1
|
Xue Q, Liu H, Sun M, Zhao W, Chen Y, Chen J, Wei C, Cai X, Xue Q. Peste des petits ruminants virus hemagglutinin (H) induces lysosomal degradation of host cyclophilin A to facilitate viral replication. Virus Res 2019; 277:197844. [PMID: 31866422 DOI: 10.1016/j.virusres.2019.197844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022]
Abstract
Peste des petits ruminants virus (PPRV) is a highly contagious disease that affects sheep and goats. To better understand PPRV replication and virulence, cyclophilin A (CypA), a multifunctional goat host protein, was selected for further studies. CypA has been reported to inhibit or facilitate viral replication. However, the precise roles of CypA during PPRV infection remain unclear. Our data show for the first time that CypA suppressed PPRV replication by its PPIase activity, and PPRV infection decreased CypA protein levels. Detailed analysis revealed that PPRV H protein was responsible for the reduction of CypA, which was dependent on the lysosome pathway. No interaction was identified between H and CypA. Furthermore, the 35-58 region of H was essential for the reduction of CypA. In conclusion, our findings identify the antiviral role of CypA against PPRV and provide key insights into how PPRV H protein antagonizes host antiviral response.
Collapse
Affiliation(s)
- Qiao Xue
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Huaidong Liu
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Miao Sun
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Wei Zhao
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Yanfei Chen
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Jian Chen
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Chunxia Wei
- China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Xuepeng Cai
- China Institute of Veterinary Drug Control, Beijing, 100081, China.
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing, 100081, China.
| |
Collapse
|
2
|
Regulatory Role of the Morbillivirus Attachment Protein Head-to-Stalk Linker Module in Membrane Fusion Triggering. J Virol 2018; 92:JVI.00679-18. [PMID: 29997204 DOI: 10.1128/jvi.00679-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/05/2018] [Indexed: 12/12/2022] Open
Abstract
Morbillivirus (e.g., measles virus [MeV] and canine distemper virus [CDV]) host cell entry is coordinated by two interacting envelope glycoproteins, namely, an attachment (H) protein and a fusion (F) protein. The ectodomain of H proteins consists of stalk, connector, and head domains that assemble into functional noncovalent dimer-of-dimers. The role of the C-terminal module of the H-stalk domain (termed linker) and the connector, although putatively able to assume flexible structures and allow receptor-induced structural rearrangements, remains largely unexplored. Here, we carried out a nonconservative mutagenesis scan analysis of the MeV and CDV H-linker/connector domains. Our data demonstrated that replacing isoleucine 146 in H-linker (H-I146) with any charged amino acids prevented virus-mediated membrane fusion activity, despite proper trafficking of the mutants to the cell surface and preserved binding efficiency to the SLAM/CD150 receptor. Nondenaturing electrophoresis revealed that these charged amino acid changes led to the formation of irregular covalent H tetramers rather than functional dimer-of-dimers formed when isoleucine or other hydrophobic amino acids were present at residue position 146. Remarkably, we next demonstrated that covalent H tetramerization per se was not the only mechanism preventing F activation. Indeed, the neutral glycine mutant (H-I146G), which exhibited strong covalent tetramerization propensity, maintained limited fusion promotion activity. Conversely, charged H-I146 mutants, which additionally carried alanine substitution of natural cysteines (H-C139A and H-C154A) and thus were unable to form covalently linked tetramers, were fusion activation defective. Our data suggest a dual regulatory role of the hydrophobic residue at position 146 of the morbillivirus head-to-stalk H-linker module: securing the assembly of productive dimer-of-dimers and contributing to receptor-induced F-triggering activity.IMPORTANCE MeV and CDV remain important human and animal pathogens. Development of antivirals may significantly support current global vaccination campaigns. Cell entry is orchestrated by two interacting glycoproteins (H and F). The current hypothesis postulates that tetrameric H ectodomains (composed of stalk, connector, and head domains) undergo receptor-induced rearrangements to productively trigger F; these conformational changes may be regulated by the H-stalk C-terminal module (linker) and the following connector domain. Mutagenesis scan analysis of both microdomains revealed that replacing amino acid 146 in the H-linker region with nonhydrophobic residues produced covalent H tetramers which were compromised in triggering membrane fusion activity. However, these mutant proteins retained their ability to traffic to the cell surface and to bind to the virus receptor. These data suggest that the morbillivirus linker module contributes to the folding of functional pre-F-triggering H tetramers. Furthermore, such structures might be critical to convert receptor engagement into F activation.
Collapse
|
3
|
Antigenic Drift Defines a New D4 Subgenotype of Measles Virus. J Virol 2017; 91:JVI.00209-17. [PMID: 28356529 DOI: 10.1128/jvi.00209-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/19/2017] [Indexed: 01/25/2023] Open
Abstract
The measles virus hemagglutinin (MeV-H) protein is the main target of protective neutralizing antibodies. Using a panel of monoclonal antibodies (MAbs) that recognize known major antigenic sites in MeV-H, we identified a D4 genotype variant that escapes neutralization by MAbs targeting the neutralizing epitope (NE) antigenic site. By site-directed mutagenesis, L249P was identified as the critical mutation disrupting the NE in this genotype D4 variant. Forty-two available D4 genotype gene sequences were subsequently analyzed and divided into 2 groups according to the presence or absence of the L249P MeV-H mutation. Further analysis of the MeV-N gene sequences of these 2 groups confirmed that they represent clearly definable, sequence-divergent D4 subgenotypes, which we named subgenotypes D4.1 and D4.2. The subgenotype D4.1 MeVs were isolated predominantly in Kenya and Ethiopia, whereas the MAb-resistant subgenotype D4.2 MeVs were isolated predominantly in France and Great Britain, countries with higher vaccine coverage rates. Interestingly, D4.2 subgenotype viruses showed a trend toward diminished susceptibility to neutralization by human sera pooled from approximately 60 to 80 North American donors. Escape from MAb neutralization may be a powerful epidemiological surveillance tool to monitor the evolution of new MeV subgenotypes.IMPORTANCE Measles virus is a paradigmatic RNA virus, as the antigenic composition of the vaccination has not needed to be updated since its discovery. The vaccine confers protection by inducing neutralizing antibodies that interfere with the function of the hemagglutinin protein. Viral strains are indistinguishable serologically, although characteristic nucleotide sequences differentiate 24 genotypes. In this work, we describe a distant evolutionary branch within genotype D4. Designated subgenotype D4.2, this virus is distinguishable by neutralization with vaccine-induced monoclonal antibodies that target the neutralizing epitope (NE). The subgenotype D4.2 viruses have a higher predominance in countries with intermediary levels of vaccine coverage. Our studies demonstrate that subgenotype D4.2 lacks epitopes associated with half of the known antigenic sites, which significantly impacts our understanding of measles virus evolution.
Collapse
|
4
|
Lin LT, Richardson CD. The Host Cell Receptors for Measles Virus and Their Interaction with the Viral Hemagglutinin (H) Protein. Viruses 2016; 8:v8090250. [PMID: 27657109 PMCID: PMC5035964 DOI: 10.3390/v8090250] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/29/2016] [Accepted: 09/02/2016] [Indexed: 12/14/2022] Open
Abstract
The hemagglutinin (H) protein of measles virus (MeV) interacts with a cellular receptor which constitutes the initial stage of infection. Binding of H to this host cell receptor subsequently triggers the F protein to activate fusion between virus and host plasma membranes. The search for MeV receptors began with vaccine/laboratory virus strains and evolved to more relevant receptors used by wild-type MeV. Vaccine or laboratory strains of measles virus have been adapted to grow in common cell lines such as Vero and HeLa cells, and were found to use membrane cofactor protein (CD46) as a receptor. CD46 is a regulator that normally prevents cells from complement-mediated self-destruction, and is found on the surface of all human cells, with the exception of erythrocytes. Mutations in the H protein, which occur during adaptation and allow the virus to use CD46 as a receptor, have been identified. Wild-type isolates of measles virus cannot use the CD46 receptor. However, both vaccine/laboratory and wild-type strains can use an immune cell receptor called signaling lymphocyte activation molecule family member 1 (SLAMF1; also called CD150) and a recently discovered epithelial receptor known as Nectin-4. SLAMF1 is found on activated B, T, dendritic, and monocyte cells, and is the initial target for infections by measles virus. Nectin-4 is an adherens junction protein found at the basal surfaces of many polarized epithelial cells, including those of the airways. It is also over-expressed on the apical and basal surfaces of many adenocarcinomas, and is a cancer marker for metastasis and tumor survival. Nectin-4 is a secondary exit receptor which allows measles virus to replicate and amplify in the airways, where the virus is expelled from the body in aerosol droplets. The amino acid residues of H protein that are involved in binding to each of the receptors have been identified through X-ray crystallography and site-specific mutagenesis. Recombinant measles “blind” to each of these receptors have been constructed, allowing the virus to selectively infect receptor specific cell lines. Finally, the observations that SLAMF1 is found on lymphomas and that Nectin-4 is expressed on the cell surfaces of many adenocarcinomas highlight the potential of measles virus for oncolytic therapy. Although CD46 is also upregulated on many tumors, it is less useful as a target for cancer therapy, since normal human cells express this protein on their surfaces.
Collapse
Affiliation(s)
- Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Christopher D Richardson
- Department of Microbiology and Immunology, Dalhousie University, 5850 College St., Halifax, NS B3H 4R2, Canada.
- Department of Pediatrics and Canadian Center for Vaccinology, Izaak Walton Killam Health Centre, Halifax, NS B3K 6R8, Canada.
| |
Collapse
|
5
|
Xu W, Zhang MX, Qin EQ, Yan YC, Li FY, Xu Z, Tian X, Fan R, Tu B, Chen WW, Zhao M. Molecular Characterization of Wild Type Measles Virus from Adult Patients in Northern China, 2014. Int J Infect Dis 2016; 45:36-42. [PMID: 26899955 DOI: 10.1016/j.ijid.2016.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/05/2016] [Accepted: 02/10/2016] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES In this study, we studied the N and H genes from wild type measles viruses (MeVs) isolated during the 2013-2014 outbreak. METHODS Clinical samples were collected, and the genotyping, phylogenetic analysis were performed. RESULTS The vaccination rate of the study population was 4%. Genotype H1a was the predominant genotype. Wild type viruses were classified into clusters A and B, C and may have different origins. N-450 sequences from wild type viruses were highly homologous with, and likely evolved from MeVs circulating in Tianjing and Henan in 2012. MVs/Shenyang.CHN/18.14/3 could have evolved from MeVs from Liaoning, Beijing, Hebei, Heilongjiang, Henan, Jilin, and Tianjin. Our data suggested that one or more of the same viruses circulated between Beijing, Shenyang, Hong Kong, Taiwan and Berlin. CONCLUSIONS Important factors contributing to outbreaks could include weak vaccination coverage, poor vaccination strategies, and migration of adult workers between cities, countries, and from rural areas to urban areas.
