1
|
Guo Y, Pan L, Wang L, Wang S, Fu J, Luo W, Wang K, Li X, Huang C, Liu Y, Kang H, Zeng Q, Fu X, Huang Z, Li W, He Y, Li L, Peng T, Yang H, Li M, Xiao B, Cai M. Epstein-Barr Virus Envelope Glycoprotein gp110 Inhibits IKKi-Mediated Activation of NF-κB and Promotes the Degradation of β-Catenin. Microbiol Spectr 2023; 11:e0032623. [PMID: 37022262 PMCID: PMC10269791 DOI: 10.1128/spectrum.00326-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
Epstein-Barr virus (EBV) infects host cells and establishes a latent infection that requires evasion of host innate immunity. A variety of EBV-encoded proteins that manipulate the innate immune system have been reported, but whether other EBV proteins participate in this process is unclear. EBV-encoded envelope glycoprotein gp110 is a late protein involved in virus entry into target cells and enhancement of infectivity. Here, we reported that gp110 inhibits RIG-I-like receptor pathway-mediated promoter activity of interferon-β (IFN-β) as well as the transcription of downstream antiviral genes to promote viral proliferation. Mechanistically, gp110 interacts with the inhibitor of NF-κB kinase (IKKi) and restrains its K63-linked polyubiquitination, leading to attenuation of IKKi-mediated activation of NF-κB and repression of the phosphorylation and nuclear translocation of p65. Additionally, gp110 interacts with an important regulator of the Wnt signaling pathway, β-catenin, and induces its K48-linked polyubiquitination degradation via the proteasome system, resulting in the suppression of β-catenin-mediated IFN-β production. Taken together, these results suggest that gp110 is a negative regulator of antiviral immunity, revealing a novel mechanism of EBV immune evasion during lytic infection. IMPORTANCE Epstein-Barr virus (EBV) is a ubiquitous pathogen that infects almost all human beings, and the persistence of EBV in the host is largely due to immune escape mediated by its encoded products. Thus, elucidation of EBV's immune escape mechanisms will provide a new direction for the design of novel antiviral strategies and vaccine development. Here, we report that EBV-encoded gp110 serves as a novel viral immune evasion factor, which inhibits RIG-I-like receptor pathway-mediated interferon-β (IFN-β) production. Furthermore, we found that gp110 targeted two key proteins, inhibitor of NF-κB kinase (IKKi) and β-catenin, which mediate antiviral activity and the production of IFN-β. gp110 inhibited K63-linked polyubiquitination of IKKi and induced β-catenin degradation via the proteasome, resulting in decreased IFN-β production. In summary, our data provide new insights into the EBV-mediated immune evasion surveillance strategy.
Collapse
Affiliation(s)
- Yingjie Guo
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Lingxia Pan
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Liding Wang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Shuai Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jiangqin Fu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Wenqi Luo
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Kezhen Wang
- School of Life Sciences, Anhui Medical University, Hefei, China
| | - Xiaoqing Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Chen Huang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Yintao Liu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Haoran Kang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Qiyuan Zeng
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Xiuxia Fu
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Zejin Huang
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Wanying Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Yingxin He
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Linhai Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
- Guangdong South China Vaccine, Guangzhou, China
| | - Haidi Yang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Hearing and Speech-Language Science, Guangzhou Xinhua University, Guangzhou, China
| | - Meili Li
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Bin Xiao
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
| | - Mingsheng Cai
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Qingyuan, China
- Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Pan X, Zhang Y, Zhao Y, Yao S, Guan C, Wang L, Chen L. Inhibitory activity and mechanism of silver nanoparticles against herpes simplex virus type 1. Arch Virol 2022; 167:1619-1636. [PMID: 35648293 DOI: 10.1007/s00705-022-05467-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/26/2022] [Indexed: 12/01/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is a common pathogen that infects 50-90% of the world's population and causes a variety of diseases, some of which can be life-threatening. Silver nanoparticles (AgNPs) have been shown to have broad-spectrum antiviral activity. In this study, we investigated the activity of AgNPs against HSV-1 and found that AgNPs effectively inhibited plaque formation and HSV-1 progeny production, reduced the genomic load, and interfered with HSV-1 mRNA expression and protein synthesis. Transmission electron microscopy showed that AgNPs interacted with HSV-1 and altered the shape of the viral particles. Furthermore, AgNPs affected the entry of HSV-1 into cells as well as their release and cell-to-cell spread. AgNPs were also found to downregulate the expression of pro-inflammatory cytokines upon HSV-1 infection. Combined treatment with AgNPs and acyclovir (ACV) confirmed that AgNPs significantly enhanced the inhibitory effect of ACV against HSV-1. Our findings may contribute to an understanding of the mechanism of the antiviral effect of AgNPs against HSV-1 and help to provide a theoretical basis for their clinical application.
