1
|
Brooks BD, Closmore A, Yang J, Holland M, Cairns T, Cohen GH, Bailey-Kellogg C. Characterizing Epitope Binding Regions of Entire Antibody Panels by Combining Experimental and Computational Analysis of Antibody: Antigen Binding Competition. Molecules 2020; 25:molecules25163659. [PMID: 32796656 PMCID: PMC7464469 DOI: 10.3390/molecules25163659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022] Open
Abstract
Vaccines and immunotherapies depend on the ability of antibodies to sensitively and specifically recognize particular antigens and specific epitopes on those antigens. As such, detailed characterization of antibody-antigen binding provides important information to guide development. Due to the time and expense required, high-resolution structural characterization techniques are typically used sparingly and late in a development process. Here, we show that antibody-antigen binding can be characterized early in a process for whole panels of antibodies by combining experimental and computational analyses of competition between monoclonal antibodies for binding to an antigen. Experimental "epitope binning" of monoclonal antibodies uses high-throughput surface plasmon resonance to reveal which antibodies compete, while a new complementary computational analysis that we call "dock binning" evaluates antibody-antigen docking models to identify why and where they might compete, in terms of possible binding sites on the antigen. Experimental and computational characterization of the identified antigenic hotspots then enables the refinement of the competitors and their associated epitope binding regions on the antigen. While not performed at atomic resolution, this approach allows for the group-level identification of functionally related monoclonal antibodies (i.e., communities) and identification of their general binding regions on the antigen. By leveraging extensive epitope characterization data that can be readily generated both experimentally and computationally, researchers can gain broad insights into the basis for antibody-antigen recognition in wide-ranging vaccine and immunotherapy discovery and development programs.
Collapse
Affiliation(s)
- Benjamin D. Brooks
- Department of Biomedical Sciences, Rocky Vista University, Ivins, UT 84738, USA
- Inovan Inc., Fargo, ND 58102, USA
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (T.C.); (G.H.C.)
- Correspondence: ; Tel.: +1-435-222-1403
| | - Adam Closmore
- Department of Pharmacy, North Dakota State University, Fargo, ND 58102, USA;
| | - Juechen Yang
- Department of Biomedical Engineering, North Dakota State University, Fargo, ND 58102, USA; (J.Y.); (M.H.)
| | - Michael Holland
- Department of Biomedical Engineering, North Dakota State University, Fargo, ND 58102, USA; (J.Y.); (M.H.)
| | - Tina Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (T.C.); (G.H.C.)
| | - Gary H. Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (T.C.); (G.H.C.)
| | | |
Collapse
|
2
|
Atanasiu D, Saw WT, Lazear E, Whitbeck JC, Cairns TM, Lou H, Eisenberg RJ, Cohen GH. Using Antibodies and Mutants To Localize the Presumptive gH/gL Binding Site on Herpes Simplex Virus gD. J Virol 2018; 92:e01694-18. [PMID: 30282715 PMCID: PMC6258950 DOI: 10.1128/jvi.01694-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 09/28/2018] [Indexed: 02/02/2023] Open
Abstract
HSV virus-cell and cell-cell fusion requires multiple interactions between four essential virion envelope glycoproteins, gD, gB, gH, and gL, and between gD and a cellular receptor, nectin-1 or herpesvirus entry mediator (HVEM). Current models suggest that binding of gD to receptors induces a conformational change that leads to activation of gH/gL and consequent triggering of the prefusion form of gB to promote membrane fusion. Since protein-protein interactions guide each step of fusion, identifying the sites of interaction may lead to the identification of potential therapeutic targets that block this process. We have previously identified two "faces" on gD: one for receptor binding and the other for its presumed interaction with gH/gL. We previously separated the gD monoclonal antibodies (MAbs) into five competition communities. MAbs from two communities (MC2 and MC5) neutralize virus infection and block cell-cell fusion but do not block receptor binding, suggesting that they block binding of gD to gH/gL. Using a combination of classical epitope mapping of gD mutants with fusion and entry assays, we identified two residues (R67 and P54) on the presumed gH/gL interaction face of gD that allowed for fusion and viral entry but were no longer sensitive to inhibition by MC2 or MC5, yet both were blocked by other MAbs. As neutralizing antibodies interfere with essential steps in the fusion pathway, our studies strongly suggest that these key residues block the interaction of gD with gH/gL.IMPORTANCE Virus entry and cell-cell fusion mediated by HSV require gD, gH/gL, gB, and a gD receptor. Neutralizing antibodies directed against any of these proteins bind to residues within key functional sites and interfere with an essential step in the fusion pathway. Thus, the epitopes of these MAbs identify critical, functional sites on their target proteins. Unlike many anti-gD MAbs, which block binding of gD to a cellular receptor, two, MC2 and MC5, block a separate, downstream step in the fusion pathway which is presumed to be the activation of the modulator of fusion, gH/gL. By combining epitope mapping of a panel of gD mutants with fusion and virus entry assays, we have identified residues that are critical in the binding and function of these two MAbs. This new information helps to define the site of the presumptive interaction of gD with gH/gL, of which we have limited knowledge.
Collapse
Affiliation(s)
- Doina Atanasiu
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wan Ting Saw
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eric Lazear
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - J Charles Whitbeck
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tina M Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Huan Lou
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roselyn J Eisenberg
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gary H Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Cairns TM, Ditto NT, Lou H, Brooks BD, Atanasiu D, Eisenberg RJ, Cohen GH. Global sensing of the antigenic structure of herpes simplex virus gD using high-throughput array-based SPR imaging. PLoS Pathog 2017; 13:e1006430. [PMID: 28614387 PMCID: PMC5484518 DOI: 10.1371/journal.ppat.1006430] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/26/2017] [Accepted: 05/23/2017] [Indexed: 12/31/2022] Open
Abstract
While HSV-2 typically causes genital lesions, HSV-1 is increasingly the cause of genital herpes. In addition, neonatal HSV infections are associated with a high rate of mortality and HSV-2 may increase the risk for HIV or Zika infections, reinforcing the need to develop an effective vaccine. In the GSK Herpevac trial, doubly sero-negative women were vaccinated with a truncated form of gD2 [gD2(284t)], then examined for anti-gD serum titers and clinical manifestations of disease. Surprisingly, few vaccinees were protected against genital HSV-2 but 86% were protected from genital HSV-1. These observations suggest that subtle differences in gD structure might influence a protective response. To better understand the antigenic structure of gD and how it impacts a protective response, we previously utilized several key anti-gD monoclonal antibodies (mAbs) to dissect epitopes in vaccinee sera. Several correlations were observed but the methodology limited the number of sera and mAbs that could be tested. Here, we used array-based surface plasmon imaging (SPRi) to simultaneously measure a larger number of protein-protein interactions. We carried out cross-competition or "epitope binning" studies with 39 anti-gD mAbs and four soluble forms of gD, including a form [gD2(285t)] that resembles the Herpevac antigen. The results from these experiments allowed us to organize the mAbs into four epitope communities. Notably, relationships within and between communities differed depending on the form of gD, and off-rate analysis suggested differences in mAb-gD avidity depending on the gD serotype and length. Together, these results show that gD1 and gD2 differ in their structural topography. Consistent with the Herpevac results, several mAbs that bind both gD1 and gD2 neutralize only HSV-1. Thus, this technology provides new insights into the antigenic structure of gD and provides a rationale as to how vaccination with a gD2 subunit may lead to protection from HSV-1 infection.
Collapse
Affiliation(s)
- Tina M. Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Noah T. Ditto
- Wasatch Microfluidics, Salt Lake City, Utah, United States of America
| | - Huan Lou
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - Doina Atanasiu
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Roselyn J. Eisenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gary H. Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
4
|
Clementi N, Criscuolo E, Cappelletti F, Quaranta P, Pistello M, Diotti RA, Sautto GA, Tarr AW, Mailland F, Concas D, Burioni R, Clementi M, Mancini N. Entry inhibition of HSV-1 and -2 protects mice from viral lethal challenge. Antiviral Res 2017; 143:48-61. [PMID: 28396205 DOI: 10.1016/j.antiviral.2017.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 11/26/2022]
Abstract
The present study focused on inhibition of HSV-1 and -2 replication and pathogenesis in vitro and in vivo, through the selective targeting of the envelope glycoprotein D. Firstly, a human monoclonal antibody (Hu-mAb#33) was identified that could neutralise both HSV-1 and -2 at nM concentrations, including clinical isolates from patients affected by different clinical manifestations and featuring different susceptibility to acyclovir in vitro. Secondly, the potency of inhibition of both infection by cell-free viruses and cell-to-cell virus transmission was also assessed. Finally, mice receiving a single systemic injection of Hu-mAb#33 were protected from death and severe clinical manifestations following both ocular and vaginal HSV-1 and -2 lethal challenge. These results pave the way for further studies reassessing the importance of HSV entry as a novel target for therapeutic intervention and inhibition of cell-to-cell virus transmission.
Collapse
Affiliation(s)
- Nicola Clementi
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, Milan, Italy.
| | - Elena Criscuolo
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, Milan, Italy
| | | | - Paola Quaranta
- Department of Translational Research, University of Pisa, Pisa, Italy
| | - Mauro Pistello
- Department of Translational Research, University of Pisa, Pisa, Italy
| | - Roberta A Diotti
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, Milan, Italy
| | - Giuseppe A Sautto
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, Milan, Italy
| | - Alexander W Tarr
- School of Life Sciences & NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | - Daniela Concas
- Wezen Bio AG, Fondation pour Recherches Medicales, Geneva, Switzerland
| | - Roberto Burioni
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, Milan, Italy; Laboratory of Microbiology and Virology, San Raffaele Hospital, Milan, Italy
| | - Massimo Clementi
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, Milan, Italy; Laboratory of Microbiology and Virology, San Raffaele Hospital, Milan, Italy
| | - Nicasio Mancini
- Microbiology and Virology Unit, 'Vita-Salute San Raffaele' University, Milan, Italy; Laboratory of Microbiology and Virology, San Raffaele Hospital, Milan, Italy
| |
Collapse
|
5
|
Patient-Specific Neutralizing Antibody Responses to Herpes Simplex Virus Are Attributed to Epitopes on gD, gB, or Both and Can Be Type Specific. J Virol 2015; 89:9213-31. [PMID: 26109729 DOI: 10.1128/jvi.01213-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/18/2015] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) and HSV-2 infect many humans and establish a latent infection in sensory ganglia. Although some infected people suffer periodic recurrences, others do not. Infected people mount both cell-mediated and humoral responses, including the production of virus-neutralizing antibodies (Abs) directed at viral entry glycoproteins. Previously, we examined IgGs from 10 HSV-seropositive individuals; all neutralized virus and were directed primarily against gD or gD+gB. Here, we expand our studies and examine 32 additional sera from HSV-infected individuals, 23 of whom had no recurrent disease. Using an Octet RED96 system, we screened all 32 serum samples directly for both glycoprotein binding and competition with known neutralizing anti-gD and -gB monoclonal Abs (MAbs). On average, the recurrent cohort exhibited higher binding to gD and gB and had higher neutralization titers. There were similar trends in the blocking of MAbs to critical gD and gB epitopes. When we depleted six sera of Abs to specific glycoproteins, we found different types of responses, but always directed primarily at gD and/or gB. Interestingly, in one dual-infected person, the neutralizing response to HSV-2 was due to gD2 and gB2, whereas HSV-1 neutralization was due to gD1 and gB1. In another case, virus neutralization was HSV-1 specific, with the Ab response directed entirely at gB1, despite this serum blocking type-common anti-gD and -gB neutralizing MAbs. These data are pertinent in the design of future HSV vaccines since they demonstrate the importance of both serotypes of gD and gB as immunogens. IMPORTANCE We previously showed that people infected with HSV produce neutralizing Abs directed against gD or a combination of gD+gB (and in one case, gD+gB+gC, which was HSV-1 specific). In this more extensive study, we again found that gD or gD+gB can account for the virus neutralizing response and critical epitopes of one or both of these proteins are represented in sera of naturally infected humans. However, we also found that some individuals produced a strong response against gB alone. In addition, we identified type-specific contributions to HSV neutralization from both gD and gB. Contributions from the other entry glycoproteins, gC and gH/gL, were minimal and limited to HSV-1 neutralization. Knowing the variations in how humans see and mount a response to HSV will be important to vaccine development.