Collapse
Affiliation(s)
- Wen Xu
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, 100039 Beijing, China
| | - Ming-Xiang Zhang
- Department of Infectious Diseases, The Sixth People's Hospital of Shenyang, 110006 Shenyang, China
| | - En-Qiang Qin
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, 100039 Beijing, China
| | - Ying-Chun Yan
- Department of Infectious Diseases, The Sixth People's Hospital of Shenyang, 110006 Shenyang, China
| | - Feng-Yi Li
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, 100039 Beijing, China
| | - Zhe Xu
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, 100039 Beijing, China
| | - Xia Tian
- Department of Infectious Diseases, The Sixth People's Hospital of Shenyang, 110006 Shenyang, China
| | - Rong Fan
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, 100039 Beijing, China
| | - Bo Tu
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, 100039 Beijing, China
| | - Wei-Wei Chen
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, 100039 Beijing, China.
| | - Min Zhao
- Treatment and Research Center for Infectious Diseases, 302 Military Hospital of China, 100039 Beijing, China.
| |
Collapse
|
6
|
Zhao X, Cai L, Adogla EA, Guan H, Lin Y, Wang Q. Labeling of Enveloped Virus via Metabolic Incorporation of Azido Sugars. Bioconjug Chem 2015; 26:1868-72. [PMID: 26308754 DOI: 10.1021/acs.bioconjchem.5b00310] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Modification of an enveloped measles virus was achieved by metabolic incorporation of azido sugars in host cells through the protein glycosylation process. Based on this, the resulting measles virus particles could be modified with azido groups on the surface glycoproteins, which could be further labeled with fluorescence dyes using a strain-promoted azide-alkyne cycloaddition reaction. We envision this metabolic labeling approach to be applicable to a wide variety of enveloped viruses, allowing the facile conjugation and surface modification.
Collapse
Affiliation(s)
- Xia Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Li Cai
- Division of Mathematics and Science, University of South Carolina Salkehatchie , Walterboro, South Carolina 29488, United States
| | - Enoch A Adogla
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Hong Guan
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| | - Yuan Lin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, P. R. China
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29208, United States
| |
Collapse
|
7
|
Xu S, Zhang Y, Zhu Z, Liu C, Mao N, Ji Y, Wang H, Jiang X, Li C, Tang W, Feng D, Wang C, Zheng L, Lei Y, Ling H, Zhao C, Ma Y, He J, Wang Y, Li P, Guan R, Zhou S, Zhou J, Wang S, Zhang H, Zheng H, Liu L, Ma H, Guan J, Lu P, Feng Y, Zhang Y, Zhou S, Xiong Y, Ba Z, Chen H, Yang X, Bo F, Ma Y, Liang Y, Lei Y, Gu S, Liu W, Chen M, Featherstone D, Jee Y, Bellini WJ, Rota PA, Xu W. Genetic characterization of the hemagglutinin genes of wild-type measles virus circulating in china, 1993-2009. PLoS One 2013; 8:e73374. [PMID: 24073194 PMCID: PMC3779233 DOI: 10.1371/journal.pone.0073374] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 07/29/2013] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND China experienced several large measles outbreaks in the past two decades, and a series of enhanced control measures were implemented to achieve the goal of measles elimination. Molecular epidemiologic surveillance of wild-type measles viruses (MeV) provides valuable information about the viral transmission patterns. Since 1993, virologic surveillnace has confirmed that a single endemic genotype H1 viruses have been predominantly circulating in China. A component of molecular surveillance is to monitor the genetic characteristics of the hemagglutinin (H) gene of MeV, the major target for virus neutralizing antibodies. PRINCIPAL FINDINGS Analysis of the sequences of the complete H gene from 56 representative wild-type MeV strains circulating in China during 1993-2009 showed that the H gene sequences were clustered into 2 groups, cluster 1 and cluster 2. Cluster1 strains were the most frequently detected cluster and had a widespread distribution in China after 2000. The predicted amino acid sequences of the H protein were relatively conserved at most of the functionally significant amino acid positions. However, most of the genotype H1 cluster1 viruses had an amino acid substitution (Ser240Asn), which removed a predicted N-linked glycosylation site. In addition, the substitution of Pro397Leu in the hemagglutinin noose epitope (HNE) was identified in 23 of 56 strains. The evolutionary rate of the H gene of the genotype H1 viruses was estimated to be approximately 0.76×10(-3) substitutions per site per year, and the ratio of dN to dS (dN/dS) was <1 indicating the absence of selective pressure. CONCLUSIONS Although H genes of the genotype H1 strains were conserved and not subjected to selective pressure, several amino acid substitutions were observed in functionally important positions. Therefore the antigenic and genetic properties of H genes of wild-type MeVs should be monitored as part of routine molecular surveillance for measles in China.
Collapse
Affiliation(s)
- Songtao Xu
- Regional Reference Measles Laboratory for the WHO Western Pacific Region, Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | - Yan Zhang
- Regional Reference Measles Laboratory for the WHO Western Pacific Region, Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | - Zhen Zhu
- Regional Reference Measles Laboratory for the WHO Western Pacific Region, Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | - Chunyu Liu
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Naiying Mao
- Regional Reference Measles Laboratory for the WHO Western Pacific Region, Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | - Yixin Ji
- Regional Reference Measles Laboratory for the WHO Western Pacific Region, Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | - Huiling Wang
- Regional Reference Measles Laboratory for the WHO Western Pacific Region, Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | - Xiaohong Jiang
- Regional Reference Measles Laboratory for the WHO Western Pacific Region, Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| | - Chongshan Li
- Shanghai Center for Disease Control and Prevention, Shanghai City, China
| | - Wei Tang
- Shanghai Center for Disease Control and Prevention, Shanghai City, China
| | - Daxing Feng
- Henan Center for Disease Control and Prevention, Zhengzhou City, Henan Province, China
| | - Changyin Wang
- Shandong Center for Disease Control and Prevention, Jinan City, Shandong Province, China
| | - Lei Zheng
- Shanxi Center for Disease Control and Prevention, Taiyuan City, Shanxi Province, China
| | - Yue Lei
- Tianjin Center for Disease Control and Prevention, Tianjin City, China
| | - Hua Ling
- Chongqing Center for Disease Control and Prevention, Chongqing City, China
| | - Chunfang Zhao
- Chongqing Center for Disease Control and Prevention, Chongqing City, China
| | - Yan Ma
- Hainan Center for Disease Control and Prevention, Haikou City, Hainan Province, China
| | - Jilan He
- Sichuan Center for Disease Control and Prevention, Chengdu City, Sichuan Province, China
| | - Yan Wang
- Liaoning Center for Disease Control and Prevention, Shenyang City, Liaoning Province, China
| | - Ping Li
- Shaanxi Center for Disease Control and Prevention, Xian City, Shannxi Province, China
| | - Ronghui Guan
- Shaanxi Center for Disease Control and Prevention, Xian City, Shannxi Province, China
| | - Shujie Zhou
- Anhui Center for Disease Control and Prevention, Hefei City, Anhui Province, China
| | - Jianhui Zhou
- Jilin Center for Disease Control and Prevention, Changchun City, Jilin Province, China
| | - Shuang Wang
- Jilin Center for Disease Control and Prevention, Changchun City, Jilin Province, China
| | - Hong Zhang
- Hunan Center for Disease Control and Prevention, Changsha City, Hunan Province, China
| | - Huanying Zheng
- Guangdong Center for Disease Control and Prevention, Guangzhou City, Guangzhou Province, China
| | - Leng Liu
- Guangdong Center for Disease Control and Prevention, Guangzhou City, Guangzhou Province, China
| | - Hemuti Ma
- Xinjiang Center for Disease Control and Prevention, Urumchi City, Xinjiang Province, China
| | - Jing Guan
- Xinjiang Center for Disease Control and Prevention, Urumchi City, Xinjiang Province, China
| | - Peishan Lu
- Jiangsu Center for Disease Control and Prevention, Nanjing City, Jiangsu Province, China
| | - Yan Feng
- Zhejiang Center for Disease Control and Prevention, Hangzhou City, Zhejiang Province, China
| | - Yanjun Zhang
- Zhejiang Center for Disease Control and Prevention, Hangzhou City, Zhejiang Province, China
| | - Shunde Zhou
- Jiangxi Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, China
| | - Ying Xiong
- Jiangxi Center for Disease Control and Prevention, Nanchang City, Jiangxi Province, China
| | - Zhuoma Ba
- Qinghai Center for Disease Control and Prevention, Xining City, Qinghai Province, China
| | - Hui Chen
- Ningxia Center for Disease Control and Prevention, Yinchuan City, Ningxia Province, China
| | - Xiuhui Yang
- Fujian Center for Disease Control and Prevention, Fuzhou City, Fujian Province, China
| | - Fang Bo
- Heilongjiang Center for Disease Control and Prevention, Harbin City, Heilongjiang Province, China
| | - Yujie Ma
- Heilongjiang Center for Disease Control and Prevention, Harbin City, Heilongjiang Province, China
| | - Yong Liang
- Hebei Center for Disease Control and Prevention, Shijiazhuang City, Hebei Province, China
| | - Yake Lei
- Hubei Center for Disease Control and Prevention, Wuhan City, Hubei Province, China
| | - Suyi Gu
- Inner Mongolia Center for Disease Control and Prevention, Hohhot City, Inner Mongolia Province, China
| | - Wei Liu
- Guangxi Center for Disease Control and Prevention, Nanning City, Guangxi Province, China
| | - Meng Chen
- Beijing Center for Disease Control and Prevention, Beijing City, China
| | - David Featherstone
- Immunization, Vaccines and Biologicals, World Health Organization, Geneva, Switzerland
| | - Youngmee Jee
- Expanded Programme on Immunization, Western Pacific Regional Office, World Health Organization, Manila, Philippines
| | - William J. Bellini
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Paul A. Rota
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Wenbo Xu
- Regional Reference Measles Laboratory for the WHO Western Pacific Region, Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
8
|
Navaratnarajah CK, Negi S, Braun W, Cattaneo R. Membrane fusion triggering: three modules with different structure and function in the upper half of the measles virus attachment protein stalk. J Biol Chem 2012; 287:38543-51. [PMID: 23007387 DOI: 10.1074/jbc.m112.410563] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The measles virus (MV) fusion apparatus consists of a fusion protein and an attachment protein named hemagglutinin (H). After receptor-binding through its cuboidal head, the H-protein transmits the fusion-triggering signal through its stalk to the fusion protein. However, the structural basis of signal transmission is unclear because only structures of H-heads without their stalk have been solved. On the other hand, the entire ectodomain structure of the hemagglutinin-neuraminidase protein of another Paramyxovirus revealed a four-helix bundle stalk. To probe the structure of the 95-residue MV H-stalk we individually substituted head-proximal residues (positions 103-153) with cysteine, and biochemically and functionally characterized the resultant proteins. Our results indicate that most residues in the central segment (positions 103-117) can be cross-linked by engineered disulfide bonds, and thus may be engaged in a tetrameric structure. While covalent tetramerization disrupts fusion triggering function, disulfide bond reduction restores it in most positions except Asp-113. The next stalk segment (residues 123-138) also has high propensity to form covalent tetramers, but since these cross-links have little or no effect on function, it can conduct the fusion-triggering signal while remaining in a stabilized tetrameric configuration. This segment may act as a spacer, maintaining H-heads at an optimal height. Finally, the head-proximal segment (residues 139-154) has very limited propensity to trap tetramers, suggesting bifurcation into two flexible linkers clamped by inter-subunit covalent links formed by natural Cys-139 and Cys-154. We discuss the modular structure of the MV H-stalk in the context of membrane fusion triggering and cell entry by Paramyxoviruses.