Collapse
Affiliation(s)
- Xuanhe Pan
- Department of Clinical Laboratory, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Yapeng Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yiming Zhao
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, No. 172, Tongzipo road, Yuelu District, Changsha, 410013, Hunan, China
| | - Siqi Yao
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, No. 172, Tongzipo road, Yuelu District, Changsha, 410013, Hunan, China
| | - Chaxiang Guan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Linqian Wang
- Department of Clinical Laboratory, the Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China.
| | - Liyu Chen
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, No. 172, Tongzipo road, Yuelu District, Changsha, 410013, Hunan, China.
| |
Collapse
|
3
|
Liu X, Lv L, Jiang C, Bai J, Gao Y, Ma Z, Jiang P. A natural product, (S)-10-Hydroxycamptothecin inhibits pseudorabies virus proliferation through DNA damage dependent antiviral innate immunity. Vet Microbiol 2022; 265:109313. [PMID: 34968801 DOI: 10.1016/j.vetmic.2021.109313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/11/2021] [Accepted: 12/19/2021] [Indexed: 11/19/2022]
Abstract
Pseudorabies virus (PRV), a member of the subfamily alphaherpesvirinae, is one of the most important pathogenes that cause acute death in infected pigs and leads to substantial economic losses in the global swine industry. Recently, China's emerging PRV mutant strains resulted in the traditionally commercial vaccines not providing complete protection. Some studies reported that PRV could infect humans and cause endophthalmitis and encephalitis under certain circumstances. It is necessary to develop alternative manners to control the virus infection. Here, by screening a library of natural products, (S)-10-Hydroxycamptothecin (10-HCPT) was revealed to inhibit PRV replication with a selective index of 270.04. And 10-HCPT inhibited PRV replication by blocking the viral genome replication but not inhibiting the viral attachment, internalization, and release. RNA interference assay showed that 10-HCPT inhibited PRV replication by targeting DNA topoisomerase 1 (TOP1). Meanwhile, 10-HCPT treatment induced DNA damage response and stimulated antiviral innate immunity. Animal challenge experiments showed that 10-HCPT effectively alleviated clinical signs and hispathology, and increased INF-β responses in lung and brain tissues of mice induced by PRV infection. The results demonstrate that 10-HCPT is a promising therapeutic agent to control PRV infection.
Collapse
Affiliation(s)
- Xing Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin Lv
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenlong Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanni Gao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zicheng Ma
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
4
|
Oliver SL, Xing Y, Chen DH, Roh SH, Pintilie GD, Bushnell DA, Sommer MH, Yang E, Carfi A, Chiu W, Arvin AM. The N-terminus of varicella-zoster virus glycoprotein B has a functional role in fusion. PLoS Pathog 2021; 17:e1008961. [PMID: 33411789 PMCID: PMC7817050 DOI: 10.1371/journal.ppat.1008961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/20/2021] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Varicella-zoster virus (VZV) is a medically important alphaherpesvirus that induces fusion of the virion envelope and the cell membrane during entry, and between cells to form polykaryocytes within infected tissues during pathogenesis. All members of the Herpesviridae, including VZV, have a conserved core fusion complex composed of glycoproteins, gB, gH and gL. The ectodomain of the primary fusogen, gB, has five domains, DI-V, of which DI contains the fusion loops needed for fusion function. We recently demonstrated that DIV is critical for fusion initiation, which was revealed by a 2.8Å structure of a VZV neutralizing mAb, 93k, bound to gB and mutagenesis of the gB-93k interface. To further assess the mechanism of mAb 93k neutralization, the binding site of a non-neutralizing mAb to gB, SG2, was compared to mAb 93k using single particle cryogenic electron microscopy (cryo-EM). The gB-SG2 interface partially overlapped with that of gB-93k but, unlike mAb 93k, mAb SG2 did not interact with the gB N-terminus, suggesting a potential role for the gB N-terminus in membrane fusion. The gB ectodomain structure in the absence of antibody was defined at near atomic resolution by single particle cryo-EM (3.9Å) of native, full-length gB purified from infected cells and by X-ray crystallography (2.4Å) of the transiently expressed ectodomain. Both structures revealed that the VZV gB N-terminus (aa72-114) was flexible based on the absence of visible structures in the cryo-EM or X-ray crystallography data but the presence of gB N-terminal peptides were confirmed by mass spectrometry. Notably, N-terminal residues 109KSQD112 were predicted to form a small α-helix and alanine substitution of these residues abolished cell-cell fusion in a virus-free assay. Importantly, transferring the 109AAAA112 mutation into the VZV genome significantly impaired viral propagation. These data establish a functional role for the gB N-terminus in membrane fusion broadly relevant to the Herpesviridae.
