birnbaum LS, Korach KS. A single gestational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin disrupts the adult uterine response to estradiol in mice. Toxicol Sci 2013; 136:514-26. [PMID: 24052564 DOI: 10.1093/toxsci/kft208] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) given as a cotreatment with estrogen exhibits antiestrogenic properties on the rodent adult uterus, but less is understood regarding hormonal responsiveness of the adult uterus from animals having been exposed to TCDD during critical periods of development. We characterized the inhibitory effects of TCDD (T) exposure at gestational day 15 (GD15), 4 weeks, and 9 weeks of age (TTT) on the adult uterus following hormone treatment. TTT-exposed mice in response to hormone treatment exhibited a blunted weight increase, had fewer uterine glands, displayed morphological anomalies, and had marked decreases in the hormonal regulation of genes involved in fluid transport (Aqp3 and Aqp5), cytoarchitectural (Dsc2 and Sprr2A), and immune (Lcn2 and Ltf) regulation. To determine if the 9-week exposure was responsible for the blunted uterine response, due to the 7- to 11-day half-life of TCDD in mice, a second set of experiments was performed to examine exposure to TCDD given at GD15, GD15 only (cross-fostered at birth), only during lactation (cross-fostered at birth), or at GD15 and 4 weeks of age. Our studies demonstrate that a single developmental TCDD exposure at GD15 is sufficient to elicit a blunted adult uterine response to estradiol and is due in part to fewer gland numbers and the reduced expression of forkhead box A2 (FoxA2), a gene involved in gland development. Together, these results provide insight regarding the critical nature of in utero exposure and the potential impact on ensuing uterine biology and reproductive health later in life.
Collapse
Affiliation(s)
- Katherine A Burns
- * Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | | | | | | | | | | |
Collapse
|
7
|
Hayashi S, Taketa Y, Inoue K, Takahashi M, Matsuo S, Irie K, Watanabe G, Yoshida M. Effects of pyperonyl butoxide on the female reproductive tract in rats. J Toxicol Sci 2013; 38:891-902. [DOI: 10.2131/jts.38.891] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Seigo Hayashi
- Division of Pathology, National Institute of Health Sciences
| | | | - Kaoru Inoue
- Division of Pathology, National Institute of Health Sciences
| | - Miwa Takahashi
- Division of Pathology, National Institute of Health Sciences
| | - Saori Matsuo
- Division of Pathology, National Institute of Health Sciences
| | - Kaoru Irie
- Division of Pathology, National Institute of Health Sciences
| | - Gen Watanabe
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology
| | - Midori Yoshida
- Division of Pathology, National Institute of Health Sciences
| |
Collapse
|
8
|
Karman BN, Basavarajappa MS, Craig ZR, Flaws JA. 2,3,7,8-Tetrachlorodibenzo-p-dioxin activates the aryl hydrocarbon receptor and alters sex steroid hormone secretion without affecting growth of mouse antral follicles in vitro. Toxicol Appl Pharmacol 2012; 261:88-96. [PMID: 22483799 DOI: 10.1016/j.taap.2012.03.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/19/2012] [Accepted: 03/21/2012] [Indexed: 11/17/2022]
Abstract
The persistent environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is an ovarian toxicant. These studies were designed to characterize the actions of TCDD on steroidogenesis and growth of intact mouse antral follicles in vitro. Specifically, these studies tested the hypothesis that TCDD exposure leads to decreased sex hormone production/secretion by antral follicles as well as decreased growth of antral follicles in vitro. Since TCDD acts through binding to the aryl hydrocarbon receptor (AHR), and the AHR has been identified as an important factor in ovarian function, we also conducted experiments to confirm the presence and activation of the AHR in our tissue culture system. To do so, we exposed mouse antral follicles for 96 h to a series of TCDD doses previously shown to have effects on ovarian tissues and cells in culture, which also encompass environmentally relevant and pharmacological exposures (0.1-100 nM), to determine a dose response for TCDD in our culture system for growth, hormone production, and expression of the Ahr and Cyp1b1. The results indicate that TCDD decreases progesterone, androstenedione, testosterone, and estradiol levels in a non-monotonic dose response manner without altering growth of antral follicles. The addition of pregnenolone substrate (10 μM) restores hormone levels to control levels. Additionally, Cyp1b1 levels were increased by 3-4 fold regardless of the dose of TCDD exposure, evidence of AHR activation. Overall, these data indicate that TCDD may act prior to pregnenolone formation and through AHR transcriptional control of Cyp1b1, leading to decreased hormone levels without affecting growth of antral follicles.
Collapse
Affiliation(s)
- Bethany N Karman
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | | | | | | |
Collapse
|
9
|
Cao J, Patisaul HB, Petersen SL. Aryl hydrocarbon receptor activation in lactotropes and gonadotropes interferes with estradiol-dependent and -independent preprolactin, glycoprotein alpha and luteinizing hormone beta gene expression. Mol Cell Endocrinol 2011; 333:151-9. [PMID: 21187122 PMCID: PMC3059512 DOI: 10.1016/j.mce.2010.12.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/15/2010] [Accepted: 12/20/2010] [Indexed: 01/13/2023]
Abstract
Arylhydrocarbon receptor (Ahr) activation by 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) interferes with female reproductive functions, but there is little information on the specific targets of TCDD in the hypothalamic-pituitary-gonadal (HPG) axis. In these studies, we found that TCDD upregulated known AhR target genes, cytochrome p450 1a1 (Cyp1a1), Cyp1a2 and Cyp1b1 in the rat pituitary gland. Moreover, 75% of pituitary lactotropes and 45% of gonadotropes contained Ahr mRNA, and most Ahr-containing cells were estrogen receptor 1 (Esr1)-positive. TCDD abrogated estradiol (E(2))-induced prolactin (Prl) expression in vivo and in vitro; conversely, E(2) blocked TCDD upregulation of luteinizing hormone beta (Lhb) and glycoprotein hormone alpha polypeptide (Cga) expression. TCDD had no effect on levels of Ahr mRNA, but upregulated Esr1 mRNA. E(2) independently repressed Ahr and Esr1 expression and blocked TCDD upregulation of Esr1. Thus, complex interactions between Ahr and Esr alter Prl and luteinizing hormone (LH) synthesis by direct actions in lactotropes and gonadotropes. These findings provide important insights into how TCDD disrupts female reproductive functions.
Collapse
Affiliation(s)
- JinYan Cao
- Molecular and Cellular Biology Graduate Program, 435 Morrill I North, University of Massachusetts Amherst, 637 North Pleasant Street, Amherst, MA 01003-9298
- Department of Biology, 127 David Clark Labs, North Carolina State University, Raleigh, NC 27695
| | - Heather B. Patisaul
- Department of Biology, 127 David Clark Labs, North Carolina State University, Raleigh, NC 27695
| | - Sandra L. Petersen
- Molecular and Cellular Biology Graduate Program, 435 Morrill I North, University of Massachusetts Amherst, 637 North Pleasant Street, Amherst, MA 01003-9298
- Department of Veterinary and Animal Sciences, 661 North Pleasant Street, University of Massachusetts, Amherst MA 01003
| |
Collapse
|
10
|
Abel J, Haarmann-Stemmann T. An introduction to the molecular basics of aryl hydrocarbon receptor biology. Biol Chem 2011; 391:1235-48. [PMID: 20868221 DOI: 10.1515/bc.2010.128] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Depending on their chemical structure and properties, environmental chemicals and other xenobiotics that enter the cell can affect cellular function by either nonselective binding to cellular macromolecules or by interference with cellular receptors, which would initiate a more defined cell biological response. One of these intracellular chemosensor molecules is the aryl hydrocarbon receptor (AhR), a transcription factor of the bHLH/PAS family that is known to mediate the biochemical and toxic effects of dioxins, polyaromatic hydrocarbons and related compounds. Numerous investigations have revealed that the AhR is not only a master regulator of drug metabolism activated by anthropogenic chemicals, but is also triggered by natural and endogenous ligands and can influence cell biological endpoints such as growth and differentiation. Cutting-edge research has identified new intriguing functions of the AhR, such as during proteasomal degradation of steroid hormone receptors, the cellular UVB stress response and the differentiation of certain T-cell subsets. In this review we provide both a survey of the fundamental basics of AhR biology and an insight into new functional aspects of AhR signaling to further stimulate research on this intriguing transcription factor at the interface between toxicology, cell biology and immunology.
Collapse
Affiliation(s)
- Josef Abel
- Institut für Umweltmedizinische Forschung (IUF) an der Heinrich-Heine-Universität Düsseldorf gGmbH, Auf'm Hennekamp 50, Düsseldorf, Germany
| | | |
Collapse
|
11
|
Aubry E, Rime H, Monod G. Beta-naphthoflavone inhibits the induction of hepatic oestrogen-dependent proteins by 17alpha-ethynylestradiol in mosquitofish (Gambusia holbrooki). Biomarkers 2008; 10:439-55. [PMID: 16308268 DOI: 10.1080/13547500500274248] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The interactive effects of an aryl hydrocarbon receptor (AhR) agonist and of a xenoestrogen on biomarker responses were studied in the liver of male mosquitofish (Gambusia holbrooki). Hepatic 7-ethoxyresorufin O-deethylase (EROD) enzymatic activity was measured as a biomarker of exposure to the model AhR agonist beta-naphthoflavone (bNF). Hepatic proteins indicating the exposure of males to the synthetic oestrogen 17alpha-ethynylestradiol (EE2) were monitored by Western blot analysis using immunoserum prepared for this study. After a semi-static exposure only to waterborne EE2, Western blot analysis of liver homogenate revealed the induction of two protein bands (a double band at 205 kDa and a single band at 125 kDa). The interaction between bNF and EE2 was investigated by analysing, on the one hand, EROD activity and, on the other hand, immunoreactivity corresponding to the two oestrogen-dependent protein bands in the liver of fish exposed to different concentrations of bNF for 2 days, then to the same concentrations of bNF plus 0.1 microg l(-1) EE2 for 5 days. EE2 changed neither the basal activity of EROD nor its rate of induction with 1.0 and 4.0 microg l(-1) bNF. On the other hand, the induction of oestrogen-dependent proteins with 0.1 microg l(-1) EE2 was inhibited by exposure to 4.0 microg l(-1) bNF. These results together with literature data suggest that field monitoring of xenoestrogen contamination through the analysis of oestrogen-dependent protein in male fish as a biomarker should take into account the possible negative interference of AhR agonists.