Collapse
|
6
|
Dissection of the antibody response against herpes simplex virus glycoproteins in naturally infected humans. J Virol 2014; 88:12612-22. [PMID: 25142599 DOI: 10.1128/jvi.01930-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
UNLABELLED Relatively little is known about the extent of the polyclonal antibody (PAb) repertoire elicited by herpes simplex virus (HSV) glycoproteins during natural infection and how these antibodies affect virus neutralization. Here, we examined IgGs from 10 HSV-seropositive individuals originally classified as high or low virus shedders. All PAbs neutralized virus to various extents. We determined which HSV entry glycoproteins these PAbs were directed against: glycoproteins gB, gD, and gC were recognized by all sera, but fewer sera reacted against gH/gL. We previously characterized multiple mouse monoclonal antibodies (MAbs) and mapped those with high neutralizing activity to the crystal structures of gD, gB, and gH/gL. We used a biosensor competition assay to determine whether there were corresponding human antibodies to those epitopes. All 10 samples had neutralizing IgGs to gD epitopes, but there were variations in which epitopes were seen in individual samples. Surprisingly, only three samples contained neutralizing IgGs to gB epitopes. To further dissect the nature of these IgGs, we developed a method to select out gD- and gB-specific IgGs from four representative sera via affinity chromatography, allowing us to determine the contribution of antibodies against each glycoprotein to the overall neutralization capacity of the serum. In two cases, gD and gB accounted for all of the neutralizing activity against HSV-2, with a modest amount of HSV-1 neutralization directed against gC. In the other two samples, the dominant response was to gD. IMPORTANCE Antibodies targeting functional epitopes on HSV entry glycoproteins mediate HSV neutralization. Virus-neutralizing epitopes have been defined and characterized using murine monoclonal antibodies. However, it is largely unknown whether these same epitopes are targeted by the humoral response to HSV infection in humans. We have shown that during natural infection, virus-neutralizing antibodies are principally directed against gD, gB, and, to a lesser extent, gC. While several key HSV-neutralizing epitopes within gD and gB are commonly targeted by human serum IgG, others fail to induce consistent responses. These data are particularly relevant to the design of future HSV vaccines.
Collapse
|
7
|
Displacement of the C terminus of herpes simplex virus gD is sufficient to expose the fusion-activating interfaces on gD. J Virol 2013; 87:12656-66. [PMID: 24049165 DOI: 10.1128/jvi.01727-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Viral entry by herpes simplex virus (HSV) is executed and tightly regulated by four glycoproteins. While several viral glycoproteins can mediate viral adhesion to host cells, only binding of gD to cellular receptor can activate core fusion proteins gB and gH/gL to execute membrane fusion and viral entry. Atomic structures of gD bound to receptor indicate that the C terminus of the gD ectodomain must be displaced before receptor can bind to gD, but it is unclear which conformational changes in gD activate membrane fusion. We rationally designed mutations in gD to displace the C terminus and observe if fusion could be activated without receptor binding. Using a cell-based fusion assay, we found that gD V231W induced cell-cell fusion in the absence of receptor. Using recombinant gD V231W protein, we observed binding to conformationally sensitive antibodies or HSV receptor and concluded that there were changes proximal to the receptor binding interface, while the tertiary structure of gD V231W was similar to that of wild-type gD. We used a biosensor to analyze the kinetics of receptor binding and the extent to which the C terminus blocks binding to receptor. We found that the C terminus of gD V231W was enriched in the open or displaced conformation, indicating a mechanism for its function. We conclude that gD V231W triggers fusion through displacement of its C terminus and that this motion is indicative of how gD links receptor binding to exposure of interfaces on gD that activate fusion via gH/gL and gB.
Collapse
|
8
|
Clarke RW, Drews A, Browne H, Klenerman D. A single gD glycoprotein can mediate infection by Herpes simplex virus. J Am Chem Soc 2013; 135:11175-80. [PMID: 23837576 PMCID: PMC3756529 DOI: 10.1021/ja4038406] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herpes simplex viruses display hundreds of gD glycoproteins, and yet their neutralization requires tens of thousands of antibodies per virion, leading us to ask whether a wild-type virion with just a single free gD is still infective. By quantitative analysis of fluorescently labeled virus particles and virus neutralization assays, we show that entry of a wild-type HSV virion to a cell does indeed require just one or two of the approximately 300 gD glycoproteins to be left unbound by monoclonal antibody. This indicates that HSV entry is an extraordinarily efficient process, functioning at the level of single molecular complexes.
Collapse
Affiliation(s)
- Richard W Clarke
- Chemistry Department, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | | | | | | |
Collapse
|
9
|
Herpes virus fusion and entry: a story with many characters. Viruses 2012; 4:800-32. [PMID: 22754650 PMCID: PMC3386629 DOI: 10.3390/v4050800] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 05/04/2012] [Accepted: 05/09/2012] [Indexed: 12/13/2022] Open
Abstract
Herpesviridae comprise a large family of enveloped DNA viruses all of whom employ orthologs of the same three glycoproteins, gB, gH and gL. Additionally, herpesviruses often employ accessory proteins to bind receptors and/or bind the heterodimer gH/gL or even to determine cell tropism. Sorting out how these proteins function has been resolved to a large extent by structural biology coupled with supporting biochemical and biologic evidence. Together with the G protein of vesicular stomatitis virus, gB is a charter member of the Class III fusion proteins. Unlike VSV G, gB only functions when partnered with gH/gL. However, gH/gL does not resemble any known viral fusion protein and there is evidence that its function is to upregulate the fusogenic activity of gB. In the case of herpes simplex virus, gH/gL itself is upregulated into an active state by the conformational change that occurs when gD, the receptor binding protein, binds one of its receptors. In this review we focus primarily on prototypes of the three subfamilies of herpesviruses. We will present our model for how herpes simplex virus (HSV) regulates fusion in series of highly regulated steps. Our model highlights what is known and also provides a framework to address mechanistic questions about fusion by HSV and herpesviruses in general.
Collapse
|
10
|
Antibody-induced conformational changes in herpes simplex virus glycoprotein gD reveal new targets for virus neutralization. J Virol 2011; 86:1563-76. [PMID: 22130533 DOI: 10.1128/jvi.06480-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
As the receptor-binding protein of herpes simplex virus (HSV), gD plays an essential role in virus entry. In its native state, the last 56 amino acids of the ectodomain C terminus (C-term) occlude binding to its receptors, herpesvirus entry mediator (HVEM) and nectin-1. Although it is clear that movement of the C-term must occur to permit receptor binding, we believe that this conformational change is also a key event for triggering later steps leading to fusion. Specifically, gD mutants containing disulfide bonds that constrain the C-term are deficient in their ability to trigger fusion following receptor binding. In this report, we show that two newly made monoclonal antibodies (MAbs), MC2 and MC5, have virus-neutralizing activity but do not block binding of gD to either receptor. In contrast, all previously characterized neutralizing anti-gD MAbs block binding of gD to a receptor(s). Interestingly, instead of blocking receptor binding, MC2 significantly enhances the affinity of gD for both receptors. Several nonneutralizing MAbs (MC4, MC10, and MC14) also enhanced gD-receptor binding. While MC2 and MC5 recognized different epitopes on the core of gD, these nonneutralizing MAbs recognized the gD C-term. Both the neutralizing capacity and rate of neutralization of virus by MC2 are uniquely enhanced when MC2 is combined with MAb MC4, MC10, or MC14. We suggest that MC2 and MC5 prevent gD from performing a function that triggers later steps leading to fusion and that the epitope for MC2 is normally occluded by the C-term of the gD ectodomain.
Collapse
|
11
|
Herpes simplex virus glycoprotein B associates with target membranes via its fusion loops. J Virol 2009; 83:6825-36. [PMID: 19369321 DOI: 10.1128/jvi.00301-09] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Herpes simplex virus (HSV) glycoproteins gB, gD, and gH/gL are necessary and sufficient for virus entry into cells. Structural features of gB are similar to those of vesicular stomatitis virus G and baculovirus gp64, and together they define the new class III group of fusion proteins. Previously, we used mutagenesis to show that three hydrophobic residues (W174, Y179, and A261) within the putative gB fusion loops are integral to gB function. Here we expanded our analysis, using site-directed mutagenesis of each residue in both gB fusion loops. Mutation of most of the nonpolar or hydrophobic amino acids (W174, F175, G176, Y179, and A261) had severe effects on gB function in cell-cell fusion and null virus complementation assays. Of the six charged amino acids, mutation of H263 or R264 also negatively affected gB function. To further analyze the mutants, we cloned the ectodomains of the W174R, Y179S, H263A, and R264A mutants into a baculovirus expression system and compared them with the wild-type (WT) form, gB730t. As shown previously, gB730t blocks virus entry into cells, suggesting that gB730t competes with virion gB for a cell receptor. All four mutant proteins retained this function, implying that fusion loop activity is separate from gB-receptor binding. However, unlike WT gB730t, the mutant proteins displayed reduced binding to cells and were either impaired or unable to bind naked, cholesterol-enriched liposomes, suggesting that it may be gB-lipid binding that is disrupted by the mutations. Furthermore, monoclonal antibodies with epitopes proximal to the fusion loops abrogated gB-liposome binding. Taken together, our data suggest that gB associates with lipid membranes via a fusion domain of key hydrophobic and hydrophilic residues and that this domain associates with lipid membranes during fusion.