Collapse
Affiliation(s)
- Stefan L. Oliver
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| | - Yi Xing
- GSK Vaccines, Cambridge, Massachusetts, United States of America
| | - Dong-Hua Chen
- Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Soung Hun Roh
- Department of Biological Sciences, Institute of Molecular Biology & Genetics, Seoul National University, Seoul, Korea
| | - Grigore D. Pintilie
- Bioengineering, Stanford University School of Medicine, Stanford, California, United States of America
| | - David A. Bushnell
- Structural Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Marvin H. Sommer
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Edward Yang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Andrea Carfi
- GSK Vaccines, Cambridge, Massachusetts, United States of America
| | - Wah Chiu
- Bioengineering, Stanford University School of Medicine, Stanford, California, United States of America
- Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
- Division of Cryo-EM and Bioimaging SSRL, SLAC National Accelerator Laboratory, Menlo Park, California, United States of America
| | - Ann M. Arvin
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
- Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
5
|
Sufiawati I, Tugizov SM. HIV-induced matrix metalloproteinase-9 activation through mitogen-activated protein kinase signalling promotes HSV-1 cell-to-cell spread in oral epithelial cells. J Gen Virol 2018; 99:937-947. [PMID: 29775175 PMCID: PMC6537617 DOI: 10.1099/jgv.0.001075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have shown that cell-free HIV-1 and viral proteins tat and gp120 activate mitogen-activated protein kinases (MAPKs) in tonsil epithelial cells, disrupting their tight and adherens junctions. This causes liberation of the HSV-1 receptor nectin-1 from assembled adherens junctions, leading to promotion of HSV-1 infection and spread. In the present study, we show that HIV-associated activation of MAPK leads to upregulation of transcription factor NF-κB and matrix metalloproteinase-9 (MMP-9). This induces the disruption of tight and adherens junctions, increasing HSV-1 cell-to-cell spread. Inhibition of HIV-associated MAPK activation by U0126 abolishes NF-κB and MMP-9 upregulation and reduces HSV-1 spread. Inactivation of MMP-9 also reduced HIV-promoted HSV-1 spread. These results indicate that HIV-1-activated MAPK/NF-κB and MMP-9 play a critical role in the disruption of oral epithelial junctions and HSV-1 cell-to-cell spread. Inhibition of MMP-9 expression in the oral epithelium of HIV-infected individuals may prevent the development of diseases caused by HSV-1, such as ulcers, necrotic lesions and gingivostomatitis.
Collapse
Affiliation(s)
- Irna Sufiawati
- Department of Oral Medicine, Faculty of Dentistry, Universitas Padjadjaran, Bandung, Indonesia
| | - Sharof M Tugizov
- Department of Medicine and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
6
|
Multifunctional Tannic Acid/Silver Nanoparticle-Based Mucoadhesive Hydrogel for Improved Local Treatment of HSV Infection: In Vitro and In Vivo Studies. Int J Mol Sci 2018; 19:ijms19020387. [PMID: 29382085 PMCID: PMC5855609 DOI: 10.3390/ijms19020387] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 12/31/2022] Open
Abstract
Mucoadhesive gelling systems with tannic acid modified silver nanoparticles were developed for effective treatment of herpes virus infections. To increase nanoparticle residence time after local application, semi solid formulations designed from generally regarded as safe (GRAS) excipients were investigated for their rheological and mechanical properties followed with ex vivo mucoadhesive behavior to the porcine vaginal mucosa. Particular effort was made to evaluate the activity of nanoparticle-based hydrogels toward herpes simplex virus (HSV) type 1 and 2 infection in vitro in immortal human keratinocyte cell line and in vivo using murine model of HSV-2 genital infection. The effect of infectivity was determined by real time quantitative polymerase chain reaction, plaque assay, inactivation, attachment, penetration and cell-to-cell assessments. All analyzed nanoparticle-based hydrogels exhibited pseudoplastic and thixotropic properties. Viscosity and mechanical measurements of hydrogels were found to correlate with the mucoadhesive properties. The results confirmed the ability of nanoparticle-based hydrogels to affect viral attachment, impede penetration and cell-to-cell transmission, although profound differences in the activity evoked by tested preparations toward HSV-1 and HSV-2 were noted. In addition, these findings demonstrated the in vivo potential of tannic acid modified silver nanoparticle-based hydrogels for vaginal treatment of HSV-2 genital infection.