Collapse
Affiliation(s)
- E Aubry
- INRA, SCRIBE, Rennes, France
| | | | | |
Collapse
|
12
|
Pascussi JM, Gerbal-Chaloin S, Drocourt L, Assénat E, Larrey D, Pichard-Garcia L, Vilarem MJ, Maurel P. Cross-talk between xenobiotic detoxication and other signalling pathways: clinical and toxicological consequences. Xenobiotica 2008; 34:633-64. [PMID: 15672753 DOI: 10.1080/00498250412331285454] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
1. Recent investigations on nuclear receptors and other transcription factors involved in the regulation of genes encoding xenobiotic metabolizing and transport systems reveal that xenobiotic-dependent signalling pathways are embedded in, and establish functional interactions with, a tangle of regulatory networks involving the glucocorticoid and oestrogen receptors, the hypoxia-inducible factor, the vitamin D receptor and other transcription factors/nuclear receptors controlling cholesterol/bile salt homeostasis and liver differentiation. 2. Such functional interferences provide new insight, first for understanding how xenobiotics might exert adverse effects, and second how physiopathological stimuli affect xenobiotic metabolism.
Collapse
Affiliation(s)
- J M Pascussi
- INSERM U632, Hepatic Physiopathology, Montpellier F-34293, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
King Heiden TC, Struble CA, Rise ML, Hessner MJ, Hutz RJ, Carvan MJ. Molecular targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) within the zebrafish ovary: insights into TCDD-induced endocrine disruption and reproductive toxicity. Reprod Toxicol 2008; 25:47-57. [PMID: 17884332 PMCID: PMC2693207 DOI: 10.1016/j.reprotox.2007.07.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 07/24/2007] [Accepted: 07/31/2007] [Indexed: 12/19/2022]
Abstract
TCDD is a reproductive toxicant and endocrine disruptor, yet the mechanisms by which it causes these reproductive alterations are not fully understood. In order to provide additional insight into the molecular mechanisms that underlie TCDD's reproductive toxicity, we assessed TCDD-induced transcriptional changes in the ovary as they relate to previously described impacts on serum estradiol concentrations and altered follicular development in zebrafish. In silico computational approaches were used to correlate candidate regulatory motifs with observed changes in gene expression. Our data suggest that TCDD inhibits follicle maturation via attenuated gonadotropin responsiveness and/or depressed estradiol biosynthesis, and that interference of estrogen-regulated signal transduction may also contribute to TCDD's impacts on follicular development. TCDD may also alter ovarian function by disrupting various signaling pathways such as glucose and lipid metabolism, and regulation of transcription. Furthermore, events downstream from initial TCDD molecular-targets likely contribute to ovarian toxicity following chronic exposure to TCDD. Data presented here provide further insight into the mechanisms by which TCDD disrupts follicular development and reproduction in fish, and can be used to formulate new hypotheses regarding previously documented ovarian toxicity.
Collapse
Affiliation(s)
- Tisha C. King Heiden
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI
- Marine & Freshwater Biomedical Sciences Center, University of Wisconsin-Milwaukee, Milwaukee, WI
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee Milwaukee, WI
| | | | - Matthew L. Rise
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee Milwaukee, WI
| | - Martin J. Hessner
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Reinhold J. Hutz
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI
- Marine & Freshwater Biomedical Sciences Center, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - Michael J. Carvan
- Marine & Freshwater Biomedical Sciences Center, University of Wisconsin-Milwaukee, Milwaukee, WI
- Great Lakes WATER Institute, University of Wisconsin-Milwaukee Milwaukee, WI
| |
Collapse
|
14
|
Boverhof DR, Burgoon LD, Williams KJ, Zacharewski TR. Inhibition of estrogen-mediated uterine gene expression responses by dioxin. Mol Pharmacol 2007; 73:82-93. [PMID: 17942748 DOI: 10.1124/mol.107.040451] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) exhibits antiestrogenic properties, including the inhibition of estrogen-induced uterine growth and proliferation. The inhibition of estrogen-mediated gene expression through ER/AhR cross-talk has been proposed as a plausible mechanism; however, only a limited number of inhibited responses have been investigated that are unlikely to fully account for the antiuterotrophic effects of TCDD. Therefore, the effects of TCDD on ethynyl estradiol (EE)-mediated uterine gene expression were investigated using cDNA microarrays with complementary physiological and histological phenotypic anchoring. Mice were gavaged with vehicle, 3 daily doses of 10 mug/kg EE, a single dose of 30 mug/kg TCDD, or a combination of EE plus TCDD and sacrificed after 4, 12, 24, and 72 h. TCDD cotreatment inhibited EE-induced uterine wet weight by 37, 23, and 45% at 12, 24, and 72 h, respectively. TCDD cotreatment also reduced EE-mediated stromal edema, hypertrophy, and hyperplasia and induced marked luminal epithelial cell apoptosis. A 2 x 2 factorial microarray design was used to identify EE- and TCDD-specific differential gene expression responses as well as their interactive effects. Only 133 of the 2753 EE-mediated differentially expressed genes were significantly modulated by TCDD cotreatment, indicating a gene-specific inhibitory response. The EE-mediated induction of many genes, including trefoil factor 1 and keratin 14, were inhibited by greater than 90% by TCDD. Functional annotation of inhibited responses was associated with cell proliferation, water and ion transport, and maintenance of cellular structure and integrity. These inhibited responses correlate with the observed histological alterations and may contribute to the antiuterotrophic effects of TCDD.
Collapse
Affiliation(s)
- Darrell R Boverhof
- Michigan State University, Department of Biochemistry and Molecular Biology, 224 Biochemistry Building, Wilson Road, East Lansing, MI 48824-1319, USA
| | | | | | | |
Collapse
|
15
|
Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin administration and high-fat diet on the body weight and hepatic estrogen metabolism in female C3H/HeN mice. Toxicol Appl Pharmacol 2007; 226:107-18. [PMID: 17945325 DOI: 10.1016/j.taap.2007.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 08/23/2007] [Accepted: 08/23/2007] [Indexed: 12/23/2022]
Abstract
We studied the effect of administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) by i.p. injection once every 2 weeks in combination with a high-fat (HF) diet for 8 or 16 weeks on the body and organ weight changes as well as on the hepatic enzyme activity for estrogen metabolism in C3H/HeN female mice. Administration of TCDD at 100 microg/kg b.w. once every 2 weeks for 8 weeks increased the body weight by 46% in the HF diet-fed animals, but not in the regular diet-fed animals. This is the first observation suggesting that TCDD at a high dose (100 microg/kg b.w.), but not at lower doses (1 or 10 microg/kg b.w.), may have a strong obesity-inducing effect in C3H/HeN mice fed an HF diet. While TCDD increased liver weight and decreased thymus weight in animals, these effects were enhanced by feeding animals an HF diet. Metabolism studies showed that TCDD administration for 8 or 16 weeks increased the liver microsomal activity for the 2- and 4-hydroxylation of 17 beta-estradiol in animals fed a control diet, but surprisingly not in animals fed an HF diet. Treatment with TCDD dose-dependently increased the hepatic activity for the O-methylation of catechol estrogens in both control and HF diet-fed animals, and it also decreased the levels of liver microsomal sulfatase activity for hydrolysis of estrone-3-sulfate. TCDD did not significantly affect the hepatic enzyme activity for the glucuronidation or esterification of endogenous estrogens. It is suggested that enhanced metabolic inactivation of endogenous estrogens by hepatic estrogen-metabolizing enzymes in TCDD-treated, control diet-fed animals contributes importantly to the reduced incidence of estrogen-associated tumors in animals treated with TCDD.
Collapse
|
16
|
Takahashi O, Oishi S, Yoneyama M, Ogata A, Kamimura H. Antiestrogenic effect of paradichlorobenzene in immature mice and rats. Arch Toxicol 2007; 81:505-17. [PMID: 17593412 DOI: 10.1007/s00204-007-0179-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 01/09/2007] [Indexed: 10/23/2022]
Abstract
A significant increase/decrease in uterine and ovarian weights was occasionally seen in immature mice and rats subcutaneously administered paradichlorobenzene (PDCB) at doses of 22-67 mg/kg/day, but the results were not necessarily reproducible. PDCB at a dose of 800 mg/kg/day always reduced uterine and ovarian weights. Intraperitoneal PDCB at doses more than 400 mg/kg/day significantly inhibited the uterotrophic effect of beta-estradiol (E2) in CD-1 (ICR) mice. E2-induced uterotrophy was dose-dependently prevented by 204-400 mg PDCB/kg/day in C57BL/6N (Ah responsive) mice but not DBA/2N (Ah non-responsive) mice. While PDCB did not bind to estrogen receptor (ER(alpha)) up to 10(-3) M. Hepatic ethoxyresorufin-O-deethylase in adult female C57BL/6N mice was induced by i.p. administration of PDCB. Induction activity of PDCB may be 10(5)-10(6) times lower than that of 2,3,7,8-tetrachlorodibenzo-p-dioxin. These results suggest that PDCB is a weak antiestrogenic/antiuterotrophic compound possibly due to ER modulation through arylhydrocarbon receptor.