Collapse
|
12
|
Generation of herpesvirus entry mediator (HVEM)-restricted herpes simplex virus type 1 mutant viruses: resistance of HVEM-expressing cells and identification of mutations that rescue nectin-1 recognition. J Virol 2009; 83:2951-61. [PMID: 19129446 DOI: 10.1128/jvi.01449-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Both initial infection and cell-to-cell spread by herpes simplex virus type 1 (HSV-1) require the interaction of the viral glycoprotein D (gD) with an entry receptor on the cell surface. The two major HSV entry receptors, herpesvirus entry mediator (HVEM) and nectin-1, mediate infection independently but are coexpressed on a variety of cells. To determine if both receptors are active in these instances, we have established mutant viruses that are selectively impaired for recognition of one or the other receptor. In plaque assays, these viruses showed approximately 1,000-fold selectivity for the matched receptor over the mismatched receptor. Separate assays showed that each virus is impaired for both infection and spread through the mismatched receptor. We tested several human tumor cell lines for susceptibility to these viruses and observed that HT29 colon carcinoma cells are susceptible to infection by nectin-1-restricted virus but are highly resistant to HVEM-restricted virus infection, despite readily detectable HVEM expression on the cell surface. HVEM cDNA isolated from HT29 cells rendered HSV-resistant cells permissive for infection by the HVEM-restricted virus, suggesting that HT29 cells lack a cofactor for HVEM-mediated infection or express an HVEM-specific inhibitory factor. Passaging of HVEM-restricted virus on nectin-1-expressing cells yielded a set of gD missense mutations that each restored functional recognition of nectin-1. These mutations identify residues that likely play a role in shaping the nectin-1 binding site of gD. Our findings illustrate the utility of these receptor-restricted viruses in studying the early events in HSV infection.
Collapse
|
13
|
Durmanová V, Sapák M, Kosovský J, Rezuchová I, Kúdelová M, Buc M, Rajcáni J. Immune response and cytokine production following immunization with experimental herpes simplex virus 1 (HSV-1) vaccines. Folia Microbiol (Praha) 2008; 53:73-83. [PMID: 18481222 DOI: 10.1007/s12223-008-0011-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 11/01/2007] [Indexed: 11/25/2022]
Abstract
Balb/c mice were immunized with the recombinant fusion protein gD1/313 (FpgD1/313 representing the ectodomain of HSV-1 gD), with the non-pathogenic ANGpath gE-del virus, with the plasmid pcDNA3.1-gD expressing full-length gD1 and with the recombinant immediate early (IE) HSV-1 protein ICP27. Specific antibodies against these antigens (as detected by ELISA) reached high titers with the exception of the DNA vaccine. High-grade protection against challenge with the virulent strain SC16 was found following immunization with the pcDNA3.1-gD plasmid and with the gE-del virus. Medium grade, but satisfactory protection developed after immunization with the FpgD1/313 and minimum grade protection was seen upon immunization with the IE/ICP27 polypeptide. A considerable response of peripheral blood cells (PBL) and splenocytes in the lymphocyte transformation test (LTT) was found in mice immunized with FpgD1/313, with the pcDNA3.1-gD plasmid and with the live ANGpathgE-del virus. For lymphocyte stimulation in vitro, the FpgD1/313 antigen was less effective than the purified gD1/313 polypeptide (cleaved off from the fusion protein); both proteins elicited higher proliferation at the 5 microg per 0.1 mL dose than at the 1 microg per 0.1 mL dose. The secretion of Th type 1 (TNF, IFN-gamma and IL-2) and Th type 2 (IL-4 and IL-6) cytokines was tested in the medium fluid of purified PBL and splenocyte cultures; their absolute values were expressed in relative indexes. The PBL from FpgD1/313 immunized mice showed increased secretion of both T(H)1 (TNF) as well as T(H)2 (IL-4) cytokines (7-10-fold, respectively). Splenocytes from FpgD1/313 immunized mice showed a significant (23-fold) increase in IL-4 production.
Collapse
Affiliation(s)
- V Durmanová
- Institute of Virology, Slovak Academy of Sciences, 845 05, Bratislava, Slovakia
| | | | | | | | | | | | | |
Collapse
|
14
|
Klyachkin YM, Geraghty RJ. Mutagenic analysis of herpes simplex virus type 1 glycoprotein L reveals the importance of an arginine-rich region for function. Virology 2008; 374:23-32. [PMID: 18222518 DOI: 10.1016/j.virol.2007.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 10/31/2007] [Accepted: 11/09/2007] [Indexed: 12/01/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) glycoproteins H and L (gH and gL) are required for virus-induced membrane fusion. Expression of gH at the virion or infected cell surface is mediated by the chaperone-like activity of gL. We have previously shown that a region between amino acids 155 and 161 is critical for gL chaperone-like activity. Here, we conducted Ala substitution mutagenesis of residues in this region and found that substitution of Cys160, Arg156, Arg158, or Arg156/158/159 with Ala resulted in a gL mutant that bound gH but displayed a reduced ability in gH trafficking and membrane fusion. Substitution of Arg156 with another positively charged amino acid, Lys, restored function. Substitution of Arg158 with Lys restored function in gH trafficking and cell fusion but not virus entry. These results indicate that an arginine-rich region of gL is critical for function.
Collapse
Affiliation(s)
- Yuri M Klyachkin
- University of Kentucky, Department of Microbiology, Immunology, and Molecular Genetics, 800 Rose St., UKMC MS423, Lexington, KY 40536-0298, USA
| | | |
Collapse
|
15
|
Rajcáni J, Durmanová V. Developments in herpes simplex virus vaccines: old problems and new challenges. Folia Microbiol (Praha) 2006; 51:67-85. [PMID: 16821715 DOI: 10.1007/bf02932160] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Vaccination has remained the best method for preventing virus spread. The herpes simplex virus (HSV) candidate vaccines tested till now were mostly purified subunit vaccines and/or recombinant envelope glycoproteins (such as gB and gD). In many experiments performed in mice, guinea pigs and rabbits, clear-cut protection against acute virus challenge was demonstrated along with the reduction of the extent of latency, when established in the immunized host. The immunotherapeutic effect of herpes vaccines seems less convincing. However, introduction of new adjuvants, which shift the cytokine production of helper T-cells toward stimulation of cytotoxic T-cells (TH1 type cytokine response), reveals a promising development. Mathematical analysis proved that overall prophylactic vaccination of seronegative women, even when eliciting 40-60 % antibody response only, would reduce the frequency of genital herpes within the vaccinated population. Even when partially effective, immunotherapeutic vaccination might represent a suitable alternative of chronic chemotherapy in recurrent labial and genital herpes.
Collapse
Affiliation(s)
- J Rajcáni
- Institute of Virology, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | | |
Collapse
|
16
|
Connolly SA, Landsburg DJ, Carfi A, Whitbeck JC, Zuo Y, Wiley DC, Cohen GH, Eisenberg RJ. Potential nectin-1 binding site on herpes simplex virus glycoprotein d. J Virol 2005; 79:1282-95. [PMID: 15613355 PMCID: PMC538551 DOI: 10.1128/jvi.79.2.1282-1295.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Four glycoproteins (gD, gB, gH, and gL) are essential for herpes simplex virus (HSV) entry into cells. An early step of fusion requires gD to bind one of several receptors, such as nectin-1 or herpesvirus entry mediator (HVEM). We hypothesize that a conformational change in gD occurs upon receptor binding that triggers the other glycoproteins to mediate fusion. Comparison of the crystal structures of gD alone and gD bound to HVEM reveals that upon HVEM binding, the gD N terminus transitions from a flexible stretch of residues to a hairpin loop. To address the contribution of this transition to the ability of gD to trigger fusion, we attempted to "lock" the gD N terminus into a looped conformation by engineering a disulfide bond at its N and C termini. The resulting mutant (gD-A3C/Y38C) failed to trigger fusion in the absence of receptor, suggesting that formation of the loop is not the sole fusion trigger. Unexpectedly, although gD-A3C/Y38C bound HVEM, it failed to bind nectin-1. This was due to the key role played by Y38 in interacting with nectin-1. Since tyrosines are often "hot spot" residues at the center of protein-protein interfaces, we mutated residues that surround Y38 on the same face of gD and tested their binding and functional properties. Our results suggest that this region of gD is important for nectin-1 interaction and is distinct from but partially overlaps the site of HVEM binding. Unique gD mutants with altered receptor usage generated in this study may help dissect the roles played by various HSV receptors during infection.
Collapse
Affiliation(s)
- Sarah A Connolly
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Manoj S, Jogger CR, Myscofski D, Yoon M, Spear PG. Mutations in herpes simplex virus glycoprotein D that prevent cell entry via nectins and alter cell tropism. Proc Natl Acad Sci U S A 2004; 101:12414-21. [PMID: 15273289 PMCID: PMC515077 DOI: 10.1073/pnas.0404211101] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycoprotein D (gD) determines which cells can be infected by herpes simplex virus (HSV) by binding to one of the several cell surface receptors that can mediate HSV entry or cell fusion. These receptors include the herpesvirus entry mediator (HVEM), nectin-1, nectin-2, and sites in heparan sulfate generated by specific 3-O-sulfotransferases. The objective of the present study was to identify residues in gD that are critical for physical and functional interactions with nectin-1 and nectin-2. We found that double or triple amino acid substitutions at positions 215, 222, and 223 in gD caused marked reduction in gD binding to nectin-1 and a corresponding inability to function in cell fusion or entry of HSV via nectin-1 or nectin-2. These substitutions either enhanced or did not significantly inhibit functional interactions with HVEM and modified heparan sulfate. These and other results demonstrate that different domains of gD, with some overlap, are critical for functional interactions with each class of entry receptor. Viral entry assays, using gD mutants described here and previously, revealed that nectins are the principal entry receptors for selected human cell lines of neuronal and epithelial origin, whereas HVEM or nectins could be used to mediate entry into a T lymphocyte line. Because T cells and fibroblasts can be infected via HVEM, HSV strains carrying gD mutations that prevent entry via nectins may establish transient infections in humans, but perhaps not latent infections of neurons, and are therefore candidates for development of safe live virus vaccines and vaccine vectors.
Collapse
Affiliation(s)
- Sharmila Manoj
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
18
|
Verschoor A, Brockman MA, Gadjeva M, Knipe DM, Carroll MC. Myeloid C3 determines induction of humoral responses to peripheral herpes simplex virus infection. THE JOURNAL OF IMMUNOLOGY 2004; 171:5363-71. [PMID: 14607939 DOI: 10.4049/jimmunol.171.10.5363] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The complement system, in addition to its role in innate immunity, is an important regulator of the B cell response. Complement exists predominantly in the circulation and although the primary source is hepatic, multiple additional cellular sources have been described that can contribute substantially to the complement pool. To date, however, complement produced by these secondary sources has been deemed redundant to that secreted by the liver. In contrast, using a bone marrow chimeric model, we observed that C3 synthesis by myeloid cells, a relatively minor source of complement, provided a critical function during the induction of humoral responses to peripheral HSV infection. Anti-viral Ab, as generated in an efficient humoral response, has been associated with protection from severe consequences of HSV dissemination. This report offers insight into the generation of the adaptive immune response in the periphery and describes a unique role for a nonhepatic complement source.