Collapse
Affiliation(s)
- Chanakha K Navaratnarajah
- Department of Molecular Medicine, Mayo Clinic and Virology and Gene Therapy Track, Mayo Graduate School, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
9
|
Bankamp B, Takeda M, Zhang Y, Xu W, Rota PA. Genetic characterization of measles vaccine strains. J Infect Dis 2011; 204 Suppl 1:S533-48. [PMID: 21666210 DOI: 10.1093/infdis/jir097] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The complete genomic sequences of 9 measles vaccine strains were compared with the sequence of the Edmonston wild-type virus. AIK-C, Moraten, Rubeovax, Schwarz, and Zagreb are vaccine strains of the Edmonston lineage, whereas CAM-70, Changchun-47, Leningrad-4 and Shanghai-191 were derived from 4 different wild-type isolates. Nucleotide substitutions were found in the noncoding regions of the genomes as well as in all coding regions, leading to deduced amino acid substitutions in all 8 viral proteins. Although the precise mechanisms involved in the attenuation of individual measles vaccines remain to be elucidated, in vitro assays of viral protein functions and recombinant viruses with defined genetic modifications have been used to characterize the differences between vaccine and wild-type strains. Although almost every protein contributes to an attenuated phenotype, substitutions affecting host cell tropism, virus assembly, and the ability to inhibit cellular antiviral defense mechanisms play an especially important role in attenuation.
Collapse
Affiliation(s)
- Bettina Bankamp
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | | | |
Collapse
|
10
|
Identification of key residues in virulent canine distemper virus hemagglutinin that control CD150/SLAM-binding activity. J Virol 2010; 84:9618-24. [PMID: 20631152 DOI: 10.1128/jvi.01077-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Morbillivirus cell entry is controlled by hemagglutinin (H), an envelope-anchored viral glycoprotein determining interaction with multiple host cell surface receptors. Subsequent to virus-receptor attachment, H is thought to transduce a signal triggering the viral fusion glycoprotein, which in turn drives virus-cell fusion activity. Cell entry through the universal morbillivirus receptor CD150/SLAM was reported to depend on two nearby microdomains located within the hemagglutinin. Here, we provide evidence that three key residues in the virulent canine distemper virus A75/17 H protein (Y525, D526, and R529), clustering at the rim of a large recessed groove created by beta-propeller blades 4 and 5, control SLAM-binding activity without drastically modulating protein surface expression or SLAM-independent F triggering.
Collapse
|
11
|
Griffin DE, Oldstone MBA. Measles virus glycoprotein complex assembly, receptor attachment, and cell entry. Curr Top Microbiol Immunol 2009; 329:59-76. [PMID: 19198562 PMCID: PMC7121846 DOI: 10.1007/978-3-540-70523-9_4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Measles virus (MV) enters cells by membrane fusion at the cell surface at neutral pH. Two glycoproteins mediate this process: the hemagglutinin (H) and fusion (F) proteins. The H-protein binds to receptors, while the F-protein mediates fusion of the viral and cellular membranes. H naturally interacts with at least three different receptors. The wild-type virus primarily uses the signaling lymphocyte activation molecule (SLAM, CD150) expressed on certain lymphatic cells, while the vaccine strain has gained the ability to also use the ubiquitous membrane cofactor protein (MCP, CD46), a regulator of complement activation. Additionally, MV infects polarized epithelial cells through an unidentified receptor (EpR). The footprints of the three receptors on H have been characterized, and the focus of research is shifting to the characterization of receptor-specific conformational changes that occur in the H-protein dimer and how these are transmitted to the F-protein trimer. It was also shown that MV attachment and cell entry can be readily targeted to designated receptors by adding specificity determinants to the H-protein. These studies have contributed to our understanding of membrane fusion by the glycoprotein complex of paramyxoviruses in general.
Collapse
Affiliation(s)
- Diane E. Griffin
- Department of Molecular Microbiology, Johns Hopkins University School of Hygiene and Public Health, 615 N. Wolfe Street, Baltimore, MD 21205 USA
| | - Michael B. A. Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037 USA
| |
Collapse
|
12
|
Takayama I, Kubo M, Takenaka A, Fujita K, Sugiyama T, Arai T, Yoneda M, Sato H, Yanai T, Kai C. Pathological and phylogenetic features of prevalent canine distemper viruses in wild masked palm civets in Japan. Comp Immunol Microbiol Infect Dis 2008; 32:539-49. [PMID: 18774607 DOI: 10.1016/j.cimid.2008.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2008] [Indexed: 11/30/2022]
Abstract
Ten wild masked palm civets infected with canine distemper virus (CDV), captured in Japan from 2005 to 2007, were histopathologically and phylogenetically analyzed. Phylogenetic analysis based on the amino acid sequences of the H protein of two CDV isolates from masked palm civets revealed that the two isolates were classified into the clade of recent isolates in Japan. Histopathologically marked lesions of virus encephalitis were present in the brain, whereas gastrointestinal lesions were absent or at a mild degree. The distribution of the lesions resembles that of recent CDV cases in dogs. Therefore, recent CDV infections in masked palm civets could be caused by recently prevalent CDV in dogs. The possibility of the masked palm civet as a spreader of CDV among wildlife is also discussed.
Collapse
Affiliation(s)
- Ikuyo Takayama
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Corey EA, Iorio RM. Mutations in the stalk of the measles virus hemagglutinin protein decrease fusion but do not interfere with virus-specific interaction with the homologous fusion protein. J Virol 2007; 81:9900-10. [PMID: 17626104 PMCID: PMC2045382 DOI: 10.1128/jvi.00909-07] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hemagglutinin (H) protein of measles virus (MV) mediates attachment to cellular receptors. The ectodomain of the H spike is thought to consist of a membrane-proximal stalk and terminal globular head, in which resides the receptor-binding activity. Like other paramyxovirus attachment proteins, MV H also plays a role in fusion promotion, which is mediated through an interaction with the viral fusion (F) protein. The stalk of the hemagglutinin-neuraminidase (HN) protein of several paramyxoviruses determines specificity for the homologous F protein. In addition, mutations in a conserved domain in the Newcastle disease virus (NDV) HN stalk result in a sharp decrease in fusion and an impaired ability to interact with NDV F in a cell surface coimmunoprecipitation (co-IP) assay. The region of MV H that determines specificity for the F protein has not been identified. Here, we have adapted the co-IP assay to detect the MV H-F complex at the surface of transfected HeLa cells. We have also identified mutations in a domain in the MV H stalk, similar to the one in the NDV HN stalk, that also drastically reduce fusion yet do not block complex formation with MV F. These results indicate that this domain in the MV H stalk is required for fusion but suggest either that mutation of it indirectly affects the H-dependent activation of F or that the MV H-F interaction is mediated by more than one domain in H. This points to an apparent difference in the way the MV and NDV glycoproteins interact to regulate fusion.
Collapse
Affiliation(s)
- Elizabeth A Corey
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | |
Collapse
|
14
|
Xu Q, Zhang P, Hu C, Liu X, Qi Y, Liu Y. Identification of Amino Acid Residues Involved in the Interaction between Measles Virus Haemagglutin (MVH) and Its Human Cell Receptor(Signaling Lymphocyte Activation Molecule, SLAM). BMB Rep 2006; 39:406-11. [PMID: 16889684 DOI: 10.5483/bmbrep.2006.39.4.406] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signaling lymphocyte activation molecule (SLAM; also known as CD150) is a newly identified cellular receptor for measles virus (MV). The interaction between MV Haemagglutin (MVH) and SLAM is an initial step for MV entry. We have identified several novel SLAM binding sites at residues S429, T436 and H437 of MVH protein and MVH mutants in these residues dramatically decrease the ability to interaction with the cell surface SLAM and fail to coprecipitation with SLAM in vivo as well as malfunction in syncytium formation. At the same time, K58, S59 and H61 of SLAM was also identified to be critical for MVH and SLAM binding. Further, these residues may be useful targets for the development of measles therapy.
Collapse
Affiliation(s)
- Qin Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, P. R. China
| | | | | | | | | | | |
Collapse
|
15
|
Oh S, Stegman B, Pendleton CD, Ota MO, Pan CH, Griffin DE, Burke DS, Berzofsky JA. Protective immunity provided by HLA-A2 epitopes for fusion and hemagglutinin proteins of measles virus. Virology 2006; 352:390-9. [PMID: 16781760 DOI: 10.1016/j.virol.2006.04.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 03/23/2006] [Accepted: 04/28/2006] [Indexed: 11/19/2022]
Abstract
Natural infection and vaccination with a live-attenuated measles virus (MV) induce CD8(+) T-cell-mediated immune responses that may play a central role in controlling MV infection. In this study, we show that newly identified human HLA-A2 epitopes from MV hemagglutinin (H) and fusion (F) proteins induced protective immunity in HLA-A2 transgenic mice challenged with recombinant vaccinia viruses expressing F or H protein. HLA-A2 epitopes were predicted and synthesized. Five and four peptides from H and F, respectively, bound to HLA-A2 molecules in a T2-binding assay, and four from H and two from F could induce peptide-specific CD8+ T cell responses in HLA-A2 transgenic mice. Further experiments proved that three peptides from H (H9-567, H10-250, and H10-516) and one from F protein (F9-57) were endogenously processed and presented on HLA-A2 molecules. All peptides tested in this study are common to 5 different strains of MV including Edmonston. In both A2K(b) and HHD-2 mice, the identified peptide epitopes induced protective immunity against recombinant vaccinia viruses expressing H or F. Because F and H proteins induce neutralizing antibodies, they are major components of new vaccine strategies, and therefore data from this study will contribute to the development of new vaccines against MV infection.