Collapse
Affiliation(s)
- Osamu Takahashi
- Department of Environmental Health and Toxicology, Tokyo Metropolitan Institute of Public Health, 24-1 Hyakunincho 3-chome, Shinjuku-ku, Tokyo, 169-0073, Japan.
| | | | | | | | | |
Collapse
|
17
|
Petersen SL, Krishnan S, Hudgens ED. The aryl hydrocarbon receptor pathway and sexual differentiation of neuroendocrine functions. Endocrinology 2006; 147:S33-42. [PMID: 16690800 DOI: 10.1210/en.2005-1157] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Historically, much of the research on health effects of environmental pollutants focused on ascertaining whether compounds were carcinogenic. More recent findings show that environmental contaminants also exert insidious effects by disrupting hormone action. Of particular concern are findings that developmental exposure to dioxins, chemicals that act through the aryl hydrocarbon receptor pathway, permanently alters sexually differentiated neural functions in animal models. In this review, we focus on mechanisms through which dioxins disrupt neuroendocrine development as exemplified by effects on a brain region critical for ovulation in rodents. We also provide evidence that dysregulation of GABAergic neural development may be a general mechanism underlying a broad spectrum of effects seen after perinatal dioxin exposure.
Collapse
Affiliation(s)
- Sandra L Petersen
- Department of Biology, University of Massachusetts-Amherst, Amherst, Massachusetts 01003 USA.
| | | | | |
Collapse
|
18
|
Oh SM, Park K, Chung KH. Combination of in vitro bioassays encompassing different mechanisms to determine the endocrine-disrupting effects of river water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2006; 354:252-64. [PMID: 16398999 DOI: 10.1016/j.scitotenv.2005.01.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 01/12/2005] [Indexed: 05/06/2023]
Abstract
In this study, the total toxic effects of river water samples were assessed using a series of cell culture bioassays which encompassed different mechanisms, based on specific modes of action. River water samples were collected from three tributaries of the Youngsan River in the western portion of Korea. We confirmed that Youngsan River water was polluted with a complex mixture of estrogenic and dioxin-like compounds. The total toxic effects of the downstream water samples were found to be higher than that of the upstream water samples. In the upstream water samples, total estrogenic activity was measured to be between 0.005 and 0.049 ng-EEQ/l (17beta-estradiol-equivalent concentration) and no CYP1A activity was detected. In the downstream water samples, however, total estrogenic activity was measured to be between 0.021 ng-EEQ/l and 1.918 ng-EEQ/l, and total CYP1A activity was between 0.63 and 3.55 microg-MEQ/l (3-methylcholanthrene-equivalent concentration). When assessed according to a concentration-response curve, downstream water sample extracts exerted dual actions on estrogen receptors, depending on the concentration volume of the samples. The concentration volume range proximal to the original water sample exhibited estrogenic activity, whereas antiestrogenic activity was observed at high concentration volumes (more than 5 times concentration) in the extracts. This study involved a combination of in vitro bioassays, designed to encompass different mechanisms. The bioassays used included the estrogen receptor binding affinity test, E-screen assay, aromatase assay, and EROD assay. These tests provided a great deal of useful information regarding the potency and action modes of estrogenicity and antiestrogenicity inherent in the sampled river water. Although further study is necessary to determine the relationship between toxic responses in in vitro bioassay systems and chronic toxicity in aquatic organisms, our approach is expected to be fairly accurate with regard to the detection of endocrine-disrupting effects in an aquatic environment.
Collapse
Affiliation(s)
- Seung-Min Oh
- College of Pharmacy, Sungkyunkwan University, #300, Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do, 440-746, South Korea
| | | | | |
Collapse
|
19
|
Hutz RJ, Carvan MJ, Baldridge MG, Conley LK, Heiden TK. Environmental toxicants and effects on female reproductive function. TRENDS IN REPRODUCTIVE BIOLOGY 2006; 2:1-11. [PMID: 18516253 PMCID: PMC2408384 DOI: 10.1901/jaba.2006.2-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the most toxic substances known to humans, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD or dioxin), is also highly pervasive in the environment. It is created naturally in volcanic eruptions and forest fires, and anthropogenically in waste incineration, chlorination processes and certain plastics manufacture. From reports of large industrial and other accidents, or from experimental studies, dioxin exposure has been correlated in animal models and/or humans with chloracne of the skin, organ cancers, hepatotoxicity, gonadal and immune changes, pulmonary and other diseases such as diabetes, skewing of the sex ratio, and infertility. We have demonstrated that the aromatic hydrocarbon receptor (AHR) that binds dioxin in tissues is localized in zebrafish, rat and rhesus monkey (Macaca mulatta) ovaries and in rat and human luteinizing granulosa cells (GC) (among other tissues), that labeled dioxin is specifically localized to granulosa cells of the ovarian follicle as observed by autoradiography, and that incubations of GC or ovarian fragments with environmentally relevant concentrations (fM to nM) of dioxin inhibit estradiol secretion significantly. Our experiments show that in human, non-human primate, rat, trout, and zebrafish ovarian tissues, dioxin inhibits estrogen synthesis at some level of the steroid biosynthetic pathway, most likely by inhibiting transcription of mRNAs for or activity of side-chain cleavage (Cyp11a1 gene) and/or aromatase (Cyp19a1 gene) enzymes, or conceivably other steroidogenic enzymes/factors. Such an untoward effect on estrogen synthesis in females exposed to dioxin environmentally may predispose them to defects in aspects of their fertility.
Collapse
Affiliation(s)
- R. J. Hutz
- Department of Biological Sciences and NIEHS Marine and Freshwater Biomedical Sciences Center and the Great Lakes Wisconsin Aquatic Technology and Environmental Research (WATER) Institute, University of Wisconsin-Milwaukee; the Medical College of Wisconsin; and the Wisconsin National Primate Research Center (WNPRC), USA
| | | | | | | | | |
Collapse
|
20
|
Kitajima M, Khan KN, Fujishita A, Masuzaki H, Koji T, Ishimaru T. Expression of the arylhydrocarbon receptor in the peri-implantation period of the mouse uterus and the impact of dioxin on mouse implantation. ACTA ACUST UNITED AC 2005; 67:465-74. [PMID: 15781987 DOI: 10.1679/aohc.67.465] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The arylhydrocarbon receptor (AhR) is a nuclear transcription factor mediating toxic effects of chemicals such as dioxins. The 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a member of polyhalogenated aromatic hydrocarbons family, exerts a wide-variety of toxic effects in a tissue- and species-specific manner including the reproduction process. Recently, AhR-mediated direct effects of TCDD on a cell-specific interaction with ovarian steroids have been shown. However, information regarding the effects of TCDD on the mouse implantation is limited. We therefore examined the expression and localization of AhR in the pregnant mouse uterus from 4 to 10 days of gestation (day 4 to day 10) using immunohistochemistry to investigate the effect of TCDD on uterine tissue during the peri-implantation period. Intense AhR expression was detected in the uterine vasculature throughout the periods examined. We also found that implanted blastocysts and their surrounding luminal epithelia and decidualized stroma expressed AhR on day 5. On days 6 and 7, persistent AhR expression was found in the transitional zone between the invading embryonic tissue and decidual tissue. On days 9 to 10, placental vasculature and spongiotrophoblasts displayed AhR immunoreactivity. The administration of TCDD on day 4 decreased the number of surviving implanted embryos on day 7 in a dose-dependent manner. This effect of TCDD was inhibited by the simultaneous administration of an AhR antagonist, alpha-naphthoflavone (alpha-NF). The spatio-temporal expression of AhR during the peri-implantation phase of the mouse uterus may indicate functional roles of this orphan receptor in fetomaternal interactions as well as substantiate the risk of exposure to chemicals such as dioxins during the reproductive period.
Collapse
Affiliation(s)
- Michio Kitajima
- Department of Obstetrics and Gynecology, Nagasaki University School of Medicine, 1-7-1 Sakamoto, Nagasaki 852-8102, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
Vajda AM, Norris DO. Effects of steroids and dioxin (2,3,7,8-TCDD) on the developing wolffian ducts of the tiger salamander (Ambystoma tigrinum). Gen Comp Endocrinol 2005; 141:1-11. [PMID: 15707598 DOI: 10.1016/j.ygcen.2004.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 10/06/2004] [Accepted: 10/12/2004] [Indexed: 11/23/2022]
Abstract
This study was undertaken to investigate effects of the prototypical dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on steroid-dependent development of the wolffian ducts of an amphibian, the tiger salamander (Ambystoma tigrinum). Larvae with immature gonads and undeveloped mullerian ducts were injected with the steroid hormones estradiol (E2), dihydrotestosterone (DHT), or vehicle alone. Additionally, steroid-treated and vehicle-control larvae were immersed in sub-lethal solutions of technical grade TCDD (0, 0.0003, 0.003, 0.03, 0.3, and 3.0 microg TCDD/L). Both steroid treatments stimulated hypertrophy of the wolffian duct epithelium and an increase in mean epithelial cell size. Only DHT treatment stimulated epithelial cell proliferation. TCDD stimulated wolffian duct hypertrophy through an increase in mean epithelial cell size. TCDD acted as an androgen agonist on wolffian duct epithelial area and epithelial cell size. TCDD had no effect on wolffian duct epithelium among E2-injected animals. Stimulatory effects on cell size were observed at 0.0003 microg/L TCDD in saline-injected animals and at 0.003 microg/L TCDD in DHT-injected animals. Both E2 and DHT stimulated growth of the wolffian ducts early in development. Technical grade TCDD alone mimics E2 and DHT action but exhibits an androgen-agonistic action in the presence of exogenously administered DHT. Implications of possible interactions between TCDD and xenosteroids are discussed.