Collapse
Affiliation(s)
- Admar Verschoor
- Center for Blood Research, Boston, MA 02115. Pathology, Pediatrics, and Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
19
|
Connolly SA, Landsburg DJ, Carfi A, Wiley DC, Cohen GH, Eisenberg RJ. Structure-based mutagenesis of herpes simplex virus glycoprotein D defines three critical regions at the gD-HveA/HVEM binding interface. J Virol 2003; 77:8127-40. [PMID: 12829851 PMCID: PMC161942 DOI: 10.1128/jvi.77.14.8127-8140.2003] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) entry into cells requires the binding of glycoprotein D (gD) to one of several cell surface receptors. The crystal structure of gD bound to one of these receptors, HveA/HVEM, reveals that the core of gD comprises an immunoglobulin fold flanked by a long C-terminal extension and an N-terminal hairpin loop. HveA is a member of the tumor necrosis factor receptor family and contains four cysteine-rich domains (CRDs) characteristic of this family. Fourteen amino acids within the gD N-terminal loop comprise the entire binding site for HveA. To determine the contribution of each gD contact residue to virus entry, we constructed gD molecules mutated in these amino acids. We determined the abilities of the gD mutants to bind receptors, facilitate virus entry, and mediate cell-cell fusion. Seven of the gD mutants exhibited wild-type levels of receptor binding and gD function. Results from the other seven gD mutants revealed three critical regions at the gD-HveA interface. (i) Several gD residues that participate in an intermolecular beta-sheet with HveA were found to be crucial for HveA binding and entry into HveA-expressing cells. (ii) Two gD residues that contact HveA-Y23 contributed to HveA binding but were not required for mediating entry into cells. HveA-Y23 fits into a crevice on the surface of gD and was previously shown to be essential for gD binding. (iii) CRD2 was previously shown to contribute to gD binding, and this study shows that one gD residue that contacts CRD2 contributes to HveA binding. None of the gD mutations prevented interaction with nectin-1, another gD receptor. However, when cotransfected with the other glycoproteins required for fusion, two gD mutants gained the ability to mediate fusion of cells expressing nectin-2, a gD receptor that interacts with several laboratory-derived gD mutants but not with wild-type gD. Thus, results from this panel of gD mutants as well as those of previous studies (A. Carfi, S. H. Willis, J. C. Whitbeck, C. Krummenacher, G. H. Cohen, R. J. Eisenberg, and D. C. Wiley, Mol. Cell 8:169-179, 2001, and S. A. Connolly, D. J. Landsburg, A. Carfi, D. C. Wiley, R. J. Eisenberg, and G. H. Cohen, J. Virol. 76:10894-10904, 2002) provide a detailed picture of the gD-HveA interface and the contacts required for functional interaction. The results demonstrate that of the 35 gD and HveA contact residues that comprise the gD-HveA interface, only a handful are critical for complex formation.
Collapse
Affiliation(s)
- Sarah A Connolly
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Cairns TM, Milne RSB, Ponce-de-Leon M, Tobin DK, Cohen GH, Eisenberg RJ. Structure-function analysis of herpes simplex virus type 1 gD and gH-gL: clues from gDgH chimeras. J Virol 2003; 77:6731-42. [PMID: 12767993 PMCID: PMC156167 DOI: 10.1128/jvi.77.12.6731-6742.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In alphaherpesviruses, glycoprotein B (gB), gD, gH, and gL are essential for virus entry. A replication-competent gL-null pseudorabies virus (PrV) (B. G. Klupp and T. C. Mettenleiter, J. Virol. 73:3014-3022, 1999) was shown to express a gDgH hybrid protein that could replace gD, gH, and gL in cell-cell fusion and null virus complementation assays. To study this phenomenon in herpes simplex virus type 1 (HSV-1), we constructed four gDgH chimeras, joining the first 308 gD amino acids to various gH N-terminal truncations. The chimeras were named for the first amino acid of gH at which each was truncated: 22, 259, 388, and 432. All chimeras were immunoprecipitated with both gD and gH antibodies to conformational epitopes. Normally, transport of gH to the cell surface requires gH-gL complex formation. Chimera 22 contains full-length gH fused to gD308. Unlike PrV gDgH, chimera 22 required gL for transport to the surface of transfected Vero cells. Interestingly, although chimera 259 failed to reach the cell surface, chimeras 388 and 432 exhibited gL-independent transport. To examine gD and gH domain function, each chimera was tested in cell-cell fusion and null virus complementation assays. Unlike PrV gDgH, none of the HSV-1 chimeras substituted for gL for fusion. Only chimera 22 was able to replace gH for fusion and could also replace either gH or gD in the complementation assay. Surprisingly, this chimera performed very poorly as a substitute for gD in the fusion assay despite its ability to complement gD-null virus and bind HSV entry receptors (HveA and nectin-1). Chimeras 388 and 432, which contain the same portion of gD as that in chimera 22, substituted for gD for fusion at 25 to 50% of wild-type levels. However, these chimeras functioned poorly in gD-null virus complementation assays. The results highlight the fact that these two functional assays are measuring two related but distinct processes.
Collapse
Affiliation(s)
- Tina M Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Zhou G, Avitabile E, Campadelli-Fiume G, Roizman B. The domains of glycoprotein D required to block apoptosis induced by herpes simplex virus 1 are largely distinct from those involved in cell-cell fusion and binding to nectin1. J Virol 2003; 77:3759-67. [PMID: 12610150 PMCID: PMC149540 DOI: 10.1128/jvi.77.6.3759-3767.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoprotein D (gD) interacts with two alternative protein receptors, nectin1 and HveA, to mediate herpes simplex virus (HSV) entry into cells. Fusion of the envelope with the plasma membrane requires, in addition to gD, glycoproteins gB, gH, and gL. Coexpression of the four glycoproteins (gD, gB, gH, and gL) promotes cell-cell fusion. gD delivered in trans is also capable of blocking the apoptosis induced by gD deletion viruses grown either in noncomplementing cells (gD(-/-)) or in complementing cells (gD(-/+)). While ectopic expression of cation-independent mannose-6 phosphate receptor blocks apoptosis induced by both stocks, other requirements differ. Thus, apoptosis induced by gD(-/-) virus is blocked by full-length gD (or two gD fragments reconstituting a full-length molecule), whereas ectopic expression of the gD ectodomain is sufficient to block apoptosis induced by gD(-/+) virus. In this report we took advantage of a set of gD insertion-deletion mutants to map the domains of gD required to block apoptosis by gD(-/-) and gD(-/+) viruses and those involved in cell-cell fusion. The mutations that resulted in failure to block apoptosis were the same for gD(-/-) and gD(-/+) viruses and were located in three sites, one within the immunoglobulin-type core region (residues 125, 126, and 151), one in the upstream connector region (residues 34 and 43), and one in the C-terminal portion of the ectodomain (residue 277). A mutant that carried amino acid substitutions at the three glycosylation sites failed to block apoptosis but behaved like wild-type gD in all other assays. The mutations that inhibited polykaryocyte formation were located in the upstream connector region (residues 34 and 43), at the alpha1 helix (residue 77), in the immunoglobulin core and downstream regions (residue 151 and 187), and at the alpha3 helix (residues 243 and 246). Binding of soluble nectin1-Fc to cells expressing the mutant gDs was generally affected by the same mutations that affected fusion, with one notable exception (Delta277-310), which affected fusion without hampering nectin1 binding. This deletion likely identifies a region of gD involved in fusion activity at a post-nectin1-binding step. We conclude that whereas mutations that affected all functions (e.g., upstream connector region and residue 151) may be detrimental to overall gD structure, the mutations that affect specific activities identify domains of gD involved in the interactions with entry receptors and fusogenic glycoproteins and with cellular proteins required to block apoptosis. The evidence that glycosylation of gD is required for blocking apoptosis supports the conclusion that the interacting protein is the mannose-6 phosphate receptor.
Collapse
Affiliation(s)
- Guoying Zhou
- Marjorie B. Kovler Viral Oncology Laboratories, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
22
|
van Kooij A, Middel J, Jakab F, Elfferich P, Koedijk DGAM, Feijlbrief M, Scheffer AJ, Degener JE, The TH, Scheek RM, Welling GW, Welling-Wester S. High level expression and secretion of truncated forms of herpes simplex virus type 1 and type 2 glycoprotein D by the methylotrophic yeast Pichia pastoris. Protein Expr Purif 2002; 25:400-8. [PMID: 12182819 DOI: 10.1016/s1046-5928(02)00034-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Herpes simplex virus type 1 and 2 (HSV-1 and -2) glycoproteins D (gD-1 and gD-2) play a role in the entry of the virus into the host cell. Availability of substantial amounts of these proteins, or large fragments thereof, will be needed to allow studies at the molecular level. We studied the potency of the Pichia pastoris yeast expression system to produce soluble forms of gD. The DNA sequences encoding the extracellular domains of gD [amino acids 1-314 (gD-1(1-314)) and amino acids 1-254 (gD-1(1-254)) of gD-1 and amino acids 1-314 of gD-2 (gD-2(1-314))] were cloned into the P. pastoris yeast expression vector pPIC9. Two truncated forms of gD-1 were fitted with a His tail (designated as gD-1(1-314His) and gD-1(1-254His)) to facilitate their purification. Large amounts of gD-1(1-314) and gD-1(1-314His) (280-300mg/L induction medium) were produced. The yields of recombinant gD-1(1-254) and gD-1(1-254His) were lower: 20-36mg/L, and the yield of the gD-2(1-314) fragment was much lower: 6mg/L. SDS-PAGE analysis revealed multiple glycosylated species of the larger gD fragments, ranging in apparent molecular weight from 31 to 78kDa. The smaller gD-1(1-254) fragment appeared as two bands with molecular weights of 33 and 31kDa. All recombinant proteins produced by P. pastoris were recognized, as expected, by a panel of MAbs (A16, DL6, A18, DL11, HD1, ABDI, and AP7). In addition, we showed that gD-1(1-314), gD-2(1-314), and gD-1(1-254His) were able to interfere with binding of HSV to susceptible cells. These results indicate that the conformations of the recombinant proteins closely resemble those of native gD.
Collapse
Affiliation(s)
- Adriaan van Kooij
- Department of Medical Microbiology, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Verschoor A, Brockman MA, Knipe DM, Carroll MC. Cutting edge: myeloid complement C3 enhances the humoral response to peripheral viral infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2446-51. [PMID: 11509581 DOI: 10.4049/jimmunol.167.5.2446] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HSV-1 is the causative agent of cutaneous lesions, commonly referred to as cold sores. Primary exposure to the virus ordinarily occurs through the periphery, in particular through abraded skin or mucosal membranes. Under certain circumstances (e.g., in neonatals or AIDS patients), the infection becomes disseminated, often with severe consequences. Spread of HSV-1 is limited by virus-specific Ab. The development of an efficient humoral response to the virus is dependent on innate immunity component complement C3. The liver is the major source of C3, but there are also extrahepatic origins of C3 such as lymphoid macrophages. In the present study, the significance of C3 synthesis by bone marrow-derived cells was assessed by the transfer of wild-type bone marrow into irradiated C3-deficient mice. Using these chimeric mice, extrahepatic C3 was determined sufficient to initiate specific Ab and memory responses to a peripheral HSV-1 infection.