Collapse
Affiliation(s)
- SangKon Oh
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bldg. 10-Rm 6B-09, NIH, Bethesda, MD 20892-1578, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hirama K, Goto Y, Uema M, Endo Y, Miura R, Kai C. Phylogenetic analysis of the hemagglutinin (H) gene of canine distemper viruses isolated from wild masked palm civets (Paguma larvata). J Vet Med Sci 2005; 66:1575-8. [PMID: 15644610 DOI: 10.1292/jvms.66.1575] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hemagglutinin (H) gene of two CDV isolates, the Haku93 and Haku00 strains, from masked palm civets was molecularly analyzed. H genes of both two CDVs contained one open reading frame encoding 607 amino acids. Nucleotide and predicted amino acid sequences of H gene of the CDV Haku93 and Haku00 revealed high similarity to those of recent field isolates such as the Yanaka and Tanu96, while they showed limited identity to those of old vaccine strains. Potential N-linked glycosylation sites in both Haku93 and Haku00 were identical to other recent CDV isolates. Phylogenetic analysis revealed that the CDV strains derived from masked palm civets were classified into the group of recent Japanese CDV isolates.
Collapse
Affiliation(s)
- Kyoko Hirama
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Hu C, Zhang P, Liu X, Qi Y, Zou T, Xu Q. Characterization of a region involved in binding of measles virus H protein and its receptor SLAM (CD150). Biochem Biophys Res Commun 2004; 316:698-704. [PMID: 15033456 DOI: 10.1016/j.bbrc.2004.02.106] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Indexed: 11/28/2022]
Abstract
Signaling lymphocyte activation molecule (SLAM; also known as CD150) is a newly identified cellular receptor for measles virus (MV). MV Hemagglutinin protein (H) mediates MV entry into host cells by specifically binding to SLAM. Amino acid 27-135 of SLAM was previously shown to be the functional domain to interact with H and used to screen a 10-mer phage display peptide library in this study. After four rounds of screening and sequence analysis, the deduced amino acid sequence of screened peptides SGFDPLITHA and SDWDPLFTHK showed to be highly homologous with amino acid 429-438 of MV H (SGFGPLITHG). Peptides SGFDPLITHA and SDWDPLFTHK specifically inhibited binding of H to SLAM and further inhibition of MV infection suggests that these peptides can be developed to MV blocking reagents and amino acid 429-438 in H protein is functionally involved in receptor binding and may constitute part of the receptor-binding determinants on H protein.
Collapse
Affiliation(s)
- Chunling Hu
- Institute of Virology, College of Life Science, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | |
Collapse
|
18
|
Na BK, Shin JM, Lee JY, Shin GC, Kim YY, Lee JS, Lee JK, Cho HW, Lee HJ, Rota PA, Bellini WJ, Kim WJ, Kang C. Genetic and antigenic characterization of measles viruses that circulated in Korea during the 2000-2001 epidemic. J Med Virol 2003; 70:649-54. [PMID: 12794731 DOI: 10.1002/jmv.10444] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Despite the marked reduction in the incidence of measles in Korea by the introduction of measles vaccine, a large measles epidemic occurred during 2000-2001. During the epidemic, more than 55,000 measles cases were reported and at least 7 children were dead. In this study, we analyzed the genetic and antigenic properties of 15 measles viruses that isolated during the epidemic. Sequence analyses of entire hemagglutinin (H) and nucleoprotein (N) genes of the viruses indicated that all Korean isolates had a high degree of homology (>99.8%) when compared with each other. They differed from other wild-type viruses by as much as 6.8% in the H gene and 6.5% in the N gene at the nucleotide level. The deduced amino acid variability was up to 6.4% for the H protein and up to 6.5% for the N protein. Phylogenetic analysis of nucleotide sequences and deduced amino acid sequences of the H and N genes revealed that all Korean viruses were grouped into the genotype H1. This strongly demonstrated that single genotype of measles virus has been circulated in Korea during the 2000-2001 epidemic. Plaque reduction neutralizing antibody titers against vaccine strains, Edmonston and Schwarz, and recently isolated Korean strains were measured using sera from vaccinees and recently infected children. Although sera of recently infected children demonstrated higher neutralizing antibody titers against wild-type strains than against vaccine strains, both sera neutralized both strains and the reciprocal geometric mean titers (GMTs) were not significantly different against both strains.
Collapse
Affiliation(s)
- Byoung-Kuk Na
- Department of Virology, National Institute of Health, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Co-evolving mechanisms of immune clearance and of immune suppression are among the hallmarks of measles. B cells are major targets cells of measles virus (MV) infection. Virus interactions with B cells result both in immune suppression and a vigorous antibody response. Although antibodies fully protect against (re)infection, their importance during the disease and in the presence of a potent cellular response is less well understood. Specific serum IgM appears with onset of rash and confirms clinical diagnosis. After isotype switching, IgG1 develops and confers life-long protection. The most abundant antibodies are specific for the nucleoprotein, but neutralizing and protective antibodies are solely directed against the two surface glycoproteins, the hemagglutinin and the fusion protein. Major neutralizing epitopes have been mapped mainly on the hemagglutinin protein with monoclonal antibodies, producing an increasingly comprehensive map of functional domains.
Collapse
Affiliation(s)
- Fabienne B Bouche
- Department of Immunology and WHO Collaborating Center for Measles, Laboratoire National de Santé, Luxembourg, Luxembourg
| | | | | |
Collapse
|
20
|
Pfeuffer J, Püschel K, Meulen VT, Schneider-Schaulies J, Niewiesk S. Extent of measles virus spread and immune suppression differentiates between wild-type and vaccine strains in the cotton rat model (Sigmodon hispidus). J Virol 2003; 77:150-8. [PMID: 12477820 PMCID: PMC140581 DOI: 10.1128/jvi.77.1.150-158.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of humans with wild-type measles virus leads to strong immune suppression and secondary infections, whereas immunization with an attenuated vaccine strain does not. Using the cotton rat model (Sigmodon hispidus), we investigated whether vaccine and wild-type viruses differ in viral spread and whether this is correlated with inhibition of of proliferation of spleen cells ex vivo after mitogen stimulation. After intranasal infection of cotton rats with wild-type and vaccine strains, it was found that wild-type virus replicates better in lung tissue, spreads to the mediastinal lymph nodes, and induces a more pronounced and longer-lasting inhibition of proliferation of spleen cells ex vivo after mitogen stimulation than does vaccine virus. To induce the same degree of proliferation inhibition, 1,000-fold less wild-type virus was required than vaccine virus. With this system, the virulence of various measles virus isolates and recombinant viruses was tested. Four (in humans and/or monkeys) highly pathogenic virus strains were immunosuppressive, whereas viruses of vaccine virus genotype A were not. Using virus pairs which, due to passage on fibroblasts versus lymphoid cells or due to a point mutation in the hemagglutinin (N481 --> Y), differed in their usage of the two receptor molecules CD46 and CD150 on human cells, it was found that viruses using exclusively CD150 in vitro spread to mediastinal lymph nodes and induced strong immune suppression. These data demonstrate that important parameters of virulence seen in humans, such as viral spread and immune suppression, are reflected in the cotton rat model.
Collapse
Affiliation(s)
- Joanna Pfeuffer
- Institute of Virology and Immunobiology, University of Wuerzburg, Germany
| | | | | | | | | |
Collapse
|
21
|
Na BK, Lee JS, Shin GC, Shin JM, Lee JY, Chung JK, Ha DR, Lee JK, Ma SH, Cho HW, Kang C, Kim WJ. Sequence analysis of hemagglutinin and nucleoprotein genes of measles viruses isolated in Korea during the 2000 epidemic. Virus Res 2001; 81:143-9. [PMID: 11682133 DOI: 10.1016/s0168-1702(01)00346-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To characterize the genetic properties of currently circulating measles viruses in Korea, the complete nucleotide sequences of hemagglutinin (H) protein and nucleoprotein (N) genes of Korean viruses were analyzed. The entire genes of H and N were directly amplified by RT-PCR from each clinical specimen and sequenced. Sequence analyses of H and N genes indicated that all Korean viruses had a high degree of homology (>99.8%) when compared with each other. The Korean viruses differed from other wild-type viruses by as much as 6.8% in the H gene and 6.5% in the N gene at the nucleotide level. The deduced amino acid variability was up to 6.4% for the H protein and up to 6.5% for the N protein. Phylogenetic analyses of nucleotide sequences and deduced amino acid sequences of the H and N genes revealed that all Korean viruses were grouped into the clade H1.
Collapse
Affiliation(s)
- B K Na
- Department of Virology, National Institute of Health, 122-701, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Plemper RK, Hammond AL, Cattaneo R. Characterization of a region of the measles virus hemagglutinin sufficient for its dimerization. J Virol 2000; 74:6485-93. [PMID: 10864661 PMCID: PMC112157 DOI: 10.1128/jvi.74.14.6485-6493.2000] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Attachment of measles virus (MV) to its cellular receptor is mediated by the viral envelope glycoprotein hemagglutinin (H). H exists at the viral surface as a disulfide-linked dimer which may associate into a tetramer. We aimed to define regions of H essential for its homo-oligomerization. To delineate these more precisely, we have generated a series of H ectodomain truncation mutants and studied their abilities to form both homotypic complexes and heterotypic complexes with full-length H. We define a "minimal unit" which is sufficient for MV H dimerization as that encompassing residues 1 to 151. This unit forms both homodimers and heterodimers with full-length H protein, although neither is transported to the cell surface even in the presence of other MV proteins. We show that cysteine residues at positions 139 and 154 are both critical in mediating covalent dimerization, not only of the truncated H mutants but also of full-length MV H protein. Even those cysteine mutants unable to form covalent intermolecular interactions are biologically active, mediating the formation of syncytia, albeit at a reduced rate. We demonstrate that this impaired capacity to mediate cell-to-cell fusion is based mainly on a reduced transport rate of the mutant molecules to the cell surface, indicating a role for covalent intermolecular interactions in efficient transport of MV H dimers to the cell surface.