Collapse
|
7
|
A novel glycoprotein D-specific monoclonal antibody neutralizes herpes simplex virus. Antiviral Res 2017; 147:131-141. [PMID: 29061442 PMCID: PMC7113901 DOI: 10.1016/j.antiviral.2017.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/08/2017] [Accepted: 10/13/2017] [Indexed: 11/21/2022]
Abstract
The worldwide prevalence of herpes simplex virus (HSV) and the shortage of efficient vaccines and novel therapeutic strategies against HSV are widely global concerns. The abundance on the virion and the major stimulus for the virus-neutralizing antibodies makes gD a predominant candidate for cure of HSV infection. In this study, we generated a monoclonal antibody (mAb), termed m27f, targeting to glycoprotein D (gD) of HSV-2, which also has cross-reactivity against HSV-1 gD. It has a high level of neutralizing activity against both HSV-1 and HSV-2, and binds to a highly conserved region (residues 292-297) within the pro-fusion domain of gD. It can effectively block HSV cell-to-cell spread in vitro. The pre- or post-attachment neutralization assay and syncytium formation inhibition assay revealed that m27f neutralizes HSV at the post-binding stage. Moreover, therapeutic administration of m27f completely prevented infection-related mortality of mice challenged with a lethal dose of HSV-2. Our newly identified epitope for the neutralizing antibody would facilitate studies of gD-based HSV entry or vaccine design, and m27f itself demonstrated a high potential for adaptation as a protective or therapeutic drug against HSV.
Collapse
|
8
|
Weed DJ, Nicola AV. Herpes simplex virus Membrane Fusion. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:29-47. [PMID: 28528438 PMCID: PMC5869023 DOI: 10.1007/978-3-319-53168-7_2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Herpes simplex virus mediates multiple distinct fusion events during infection. HSV entry is initiated by fusion of the viral envelope with either the limiting membrane of a host cell endocytic compartment or the plasma membrane. In the infected cell during viral assembly, immature, enveloped HSV particles in the perinuclear space fuse with the outer nuclear membrane in a process termed de-envelopment. A cell infected with some strains of HSV with defined mutations spread to neighboring cells by a fusion event called syncytium formation. Two experimental methods, the transient cell-cell fusion approach and fusion from without, are useful surrogate assays of HSV fusion. These five fusion processes are considered in terms of their requirements, mechanism, and regulation. The execution and modulation of these events require distinct yet often overlapping sets of viral proteins and host cell factors. The core machinery of HSV gB, gD, and the heterodimer gH/gL is required for most if not all of the HSV fusion mechanisms.
Collapse
Affiliation(s)
- Darin J Weed
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
9
|
Dissection of the antibody response against herpes simplex virus glycoproteins in naturally infected humans. J Virol 2014; 88:12612-22. [PMID: 25142599 DOI: 10.1128/jvi.01930-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
UNLABELLED Relatively little is known about the extent of the polyclonal antibody (PAb) repertoire elicited by herpes simplex virus (HSV) glycoproteins during natural infection and how these antibodies affect virus neutralization. Here, we examined IgGs from 10 HSV-seropositive individuals originally classified as high or low virus shedders. All PAbs neutralized virus to various extents. We determined which HSV entry glycoproteins these PAbs were directed against: glycoproteins gB, gD, and gC were recognized by all sera, but fewer sera reacted against gH/gL. We previously characterized multiple mouse monoclonal antibodies (MAbs) and mapped those with high neutralizing activity to the crystal structures of gD, gB, and gH/gL. We used a biosensor competition assay to determine whether there were corresponding human antibodies to those epitopes. All 10 samples had neutralizing IgGs to gD epitopes, but there were variations in which epitopes were seen in individual samples. Surprisingly, only three samples contained neutralizing IgGs to gB epitopes. To further dissect the nature of these IgGs, we developed a method to select out gD- and gB-specific IgGs from four representative sera via affinity chromatography, allowing us to determine the contribution of antibodies against each glycoprotein to the overall neutralization capacity of the serum. In two cases, gD and gB accounted for all of the neutralizing activity against HSV-2, with a modest amount of HSV-1 neutralization directed against gC. In the other two samples, the dominant response was to gD. IMPORTANCE Antibodies targeting functional epitopes on HSV entry glycoproteins mediate HSV neutralization. Virus-neutralizing epitopes have been defined and characterized using murine monoclonal antibodies. However, it is largely unknown whether these same epitopes are targeted by the humoral response to HSV infection in humans. We have shown that during natural infection, virus-neutralizing antibodies are principally directed against gD, gB, and, to a lesser extent, gC. While several key HSV-neutralizing epitopes within gD and gB are commonly targeted by human serum IgG, others fail to induce consistent responses. These data are particularly relevant to the design of future HSV vaccines.