Collapse
Affiliation(s)
- Alan M Vajda
- Department of Integrative Physiology, Campus Box 354, University of Colorado, Boulder, CO 80309, USA.
| | | |
Collapse
|
22
|
Kitajima M, Khan KN, Fujishita A, Masuzaki H, Ishimaru T. Histomorphometric alteration and cell-type specific modulation of arylhydrocarbon receptor and estrogen receptor expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin and 17β-estradiol in mouse experimental model of endometriosis. Reprod Toxicol 2004; 18:793-801. [PMID: 15279877 DOI: 10.1016/j.reprotox.2004.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2003] [Revised: 04/05/2004] [Accepted: 04/27/2004] [Indexed: 11/18/2022]
Abstract
Our purpose was to examine the effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), either singly (10 microg/kg) or with 17beta-estradiol (E2, 100 microg/kg), on the growth of endometriosis in a mouse endometriosis model by employing histo-morphometrical analysis as well as expression of arylhydrocarbon receptor (AhR) and estrogen receptor (ER). Epithelial height, stromal thickness, and proliferative activity of the endometriotic lesions were significantly increased by E2 in ovariectomized mice, whereas co-administered TCDD significantly reduced these effects. TCDD alone did not affect the proliferative activity but rather reduced the epithelial height and stromal thickness. ER expression in the luminal epithelium was decreased by E2 compared with ovariectomy alone, while TCDD significantly increased it. On the other hand, stromal ER expression was significantly increased by ovariectomy and decreased by E2, though TCDD did not further enhance this expression. These results indicate that a short-term exposure to TCDD failed to increase the growth of endometriotic lesion and the direct effect of TCDD probably depends on a cell-specific interaction with ovarian steroids mediated by their own receptors. These initial findings in intact tissue of mouse endometriosis may suggest critical roles of steroid hormones in the pathogenesis of endometriosis in relation to endocrine disruptors.
Collapse
Affiliation(s)
- Michio Kitajima
- Department of Obstetrics & Gynecology, Nagasaki University School of Medicine, 1-7-1 Sakamoto, Nagasaki 852-8102, Japan.
| | | | | | | | | |
Collapse
|
23
|
Benedict JC, Miller KP, Lin TM, Greenfeld C, Babus JK, Peterson RE, Flaws JA. Aryl hydrocarbon receptor regulates growth, but not atresia, of mouse preantral and antral follicles. Biol Reprod 2003; 68:1511-7. [PMID: 12606443 DOI: 10.1095/biolreprod.102.007492] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that binds various environmental contaminants. Despite our knowledge regarding the role of the AhR in mediating toxicity, little is known about the physiological role of the AhR. Previous studies indicate that the AhR may regulate folliculogenesis, because AhR-deficient (AhRKO) mice have fewer preantral and antral follicles than wild-type (WT) mice during postnatal life. Thus, the first objective of the present study was to test the hypothesis that AhR deficiency reduces the numbers of preantral and antral follicles by slowing growth and/or increasing atresia of follicles. Because alterations in follicular growth or atresia can affect the ability to ovulate, the second objective was to test whether AhR deficiency reduces the number of ovulated eggs. To test these hypotheses, follicular growth was compared in WT and AhRKO ovaries using morphometric techniques and by measuring the ability of the ovary and follicles to grow in response to eCG. Atresia was compared in WT and AhRKO ovaries using morphometric techniques, TUNEL assays, and 3'-end labeling of fragmented DNA. Ovulation was compared in WT and AhRKO mice by assessing the number of corpora lutea per ovary. The results indicate that follicular growth and ovulation were reduced in AhRKO ovaries compared to WT ovaries. The WT ovaries had a 1.5-fold increase in the number of preantral and antral follicles between Postnatal Days 32 and 45, were more responsive to eCG, and contained more corpora lutea than AhRKO ovaries. In contrast, no significant difference was observed in the incidence of atresia in WT and AhRKO ovaries. Taken together, these results suggest that the AhR may regulate growth, but not atresia, of preantral and antral follicles in the mouse ovary.
Collapse
Affiliation(s)
- Jamie C Benedict
- Department of Epidemiology and Preventive Medicine, Program in Toxicology, University of Maryland, Baltimore 21201, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Bäcklin BM, Eriksson L, Olovsson M. Histology of uterine leiomyoma and occurrence in relation to reproductive activity in the Baltic gray seal (Halichoerus grypus). Vet Pathol 2003; 40:175-80. [PMID: 12637757 DOI: 10.1354/vp.40-2-175] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A high prevalence of uterine leiomyoma has been reported in Baltic gray seals aged 15 years and above. Studies on Baltic seals during the 1970s revealed high tissue concentrations of the organochlorines bis(chlorophenyl)-1,1,1-trichloroethane (DDT) and polychlorinated biphenyls (PCBs), lowered reproduction rate, and pathologic changes. In the second half of the 1970s, decreases of PCB and DDT in Baltic biota occurred, and the prevalence of pregnancies in Baltic seals increased. Between 1975 and 1997, 53 Baltic gray seal females of age 15-40 years were found dead and sent to the Swedish Museum of Natural History. Seals were autopsied and 34/53 (64%) had uterine leiomyomas. Samples from 15 were sufficiently well preserved for histologic examination. Uterine leiomyomas were found most commonly in the uterine corpus but also were observed in the uterine horns, cervix, and vagina. Cut surfaces of the leiomyomas appeared as whorled white fibrous tissue. Histologically, spindle cells were arranged in a whorl-like pattern. The nuclei were rod-like and strikingly uniform in shape and size. Mitotic figures were rare. Immunohistochemical staining of the tumors showed a positive reaction to antibodies recognizing smooth muscle actin. Reproductively active gray seals have an ovarian corpus luteum or albicans for most of the year. In 22/34 (65%) gray seals with uterine leiomyomas, ovaries did not contain corpora. In gray seals without macroscopically detected uterine leiomyoma, ovaries from 6/19 (32%) seals had no corpora. It is possible that the development of leiomyoma in the seals is associated with organochlorines and the previous low reproductive activity.
Collapse
Affiliation(s)
- B-M Bäcklin
- Contamination Research Group, Swedish Museum of Natural History, Stockholm, Seden
| | | | | |
Collapse
|
25
|
Wiseman CLS, Gobas FAPC. Balancing risks in the management of contaminated first nations fisheries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2002; 12:331-342. [PMID: 12590781 DOI: 10.1080/0960312021000056438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the 1980s and 1990s, the Government of Canada closed and/or issued advisories for a number of shellfish fisheries in coastal areas of British Columbia because of dioxin contamination. Only the direct health risks (i.e., cancer) of consuming contaminated shellfish for the general population were considered by the Government in the formulation of risk management options. A focus on the direct risks does not provide an adequate basis for risk decisions as the countervailing risks which may be created from management measures may easily be overlooked. This study describes the potential health impacts of risk management options for aboriginal coastal peoples in the management of dioxin contamination. Gold River and Powell River in British Columbia, Canada, are the areas of focus. The cancer risks of consuming dioxin contaminated shellfish for these sites are estimated. To assess the countervailing risks of management decisions for comparison, a scenario was developed in which First Nations peoples substitute shellfish with store-bought foods in their diets in the event of a fishery closure or advisory. Increases in mortality due to coronary heart disease are estimated. The results suggest that the health risks of dietary changes among aboriginal peoples may be as significant as those related to eating dioxin contaminated shellfish.
Collapse
Affiliation(s)
- Clare L S Wiseman
- Center for Environmental Research, JW University Frankfurt, Georg-Voigt-Str 14, 60054 Frankfurt am Main, Germany.
| | | |
Collapse
|
26
|
Rogers JM, Denison MS. Analysis of the antiestrogenic activity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in human ovarian carcinoma BG-1 cells. Mol Pharmacol 2002; 61:1393-403. [PMID: 12021401 DOI: 10.1124/mol.61.6.1393] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have used human ovarian carcinoma BG-1 cells to determine which steps in the pathway of estrogen signaling are disrupted by the aryl hydrocarbon receptor (AhR) ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). We report that inhibition of estrogen signaling occurs between 7 and 18 h after TCDD treatment and that this effect is not caused by a decrease in estradiol concentration. TCDD decreased estrogen receptor (ER) levels in cells grown in standard medium; however, in estrogen-stripped medium, ER (but not AhR) levels were dramatically reduced (approximately 7-fold) but were not decreased further by TCDD. Because the absolute level of estradiol inducibility and inhibition by TCDD was similar in either medium, decreases in ER are not responsible for the antiestrogenic effect. The AhR also did not bind to the estrogen-responsive element (ERE) in vitro, and ERE binding by nuclear ER complexes was not decreased by TCDD, indicating that the effect of TCDD does not involve direct competition between the AhR and ER for DNA binding. However, inhibition of protein synthesis by cycloheximide blocked the TCDD-induced inhibition of ER-dependent gene expression. Overall, our results are consistent with the action of a TCDD-induced protein at a step(s) after ER-DNA binding, most likely at the level of gene transcription.