Collapse
Affiliation(s)
- R K Plemper
- Molecular Medicine Program, Mayo Foundation, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
23
|
Penalva LO, Ruiz MF, Ortega A, Granadino B, Vicente L, Segarra C, Valcárcel J, Sánchez L. The Drosophila fl(2)d gene, required for female-specific splicing of Sxl and tra pre-mRNAs, encodes a novel nuclear protein with a HQ-rich domain. Genetics 2000; 155:129-39. [PMID: 10790389 PMCID: PMC1461084 DOI: 10.1093/genetics/155.1.129] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Drosophila gene female-lethal(2)d [fl(2)d] interacts genetically with the master regulatory gene for sex determination, Sex-lethal. Both genes are required for the activation of female-specific patterns of alternative splicing on transformer and Sex-lethal pre-mRNAs. We have used P-element-mediated mutagenesis to identify the fl(2)d gene. The fl(2)d transcription unit generates two alternatively spliced mRNAs that can encode two protein isoforms differing at their amino terminus. The larger isoform contains a domain rich in histidine and glutamine but has no significant homology to proteins in databases. Several lines of evidence indicate that this protein is responsible for fl(2)d function. First, the P-element insertion that inactivates fl(2)d interrupts this ORF. Second, amino acid changes within this ORF have been identified in fl(2)d mutants, and the nature of the changes correlates with the severity of the mutations. Third, all of the phenotypes associated with fl(2)d mutations can be rescued by expression of this cDNA in transgenic flies. Fl(2)d protein can be detected in extracts from Drosophila cell lines, embryos, larvae, and adult animals, without apparent differences between sexes, as well as in adult ovaries. Consistent with a possible function in posttranscriptional regulation, Fl(2)d protein has nuclear localization and is enriched in nuclear extracts.
Collapse
Affiliation(s)
- L O Penalva
- Gene Expression Programme, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
El Kasmi KC, Fillon S, Theisen DM, Hartter H, Brons NH, Muller CP. Neutralization of measles virus wild-type isolates after immunization with a synthetic peptide vaccine which is not recognized by neutralizing passive antibodies. J Gen Virol 2000; 81:729-35. [PMID: 10675410 DOI: 10.1099/0022-1317-81-3-729] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The sequence H379-410 of the measles virus haemagglutinin (MV-H) protein forms a surface-exposed loop and contains three cysteine residues (Cys-381, Cys-386 and Cys-394) which are conserved among all measles isolates. It comprises the minimal sequential B cell epitope (BCE) (H386-400) of the neutralizing and protective MAb BH6 that neutralizes all wild-type viruses tested. The aim of this study was to design synthetic peptides which induce neutralizing antibodies against MV wild-type isolates. Peptides containing one or two copies of T cell epitopes (TCE) and BCEs of different lengths (H386-400, B(CC); H379-400, B(CCC)), in different combinations and orientations were produced and iteratively optimized for inducing neutralizing antibodies. Peptides with the shorter BCE induced sera that cross-reacted with MV but did not neutralize. The longer BCE containing the three cysteines (B(CCC)) and two homologous TCE were required for neutralization activity. These sera neutralized wild-type strains of different clades and geographic origins. Neutralizing serum was also obtained after immunization with human promiscuous TCEs. Furthermore B(CCC)-based peptides were fully immunogenic even in the presence of pre-existing MV-specific antibodies. The results suggest that subunit vaccines based on such peptides could potentially be used to actively protect infants against wild-type viruses irrespective of persisting maternal antibodies.
Collapse
Affiliation(s)
- K C El Kasmi
- Laboratoire National de Santé, PO Box 1102, L-1011 Luxembourg, Universität Tübingen, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Barrero PR, de Wolff CD, Passeggi CA, Mistchenko AS. Sequence analysis of measles virus hemagglutinin isolated in Argentina during the 1997-1998 outbreak. J Med Virol 2000. [DOI: 10.1002/(sici)1096-9071(200001)60:1<91::aid-jmv15>3.0.co;2-m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Bolt G, Pedersen IR, Blixenkrone-Møller M. Processing of N-linked oligosaccharides on the measles virus glycoproteins: importance for antigenicity and for production of infectious virus particles. Virus Res 1999; 61:43-51. [PMID: 10426208 DOI: 10.1016/s0168-1702(99)00025-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The envelope of measles virus (MV) particles contains two viral glycoproteins, the haemagglutinin (H) and the fusion (F) protein, which together induce the entry of MV into cells. In the present study, we investigated the role of oligosaccharide processing for the function and antigenicity of the MV glycoproteins by means of glycosidase inhibitors. Golgi alpha-mannosidase inhibitors (1-deoxymannojirimycin and swainsonine) prevented the oligosaccharides on the MV glycoproteins from obtaining Endo H resistance, but that did not appear to influence in vitro MV infections, indicating that conversion of oligosaccharide chains into the complex form was not required for the function of the MV glycoproteins. The alpha-glucosidase inhibitor castanospermine (CSP) quantitatively reduced the production of infectious MV particles in cells infected with both vaccine strain and wild-type MV. CSP reduced the detection of the MV F protein by certain monoclonal antibodies (MAbs) that appeared to recognize nonlinear epitopes. CSP also inhibited syncytium formation in MV infected cells, but did not affect MV induced CD46 downregulation, suggesting that CSP primarily influenced the F protein. We propose that CSP induces aberrant folding of MV glycoproteins in a manner that influences their function and antigenicity.
Collapse
Affiliation(s)
- G Bolt
- Department of Medical Microbiology and Immunology, Panum Institute, University of Copenhagen, Denmark.
| | | | | |
Collapse
|
27
|
Takeda M, Sakaguchi T, Li Y, Kobune F, Kato A, Nagai Y. The genome nucleotide sequence of a contemporary wild strain of measles virus and its comparison with the classical Edmonston strain genome. Virology 1999; 256:340-50. [PMID: 10191199 DOI: 10.1006/viro.1999.9643] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The only complete genome nucleotide sequences of measles virus (MeV) reported to date have been for the Edmonston (Ed) strain and derivatives, which were isolated decades ago, passaged extensively under laboratory conditions, and appeared to be nonpathogenic. Partial sequencing of many other strains has identified >/=15 genotypes. Most recent isolates, including those typically pathogenic, belong to genotypes distinct from the Edmonston type. Therefore, the sequence of Ed and related strains may not be representative of those of pathological measles circulating at that or any time in human populations. Taking into account these issues as well as the fact that so many studies have been based upon Ed-related strains, we have sequenced the entire genome of a recently isolated pathogenic strain, 9301B. Between this recent isolate and the classical Ed strain, there were 465 nucleotide differences (2.93%) and 114 amino acid differences (2.19%). Computation of nonsynonymous and synonymous substitutions in open reading frames as well as direct comparisons of noncoding regions of each gene and extracistronic regulatory regions clearly revealed the regions where changes have been permissible and nonpermissible. Notably, considerable nonsynonymous substitutions appeared to be permissible for the P frame to maintain a high degree of sequence conservation for the overlapping C frame. However, the cause and the effect were largely unclear for any substitution, indicating that there is a considerable gap between the two strains that cannot be filled. The sequence reported here would be useful as a reference of contemporary wild-type MeV.
Collapse
Affiliation(s)
- M Takeda
- Institute of Medical Science, University of Tokyo, Shirokanedai 4-6-1, Tokyo, 108-0071, USA
| | | | | | | | | | | |
Collapse
|
28
|
Patterson JB, Scheiflinger F, Manchester M, Yilma T, Oldstone MB. Structural and functional studies of the measles virus hemagglutinin: identification of a novel site required for CD46 interaction. Virology 1999; 256:142-51. [PMID: 10087234 DOI: 10.1006/viro.1999.9644] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The entry of measles virus (MV) into human cells is mediated by the initial attachment of the viral hemagglutinin (HA) to the complement regulatory protein CD46. Two subdomains, one each within CD46 short consensus repeats (SCRs) 1 and 2, are responsible for this interaction. However, little is known about the regions within MV HA needed for a high-affinity CD46 interaction. To better define the HA-CD46 interaction, we took three approaches: chimeric domain swapping, peptide scanning, and alanine scanning mutagenesis. Chimeras of MV HA and the closely related rinderpest virus (RPV) HA were generated and tested for cell surface expression and the ability to hemadsorb CD46+ red blood cells (RBC). Exchanges with the N terminus of RPV were tolerated as MV HA could be replaced with RPV HA up to amino-acid position 154. However, both larger swaps with RPV and a small RPV HA replacement at the C terminus aborted cell-surface expression. Peptide scanning with 51 overlapping peptides derived from three MV HA regions showed one peptide, corresponding to MV HA amino acids 468-487, blocked hemagglutination of African green monkey (AGM) RBCs and inhibited MV infection of Chinese hamster ovary cells (CHO) expressing human CD46. Alanine scanning mutants mapped sites on the MV HA that were not required for trafficking to the cell surface or function in hemagglutination as well as a novel site required for CD46 interaction, amino acids 473-477.
Collapse
Affiliation(s)
- J B Patterson
- Department of Neuropharmacology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
29
|
Takimoto T, Bousse T, Coronel EC, Scroggs RA, Portner A. Cytoplasmic domain of Sendai virus HN protein contains a specific sequence required for its incorporation into virions. J Virol 1998; 72:9747-54. [PMID: 9811709 PMCID: PMC110485 DOI: 10.1128/jvi.72.12.9747-9754.1998] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the assembly of paramyxoviruses, interactions between viral proteins are presumed to be specific. The focus of this study is to elucidate the protein-protein interactions during the final stage of viral assembly that result in the incorporation of the viral envelope proteins into virions. To this end, we examined the specificity of HN incorporation into progeny virions by transiently transfecting HN cDNA genes into Sendai virus (SV)-infected cells. SV HN expressed from cDNA was efficiently incorporated into progeny Sendai virions, whereas Newcastle disease virus (NDV) HN was not. This observation supports the theory of a selective mechanism for HN incorporation. To identify the region on HN responsible for the selective incorporation, we constructed chimeric SV and NDV HN cDNAs and evaluated the incorporation of expressed proteins into progeny virions. Chimera HN that contained the SV cytoplasmic domain fused to the transmembrane and external domains of the NDV HN was incorporated to SV particles, indicating that amino acids in the cytoplasmic domain are responsible for the observed specificity. Additional experiments using the chimeric HNs showed that 14 N-terminal amino acids are sufficient for the specificity. Further analysis identified five consecutive amino acids (residues 10 to 14) that were required for the specific incorporation of HN into SV. These residues are conserved among all strains of SV as well as those of its counterpart, human parainfluenza virus type 1. These results suggest that this region near the N terminus of HN interacts with another viral protein(s) to lead to the specific incorporation of HN into progeny virions.