Collapse
|
10
|
Sufiawati I, Tugizov SM. HIV-associated disruption of tight and adherens junctions of oral epithelial cells facilitates HSV-1 infection and spread. PLoS One 2014; 9:e88803. [PMID: 24586397 PMCID: PMC3931628 DOI: 10.1371/journal.pone.0088803] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus (HSV) types 1 and 2 are the most common opportunistic infections in HIV/AIDS. In these immunocompromised individuals, HSV-1 reactivates and replicates in oral epithelium, leading to oral disorders such as ulcers, gingivitis, and necrotic lesions. Although the increased risk of HSV infection may be mediated in part by HIV-induced immune dysfunction, direct or indirect interactions of HIV and HSV at the molecular level may also play a role. In this report we show that prolonged interaction of the HIV proteins tat and gp120 and cell-free HIV virions with polarized oral epithelial cells leads to disruption of tight and adherens junctions of epithelial cells through the mitogen-activated protein kinase signaling pathway. HIV-induced disruption of oral epithelial junctions facilitates HSV-1 paracellular spread between the epithelial cells. Furthermore, HIV-associated disruption of adherens junctions exposes sequestered nectin-1, an adhesion protein and critical receptor for HSV envelope glycoprotein D (gD). Exposure of nectin-1 facilitates binding of HSV-1 gD, which substantially increases HSV-1 infection of epithelial cells with disrupted junctions over that of cells with intact junctions. Exposed nectin-1 from disrupted adherens junctions also increases the cell-to-cell spread of HSV-1 from infected to uninfected oral epithelial cells. Antibodies to nectin-1 and HSV-1 gD substantially reduce HSV-1 infection and cell-to-cell spread, indicating that HIV-promoted HSV infection and spread are mediated by the interaction of HSV gD with HIV-exposed nectin-1. Our data suggest that HIV-associated disruption of oral epithelial junctions may potentiate HSV-1 infection and its paracellular and cell-to-cell spread within the oral mucosal epithelium. This could be one of the possible mechanisms of rapid development of HSV-associated oral lesions in HIV-infected individuals.
Collapse
Affiliation(s)
- Irna Sufiawati
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Sharof M. Tugizov
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Mechanism of neutralization of herpes simplex virus by antibodies directed at the fusion domain of glycoprotein B. J Virol 2013; 88:2677-89. [PMID: 24352457 DOI: 10.1128/jvi.03200-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED Glycoprotein B (gB), the fusogen of herpes simplex virus (HSV), is a class III fusion protein with a trimeric ectodomain of known structure for the postfusion state. Seen by negative-staining electron microscopy, it presents as a rod with three lobes (base, middle, and crown). gB has four functional regions (FR), defined by the physical location of epitopes recognized by anti-gB neutralizing monoclonal antibodies (MAbs). Located in the base, FR1 contains two internal fusion loops (FLs) and is the site of gB-lipid interaction (the fusion domain). Many of the MAbs to FR1 are neutralizing, block cell-cell fusion, and prevent the association of gB with lipid, suggesting that these MAbs affect FL function. Here we characterize FR1 epitopes by using electron microscopy to visualize purified Fab-gB ectodomain complexes, thus confirming the locations of several epitopes and localizing those of MAbs DL16 and SS63. We also generated MAb-resistant viruses in order to localize the SS55 epitope precisely. Because none of the epitopes of our anti-FR1 MAbs mapped to the FLs, we hyperimmunized rabbits with FL1 or FL2 peptides to generate polyclonal antibodies (PAbs). While the anti-FL1 PAb failed to bind gB, the anti-FL2 PAb had neutralizing activity, implying that the FLs become exposed during virus entry. Unexpectedly, the anti-FL2 PAb (and the anti-FR1 MAbs) bound to liposome-associated gB, suggesting that their epitopes are accessible even when the FLs engage lipid. These studies provide possible mechanisms of action for HSV neutralization and insight into how gB FR1 contributes to viral fusion. IMPORTANCE For herpesviruses, such as HSV, entry into a target cell involves transfer of the capsid-encased genome of the virus to the target cell after fusion of the lipid envelope of the virus with a lipid membrane of the host. Virus-encoded glycoproteins in the envelope are responsible for fusion. Antibodies to these glycoproteins are important biological tools, providing a way of examining how fusion works. Here we used electron microscopy and other techniques to study a panel of anti-gB antibodies. Some, with virus-neutralizing activity, impair gB-lipid association. We also generated a peptide antibody against one of the gB fusion loops; its properties provide insight into the way the fusion loops function as gB transits from its prefusion form to an active fusogen.