Collapse
Affiliation(s)
- Jane M Rogers
- Department of Environmental Toxicology, University of California, Davis, California 95616-8588, USA
| | | |
Collapse
|
27
|
Petroff BK, Roby KF, Gao X, Son D, Williams S, Johnson D, Rozman KK, Terranova PF. A review of mechanisms controlling ovulation with implications for the anovulatory effects of polychlorinated dibenzo-p-dioxins in rodents. Toxicology 2001; 158:91-107. [PMID: 11275352 DOI: 10.1016/s0300-483x(00)00367-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Polychlorinated dibenzo-p-dioxins (PCDDs) can impinge on female fertility by preventing ovulation. In this review, the aspects of normal ovulatory physiology most relevant to our current understanding of PCDD action on the ovary are briefly reviewed. This is followed by a comprehensive assessment of data relevant to the effects of PCDDs during ovulation in the rat. PCDDs interrupt ovulation through direct effects on the ovary in combination with dysfunction of the hypothalamo-hypophyseal axis.
Collapse
Affiliation(s)
- B K Petroff
- Center for Reproductive Sciences, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160-7417, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Navas JM, Segner H. Antiestrogenicity of beta-naphthoflavone and PAHs in cultured rainbow trout hepatocytes: evidence for a role of the arylhydrocarbon receptor. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2000; 51:79-92. [PMID: 10998501 DOI: 10.1016/s0166-445x(00)00100-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The aims of the present study were to assess, (1) if polyaromatic hydrocarbons (PAHs) are able to inhibit estradiol-regulated vitellogenin synthesis in fish; and (2) if this antiestrogenic activity is mediated through the binding of PAHs to the arylhydrocarbon receptor (AhR). Cultured liver cells of rainbow trout, Oncorhynchus mykiss, were co-exposed to PAHs and 17beta-estradiol (E2), and the resulting effects on induction of AhR-regulated 7-ethoxyresorufin-O-deethylase (EROD) activity and on E2-regulated vitellogenesis were investigated. The following test compounds were compared: the PAH 3-methylcholanthrene (3MC), which is a strong EROD inducer, the PAH anthracene (ANT), which is not an inducer of EROD activity, and the model EROD inducer, beta-naphthoflavone (betaNF). 3MC and betaNF led to significant decreases of E2-triggered hepatocellular VTG synthesis, whereas ANT exerted no antiestrogenic activity. The rank order of the antiestrogenic activity of the test substances agreed with their EROD-inducing potency suggesting that their antiestrogenicity might be mediated through the AhR. Further evidence for this assumption comes from the observation that inhibitors such as alpha-naphthoflavone which interferes with ligand-AhR binding, and 8-methoxypsoralen (8MP), which prevents binding of the occupied AhR to responsive DNA elements, clearly reduced the antiestrogenic effects of the xenobiotics. Furthermore, from the comparison of estradiol concentrations in media of liver cells exposed to the CYP 1A-inducing agents and in media of control cells it is unlikely that the observed antiestrogenic effects were caused by an enhanced E2 catabolism. In conclusion, the results from this study indicate that, (1) AhR-binding PAHs possess an antiestrogenic activity; and (2) that the antiestrogenic activity is mediated through the AhR.
Collapse
Affiliation(s)
- J M Navas
- Umweltforschungszentrum Leipzig-Halle, Sektion Chemische Okotoxikologie, Permoserstrasse 15, D-04318, Leipzig, Germany
| | | |
Collapse
|
29
|
Wormke M, Stoner M, Saville B, Safe S. Crosstalk between estrogen receptor alpha and the aryl hydrocarbon receptor in breast cancer cells involves unidirectional activation of proteasomes. FEBS Lett 2000; 478:109-12. [PMID: 10922479 DOI: 10.1016/s0014-5793(00)01830-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental toxin that activates the aryl hydrocarbon receptor (AhR) and disrupts multiple endocrine signaling pathways. T47D human breast cancer cells express a functional estrogen receptor alpha (ERalpha) and AhR, and treatment of these cells with 17beta-estradiol (E2) or TCDD resulted in a rapid proteasome-dependent decrease in immunoreactive ERalpha and AhR proteins (>60-80%), respectively. E2 did not affect the AhR, whereas TCDD induced proteasome-dependent degradation of both the AhR and ERalpha in T47D and MCF-7 human breast cancer cells, and these responses were specifically blocked by proteasome inhibitors. Thus, TCDD-induced degradation of ERalpha may contribute to the antiestrogenic activity of AhR agonists and this pathway may be involved in AhR-mediated disruption of other endocrine responses.
Collapse
Affiliation(s)
- M Wormke
- Department of Veterinary Physiology and Pharmacology, and Department of Biochemistry and Biophysics, Texas A&M University, 77843-4466, College Station, TX, USA
| | | | | | | |
Collapse
|
30
|
Birnbaum LS, Tuomisto J. Non-carcinogenic effects of TCDD in animals. FOOD ADDITIVES AND CONTAMINANTS 2000; 17:275-88. [PMID: 10912242 DOI: 10.1080/026520300283351] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Exposure to TCDD and related chemicals leads to a plethora of effects in multiple species, tissues, and stages of development. Responses range from relatively simple biochemical alterations through overtly toxic responses, including lethality. The spectrum of effects shows some species variability, but many effects are seen in multiple wildlife, domestic, and laboratory species, ranging from fish through birds and mammals. The same responses can be generated regardless of the route of exposure, although the administered dose may vary. The body burden appears to be the most appropriate dosimetric. Many of the effects often attributed to TCDD are associated with relatively high doses: lethality, wasting, lymphoid and gonadal atrophy, chloracne, hepatotoxicity, adult neurotoxicity, and cardiotoxicity. Changes in multiple endocrine and growth factor systems have been reported in a manner which is tissue, sex, and age-dependent. The most sensitive adverse effects observed in multiple species appear to be developmental, including effects on the developing immune, nervous, and reproductive systems. Such effects have been observed at maternal body burdens in the range of 30-80 ng/kg in both non-human primates and rodents. Biochemical effects on cytokine expression and metabolizing enzymes occur at body burdens which are within a factor of ten of the clearly adverse developmental responses. Thus, effects on the immune system, learning, and the developing reproductive system of multiple animals occur at body burdens which are close to those present in the background human population.
Collapse
Affiliation(s)
- L S Birnbaum
- National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Research Triangle Park, NC 27711-2055, USA
| | | |
Collapse
|
31
|
Alvarez L, Randi A, Alvarez P, Piroli G, Chamson-Reig A, Lux-Lantos V, Kleiman de Pisarev D. Reproductive effects of hexachlorobenzene in female rats. J Appl Toxicol 2000; 20:81-7. [PMID: 10641019 DOI: 10.1002/(sici)1099-1263(200001/02)20:1<81::aid-jat629>3.0.co;2-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hexachlorobenzene (HCB) is a polyhalogenated aromatic hydrocarbon widely distributed in the environment. In animal testing, HCB has been shown to be a reproductive toxin. Previous investigations of the effects of HCB on ovarian function have yielded equivocal results. Thus, the effects of chronic administration of HCB (1 g kg(-1) body wt.) on the ovary and pituitary hormone levels, hepatic and uterine oestradiol receptors, ovarian histopathological changes and oestrus cycle characteristics were investigated in spontaneously cycling rats. Our data demonstrate that HCB treatment, under the conditions of the present study, reduced circulating levels of oestradiol and prolactin without differences in serum concentrations of progesterone. Follicle-stimulating hormone serum levels were elevated. Hexachlorobenzene treatment resulted in irregularity of cycles, characterized mainly as prolonged periods of oestrus with a reduced number of ova recovered. In addition, HCB administration resulted in significantly decreased uterine nuclear oestrogen receptor levels. Histopathological examination revealed degenerative changes of the ovarian follicles and germinal epithelium and increased numbers of atresic follicles.
Collapse
Affiliation(s)
- L Alvarez
- Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
32
|
Hengstler JG, Van der Burg B, Steinberg P, Oesch F. Interspecies differences in cancer susceptibility and toxicity. Drug Metab Rev 1999; 31:917-70. [PMID: 10575555 DOI: 10.1081/dmr-100101946] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
One of the most complex challenges to the toxicologist represents extrapolation from laboratory animals to humans. In this article, we review interspecies differences in metabolism and toxicity of heterocyclic amines, aflatoxin B1, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and related compounds, endocrine disrupters, polycyclic aromatic hydrocarbons, tamoxifen, and digitoxin. As far as possible, extrapolations to human toxicity and carcinogenicity are performed. Humans may be more susceptible to the carcinogenic effect of heterocyclic amines than monkeys, rats, and mice. Especially, individuals with high CYP1A2 and 3A4 activities and the rapid acetylator phenotype may be expected to have an increased risk. Striking interspecies variation in susceptibility to aflatoxin B1 carcinogenesis is known, with rats representing the most sensitive and mice the most resistant species, refractory to dietary levels three orders of magnitude higher than rats. An efficient conjugation with glutathione, catalyzed by glutathione S-transferase mYc, confers aflatoxin B1 resistance to mice. Extremely large interspecies differences in TCDD-induced toxicity are known. The guinea pig is the most susceptible mammal known, with an LD50 in the range 1-2 micrograms TCDD/kg, whereas the hamster is the most resistant species with an LD50 greater than 3000 micrograms/kg. A number of experts have pointed out to the fact that humans appear to be less sensitive to TCDD than most laboratory animals. Human exposure to background levels of TCDD is not likely to cause an incremental cancer risk. A clear cause--effect relationship has been shown between environmental endocrine-disrupting contaminants and adverse health effects in wildlife, whereas the effects seem to be less critical for humans. Studies on DNA adduct formation and metabolism of the nonsteroidal antiestrogen tamoxifen indicate that rats and mice are orders of magnitude more susceptible than humans.