Collapse
Affiliation(s)
- T Takimoto
- Department of Virology and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
30
|
El Kasmi KC, Theisen D, Brons NH, Muller CP. The molecular basis of virus crossreactivity and neutralisation after immunisation with optimised chimeric peptides mimicking a putative helical epitope of the measles virus hemagglutinin protein. Mol Immunol 1998; 35:905-18. [PMID: 9881686 DOI: 10.1016/s0161-5890(98)00087-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The loop comprising aminoacids H236-256, connects two strands of sheet 1 of the propeller-like hemagglutinin (H) protein of the measles virus (MV) and contains a putative active site residue (R253), a residue implicated in CD46-downregulation (R243) and the minimal epitope E245L-QL249 of the neutralising and protective monoclonal antibody BH129. The objective of this study was to design synthetic peptides which induce neutralising antibodies against this important functional domain. Peptide-design was based on the colinear synthesis of this sequential B cell epitope (BCE) with different T cell epitopes (TCE). Chimeric constructs were systematically optimised with respect to length and copy number of the BCE and the nature and orientation of the TCE. Surprisingly, the induction of MV-crossreactive antibodies did not correlate with the antigenicity of the peptides. The best MV-crossreactive antibodies were obtained with TB oriented constructs containing TCEs of the MV fusion (F) protein and the BCE H236-250 (TB15mer) or H236-255 (TB20mer). In vitro virus-neutralising sera were obtained solely with the latter construct. A glycine scan showed that binding to MV depended on a defined pattern of contact residues compatible with the putative alpha helical nature of this epitope. The contact residues of the neutralising serum (S244EL-QL249) differed from those of the non-neutralising serum (S244EL246) but no unique differences in the immunoglobulin subclasses were detected. Surface plasmon resonance measurements detected a higher affinity for the neutralising serum compared to the TB15mer serum. These results emphasize the need of an optimal design of immunogenic peptides which cannot always be guided by the antigenicity of the peptide constructs. This study demonstrates that neutralising antibodies can be generated with peptides mimicking this helical epitope, provided that the critical contact residues are recognized with high affinity and underlines the potential of the epitope as an element of a future subunit vaccine.
Collapse
Affiliation(s)
- K C El Kasmi
- Laboratoire National de Santé, Luxembourg, Luxembourg
| | | | | | | |
Collapse
|
31
|
Deroo S, El Kasmi KC, Fournier P, Theisen D, Brons NH, Herrmann M, Desmet J, Muller CP. Enhanced antigenicity of a four-contact-residue epitope of the measles virus hemagglutinin protein by phage display libraries: evidence of a helical structure in the putative active site. Mol Immunol 1998; 35:435-43. [PMID: 9798648 DOI: 10.1016/s0161-5890(98)00057-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antigenicity and conformational propensities of synthetic peptides corresponding to the sequential epitope H236-255 of the measles virus hemagglutinin protein were investigated. This epitope corresponds to the neutralising and protective monoclonal antibody BH129 and includes Arg243, implicated in CD46-down-regulation and Arg253 that has been mapped to the putative enzymatic site. Fine mapping with truncation-, elongation-, Gly- and Ala-substitution analogues defined EL-QL as the critical residues of the minimal epitope S244ELSQL249. CD spectra of peptides, comparison with the 3D-structure of homologous sequences, and prediction algorithms suggested a helical structure with the contact residues E245L-QL249 located on the protein surface. Mimotopes obtained with a 6-mer phage display library contained a consensus Pro (important for binding) instead of Ser247 of the wild-type sequence (irrelevant for binding). The kink induced by Pro seemed to be essential to bring the 4 contact-residues in the mimotopes and in the corresponding short peptides together. CD analysis and prediction algorithms suggested that non-helical conformations of the phage insert and of the peptides may favourably mimic the antigenic helical turns of the wild-type sequence, resulting in an up to 135 times higher antigenicity of the mAb towards the mimotope peptides.
Collapse
Affiliation(s)
- S Deroo
- Laboratoire National de Santé, Luxembourg, Luxembourg
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Jin L, Knowles WA, Rota PA, Bellini WJ, Brown DW. Genetic and antigenic characterisation of the haemagglutinin protein of measles virus strains recently circulating in the UK. Virus Res 1998; 55:107-13. [PMID: 9712517 DOI: 10.1016/s0168-1702(98)00018-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The complete nucleotide sequence of the H protein gene of seven measles virus (MV) strains, representing three MV genotypes circulating in the UK in recent years, was determined. Compared to the MV vaccine strain Moraten (Mor-v), the divergence of the coded H gene (aal-600) of the seven UK strains was between 1.8% and 2.8%. Representative isolates from each of the genotypes were tested by radio-immunoprecipitation using a panel of H protein-specific MAbs. Different patterns of MAb reactivity were shown between the three genotypes and between the wild-type strains and the vaccine strain. Plaque reduction neutralising antibody titres against strains UK350/94 (genotype I) and UK226/94 (genotype III) were measured in sera from 11 vaccinees. Vaccine derived antibody neutralised both strains and the GMTs were not significantly lower against the wild-type strains than against strain Mor-v.
Collapse
Affiliation(s)
- L Jin
- Enteric and Respiratory Virus Laboratory, Central Public Health Laboratory, London, UK.
| | | | | | | | | |
Collapse
|
33
|
Cleverley DZ, Lenard J. The transmembrane domain in viral fusion: essential role for a conserved glycine residue in vesicular stomatitis virus G protein. Proc Natl Acad Sci U S A 1998; 95:3425-30. [PMID: 9520382 PMCID: PMC19852 DOI: 10.1073/pnas.95.7.3425] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/1997] [Accepted: 01/21/1998] [Indexed: 02/06/2023] Open
Abstract
The transmembrane (TM) domains of viral fusion proteins are required for fusion, but their precise role is unknown. G protein, the fusion protein of vesicular stomatitis virus, was previously shown to lose syncytia-forming ability if six residues (GLIIGL) were deleted from its TM domain. The 20-residue TM domain of wild-type (TM20) G protein was thus changed into a TM domain of 14 residues (TM14). To assess possible sequence specificity for this loss of function, the two Gly residues in TM20 were replaced with either Ala or Leu. Both mutations resulted in complete loss of fusion activity, as measured by fusion-dependent reporter gene transfer. Single substitutions decreased activity by about half. TM14 was weakly active (15%) but reintroduction of a Gly residue into TM14 by a single Ile --> Gly substitution increased activity to 80%. All mutants retained normal hemifusion activity, i.e., lipid mixing between the outer leaflets of the reacting membranes. Thus, at least one TM Gly residue is required for a late step in fusion mediated by G protein. Gly residues were significantly (2.6-fold; P = 0.004) more abundant in the TM domains of viral fusion proteins than in those of nonfusion proteins and were distributed differently within the TM domain. Thus, Gly residues in the TM domain of other viral fusion proteins may also prove to be important for fusion activity.
Collapse
Affiliation(s)
- D Z Cleverley
- University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway NJ 08854-5635, USA
| | | |
Collapse
|
34
|
Hsu EC, Dörig RE, Sarangi F, Marcil A, Iorio C, Richardson CD. Artificial mutations and natural variations in the CD46 molecules from human and monkey cells define regions important for measles virus binding. J Virol 1997; 71:6144-54. [PMID: 9223509 PMCID: PMC191875 DOI: 10.1128/jvi.71.8.6144-6154.1997] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
CD46 was previously shown to be a primate-specific receptor for the Edmonston strain of measles virus. This receptor consists of four short consensus regions (SCR1 to SCR4) which normally function in complement regulation. Measles virus has recently been shown to interact with SCR1 and SCR2. In this study, receptors on different types of monkey erythrocytes were employed as "natural mutant proteins" to further define the virus binding regions of CD46. Erythrocytes from African green monkeys and rhesus macaques hemagglutinate in the presence of measles virus, while baboon erythrocytes were the least efficient of the Old World monkey cells used in these assays. Subsequent studies demonstrated that the SCR2 domain of baboon CD46 contained an Arg-to-Gln mutation at amino acid position 103 which accounted for reduced hemagglutination activity. Surprisingly, none of the New World monkey erythrocytes hemagglutinated in the presence of virus. Sequencing of cDNAs derived from the lymphocytes of these New World monkeys and analysis of their erythrocytes with SCR1-specific polyclonal antibodies indicated that the SCR1 domain was deleted in these cells. Additional experiments, which used 35 different site-specific mutations inserted into CD46, were performed to complement the preceding studies. The effects of these artificial mutations were documented with a convenient binding assay using insect cells expressing the measles virus hemagglutinin. Mutations which mimicked the change found in baboon CD46 or another which deleted the SCR2 glycosylation site reduced binding substantially. Another mutation which altered GluArg to AlaAla at positions 58 and 59, totally abolished binding. Finally, the epitopes for two monoclonal antibodies which inhibit measles virus attachment were mapped to the same regions implicated by mutagenesis.
Collapse
Affiliation(s)
- E C Hsu
- Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Outlaw MC, Pringle CR. Sequence variation within an outbreak of measles virus in the Coventry area during spring/summer 1993. Virus Res 1995; 39:3-11. [PMID: 8607281 DOI: 10.1016/s0168-1702(95)00060-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Measles virus (MV) was isolated from throat swab samples collected during the spring/summer 1993 in the Coventry area. Viral RNA was reverse transcribed and cDNA prepared using oligo- T primer. Using MV-specific primers the area encoding the external region of the haemagglutinin glycoprotein was amplified using nested PCR and cycle sequenced. Comparisons were made with the Edmonston strain and current MMR vaccine strain. It was found that a high degree of homology existed between all strains examined, but that a majority of clinical samples shared a premature termination signal that potentially shortened the haemagglutinin protein by 35 amino acids. The single clinical sample that lacked this early termination signal appeared to be closely related to the MMR strain and may result form a vaccine-related illness. Truncation of the haemagglutinin protein may have allowed MV to escape the immune response induced by vaccination with the current MMR vaccine.