Collapse
Affiliation(s)
- A Verschoor
- Department of Pathology, Harvard Medical School. The Center for Blood Research, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
24
|
Liljeqvist JA, Svennerholm B, Bergström T. Conservation of type-specific B-cell epitopes of glycoprotein G in clinical herpes simplex virus type 2 isolates. J Clin Microbiol 2000; 38:4517-22. [PMID: 11101589 PMCID: PMC87630 DOI: 10.1128/jcm.38.12.4517-4522.2000] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoprotein G (gG-2) of herpes simplex virus type 2 (HSV-2) is cleaved to a secreted amino-terminal portion and to a cell-associated, heavily O-glycosylated carboxy-terminal portion that constitutes the mature gG-2 (mgG-2). The mgG-2 protein is commonly used as a type-specific antigen in the serodiagnosis of HSV-2 infection. As the amino acid sequence variability of mgG-2 in clinical isolates may affect the performance of such assays, the gG-2 gene was sequenced from 15 clinical HSV-2 isolates. Few mutations were identified, and these were mostly localized outside the epitope regions described earlier. Five isolates were identical to different laboratory strains, indicating that the gG-2 gene is highly conserved over time. In the search for HSV-2 isolates harboring mutations within the immunodominant region of mgG-2, a pool of 2,400 clinical HSV-2 isolates was tested for reactivity with two anti-mgG-2 monoclonal antibodies (MAbs). Ten MAb escape HSV-2 mutants, which all harbored structurally restricted single- or dual-point mutations within the respective epitopes explaining the loss of binding, were identified. Sera from corresponding patients were reactive to mgG-2, as well as to a peptide representing the immunodominant region, suggesting that the point mutations detected did not diminish seroreactivity to mgG-2. The conservation of the gG-2 gene reported here further supports the use of mgG-2 as a type-specific antigen in the diagnosis of HSV-2 infections.
Collapse
Affiliation(s)
- J A Liljeqvist
- Department of Virology, Göteborg University, S-413 46 Göteborg, Sweden.
| | | | | |
Collapse
|
25
|
Rauch DA, Rodriguez N, Roller RJ. Mutations in herpes simplex virus glycoprotein D distinguish entry of free virus from cell-cell spread. J Virol 2000; 74:11437-46. [PMID: 11090139 PMCID: PMC112422 DOI: 10.1128/jvi.74.24.11437-11446.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) is an essential component of the entry apparatus that is responsible for viral penetration and subsequent cell-cell spread. To test the hypothesis that gD may serve distinguishable functions in entry of free virus and cell-cell spread, mutants were selected for growth on U(S)11cl19.3 cells, which are resistant to both processes due to the lack of a functional gD receptor, and then tested for their ability to enter as free virus and to spread from cell to cell. Unlike their wild-type parent, HSV-1(F), the variants that emerged from this selection, which were named SP mutants, are all capable of forming macroscopic plaques on the resistant cells. This ability is caused by a marked increase in cell-cell spread without a concomitant increase in efficiency of entry of free virus. gD substitutions that arose within these mutants are sufficient to mediate cell-cell spread in U(S)11cl19.3 cells but are insufficient to overcome the restriction to entry of free virions. These results suggest that mutations in gD (i) are sufficient but not necessary to overcome the block to cell-cell spread exhibited by U(S)11cl19.3 cells and (ii) are insufficient to mediate entry of free virus in the same cells.
Collapse
Affiliation(s)
- D A Rauch
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
26
|
Muggeridge MI. Characterization of cell-cell fusion mediated by herpes simplex virus 2 glycoproteins gB, gD, gH and gL in transfected cells. J Gen Virol 2000; 81:2017-2027. [PMID: 10900041 DOI: 10.1099/0022-1317-81-8-2017] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanisms by which herpes simplex viruses (HSV) mediate fusion between their envelope and the plasma membrane during entry into cells, and between the plasma membranes of adjacent infected and uninfected cells to form multinucleated giant cells, are poorly understood. Four viral glycoproteins (gB, gD, gH and gL) are required for virus-cell fusion, whereas these plus several others are required for cell-cell fusion (syncytium formation). A better understanding would be aided by the availability of a model system, whereby fusion could be induced with a minimal set of proteins, in the absence of infection. A suitable system has now been developed for HSV-2, using transfected COS7, 293 or HEp-2 cells. Insofar as the minimal set of HSV-2 proteins required to cause cell-cell fusion in this system is gB, gD, gH and gL, it would appear to resemble virus-cell fusion rather than syncytium formation. However, the ability of a mutation in gB to enhance the fusion of both transfected cells and infected cells, while having no effect on virus-cell fusion, points to the opposite conclusion. The differential effects of a panel of anti-HSV antibodies, and of the fusion-inhibitor cyclosporin A, confirm that the fusion of transfected cells shares some properties with virus-cell fusion and others with syncytium formation. It may therefore prove useful for determining how these processes differ, and for testing the hypothesis that some viral proteins prevent membrane fusion until the appropriate point in the virus life-cycle, with other proteins then overcoming this block.
Collapse
Affiliation(s)
- Martin I Muggeridge
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA1
| |
Collapse
|
27
|
Whitbeck JC, Muggeridge MI, Rux AH, Hou W, Krummenacher C, Lou H, van Geelen A, Eisenberg RJ, Cohen GH. The major neutralizing antigenic site on herpes simplex virus glycoprotein D overlaps a receptor-binding domain. J Virol 1999; 73:9879-90. [PMID: 10559300 PMCID: PMC113037 DOI: 10.1128/jvi.73.12.9879-9890.1999] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) entry is dependent on the interaction of virion glycoprotein D (gD) with one of several cellular receptors. We previously showed that gD binds specifically to two structurally dissimilar receptors, HveA and HveC. We have continued our studies by using (i) a panel of baculovirus-produced gD molecules with various C-terminal truncations and (ii) a series of gD mutants with nonoverlapping 3-amino-acid deletions between residues 222 and 254. Binding of the potent neutralizing monoclonal antibody (MAb) DL11 (group Ib) was unaffected in forms of gD containing residues 1 to 250 but was greatly diminished in molecules truncated at residue 240 or 234. Both receptor binding and blocking of HSV infection were also affected by these C-terminal truncations. gD-1(234t) bound weakly to both HveA and HveC as determined by enzyme-linked immunosorbent assay (ELISA) and failed to block infection. Interestingly, gD-1(240t) bound well to both receptors but blocked infection poorly, indicating that receptor binding as measured by ELISA is not the only gD function required for blocking. Optical biosensor studies showed that while gD-1(240t) bound HveC with an affinity similar to that of gD-1(306t), the rates of complex formation and dissociation were significantly faster than for gD-1(306t). Complementation analysis showed that any 3-amino-acid deletion between residues 222 and 251 of gD resulted in a nonfunctional protein. Among this set of proteins, three had lost DL11 reactivity (those with deletions between residues 222 and 230). One of these proteins (deletion 222-224) was expressed as a soluble form in the baculovirus system. This protein did not react with DL11, bound to both HveA and HveC poorly as shown by ELISA, and failed to block HSV infection. Since this protein was bound by several other MAbs that recognize discontinuous epitopes, we conclude that residues 222 to 224 are critical for gD function. We propose that the potent virus-neutralizing activity of DL11 (and other group Ib MAbs) likely reflects an overlap between its epitope and a receptor-binding domain of gD.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Baculoviridae
- Binding Sites
- Biosensing Techniques
- Cell Line
- Chlorocebus aethiops
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Gene Expression
- Genes, Overlapping
- Genetic Complementation Test
- Genetic Vectors
- HeLa Cells
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/metabolism
- Herpesvirus 1, Human/physiology
- Humans
- Molecular Sequence Data
- Mutagenesis
- Neutralization Tests
- Receptors, Tumor Necrosis Factor
- Receptors, Tumor Necrosis Factor, Member 14
- Receptors, Virus/metabolism
- Sequence Deletion
- Solubility
- Spodoptera/cytology
- Vero Cells
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Envelope Proteins/metabolism
Collapse
Affiliation(s)
- J C Whitbeck
- School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Jarvis MA, Wang CE, Meyers HL, Smith PP, Corless CL, Henderson GJ, Vieira J, Britt WJ, Nelson JA. Human cytomegalovirus infection of caco-2 cells occurs at the basolateral membrane and is differentiation state dependent. J Virol 1999; 73:4552-60. [PMID: 10233913 PMCID: PMC112495 DOI: 10.1128/jvi.73.6.4552-4560.1999] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epithelial cells are known to be a major target for human cytomegalovirus (HCMV) infection; however, the analysis of virus-cell interactions has been difficult to approach due to the lack of in vitro models. In this study, we established a polarized epithelial cell model using a colon epithelial cell-derived cell line (Caco-2) that is susceptible to HCMV infection at early stages of cellular differentiation. Infection of polarized cells was restricted to the basolateral surface whereas virus was released apically, which was consistent with the apical and not basolateral surface localization of two essential viral glycoproteins, gB and gH. HCMV infection resulted in the development of a cytopathology characteristic of HCMV infection of colon epithelium in vivo, and infection did not spread from cell to cell. The inability of HCMV to infect Caco-2 cells at late stages of differentiation was due to a restriction at the level of viral entry and was consistent with the sequestration of a cellular receptor for HCMV. These observations provide the first evidence that restriction of HCMV replication in epithelial cells is due to a receptor-mediated phenomenon.
Collapse
Affiliation(s)
- M A Jarvis
- Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, Portland, Oregon 97201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang Y, Smith PM, Tarbet EB, Osterrieder N, Jennings SR, O'Callaghan DJ. Protective immunity against equine herpesvirus type-1 (EHV-1) infection in mice induced by recombinant EHV-1 gD. Virus Res 1998; 56:11-24. [PMID: 9784062 DOI: 10.1016/s0168-1702(98)00054-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The ability of recombinant preparations of equine herpesvirus type 1 (EHV-1) glycoprotein D (gD) to elicit specific antibody and T lymphocyte responses in the BALB/c mouse model of respiratory infection was investigated. Recombinant gD (rgD) expressed as a glutathione-S-transferase (GST) fusion protein in Escherichia coli elicited both high titer neutralizing antibody (nAb) and CD4 T cell proliferative responses following subcutaneous or intranasal immunization, but elicited only a weak antibody response after intraperitoneal immunization. Protection against respiratory tract infection with pathogenic EHV-1 RacL11 was observed in mice immunized subcutaneously with GST-gD. Furthermore, the degree of protection correlated to the titer of nAb and the T cell response observed. Finally, GST-gD was more effective in protecting against respiratory RacL11 infection if delivered intranasally. These results confirm that gD plays an important role in eliciting the protective immune response against EHV-1 infection, and indicate that subunit vaccines containing preparations of gD may be very effective if delivered directly to the upper respiratory tract.
Collapse
Affiliation(s)
- Y Zhang
- Department of Microbiology and Immunology, Louisiana State University Medical Center, School of Medicine in Shreveport, 71130, USA
| | | | | | | | | | | |
Collapse
|
30
|
Ludmerer SW, Benincasa D, Mark GE. Two amino acid residues confer type specificity to a neutralizing, conformationally dependent epitope on human papillomavirus type 11. J Virol 1996; 70:4791-4. [PMID: 8676509 PMCID: PMC190419 DOI: 10.1128/jvi.70.7.4791-4794.1996] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Characterization of virus binding by neutralizing antibodies is important both in understanding early events in viral infectivity and in development of vaccines. Neutralizing monoclonal antibodies (MAbs) to human papillomavirus type 11 (HPV11) have been described, but mapping the binding site has been difficult because of the conformational nature of key type-specific neutralization epitopes on the L1 coat protein. We have determined those residues of the L1 protein of HPV11 which confer type specificity to the binding of HPV11-neutralizing MAbs. Binding of three HPV11-specific neutralizing MAbs could be redirected to HPV6 L1 virus-like particles in which as few as two substitutions of corresponding amino acid residues from HPV11 L1 have been made, thus demonstrating the importance of these residues to MAb binding through the transfer of a conformationally dependent epitope. In addition, a fourth neutralizing MAb could be distinguished from the other neutralizing MAbs in terms of the amino acid residues which affect binding, suggesting the possibility that it neutralizes HPV11 through a different mechanism.