Collapse
Affiliation(s)
- J G Hengstler
- Institute of Toxicology, University of Mainz, Germany
| | | | | | | |
Collapse
|
33
|
Pappas P, Stephanou P, Sotiropoulou M, Murphy C, Salminen L, Marselos M. Effects of tamoxifen and toremifene on ALDH1 and ALDH3 in human retinal pigment epithelial cells and rat liver. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 463:151-8. [PMID: 10352680 DOI: 10.1007/978-1-4615-4735-8_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- P Pappas
- Department of Pharmacology, Medical School, University of Ioannina, Greece
| | | | | | | | | | | |
Collapse
|
34
|
Caruso JA, Batist G. Divergent mechanisms for loss of Ah-responsiveness in benzo[a]pyrene- and adriamycinR-resistant MCF-7 cells. Biochem Pharmacol 1999; 57:1253-63. [PMID: 10230769 DOI: 10.1016/s0006-2952(99)00041-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The intracellular aryl hydrocarbon receptor (AhR) mediates signal transduction by environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]pyrene by functioning as a ligand-activated transcription factor. We have investigated AhR signaling in sublines of the human breast cancer cell line MCF-7 selected for resistance to AdriamycinR (AdrR) and benzo[a]pyrene (BP(R)). Previously we reported that AdrR cells have a loss of estrogen receptor (ER) expression and are Ah-nonresponsive. Here we show that AhR mRNA and protein are expressed at normal levels in AdrR cells, and the activated AhR complex is functionally capable of binding a xenobiotic responsive element. In MCF-7 cells AhR was depleted to 15% of normal levels after 4 hr TCDD treatment; however, 45% of AhR remained in AdrR cells during this time course. In BP(R) cells AhR mRNA levels were found to be decreased relative to wild-type cells, which led to decreased AhR protein levels and DNA-binding activity. Cellular ER content has been shown to correlate with Ah-responsiveness in human breast cancer cell lines. BP(R) cells were found to be ER-positive, although chronic (BP(R) cells) and acute (24 hr) exposure to benzo[a]pyrene led to significantly lower ER protein levels in MCF-7 cells. We conclude that loss of Ah-responsiveness occurs by different mechanisms in xenobiotic-resistant MCF-7 sublines: AhR mRNA is down-regulated in BP(R) cells, whereas AdrR cells are deficient in AhR signaling by a mechanism unrelated to AhR expression and activity.
Collapse
Affiliation(s)
- J A Caruso
- McGill Center for Translational Research in Cancer, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada
| | | |
Collapse
|
35
|
Ricci MS, Toscano DG, Toscano WA. ECC-1 human endometrial cells as a model system to study dioxin disruption of steroid hormone function. In Vitro Cell Dev Biol Anim 1999; 35:183-9. [PMID: 10478797 DOI: 10.1007/s11626-999-0025-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ECC-1, an established epithelial cell line derived from an adenocarcinoma of human endometrial lining, was examined for growth optimization, steroid hormone receptor- and Ah receptor content, and dioxin modulation of estrogen receptor function. Proliferation of ECC-1 cells was accelerated by growth on a lethally irradiated feeder layer of murine 3T3 fibroblasts. Immunoblot analysis demonstrated the presence of Ah receptor an intracellular protein that binds and regulates the toxic action of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The Ah receptor was functional in these cells as assessed by concentration and kinetic patterns of CYP1A1-mediated 7-ethoxycoumarin O-deethylase (ECOD) induction. The half-maximal effective concentration (EC50) for TCDD was 0.2 nM, and maximal activity appeared after 24-h exposure. A limited structure-activity examination of ECOD activity provided additional evidence for Ah receptor involvement. Competitive binding assays were performed to examine kinetic parameters for estrogen, progesterone, and glucocorticoid receptors. Binding parameters of dissociation constant (Kd) and number of binding sites (Bmax) derived from Scatchard analysis were: estrogen, Kd = 0.67 nM; Bmax = 321 fmol/mg cytosolic protein; progesterone, Kd = 1.31 nM; Bmax = 258 fmol/mg cytosolic protein; dexamethasone, Kd = 1.75 nM, Bmax = 128 fmol/mg cytosolic protein. Exposure of ECC-1 cells to TCDD reduced the estrogen receptor level by 40% without affecting the Kd value, and reduced estrogen receptor-mediated transcription by 50% assessed by transient transfection of an estrogen-responsive reporter plasmid. These data suggest that the ECC-1 cell line is a useful model system for examining the action of dioxin in human endometrial tissue. Both the estrogen receptor and Ah receptor have been implicated in diseases of the endometrium, and examining their interactions may elucidate mechanisms of uterine disease etiology, as well as potential targets for disease prevention.
Collapse
Affiliation(s)
- M S Ricci
- Department of Environmental Health Sciences and Center for Bioenvironmental Research, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana 70112-2699, USA
| | | | | |
Collapse
|
36
|
Hugla JL, Thomé JP. Effects of polychlorinated biphenyls on liver ultrastructure, hepatic monooxygenases, and reproductive success in the barbel. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 1999; 42:265-273. [PMID: 10090815 DOI: 10.1006/eesa.1998.1761] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Polychlorinated biphenyls (PCBs) are organochlorinated micropollutants ubiquitously distributed in the environment. They are known to be strong inducers of hepatic monooxygenases in fish. This can adversely affect reproduction by increasing steroid metabolism. In this work, adult barbels were contaminated with food containing Aroclor 1260, a commercial PCB mixture from Monsanto, at environmentally relevant concentrations. A significant increase in cytochrome P450 was observed, and two particularly sensitive enzymes, ethoxyresorufin o-deethylase (EROD) and ethoxycoumarin o-deethylase (ECOD), were strongly induced. Electron microscopy revealed alterations in liver ultrastructure in contaminated fish, principally an increase in the number of cisternae of the rough endoplasmic reticulum, drastic glycogen depletion, dissolution of mitochondrial contents, and appearance of myelin figures. Contamination was also studied in relation to reproductive success in a hatchery. Contaminated males displayed no alteration in milt quality, but PCBs did alter female reproductive parameters. Total mortality of eggs and larvae increased significantly with the level of PCBs in the eggs. The most highly contaminated fish did not even spawn. All the adverse effects recorded here tended to be reversible when the intoxication ended, sometimes after only a 1-year detoxication period.
Collapse
Affiliation(s)
- J L Hugla
- Laboratoire d'Ecologie animale et d'Ecotoxicologie, Université de Liège, 22 quai Van Beneden, Liège, B-4020, Belgium
| | | |
Collapse
|
37
|
Reinhold J. HUTZ. Reproductive Endocrine Disruption by Environmental Xenobiotics that Modulate the Estrogen-Signaling Pathway, Particularly Tetrachlorodibenzo-p-dioxin (TCDD). J Reprod Dev 1999. [DOI: 10.1262/jrd.45.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- HUTZ Reinhold J.
- Department of Biological Sciences, NIEHS Marine and Freshwater Biomedical Sciences Center, University of Wisconsin-Milwaukee, Lapham Hall, Room 308, 3209 N. Maryland Avenue, Milwaukee, WI 53211-0413, USA
| |
Collapse
|
38
|
Tian Y, Ke S, Thomas T, Meeker RJ, Gallo MA. Transcriptional suppression of estrogen receptor gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). J Steroid Biochem Mol Biol 1998; 67:17-24. [PMID: 9780025 DOI: 10.1016/s0960-0760(98)00067-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TCDD, the most potent congener of the polychlorinated dioxins, has been shown to be an antiestrogen. The mechanisms of TCDD-induced antiestrogenicity are still under investigation. In this study, we investigated the effects of TCDD on the expression of the estrogen receptor (ER) gene. We studied the levels of un-spliced ER transcript (hnRNA) as well as the ER mRNA in ovary, uterus and liver of TCDD-treated mice with different genetic backgrounds. To quantitate the ER hnRNA levels, the intron and exon boundary of ER hnRNA was amplified by competitive RT-PCR. The ER mRNA from these mice was quantitated by competitive RT-PCR amplifying exons separated by an intron. ER hnRNA and ER mRNA levels were quantitated 4 days after a single i.p. dose of TCDD (5 microg/kg) in female C57BL/6J (B6) mice, which carry the responsive allele to TCDD. TCDD treatment significantly (p < 0.05) suppressed the levels of ER hnRNA in the ovary (27.4%) and uterus (21.9%). The decreases in ER hnRNA were coordinated with significant (p < 0.01) decreases in ER mRNA in ovary (57.7%) and uterus (37.6%). There was a significant decrease (20.3%, p < 0.05) in liver ER mRNA, however, the changes of ER hnRNA in liver were not significant. The coordinated decreases in ER hnRNA and mRNA in TCDD-treated mice suggest a suppression of transcription of the ER gene. We performed the same study on DBA/2J (D2) mice, which possess the "non-responsive" allele of the aryl hydrocarbon receptor (AhR). These mice demonstrated no significant decrease in either the ER mRNA or hnRNA after TCDD treatment. Overall, these results suggest that TCDD suppresses the gene expression of the ER receptor by decreasing its transcription, and the AhR plays an important role in mediating this response.