Collapse
Affiliation(s)
- M C Outlaw
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | |
Collapse
|
36
|
Stern LB, Greenberg M, Gershoni JM, Rozenblatt S. The hemagglutinin envelope protein of canine distemper virus (CDV) confers cell tropism as illustrated by CDV and measles virus complementation analysis. J Virol 1995; 69:1661-8. [PMID: 7853502 PMCID: PMC188765 DOI: 10.1128/jvi.69.3.1661-1668.1995] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Measles virus (MV) and canine distemper virus (CDV) are morbilliviruses that cause acute illnesses and several persistent central nervous system infections in humans and in dogs, respectively. Characteristically, the cytopathic effect of these viruses is the formation of syncytia in permissive cells. In this study, a vaccinia virus expression system was used to express MV and CDV hemagglutinin (HA) and fusion (F) envelope proteins. We found that cotransfecting F and HA genes of MV or F and HA genes of CDV resulted in extensive syncytium formation in permissive cells while transfecting either F or HA alone did not. Similar experiments with heterologous pairs of proteins, CDV-F with MV-HA or MV-F with CDV-HA, caused significant cell fusion in both cases. These results indicate that in this expression system, cell fusion requires both F and HA; however, the functions of these proteins are interchangeable between the two types of morbilliviruses. Human-mouse somatic hybrids were used to determine the human chromosome conferring susceptibility to either MV and CDV. Of the 12 hybrids screened, none were sensitive to MV. Two of the hybrids containing human chromosome 19 formed syncytia following CDV infection. In addition, these two hybrids underwent cell fusion when cotransfected with CDV-F and CDV-HA (but not MV-F and MV-HA) glycoproteins by using the vaccinia virus expression system. To discover the viral component responsible for cell specificity, complementation experiments coexpressing CDV-HA with MV-F or CDV-F with MV-HA in the CDV-sensitive hybrids were performed. We found that syncytia were formed only in the presence of CDV-HA. These results support the idea that the HA protein is responsible for cell tropism. Furthermore, while the F protein is necessary for the fusion process, it is interchangeable with the F protein from other morbilliviruses.
Collapse
Affiliation(s)
- L B Stern
- Department of Molecular Microbiology, Tel-Aviv University, Israel 69978
| | | | | | | |
Collapse
|
37
|
Saito H, Nakagomi O, Morita M. Molecular identification of two distinct hemagglutinin types of measles virus by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Mol Cell Probes 1995; 9:1-8. [PMID: 7760855 DOI: 10.1016/s0890-8508(95)90902-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Contemporary isolates of measles virus, characterized by their inability to hemagglutinate, have been shown to possess a hemagglutinin type distinct from that of classical strains such as the Edmonston strain in that there is a new glycosylation site at amino acid residue 416. This change abolishes a Sau3Al site that is found in the corresponding position of the hemagglutination-positive classical strains. This molecular information prompted us to develop a restriction fragment length polymorphism (RFLP) assay that is capable of distinguishing these two distinct hemagglutinin types. The assay consists of the amplification of a 349-bp segment of the hemagglutinin gene by reverse transcription followed by the polymerase chain reaction and Sau3Al digestion of this amplification product. The resulting two distinct RFLP patterns identified the hemagglutinin types with regard to the presence or absence of the potential new glycosylation site. This assay was applied to determine the relative frequencies over a 28-year period of these two hemagglutinin types present in the archival acute serum specimens taken from patients with measles. This study revealed that strains carrying the classical hemagglutinin type predominated until the early 1980s when it became completely replaced with strains possessing the contemporary hemagglutinin type. Because of its direct applicability to the clinical specimens avoiding selection bias during cell-culture adaptation, this assay provides a valuable asset in both clinical laboratory and epidemiological settings.
Collapse
Affiliation(s)
- H Saito
- Department of Microbiology, Akita Prefectural Institute of Public Health, Japan
| | | | | |
Collapse
|
38
|
Horikami SM, Moyer SA. Structure, transcription, and replication of measles virus. Curr Top Microbiol Immunol 1995; 191:35-50. [PMID: 7789161 DOI: 10.1007/978-3-642-78621-1_3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- S M Horikami
- Department of Immunology and Medical Microbiology, College of Medicine, University of Florida, Gainesville 32610-0266, USA
| | | |
Collapse
|
39
|
Sato TA, Enami M, Kohama T. Isolation of the measles virus hemagglutinin protein in a soluble form by protease digestion. J Virol 1995; 69:513-6. [PMID: 7983748 PMCID: PMC188601 DOI: 10.1128/jvi.69.1.513-516.1995] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The hemagglutinin (H) glycoprotein was isolated in a soluble form by digesting measles virus particles with an endoproteinase, Asp-N (from a Pseudomonas fragi mutant). Digestion of H with Asp-N brought about glycopeptides in three different forms, depending on the cleaving site: AHD, which has an M(r) of 66,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and which formed a disulfide-linked homodimer with an M(r) of 132,000, and two monomeric digestion products, AHM-1 (with an M(r) of 64,000) and AHM-2 (with an M(r) of 58,000). The susceptibility of the H glycoprotein to the protease depended on the enzyme concentration. AHD was readily formed at a low concentration of Asp-N, while AHM-1 and AHM-2 required higher and even higher protease concentrations, respectively. All of the cleavage products reacted with monoclonal antibodies to various epitopes of the H protein; however, only AHD showed a significant hemagglutinin activity on African green monkey erythrocytes. The hemagglutinin activities of AHM-1 and AHM-2 were restored after a monoclonal antibody lacking the hemagglutination-inhibiting activity was added to the reaction mixture. AHDs purified by size-exclusion high-pressure liquid chromatography had two associating forms; one had an M(r) higher than and the other an M(r) as high as that of a tetramer. The former was associated noncovalently in addition to having two intermolecular disulfide bonds, and the latter was associated covalently with a single intermolecular disulfide bond and was also duplicated through a noncovalent association. In addition, both AHM-1 and AHM-2, having no intermolecular disulfide bond, were in a dimer form. These results suggest that AHM-1 and AHM-2 are monovalent in the hemagglutinin activity, while AHDs are divalent. Comparative analyses of the N termini of these soluble glycopeptides with the sequence of H suggested that the cysteine residue at position 139 was responsible for the intermolecular disulfide bonding between the monomeric H glycoproteins. The cysteine at position 154 was also suggested to participate in the forming of the intermolecular disulfide bond.
Collapse
Affiliation(s)
- T A Sato
- Department of Virus Disease and Vaccine Control, National Institute of Health, Tokyo, Japan
| | | | | |
Collapse
|
40
|
Hu A, Kövamees J, Norrby E. Intracellular processing and antigenic maturation of measles virus hemagglutinin protein. Arch Virol 1994; 136:239-53. [PMID: 7518224 DOI: 10.1007/bf01321055] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The intracellular processing and antigenic maturation of the measles virus (MV) hemagglutinin (H) protein in virus infected cells were probed with murine monoclonal antibodies (Mabs) that reacted with continuous and discontinuous epitopes. The antibodies distinguished between the immature, cotranslational monomeric form of the protein and the mature, dimeric hemagglutinin structure. This was evidenced by testing of immunoreactivity of the Mabs with synthetic peptides, by in vitro synthesized H protein analysis, and by pulse-chase analysis of gel separated monomeric and dimeric forms of the H protein. Time kinetics analysis showed that the protein was synthesized as monomers and most of them were converted into dimers with t1/2 about 30 min. The H protein remained endoglycosidase H (Endo H) sensitive up to 30 min and started to acquire partial resistance to Endo H between 30 and 60 min (t1/2 about 60 min) after synthesis. Oligomerization of the H protein was unaffected in virus infected cells treated with a compound (carbonylcyanide m-chlorophenylhydrazone, CCCP) that blocks transport from the endoplasmic reticulum (ER) to the Golgi complex. These results suggest that the H protein dimerization takes place in the ER before its transport to the medial Golgi complex. The Mabs specific for discontinuous epitopes reacted with the H protein in cells treated with CCCP. Thus conformational antigenic epitope formation appears to take place in the ER.
Collapse
Affiliation(s)
- A Hu
- Department of Virology, School of Medicine, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
41
|
Obeid OE, Partidos CD, Steward MW. Analysis of the antigenic profile of measles virus haemagglutinin in mice and humans using overlapping synthetic peptides. Virus Res 1994; 32:69-84. [PMID: 7518172 DOI: 10.1016/0168-1702(94)90062-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this study, a panel of 55 synthetic peptides representing 92.2% of the haemagglutinin (H) glycoprotein of measles virus (MV) were used to study the antigenic profile of the H molecule of anti-MV antibodies raised in mice and late convalescent human sera. In addition the immunogenicity of these peptides was tested in two mouse strains. Mouse anti-MV antibodies had different fine specificity of binding to the peptides depending on the mouse strain. Thus in BALB/c (H-2d) mice, anti-MV antibodies recognised six peptides representing residues 103-117; 123-137; 242-255; 293-307 and 463-477. In TO (H-2s) mice, anti-MV antibodies recognised peptides representing residues 49-72 and 463-477. When the immunogenicity of the peptides was tested, 29 were immunogenic in BALB/c mice and 34 were immunogenic in TO mice. Several of the anti-peptide antisera were found to cross-react with MV, depending on the solid phase assay system used but none were able to inhibit virus infectivity in vitro. The reactivity of a panel of late convalescent human sera with the peptides was heterogeneous and the extent of the binding to the peptides was related to the titre of anti-MV. However, human sera recognized certain peptides more frequently than others, in particular peptides at the carboxyl-terminus.
Collapse
Affiliation(s)
- O E Obeid
- Department of Clinical Sciences, London School of Hygiene and Tropical Medicine, UK
| | | | | |
Collapse
|
42
|
Alkhatib G, Shen SH, Briedis D, Richardson C, Massie B, Weinberg R, Smith D, Taylor J, Paoletti E, Roder J. Functional analysis of N-linked glycosylation mutants of the measles virus fusion protein synthesized by recombinant vaccinia virus vectors. J Virol 1994; 68:1522-31. [PMID: 8107215 PMCID: PMC236609 DOI: 10.1128/jvi.68.3.1522-1531.1994] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The role of N-linked glycosylation in the biological activity of the measles virus (MV) fusion (F) protein was analyzed by expressing glycosylation mutants with recombinant vaccinia virus vectors. There are three potential N-linked glycosylation sites located on the F2 subunit polypeptide of MV F, at asparagine residues 29, 61, and 67. Each of the three potential glycosylation sites was mutated separately as well as in combination with the other sites. Expression of mutant proteins in mammalian cells showed that all three sites are used for the addition of N-linked oligosaccharides. Cell surface expression of mutant proteins was reduced by 50% relative to the wild-type level when glycosylation at either Asn-29 or Asn-61 was abolished. Despite the similar levels of cell surface expression, the Asn-29 and Asn-61 mutant proteins had different biological activities. While the Asn-61 mutant was capable of inducing syncytium formation, the Asn-29 mutant protein did not exhibit any significant cell fusion activity. Inactivation of the Asn-67 glycosylation site also reduced cell surface transport of mutant protein but had little effect on its ability to cause cell fusion. However, when the Asn-67 mutation was combined with mutations at either of the other two sites, cleavage-dependent activation, cell surface expression, and cell fusion activity were completely abolished. Our data show that the loss of N-linked oligosaccharides markedly impaired the proteolytic cleavage, stability, and biological activity of the MV F protein. The oligosaccharide side chains in MV F are thus essential for optimum conformation of the extracellular F2 subunit that is presumed to bind cellular membranes.