Collapse
Affiliation(s)
- S W Ludmerer
- Merck Research Laboratories, Rahway, New Jersey, USA
| | | | | |
Collapse
|
31
|
Nicola AV, Willis SH, Naidoo NN, Eisenberg RJ, Cohen GH. Structure-function analysis of soluble forms of herpes simplex virus glycoprotein D. J Virol 1996; 70:3815-22. [PMID: 8648717 PMCID: PMC190258 DOI: 10.1128/jvi.70.6.3815-3822.1996] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Glycoprotein D (gD) of herpes simplex virus (HSV) is essential for virus entry. Truncated forms of gD lacking the transmembrane and cytoplasmic tail regions have been shown to bind to cells and block plaque formation. Using complementation analysis and a panel of gD mutants, we previously identified four regions of gD (regions I to IV) which are important for virus entry. Here, we used baculovirus vectors to overexpress truncated forms of wild-type gD from HSV type 1 (HSV-1) [gD-1(306t)] and HSV-2 [gD-2(306t)] and four mutants, gD-1(inverted delta 34t), gD-1(inverted delta 126t), gD-1(inverted delta 243t), and gD-1(delta 290-299t), each having a mutation in one of the four functional regions. We used an enzyme-linked immunosorbent assay and circular dichroism to analyze the structure of these proteins, and we used functional assays to study the role of gD in binding, penetration, and cell-to-cell spread. gD-1 and gD-2 are similar in antigenic structure and thermal stability but vary in secondary structure. Mutant proteins with insertions in region I or II were most altered in structure and stability, while mutants with insertions in region III or IV were less altered. gD-1(306t) and gD-2(306t) inhibited both plaque formation and cell-to-cell transmission of HSV-1. In spite of obvious structural differences, all of the mutant proteins bound to cells, confirming that binding is not the only function of gD. The region I mutant did not inhibit HSV plaque formation or cell-to-cell spread, suggesting that this region is necessary for the function of gD in these processes. Surprisingly, the other three mutant proteins functioned in all of the in vitro assays, indicating that the ability of gD to bind to cells and inhibit infection does not correlate with its ability to initiate infection as measured by the complementation assay. The region IV mutant, gD-1(delta 290-299t), had an unexpected enhanced inhibitory effect on HSV infection. Taken together, the results argue against a single functional domain in gD. It is likely that different gD structural elements are involved in successive steps of infection.
Collapse
Affiliation(s)
- A V Nicola
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104, USA.
| | | | | | | | | |
Collapse
|
32
|
Tal-Singer R, Peng C, Ponce De Leon M, Abrams WR, Banfield BW, Tufaro F, Cohen GH, Eisenberg RJ. Interaction of herpes simplex virus glycoprotein gC with mammalian cell surface molecules. J Virol 1995; 69:4471-83. [PMID: 7769707 PMCID: PMC189189 DOI: 10.1128/jvi.69.7.4471-4483.1995] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The entry of herpes simplex virus (HSV) into mammalian cells is a multistep process beginning with an attachment step involving glycoproteins gC and gB. A second step requires the interaction of glycoprotein gD with a cell surface molecule. We explored the interaction between gC and the cell surface by using purified proteins in the absence of detergent. Truncated forms of gC and gD, gC1(457t), gC2(426t), and gD1(306t), lacking the transmembrane and carboxyl regions were expressed in the baculovirus system. We studied the ability of these proteins to bind to mammalian cells, to bind to immobilized heparin, to block HSV type 1 (HSV-1) attachment to cells, and to inhibit plaque formation by HSV-1. Each of these gC proteins bound to conformation-dependent monoclonal antibodies and to human complement component C3b, indicating that they maintained the same conformation of gC proteins expressed in mammalian cells. Biotinylated gC1(457t) and gC2(426t) each bind to several cell lines. Binding was inhibited by an excess of unlabeled gC but not by gD, indicating specificity. The attachment of gC to cells involves primarily heparan sulfate proteoglycans, since heparitinase treatment of cells reduced gC binding by 50% but had no effect on gD binding. Moreover, binding of gC to two heparan sulfate-deficient L-cell lines, gro2C and sog9, both of which are mostly resistant to HSV infection, was markedly reduced. Purified gD1 (306t), however, bound equally well to the two mutant cell lines. In contrast, saturating amounts of gC1(457t) interfered with HSV-1 attachment to cells but failed to block plaque formation, suggesting a role for gC in attachment but not penetration. A mutant form of gC lacking residues 33 to 123, gC1(delta 33-123t), expressed in the baculovirus system, bound significantly less well to cells than did gC1(457t) and competed poorly with biotinylated gC1(457t) for binding. These results suggest that residues 33 to 123 are important for gC attachment to cells. In contrast, both the mutant and wild-type forms of gC bound to immobilized heparin, indicating that binding of these proteins to the cell surface involves more than a simple interaction with heparin. To determine that the contribution of the N-terminal region of gC is important for HSV attachment, we compared several properties of a mutant HSV-1 which contains gC lacking amino acids 33 to 123 to those of its parental virus, which contains full-length gC. The mutant bound less well to cells than the parental virus but exhibited normal growth properties.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R Tal-Singer
- Department of Microbiology, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Haarr L, Skulstad S. The herpes simplex virus type 1 particle: structure and molecular functions. Review article. APMIS 1994; 102:321-46. [PMID: 8024735 DOI: 10.1111/j.1699-0463.1994.tb04882.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This review is a summary of our present knowledge with respect to the structure of the virion of herpes simplex virus type 1. The virion consists of a capsid into which the DNA is packaged, a tegument and an external envelope. The protein compositions of the structures outside the genome are described as well as the functions of individual proteins. Seven capsid proteins are identified, and two of them are mainly present in precursors of mature DNA-containing capsids. The protein components of the 150 hexamers and 12 pentamers in the icosahedral capsid are known. These capsomers all have a central channel and are connected by Y-shaped triplexes. In contrast to the capsid, the tegument has a less defined structure in which 11 proteins have been identified so far. Most of them are phosphorylated. Eleven virus-encoded glycoproteins are present in the envelope, and there may be a few more membrane proteins not yet identified. Functions of these glycoproteins include attachment to and penetration of the cellular membrane. The structural proteins, their functions, coding genes and localizations are listed in table form.
Collapse
Affiliation(s)
- L Haarr
- National Centre for Research in Virology, University of Bergen, Norway
| | | |
Collapse
|
34
|
Roller RJ, Roizman B. A herpes simplex virus 1 US11-expressing cell line is resistant to herpes simplex virus infection at a step in viral entry mediated by glycoprotein D. J Virol 1994; 68:2830-9. [PMID: 8151754 PMCID: PMC236771 DOI: 10.1128/jvi.68.5.2830-2839.1994] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A baby hamster kidney [BHK(tk-)] cell line (US11cl19) which stably expresses the US11 and alpha 4 genes of herpes simplex virus 1 strain F [HSV-1(F)] was found to be resistant to infection with HSV-1. Although wild-type HSV-1(F) attached with normal kinetics to the surface of US11cl19 cells, most cells showed no evidence of infection and failed to accumulate detectable amounts of alpha mRNAs. The relationship between the expression of UL11 and resistance to HSV infection in US11cl19 cells has not been defined, but the block to infection with wild-type HSV-1 was overcome by exposing cells with attached virus on their surface to the fusogen polyethylene glycol, suggesting that the block to infection preceded the fusion of viral and cellular membranes. An escape mutant of HSV-1(F), designated R5000, that forms plaques on US11cl19 cells was selected. This mutant was found to contain a mutation in the glycoprotein D (gD) coding sequence that results in the substitution of the serine at position 140 in the mature protein to asparagine. A recombinant virus, designated R5001, was constructed in which the wild-type gD gene was replaced with the R5000 gD gene. The recombinant formed plaques on US11cl19 cells with an efficiency comparable to that of the escape mutant R5000, suggesting that the mutation in gD determines the ability of the mutant R5000 to grow on US11cl19 cells. The observation that the US11cl19 cells were slightly more resistant to fusion by polyethylene glycol than parental BHK(tk-) cells led to the selection and testing of clonal lines from unselected and polyethylene glycol-selected BHK(tk-) cells. The results were that 16% of unselected to as much as 36% of the clones selected for relative resistance to polyethylene glycol fusion exhibited various degrees of resistance to infection. The exact step at which the infection was blocked is not known, but the results illustrate the ease of selection of cell clones with one or more sites at which infection could be blocked.
Collapse
Affiliation(s)
- R J Roller
- Marjorie B. Kovler Viral Oncology Laboratories, University of Chicago, Illinois 60637
| | | |
Collapse
|
35
|
Dubin G, Basu S, Mallory DL, Basu M, Tal-Singer R, Friedman HM. Characterization of domains of herpes simplex virus type 1 glycoprotein E involved in Fc binding activity for immunoglobulin G aggregates. J Virol 1994; 68:2478-85. [PMID: 7511171 PMCID: PMC236725 DOI: 10.1128/jvi.68.4.2478-2485.1994] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Herpes simplex virus type 1 glycoproteins gE and gI form receptors for the Fc domain of immunoglobulin G (IgG) which are expressed on the surface of infected cells and on the virion envelope and which protect the virus from immune attack. Glycoprotein gE-1 is a low-affinity Fc receptor (FcR) that binds IgG aggregates, while gE-1 and gI-1 form a complex which serves as a higher-affinity FcR capable of binding IgG monomers. In this study, we describe two approaches used to map an Fc binding domain on gE-1 for IgG aggregates. First, we constructed nine plasmids encoding gE-1/gD-1 fusions proteins, each containing a large gE-1 peptide inserted into the ectodomain of gD-1. Fusion proteins were tested for FcR activity with IgG-sensitized erythrocytes in a rosetting assay. Three of the fusion proteins containing overlapping gE-1 peptides demonstrated FcR activity; the smallest peptide that retained Fc binding activity includes gE-1 amino acids 183 to 402. These results indicate that an Fc binding domain is located between gE-1 amino acids 183 and 402. To more precisely map the Fc binding domain, we tested a panel of 21 gE-1 linker insertion mutants. Ten mutants with insertions between gE-1 amino acids 235 and 380 failed to bind IgG-sensitized erythrocytes, while each of the remaining mutants demonstrated wild-type Fc binding activity. Taken together, these results indicate that the region of gE-1 between amino acids 235 and 380 forms an FcR domain. A computer-assisted analysis of the amino acid sequence of gE-1 demonstrates an immunoglobulin-like domain contained within this region (residues 322 to 359) which shares homology with mammalian FcRs.