Collapse
Affiliation(s)
- Y Tian
- Environmental and Occupational Health Sciences Institute, UMDNJ-Robert Wood Johnson Medical School, Piscataway 08855-1179, USA
| | | | | | | | | |
Collapse
|
39
|
Williams DE, Lech JJ, Buhler DR. Xenobiotics and xenoestrogens in fish: modulation of cytochrome P450 and carcinogenesis. Mutat Res 1998; 399:179-92. [PMID: 9672659 DOI: 10.1016/s0027-5107(97)00255-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
As is the case with mammals, an ever-increasing number of cytochromes P450 (CYPs) are being characterized from fish. The focus of work on fish CYPs has been primarily on environmental induction of CYP1A by pollutants such as the polycyclic aromatic hydrocarbons, polychlorinated biphenyls, dioxins and dibenzofurans. This response has been the basis for a sensitive biomonitoring tool of ecosystem health for a number of years. Studies have documented a correlation between CYP1A induction, pollutant levels and tumor incidence, especially in bottom-dwelling species. The rainbow trout has been utilized as a tumor model to document the role of CYP1A modulation in the inhibition or promotion of cancer. Fish are also very responsive to the class of chemicals known as xenoestrogens. Recent evidence is presented documenting the modulation of CYPs by xenoestrogens and their potential role as modulators of the tumor response. In this paper, we summarize the current knowledge concerning the occurrence of CYPs in fish and focus on the role of CYP1A induction in environmental monitoring of various genotoxic carcinogens and in the modulation of cancer in the trout model. Finally, the important class of aquatic pollutants known as xenoestrogens have now been shown to modulate CYP levels perhaps leading to alterations in tumor response or other adverse effects.
Collapse
Affiliation(s)
- D E Williams
- Marine/Freshwater Biomedical Sciences Center, Oregon State University, Corvallis 97331-6602, USA.
| | | | | |
Collapse
|
40
|
Murrell JA, Portier CJ, Morris RW. Characterizing dose-response: I: Critical assessment of the benchmark dose concept. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 1998; 18:13-26. [PMID: 9523441 DOI: 10.1111/j.1539-6924.1998.tb00911.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We present a critical assessment of the benchmark dose (BMD) method introduced by Crump as an alternative method for setting a characteristic dose level for toxicant risk assessment. The no-observed-adverse-effect-level (NOAEL) method has been criticized because it does not use all of the data and because the characteristic dose level obtained depends on the dose levels and the statistical precision (sample sizes) of the study design. Defining the BMD in terms of a confidence bound on a point estimate results in a characteristic dose that also varies with the statistical precision and still depends on the study dose levels. Indiscriminate choice of benchmark response level may result in a BMD that reflects little about the dose-response behavior available from using all of the data. Another concern is that the definition of the BMD for the quantal response case is different for the continuous response case. Specifically, defining the BMD for continuous data using a ratio of increased effect divided by the background response results in an arbitrary dependence on the natural background for the endpoint being studied, making comparison among endpoints less meaningful and standards more arbitrary. We define a modified benchmark dose as a point estimate using the ratio of increased effect divided by the full adverse response range which enables consistent placement of the benchmark response level and provides a BMD with a more consistent relationship to the dose-response curve shape.
Collapse
Affiliation(s)
- J A Murrell
- Analytical Sciences, Inc., Durham, North Carolina, USA
| | | | | |
Collapse
|
41
|
Navas JM, Segner H. Antiestrogenic activity of anthropogenic and natural chemicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 1998; 5:75-82. [PMID: 19005814 DOI: 10.1007/bf02986390] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/1997] [Accepted: 10/05/1997] [Indexed: 05/27/2023]
Abstract
A number of natural and man-made chemicals possess antiestrogenic activity, i.e. they antagonize a broad spectrum of estrogen-induced responses in vertebrates. Examples of antiestrogens include dioxin, furan and PCB congeners, certain PAHs, pesticides and indol-3-carbinol derivatives. Major mechanisms of anti-estrogenicity are antagonistic action of chemicals at the estrogen receptor, or binding of chemicals to the arylhydrocarbon (Ah) receptor and subsequent interaction with estrogen-responsive genes. Toxicological consequences resulting from antiestrogenic activity have not been conclusively demonstrated to date, although antiestrogenic compounds could critically affect sensitive reproductive and developmental processes.
Collapse
Affiliation(s)
- J M Navas
- Department of Chemical Ecotoxicology, UFZ Centre for Environmental Research, Permoserstr. 15, D-04318, Leipzig, Germany
| | | |
Collapse
|
42
|
Heimler I, Trewin AL, Chaffin CL, Rawlins RG, Hutz RJ. Modulation of ovarian follicle maturation and effects on apoptotic cell death in Holtzman rats exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in utero and lactationally. Reprod Toxicol 1998; 12:69-73. [PMID: 9431574 DOI: 10.1016/s0890-6238(97)00101-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recent reports have described the reproduction-modulating and endocrine-disrupting effects following exposure to toxic substances such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Herein, we set out (1) to determine whether TCDD exposure exerts detrimental effects on follicle maturation in the Holtzman rat ovary and (2) to determine whether the effects of TCDD are mediated in part via apoptotic cell death. In certain species, dioxin exposure is correlated with reduced fecundity, reduced ovulatory rate, an increased incidence of endometriosis, and various reproductive cancers. Although some of the effects of TCDD are mediated via the hypothalamic-pituitary axis, direct effects on the ovary have also been observed. In the present study, an oral dose of 1 microgram TCDD/kg maternal body weight was administered on Day 15 of gestation. Female pups were sacrificed on Postnatal Day 21/22, and the ovaries were excised, fixed for histologic analysis, and analyzed in a double-blind paradigm. The analysis included a count and measurement and classification of preantral and antral follicles throughout the entire ovary. The contralateral ovary from each animal was analyzed for DNA fragmentation indicative of apoptotic cell death. The results indicate that TCDD treatment significantly reduced the number of antral follicles in the size classes 50,000 to 74,999 microns2 and > 100,000 microns2. We also observed a reduction in the number of preantral follicles less than 50,000 microns2. No difference was observed in the degree of apoptotic cell death in antral (50,000 to > 100,000 microns2) and preantral follicles (50,000 microns2 to > 75,000 microns2) between TCDD-treated and control-treated tissues. These data support the hypothesis that TCDD results in a diminution in the number of antral and preantral follicles of certain size classes in animals exposed during critical periods of development, but that apoptosis does not appear to be the underlying mechanism in these particular follicles. This does not preclude apoptosis occurring in pools of smaller precursor follicles.
Collapse
Affiliation(s)
- I Heimler
- Department of Biological Sciences, University of Wisconsin-Milwaukee 53211, USA
| | | | | | | | | |
Collapse
|
43
|
McKinney JD, Waller CL. Molecular determinants of hormone mimicry: halogenated aromatic hydrocarbon environmental agents. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 1998; 1:27-58. [PMID: 9487092 DOI: 10.1080/10937409809524542] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The potential of ostensibly structurally diverse environmental chemicals to modulate endocrine processes in biological systems has been recognized. Difficulty in classifying endocrine system modulators by chemical structure may in large part be due to lack of understanding of mechanisms of action. New developments in understanding nuclear receptor mechanisms of hormone action support a more complex mechanism, possibly involving dimerization/aggregation events leading to multimeric receptor complexes in agonist action. Because of the requirement for high structural specificity in agonist action, it is suggested that most environmental chemicals of concern are likely to function as imperfect hormones with partial agonist-antagonist properties, especially at environmentally realistic concentrations. In the absence of having appropriately placed molecular recognition domains to affect agonist action, partial agonism-antagonism may be associated with favorable low-energy conformational flexibility and complementary receptor protein flexibility. The halogenated aromatic hydrocarbons are of particular concern as hormone mimics since they often have (1) similar molecular recognition factors but in many cases relatively more flexible structures, (2) similar bulk physico-chemical properties controlling uptake and distribution in biological systems, and (3) are relatively more resistant to metabolism and elimination. Some important molecular reactivity properties underlying thyromimetic and estrogenic actions of some of these chemicals are identified and described in terms of structure-activity relationships (SARs). It is proposed that specificity of hormone action in the nucleus could be associated with differential interaction of ligand-bound receptor dimeric forms with other transcription factors specific to the target cell. The small-molecule ligand can be viewed as playing a central, multifunctional role in nuclear receptor action as an organic unmasking and reclustering agent for critical macromolecules. Evidence is discussed in support of a nuclear heterodimerization model for dioxin and related compound action involving a structural transition mechanism. These models with some molecular detail also have utility in understanding the different structural properties of agonists and antagonists. There would appear to be ample opportunities for environmental chemicals to act as antagonists for multiple receptor systems with little more than anchor-ring similarities in structure. The application of three-dimensional quantitative structure-activity (3D QSAR) models incorporating such structural information should be a useful adjunct for identifying endocrine system modulating chemicals. This data has implications for (1) improved drug design, (2) understanding of chemical interaction toxicity, (3) removing undesirable chemicals from our environment, and (4) reducing their chemical release.