Collapse
Affiliation(s)
- G Alkhatib
- Samuel Lunenfeld Research Institute, Division of Molecular Immunology and Neurobiology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rota JS, Wang ZD, Rota PA, Bellini WJ. Comparison of sequences of the H, F, and N coding genes of measles virus vaccine strains. Virus Res 1994; 31:317-30. [PMID: 8191786 DOI: 10.1016/0168-1702(94)90025-6] [Citation(s) in RCA: 146] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Many live-attenuated vaccines for measles virus have been developed using either the prototype Edmonston strain or other locally isolated measles strains. The attenuation methods used to develop these vaccines have differed in the type(s) of cell line(s) used, number of passages, and temperatures of incubation. To assess the extent of genetic diversity within vaccine strains and to determine the extent to which the varied passage histories may have affected the viruses, we conducted sequence analyses of the fusion, hemagglutinin, nucleoprotein, and matrix genes of Edmonston-derived and non-Edmonston-derived strains. Despite the diverse geographic origins of the vaccine viruses and the different attenuation methods used, there was remarkable sequence similarity among all strains examined. The sequences of all of the vaccine strains were very similar to the sequences of a low-passage seed of the original Edmonston strain. The most divergent sequences were from two of the non-Edmonston-derived vaccines: CAM-70, a vaccine developed from a Japanese wild-type virus, and S-191, which was developed in China.
Collapse
Affiliation(s)
- J S Rota
- Respiratory and Enterovirus Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333
| | | | | | | |
Collapse
|
44
|
Liebert UG, Flanagan SG, Löffler S, Baczko K, ter Meulen V, Rima BK. Antigenic determinants of measles virus hemagglutinin associated with neurovirulence. J Virol 1994; 68:1486-93. [PMID: 7508996 PMCID: PMC236604 DOI: 10.1128/jvi.68.3.1486-1493.1994] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The biological activity of monoclonal antibodies specific for the hemagglutinin protein of measles virus strain CAM recognizing six epitope groups according to their binding properties to measles virus strain CAM/R401 was investigated in vivo in our rat model of measles encephalitis. When injected intraperitoneally into measles virus-infected suckling rats, some monoclonal antibodies modified the disease process and prevented the necrotizing encephalopathy seen in untreated animals. The analysis of measles virus brain isolates revealed emergence of variants that resisted neutralization with the passively transferred selecting monoclonal antibody but not with other monoclonal antibodies. Monoclonal antibody escape mutants were also isolated in vitro, and their neurovirulence varied in the animal model. Sequence data from the hemagglutinin gene of measles virus localize a major antigenic surface determinant of the hemagglutinin protein between amino acid residues 368 and 396, which may be functionally important for neurovirulence. The data indicate that the interaction of antibodies with the measles virus H protein plays an important role in the selection of neurovirulent variants. These variants have biological properties different from those of the parent CAM virus.
Collapse
Affiliation(s)
- U G Liebert
- Institut für Virologie und Immunobiologie, Universität Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Saito H, Sato H, Abe M, Harata S, Amano K, Suto T, Morita M. Cloning and characterization of the cDNA encoding the HA protein of a hemagglutination-defective measles virus strain. Virus Genes 1994; 8:107-13. [PMID: 8073631 DOI: 10.1007/bf01703609] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
cDNA clones corresponding to the mRNA for the hemagglutinin of the hemagglutination-defective strain AK-1 of measles virus were isolated and characterized. Compared with the prototype Edmonston strain, 60 nucleotide substitutions that resulted in 18 amino acid changes were detected. An additional potential N-linked glycosylation site was added by point mutation, which was supported by the observation that the hemagglutinin of the AK-1 strain was stained more heavily after NaDodSO4-PAGE and periodic acid-Schiff (PAS) staining than the Edmonston strain. Computer-assisted analysis revealed that three reverse turns in the secondary structure had disappeared in the hemagglutinin of the AK-1 strain. Moreover, one of these structural changes occurred in the closely glycosylated region at amino acid residues 168-240, which appeared to be a biologically important functional domain. The isoelectric point calculated from the predicted amino acid sequence became about 1 pH unit more basic in the AK-1 strain than the Edmonston strain. This present study is the first sequence analysis of the hemagglutinin gene in a hemagglutination-defective strain of the measles virus.
Collapse
Affiliation(s)
- H Saito
- Department of Microbiology, Akita Prefectural Institute of Public Health, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
UytdeHaag FG, van Binnendijk RS, Kenter MJ, Osterhaus AD. Cytotoxic T lymphocyte responses against measles virus. Curr Top Microbiol Immunol 1994; 189:151-67. [PMID: 7924435 DOI: 10.1007/978-3-642-78530-6_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- F G UytdeHaag
- Department of Virology, Erasmus University Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
47
|
Muller CP, Schroeder T, Tu R, Brons NH, Jung G, Schneider F, Wiesmüller KH. Analysis of the neutralizing antibody response to the measles virus using synthetic peptides of the haemagglutinin protein. Scand J Immunol 1993; 38:463-71. [PMID: 7694357 DOI: 10.1111/j.1365-3083.1993.tb02589.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Infection or immunization with measles virus induces a protective immune reaction including neutralizing antibodies against the haemagglutinin and fusion protein. The reactivity of the polyclonal IgG response of sera obtained from late convalescent donors was studied, using overlapping 15mer peptides covering the complete sequence of the measles virus haemagglutinin. Most sera reacted with a similar set of peptides generating a characteristic binding pattern. The reactive peptides correspond to a region mediating cell hemolysis (aa310-325), to regions which serve as targets to neutralizing antibodies and to a putative transmembrane region (aa35-58). The latter region contains also a human T-cell epitope providing evidence of a non-random association of T- and B-cell epitopes. We also immunized different strains of mice and rabbits with measles virus. In contrast to the human sera, animal sera with strong neutralizing activities did not react with any of the H-protein peptides. The mostly weak reactivities with the linear sequences contrast with the strong neutralizing activities of the human or animal antibodies, suggesting that these primarily recognize the fusion protein or conformational epitopes of the haemagglutinin protein.
Collapse
Affiliation(s)
- C P Muller
- Laboratoire National de Santé, Luxembourg
| | | | | | | | | | | | | |
Collapse
|
48
|
Dörig RE, Marcil A, Chopra A, Richardson CD. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 1993; 75:295-305. [PMID: 8402913 DOI: 10.1016/0092-8674(93)80071-l] [Citation(s) in RCA: 774] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Measles virus normally causes disease in human beings, and the host range of this virus may be determined by a specific receptor on the surface of primate cells. Human-rodent somatic cell hybrids were tested for their ability to bind measles virus, and only cells that contained human chromosome 1 were capable of binding virus. A study of lymphocyte markers suggested that the complement regulator known either as membrane cofactor protein or CD46 was the measles virus receptor. We proved this hypothesis by demonstrating that hamster cell lines that expressed human CD46 could subsequently bind virus. Furthermore, infected CD46+ cells produced syncytia and viral proteins. Finally, polyclonal antisera against CD46 inhibited virus binding and infection. These results prove that human CD46 permits cells both to bind measles virus and to support infection.
Collapse
Affiliation(s)
- R E Dörig
- Biotechnology Research Institute, National Research Council of Canada, Montréal, Québec
| | | | | | | |
Collapse
|
49
|
Schnorr JJ, Schneider-Schaulies S, Simon-Jödicke A, Pavlovic J, Horisberger MA, ter Meulen V. MxA-dependent inhibition of measles virus glycoprotein synthesis in a stably transfected human monocytic cell line. J Virol 1993; 67:4760-8. [PMID: 8392613 PMCID: PMC237862 DOI: 10.1128/jvi.67.8.4760-4768.1993] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The alpha/beta (type I) interferon-inducible human MxA protein confers resistance to vesicular stomatitis virus (VSV) and influenza A virus in MxA-transfected mouse 3T3 cells (3T3/MxA). We investigated the inhibitory effects of the MxA protein on measles virus (MV) and VSV in the human monocytic cell line U937. In transfected U937 clones which constitutively express MxA (U937/MxA), the release of infectious MV and VSV was reduced approximately 100-fold in comparison with control titers. Transcription of VSV was inhibited similar to that observed for 3T3/MxA cells, whereas no difference was detected for MV in the rates of transcription or the levels of MV-specific mRNAs. In contrast, analysis of MV protein expression by immunofluorescence and immunoprecipitation revealed a significant reduction in the synthesis of MV glycoproteins F and H in U937/MxA cells. These data demonstrate a virus-specific effect of MxA which may, in the case of MV, contribute to the establishment of a persistent infection in human monocytic cells.
Collapse
Affiliation(s)
- J J Schnorr
- Institute for Virology and Immunobiology, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Sakata H, Kobune F, Sato TA, Tanabayashi K, Yamada A, Sugiura A. Variation in field isolates of measles virus during an 8-year period in Japan. Microbiol Immunol 1993; 37:233-7. [PMID: 8321151 DOI: 10.1111/j.1348-0421.1993.tb03205.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Field isolates of measles virus (MV) during an 8-year period in four areas of Japan, i.e., Osaka, Nagoya, Tokyo and Akita, were classified into three types in regard to the electrophoretic mobility of the hemagglutinin (HA) proteins: S type with small (78K) HA, M type with intermediate (80 K) HA and L type with large (82 K) HA. The type of field isolates was closely related with the geographical location and the year of virus isolation. The S type strain was isolated only in an outbreak from 1983 to 1984, whereas the M and L type strains were isolated between 1983 and 1990. The HA genes of the M and L type strains of MV were found to have a nucleotide substitution which introduces a new potential glycosylation site. In addition, the matrix proteins of all field strains isolated after 1977 showed slower electrophoretic mobility of 42 K than 39 K of the Edmonston and Toyoshima strains. These results indicate that MV strains of different HA types existed concomitantly and that major populations of MV currently circulating in Japan are changing from those prevalent in 1983-1984.
Collapse
Affiliation(s)
- H Sakata
- Department of Measles Virus, National Institute of Health, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|