Collapse
Affiliation(s)
- G Dubin
- Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia 19104-6073
| | | | | | | | | | | |
Collapse
|
36
|
Chiang HY, Cohen GH, Eisenberg RJ. Identification of functional regions of herpes simplex virus glycoprotein gD by using linker-insertion mutagenesis. J Virol 1994; 68:2529-43. [PMID: 7511173 PMCID: PMC236731 DOI: 10.1128/jvi.68.4.2529-2543.1994] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Glycoprotein gD is a component of the herpes simplex virus (HSV) envelope essential for virus entry into susceptible cells. Previous studies using deletion and point mutations identified a functional domain of HSV-1 gD (gD-1) from residues 231 to 244. However, many of the deletion mutations had global effects on gD-1 structure, thus precluding assessment of the functional role of large portions of the protein. In this study, we constructed a large panel of linker-insertion mutants in the genes for gD-1 and HSV-2 gD (gD-2). The object was to create mutations which would have only localized effects on protein structure but might have profound effects on gD function. The mutant proteins were expressed in transiently transfected L cells. Monoclonal antibodies (MAbs) were used as probes of gD structure. We also examined protein aggregation and appearance of the mutant glycoproteins on the transfected cell surface. A complementation assay measured the ability of the mutant proteins to rescue the infectivity of the gD-null virus, FgD beta, in trans. Most of the mutants were recognized by one or more MAbs to discontinuous epitopes, were transported to the transfected cell surface, and rescued FgD beta virus infectivity. However, some mutants which retained structure were unable to complement FgD beta. These mutants were clustered in four regions of gD. Region III (amino acids 222 to 246) overlaps the region previously defined by gD-1 deletion mutants. The others, from 27 through 43 (region I), from 125 through 161 (region II), and from 277 to 310 (region IV), are newly described. Region IV, immediately upstream of the transmembrane anchor sequence, was previously postulated to be part of a putative stalk structure. However, residues 277 to 300 are directly involved in gD function. The linker-insertion mutants were useful for mapping MAb AP7, a previously ungrouped neutralizing MAb, and provided further information concerning other discontinuous epitopes. The mapping data suggest that regions I through IV are physically near each other in the folded structure of gD and may form a single functional domain.
Collapse
Affiliation(s)
- H Y Chiang
- School of Dental Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | |
Collapse
|
37
|
Structure and Function of Glycoprotein D of Herpes Simplex Virus. PATHOGENICITY OF HUMAN HERPESVIRUSES DUE TO SPECIFIC PATHOGENICITY GENES 1994. [DOI: 10.1007/978-3-642-85004-2_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
38
|
Landolfi V, Zarley CD, Abramovitz AS, Figueroa N, Wu SL, Blasiak M, Ishizaka ST, Mishkin EM. Baculovirus-expressed herpes simplex virus type 2 glycoprotein D is immunogenic and protective against lethal HSV challenge. Vaccine 1993; 11:407-14. [PMID: 8385842 DOI: 10.1016/0264-410x(93)90280-b] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Herpes simplex virus type 2 glycoprotein D (gD2) was cloned and expressed in the baculovirus-Spodoptera frugiperda system. Milligram quantities of glycoprotein were recovered from suspension culture and subjected to purification by ion-exchange and immunoaffinity chromatography. The resultant purified gD existed as a homogeneous 57,500 MW monomeric species demonstrating reactivity with anti-gD monoclonal antibodies including those directed at a non-sequential neutralizing epitope of gD. Immunization of Balb/c mice with doses of 0.1-10.0 micrograms of AlPO4-absorbed gD resulted in elicitation of humoral and cellular responses to both HSV1 and HSV2 as well as to purified gD1 and gD2. Immunized mice receiving an infectious dose of 1 x 10(6) p.f.u. of HSV2 via the footpad route were significantly protected against infection at all doses tested when compared with unimmunized AlPO4 and uninoculated control animals.
Collapse
Affiliation(s)
- V Landolfi
- Department of Viral Vaccine Research and Development, Lederle-Praxis Biologicals, Pearl River, NY 10965
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Long D, Wilcox WC, Abrams WR, Cohen GH, Eisenberg RJ. Disulfide bond structure of glycoprotein D of herpes simplex virus types 1 and 2. J Virol 1992; 66:6668-85. [PMID: 1328685 PMCID: PMC240163 DOI: 10.1128/jvi.66.11.6668-6685.1992] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Glycoprotein D (gD) is a structural component of the herpes simplex virus envelope which is essential for virus penetration. The function of this protein is highly dependent on its structure, and its structure is dependent on maintenance of three intact disulfide bonds. gD contains six cysteines in its ectodomain whose spacing is conserved among all its homologs in other alphaherpesviruses as well as Marek's disease virus. For other proteins, conservation of cysteine spacing correlates with conservation of disulfide bond structure. We have now solved the disulfide bond structure of gD-1 and gD-2 of herpes simplex virus types 1 and 2, respectively. Two approaches were used. First, we constructed 15 double-Cys mutants of gD-1, representing all possible disulfide pairs. In each case, codons for cysteines were changed to serine. We reasoned that if two cysteines normally form a disulfide bond, double mutations which eliminate one proper bond should be less harmful to gD structure than double mutations which eliminate two disulfide bonds. The mutated genes were cloned into a eucaryotic expression vector, and the proteins were expressed in transiently transfected cells. Three double mutations, Cys-1,5, Cys-2,6, and Cys-3,4 permitted gD-1 folding, processing, transport to the cell surface, and function in virus infection, whereas 12 other double mutations each produced a malfolded and nonfunctional protein. Thus, the three functional double-Cys mutants may represent the actual partners in disulfide bond linkages. The second approach was to define the actual disulfide bond structure of gD by biochemical means. Purified native gD-2 was cleaved by CNBr and proteases, and the peptides were separated by high-performance liquid chromatography. Disulfide-linked peptides were subjected to N-terminal amino acid sequencing. The results show that cysteine 1 (amino acid [aa] 66) is bonded to cysteine 5 (aa 189), cysteine 2 (aa 106) is bonded to cysteine 6 (aa 202), and cysteine 3 (aa 118) is bonded to cysteine 4 (aa 127). Thus, the biochemical analysis of gD-2 agrees with the genetic analysis of gD-1. A similar disulfide bond arrangement is postulated to exist in other gD homologs.
Collapse
Affiliation(s)
- D Long
- Department of Microbiology, University of Pennsylvania, Philadelphia 19104-6003
| | | | | | | | | |
Collapse
|
40
|
Hung SL, Srinivasan S, Friedman HM, Eisenberg RJ, Cohen GH. Structural basis of C3b binding by glycoprotein C of herpes simplex virus. J Virol 1992; 66:4013-27. [PMID: 1602532 PMCID: PMC241204 DOI: 10.1128/jvi.66.7.4013-4027.1992] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Glycoproteins C (gC) from herpes simplex virus type 1 (HSV-1) and HSV-2, gC-1 and gC-2, bind the human complement fragment C3b, although the two glycoproteins differ in their abilities to act as C3b receptors on infected cells and in their effects on the alternative complement pathway. Previously, we identified three regions of gC-2 (I, II, and III) which are important for C3b binding. In this study, our goal was to identify C3b-binding sites on gC-1 and to continue our analysis of gC-2. We constructed a large panel of mutants by using the cloned gC-1 and gC-2 genes. Most of the mutant proteins were transported to the surface of transiently transfected L cells and reacted with one or more monoclonal antibodies to discontinuous epitopes. By using 31 linker insertion mutants spread across the coding region of gC-1, we identified four regions in the ectodomain of gC-1 which are important for C3b binding, three of which are similar in position to C3b-binding regions I, II, and III of gC-2. Region III shares some similarities with the short consensus repeat found in CR1, the human complement receptor. These were, in part, the targets for construction of 20 single amino acid changes in region III of gC-1 and gC-2. These mutants identified similarities and differences in the C3b-binding properties of gC-1 and gC-2 and suggest that the amino half of region III is more important for C3b binding. However, our results do not support the concept of a structural relationship between the short consensus repeat of CR1 and gC, since mutations of some of the conserved residues, including three of four cysteines in region III, had no effect on C3b binding. Finally, we constructed four deletion mutants of gC-1, including one which lacked residues 33 to 123, as well as residues 367 to 449. This severely truncated molecule, lacking four cysteines and five potential N-linked glycosylation sites, was transported to the cell surface and retained its ability to bind monoclonal antibodies as well as C3b. Thus, the four distinct C3b-binding regions of gC-1 and several epitopes within two different antigenic sites are localized within residues 124 to 366.
Collapse
Affiliation(s)
- S L Hung
- Department of Microbiology, University of Pennsylvania, Philadelphia 19104-6003
| | | | | | | | | |
Collapse
|
41
|
Cohen GH, Muggeridge MI, Long D, Sodora DA, Eisenberg RJ. Structural and functional studies of herpes simplex virus glycoprotein D. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1992; 327:217-28. [PMID: 1338265 DOI: 10.1007/978-1-4615-3410-5_24] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- G H Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | | | | | |
Collapse
|
42
|
Sodora DL, Cohen GH, Muggeridge MI, Eisenberg RJ. Absence of asparagine-linked oligosaccharides from glycoprotein D of herpes simplex virus type 1 results in a structurally altered but biologically active protein. J Virol 1991; 65:4424-31. [PMID: 1649338 PMCID: PMC248882 DOI: 10.1128/jvi.65.8.4424-4431.1991] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Glycoprotein D (gD) of herpes simplex virus contains three utilized sites (Asn-X-Ser/Thr) for addition of asparagine-linked carbohydrates (N-CHO). Previously, we used oligonucleotide-directed mutagenesis to alter serine or threonine residues to alanine at each N-CHO addition site. Studies with monoclonal antibodies showed that a mutant protein lacking all three sites (now designated AAA) was structurally altered because of the amino acid change at residue 96 as well as the absence of the N-CHO. In this study, we constructed additional single mutations at site 1 (residues 94 and 96) and found that in most cases, the amino acid change itself adversely affected the conformation of gD. However, changing asparagine 94 to glutamine (Q) at site 1 had the least effect on gD. We constructed a second triple mutant, QAA, which lacked all three N-CHO signals. The antigenic conformation of QAA was similar to that of gD produced in the presence of tunicamycin (TM-gD). However, binding of MAbs to the AAA protein or to single mutants altered at site 1 was reduced compared with TM-gD. Wild-type gD and QAA proteins were equally susceptible to digestion by trypsin or Staphylococcus aureus V8 protease. In contrast, the AAA protein was more sensitive to trypsin but less sensitive to V8, again suggesting conformational alterations of the AAA protein. Despite what appeared to be large changes in structure, each mutant complemented the infectivity of a virus lacking gD (F-gD beta). We conclude that the N-CHO and amino acids at N-CHO site 1 play an important role in forming and/or maintaining gD structure, but none of the N-CHO are required for gD to function in the complementation assay.