Collapse
Affiliation(s)
- J D McKinney
- Pharmacokinetics Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711-2055, USA.
| | | |
Collapse
|
44
|
Brauze D, Crow JS, Malejka-Giganti D. Modulation by β-naphthoflavone of ovarian hormone dependent responses in rat uterus and liver in vivo. Can J Physiol Pharmacol 1997. [DOI: 10.1139/y97-124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Abstract
Natural sex hormones are most important factors guaranteeing the homeostasis of male and female sexual functions, including sexual differentiation and reproduction. Main target tissues include bone and skin, cardiovascular system, and possibly central nervous and immune systems. In medicine, synthetic hormonal substances with agonistic and antagonistic properties have been widely used for decades. Therapeutic benefit is the aim, and the many possibilities to interfere with normal or pathological hormonal situations are rather well understood. Synthetic hormonal agonists or (partial) antagonists may exhibit specific affinities to special receptors resulting in a spectrum of organotropies, or they may even induce opposite actions on different targets. Although not a new issue, environmental substances mimicking potentials of sex hormones have recently gained increased attention. There is not need to reinvent the wheel, since most (adverse) effects may be revealed with today's routine procedures used for testing medicinal substances, but some additional testing strategies should be included. Adverse effects of ecohormones may preferentially affect systems other than the human organism (assuming lower exposure and possibly lower susceptibility). Nevertheless, this survey is confined to possible alterations in the mammalian organism, since such effects are best understood from numerous experimental studies and clinical trials.
Collapse
Affiliation(s)
- D Neubert
- Department of Toxicology, Benjamin Franklin Medical Center, Free University Berlin, Germany
| |
Collapse
|
46
|
Daston GP, Gooch JW, Breslin WJ, Shuey DL, Nikiforov AI, Fico TA, Gorsuch JW. Environmental estrogens and reproductive health: a discussion of the human and environmental data. Reprod Toxicol 1997; 11:465-81. [PMID: 9241667 DOI: 10.1016/s0890-6238(97)00014-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Estrogenic activity of certain xenobiotics is an established mechanism of toxicity that can impair reproductive function in adults of either sex, lead to irreversible abnormalities when administered during development, or cause cancer. The concern has been raised that exposure to ambient levels of estrogenic xenobiotics may be having widespread adverse effects on reproductive health of humans and wildlife. The purpose of this review is to evaluate (a) the nature of the evidence supporting this concern, and (b) the adequacy of toxicity screening to detect, and risk assessment procedures to establish safe levels for, agents acting by this mechanism. Observations such as adverse developmental effects after maternal exposure to therapeutic levels of the potent estrogen diethylstilbestrol or male fertility problems after exposure to high levels of the weak estrogen chlordecone clearly demonstrate that estrogenicity is active as a toxic mechanism in humans. High level exposures to estrogenic compounds have also been shown to affect specific wildlife populations. However, there is little direct evidence to indicate that exposures to ambient levels of estrogenic xenobiotics are affecting reproductive health. Reports of historical trends showing decreasing reproductive capacity (e.g., decreased sperm production over the last 50 years) are either inconsistent with other data or have significant methodologic inadequacies that hinder interpretation. More reliable historical trend data show an increase in breast cancer rate, but the most comprehensive epidemiology study to data failed to show an association between exposure to persistent, estrogenic organochlorine compounds and breast cancer. Clearly, more work needs to be done to characterize historical trends in humans and background incidence of abnormalities in wildlife populations, and to test hypotheses about ambient exposure to environmental contaminants and toxic effects, before conclusions can be reached about the extent or possible causes of adverse effects. It is unlikely that current lab animal testing protocols are failing to detect agents with estrogenic activity, as a wide array of estrogen-responsive endpoints are measured in standard testing batteries. Routine testing for aquatic and wildlife toxicity is more limited in this respect, and work should be done to assess the validity of applying mammalian toxicology data for submammalian hazard identification. Current risk assessment methods appear to be valid for estrogenic agents, although the database for evaluating this is limited. In conclusion, estrogenicity is an important mechanism of reproductive and developmental toxicity; however, there is little evidence at this point that low level exposures constitute a human or ecologic health risk. Given the potential consequences of an undetected risk, more research is needed to investigate associations between exposures and effects, both in people and animals, and a number of research questions are identified herein. The lack of evidence demonstrating widespread xenobiotic-induced estrogenic risk suggests that far-reaching policy decisions can await these research findings.
Collapse
Affiliation(s)
- G P Daston
- American Industrial Health Council, Reproductive & Developmental Effects Subcommittee, Washington, DC, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Geyer HJ, Schramm KW, Scheunert I, Schughart K, Buters J, Wurst W, Greim H, Kluge R, Steinberg CE, Kettrup A, Madhukar B, Olson JR, Gallo MA. Considerations on genetic and environmental factors that contribute to resistance or sensitivity of mammals including humans to toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. Part 1: Genetic factors affecting the toxicity of TCDD. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 1997; 36:213-230. [PMID: 9143450 DOI: 10.1006/eesa.1996.1502] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The marked species differences in short-term toxicity (30-day LD50) of ca. 10,000 (LD50: guinea pigs ca. 1 microgram/kg body wt and Han/Wistar Kuopio rats more than 9600 micrograms/kg body wt) of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is one of the central issues of the controversies that have developed on the validity of risk assessment strategies for TCDD and related compounds. One of the most challenging issues that toxicologists face today is the identification of genes that contribute to or are responsible for increased resistance or sensitivity to TCDD and related compounds. It is assumed that most, if not all, toxic effects of TCDD are mediated more or less through the binding affinity to the Ah receptor. This hypothesis was extended and tries to explain the differences in sensitivity/resistance of animals including humans to TCDD by their total fat (lipid) content. In this respect the gene or genes which is or are responsible for obesity of mammals including humans are of great interest. An obvious linear positive logarithmic relationship between the oral 30-day LD50 (microgram/kg) of TCDD in different species and strains of mammals and their total body fat content (TBF%) was found: log LD50 = 5.30 x log (TBF)-3.22, or LD50 = 0.000603 x (TBF)5.30. By means of this regression the toxicity of TCDD in mammals including humans of different age and/or body weight can be predicted if their total body fat content is known. Examples of single-gene and polygenic disease models in different mammals, such as nonobese diabetic, diabetic, viable yellow, obese, and fat mice, as well as transgenic mice, and other suitable animal models, such as fatty Zucker rats, Han/Wistar (Kuopio) rats, and minipigs, are discussed, and predicted LD50 values of TCDD in these animals and humans are presented.
Collapse
Affiliation(s)
- H J Geyer
- Institute of Ecological Chemistry, GSF-National Research Center for Environment and Health, Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Li X, Johnson DC, Rozman KK. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) increases release of luteinizing hormone and follicle-stimulating hormone from the pituitary of immature female rats in vivo and in vitro. Toxicol Appl Pharmacol 1997; 142:264-9. [PMID: 9070348 DOI: 10.1006/taap.1996.8044] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent findings that serum levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were dramatically increased in weanling female Sprague-Dawley (S-D) rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) prompted a more detailed study to define the effect and to investigate its mechanism(s). Dose-response and time-course studies were performed in vivo. Single doses (0.03-30 micrograms/kg) of TCDD were administered orally by gastric intubation to 22-day-old female rats. Control animals received vehicle (corn oil) only, whereas naive controls were treated with an empty intubation syringe. Trunk blood was collected after decapitation at various time points during the subsequent 72 hr. Concentrations of LH and FSH were determined in serum by radioimmunoassays (RIA). Two distinct peaks of both hormones were detected. The first, at 1 hr, appeared to be a non-specific response to vehicle as it was present in both vehicle control and TCDD-treated animals, but not in naive control animals. The second peak, at 24 hr, occurred only in animals dosed with TCDD. Gonadotropin levels in these animals were dose-dependently elevated. The ED50 was about 5 micrograms/kg with a maximum elevation of 15- and 20-fold for LH and FSH, respectively. Subsequently, in vitro studies were conducted in cultured pituitary halves and in primary pituitary cell cultures exposed to gonadotropin releasing hormone (GnRH) and/or TCDD. The amount of LH released into the media was measured by RIA. TCDD caused a dose-dependent release of LH from pituitary halves with an ED50 of about 0.1 nM. This effect was abolished in calcium-free medium but was not attenuated by an GnRH antagonist. Further in vitro studies were conducted in primary pituitary cell cultures. Although the cells responded to GnRH very well, no effect of up to 100 nM TCDD on the release of gonadotropins was detected. The results suggest that TCDD induces dose-dependently a brief release of gonadotropins in immature female rats. This effect is at least partially due to an effect of TCDD in the pituitary. Increased release of gonadotropins as a result of TCDD treatment depends on the action of calcium but does not occur via activation of GnRH receptors. However, cells in a primary pituitary culture do not respond to TCDD with increased release of gonadotropins, suggesting that the effect of TCDD in the pituitary is mediated by a factor present in pituitary halves but not in primary cell culture.
Collapse
Affiliation(s)
- X Li
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City 66160, USA
| | | | | |
Collapse
|
49
|
|
50
|
Lai ZW, Pineau T, Esser C. Identification of dioxin-responsive elements (DREs) in the 5' regions of putative dioxin-inducible genes. Chem Biol Interact 1996; 100:97-112. [PMID: 8646792 DOI: 10.1016/0009-2797(96)03691-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an exogenous ligand for the cytosolic aryl hydrocarbon receptor (AhR), a ligand-inducible transcription factor whose exact physiological role remains elusive. TCDD has been shown to modulate the expression of a large array of genes, albeit often indirectly, by demonstration of protein or mRNA upregulation. Here, by computer analysis of available promoter sequences, we identify dioxin-responsive elements in the promoter regions of many putative AhR regulated and therefore dioxin-inducible genes.
Collapse
Affiliation(s)
- Z W Lai
- Institue of Environmental Hygiene, University of Düsseldorf, Germany
| | | | | |
Collapse
|