Collapse
Affiliation(s)
- D L Sodora
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | | | |
Collapse
|
43
|
Sodora DL, Eisenberg RJ, Cohen GH. Characterization of a recombinant herpes simplex virus which expresses a glycoprotein D lacking asparagine-linked oligosaccharides. J Virol 1991; 65:4432-41. [PMID: 1649339 PMCID: PMC248883 DOI: 10.1128/jvi.65.8.4432-4441.1991] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Glycoprotein D (gD) is an envelope component of herpes simplex virus essential for virus penetration. gD contains three sites for addition of asparagine-linked carbohydrates (N-CHO), all of which are utilized. Previously, we characterized mutant forms of herpes simplex virus type 1 gD (gD-1) lacking one or all three N-CHO addition sites. All of the mutants complemented the infectivity of a gD-minus virus, F-gD beta, to the same extent as wild-type gD. Here, we show that recombinant viruses containing mutations in the gD-1 gene which eliminate the three N-CHO signals are viable. Two such viruses, called F-gD(QAA)-1 and F-gD(QAA)-2, were independently isolated, and the three mutations in the gD gene in one of these viruses were verified by DNA sequencing. We also verified that the gD produced in cells infected by these viruses is devoid of N-CHO. Plaques formed by both mutants developed more slowly than those of the wild-type control virus, F-gD(WT), and were approximately one-half the size of the wild-type. One mutant, F-gD(QAA)-2, was selected for further study. The QAA mutant and wild-type gD proteins extracted from infected cells differed in structure, as determined by the binding of monoclonal antibodies to discontinuous epitopes. However, flow cytometry analysis showed that the amount and structure of gD found on infected cell surfaces was unaffected by the presence or absence of N-CHO. Other properties of F-gD(QAA)-2 were quite similar to those of F-gD(WT). These included (i) the kinetics of virus production as well as the intracellular and extracellular virus titers; (ii) the rate of virus entry into uninfected cells; (iii) the levels of gB, gC, gE, gH, and gI expressed by infected cells; and (iv) the turnover time of gD. Thus, the absence of N-CHO from gD-1 has some effect on its structure but very little effect on its function in virus infection in cell culture.
Collapse
Affiliation(s)
- D L Sodora
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | |
Collapse
|
44
|
Welling-Webster S, Scheffer AJ, Welling GW. B and T cell epitopes of glycoprotein D of herpes simplex virus type 1. FEMS MICROBIOLOGY IMMUNOLOGY 1991; 3:59-68. [PMID: 1713774 DOI: 10.1111/j.1574-6968.1991.tb04198.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- S Welling-Webster
- Rijksuniversiteit Groningen, Laboratorium voor Medische Microbiologie, Groningen, The Netherlands
| | | | | |
Collapse
|
45
|
Campadelli-Fiume G, Qi S, Avitabile E, Foà-Tomasi L, Brandimarti R, Roizman B. Glycoprotein D of herpes simplex virus encodes a domain which precludes penetration of cells expressing the glycoprotein by superinfecting herpes simplex virus. J Virol 1990; 64:6070-9. [PMID: 2173780 PMCID: PMC248781 DOI: 10.1128/jvi.64.12.6070-6079.1990] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Earlier studies have shown that herpes simplex viruses adsorb to but do not penetrate permissive baby hamster kidney clonal cell lines designated the BJ series and constitutively expressing the herpes simplex virus 1 (HSV-1) glycoprotein D (gD). To investigate the mechanism of the restriction, the following steps were done. First, wild-type HSV-1 strain F [HSV-1(F)] virus was passaged blindly serially on clonal line BJ-1 and mutant viruses [HSV-1(F)U] capable of penetration were selected. The DNA fragment capable of transferring the capacity to infect BJ cells by marker transfer contains the gD gene. The mutant gD, designated gDU, differed from wild-type gD only in the substitution of Leu-25 by proline. gDU reacted with monoclonal antibodies which neutralize virus and whose epitopes encompass known functional domains involved in virus entry into cells. It did not react with the monoclonal antibody AP7 previously shown to react with an epitope which includes Leu-25. Second, cell lines expressing gDU constitutively were constructed and cloned. Unlike the clonal cell lines constitutively expressing gD (e.g., the BJ cell line), those expressing gDU were infectable by both HSV-1(F) and HSV-1(F)U. Lastly, exposure of BJ cells to monoclonal antibody AP7 rendered the cells capable of being infected with HSV-1(F). The results indicate that (i) gD expresses a specific function, determined by sequences at or around Leu-25, which blocks entry of virus into cells synthesizing gD, (ii) the gD which blocks penetration by superinfecting virus is located in the plasma membrane, (iii) the target of the restriction to penetration is the identical domain of the gD molecule contained in the envelope of the superinfecting virus, and (iv) the molecular basis of the restriction does not involve competition for a host protein involved in entry, as was previously thought.
Collapse
|
46
|
Gritz L, Destree A, Cormier N, Day E, Stallard V, Caiazzo T, Mazzara G, Panicali D. Generation of hybrid genes and proteins by vaccinia virus-mediated recombination: application to human immunodeficiency virus type 1 env. J Virol 1990; 64:5948-57. [PMID: 2243381 PMCID: PMC248768 DOI: 10.1128/jvi.64.12.5948-5957.1990] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The ability of poxviruses to undergo intramolecular recombination within tandemly arranged homologous sequences can be used to generate chimeric genes and proteins. Genes containing regions of nucleotide homology will recombine to yield a single sequence composed of portions of both original genes. A recombinant virus containing two genes with a number of conserved regions will yield a population of recombinant viruses containing a spectrum of hybrid sequences derived by recombination between the original genes. This scheme has been used to generate hybrid human immunodeficiency virus type 1 env genes. Recombinant vaccinia viruses that contain two divergent env genes in tandem array have been constructed. In the absence of selective pressure to maintain both genes, recombination between conserved homologous regions in these genes generated a wide range of progeny, each of which expressed a novel variant polypeptide encoded by the newly created hybrid env gene. Poxvirus-mediated recombination may be applied to map type-specific epitopes, to create novel pharmaceuticals such as hybrid interferons, to study receptor-binding or enzyme substrate specificities, or to mimic the antigenic diversity found in numerous pathogens.
Collapse
Affiliation(s)
- L Gritz
- Applied bioTechnology, Inc, Cambridge, Massachusetts 02142
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Long D, Cohen GH, Muggeridge MI, Eisenberg RJ. Cysteine mutants of herpes simplex virus type 1 glycoprotein D exhibit temperature-sensitive properties in structure and function. J Virol 1990; 64:5542-52. [PMID: 2170686 PMCID: PMC248606 DOI: 10.1128/jvi.64.11.5542-5552.1990] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We previously constructed seven mutations in the gene for glycoprotein D (gD) of herpes simplex virus type 1 in which the codon for one of the cysteine residues was replaced by a serine codon. Each of the mutant genes was cloned into a eucaryotic expression vector, and the proteins were transiently expressed in mammalian cells. We found that alteration of any of the first six cysteine residues had profound effects on protein conformation and oligosaccharide processing. In this report, we show that five of the mutant proteins exhibit temperature-sensitive differences in such properties as aggregation, antigenic conformation, oligosaccharide processing, and transport to the cell surface. Using a complementation assay, we have now assessed the ability of the mutant proteins to function in virus infection. This assay tests the ability of the mutant proteins expressed from transfected plasmids to rescue production of infectious virions of a gD-minus virus, F-gD beta, in Vero cells. Two mutant proteins, Cys-2 (Cys-106 to Ser) and Cys-4 (Cys-127 to Ser), were able to complement F-gD beta at 31.5 degrees C but not at 37 degrees C. The rescued viruses, designated F-gD beta(Cys-2) and F-gD beta(Cys-4), were neutralized as efficiently as wild-type virus by anti-gD monoclonal antibodies, indicating that gD was present in the virion envelope in a functional form. Both F-gD beta(Cys-2) and F-gD beta(Cys-4) functioned normally in a penetration assay. However, the infectivity of these viruses was markedly reduced compared with that of the wild type when they were preincubated at temperatures above 37 degrees C. The results suggest that mutations involving Cys-106 or Cys-127 in gD-1 confer a temperature-sensitive phenotype on herpes simplex virus. These and other properties of the cysteine-to-serine mutants allowed us to predict a disulfide bonding pattern for gD.
Collapse
Affiliation(s)
- D Long
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104-6003
| | | | | | | |
Collapse
|
48
|
Muggeridge MI, Wilcox WC, Cohen GH, Eisenberg RJ. Identification of a site on herpes simplex virus type 1 glycoprotein D that is essential for infectivity. J Virol 1990; 64:3617-26. [PMID: 1695252 PMCID: PMC249654 DOI: 10.1128/jvi.64.8.3617-3626.1990] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Herpes simplex virus glycoprotein D (gD) plays an essential role during penetration of the virus into cells. There is evidence that it recognizes a specific receptor after initial attachment of virions to cell surface heparan sulfate and also that gD-1, gD-2, and gp50 (the pseudorabies virus gD homolog) bind to the same receptor. Although the antigenic structure of gD has been studied intensively, little is known about functional regions of the protein. Antigenic site I is a major target for neutralizing antibodies and has been partially mapped by using deletion mutants and neutralization-resistant viruses. Working on the assumption that such a site may overlap with a functional region of gD, we showed previously that combining two or more amino acid substitutions within site I prevents gD-1 from functioning and is therefore lethal. We have now used a complementation assay to measure the functional activity of a panel of deletion mutants and compared the results with an antigenic analysis. Several mutations cause gross changes in protein folding and destroy functional activity, whereas deletions at the N and C termini have little or no effect on either. In contrast, deletion of residues 234 to 244 has only localized effects on antigenicity but completely abolishes functional activity. This region, which is part of antigenic site Ib, is therefore essential for gD-1 function. The complementation assay was also used to show that a gD-negative type 1 virus can be rescued by gD-2 and by two gD-1-gD-2 hybrids but not by gp50, providing some support for the existence of a common receptor for herpes simplex virus types 1 and 2 but not pseudorabies virus. Alternatively, gp50 may lack a signal for incorporation into herpes simplex virions.
Collapse
Affiliation(s)
- M I Muggeridge
- Department of Microbiology, University of Pennsylvania, Philadelphia 19104-6003
| | | | | | | |
Collapse
|
49
|
Feenstra V, Hodaie M, Johnson DC. Deletions in herpes simplex virus glycoprotein D define nonessential and essential domains. J Virol 1990; 64:2096-102. [PMID: 2157872 PMCID: PMC249366 DOI: 10.1128/jvi.64.5.2096-2102.1990] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Herpes simplex virus glycoprotein D (gD) is a major component of the virion envelope and infected cell membranes and is essential for virus entry into cells. We have recently shown that gD interacts with a limited number of cell surface receptors which are required for virus penetration into cells. To define domains of gD which are required for aspects of virus replication including receptor binding, deletion mutations of 5 to 14 amino acids were constructed by using oligonucleotide-directed mutagenesis. Plasmids containing mutant genes for gD were assayed for the ability to rescue a recombinant virus, F-gD beta, in which beta-galactosidase sequences replace gD-coding sequences. Effects on global folding and posttranslational processing of the molecules were assessed by using a panel of monoclonal antibodies which recognize both continuous and discontinuous epitopes. A region near the amino terminus (residues 7 to 21) of gD which is recognized by monoclonal antibodies able to neutralize herpes simplex virus in the absence of complement was not essential for function. In addition, virtually all of the cytoplasmic domain of gD and an extracellular domain close to the membrane were dispensable. In contrast, deletion mutations in the central region of the molecule, save for one exception, led to alterations in global folding of the molecule and maturation of the protein was inhibited.
Collapse
Affiliation(s)
- V Feenstra
- Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | | | | |
Collapse
|