Collapse
|
12
|
Glycoprotein B of herpes simplex virus 2 has more than one intracellular conformation and is altered by low pH. J Virol 2012; 86:6444-56. [PMID: 22514344 DOI: 10.1128/jvi.06668-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The crystal structure of herpes simplex virus (HSV) gB identifies it as a class III fusion protein, and comparison with other such proteins suggests this is the postfusion rather than prefusion conformation, although this is not proven. Other class III proteins undergo a pH-dependent switch between pre- and postfusion conformations, and a low pH requirement for HSV entry into some cell types suggests that this may also be true for gB. Both gB and gH undergo structural changes at low pH, but there is debate about the extent and significance of the changes in gB, possibly due to the use of different soluble forms of the protein and different assays for antigenic changes. In this study, a complementary approach was taken, examining the conformations of full-length intracellular gB by quantitative confocal microscopy with a panel of 26 antibodies. Three conformations were distinguished, and low pH was found to be a major influence. Comparison with previous studies indicates that the intracellular conformation in low-pH environments may be the same as that of the soluble form known as s-gB at low pH. Interestingly, the antibodies whose binding was most affected by low pH both have neutralizing activity and consequently must block either the function of a neutral pH conformation or its switch from an inactive form to an activated form. If one of the intracellular conformations is the fusion-active form, another factor required for fusion is presumably absent from wherever that conformation is present in infected cells so that inappropriate fusion is avoided.
Collapse
|
13
|
Maidana SS, Ladelfa MF, Pérez SE, Lomónaco PM, Del Médico Zajac MP, Odeón A, Blanco Viera J, Combessies G, Fondevila N, Palacios M, Thiry J, Muylkens B, Thiry E, Romera SA. Characterization of BoHV-5 field strains circulation and report of transient specific subtype of bovine herpesvirus 5 in Argentina. BMC Vet Res 2011; 7:8. [PMID: 21299866 PMCID: PMC3041673 DOI: 10.1186/1746-6148-7-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 02/07/2011] [Indexed: 11/16/2022] Open
Abstract
Background Bovine herpesvirus 5 (BoHV-5) is a member of the subfamily Alphaherpesvirinae responsible for meningo-encephalitis in young cattle. The first case of bovine meningo-encephalitis associated with a herpesvirus infection was reported in Australia. The current geographical distribution of BoHV-5 infection is mainly restricted to South America, especially Brazil and Argentina. Outbreaks of BoHV-5 are regularly observed in Argentina suggesting the circulation of the virus in the bovine population. Results Seventeen field strains of BoHV-5 isolated from 1984 to now were confirmed by differential PCR and subjected to restriction endonuclease analysis (REA). Viral DNA was cleaved with BstEII which allows the differentiation among subtypes a, b and non a, non b. According to the REA with BstEII, only one field strain showed a pattern similar to the Argentinean A663 strain (prototype of BoHV-5b). All other isolates showed a clear pattern similar to the Australian N569 strain (prototype of BoHV-5a) consistent with the subtypes observed in Brazil, the other South-American country where BoHV-5 is known to be prevalent. The genomic region of subtype b responsible for the distinct pattern was determined and amplified by PCR; specifically a point mutation was identified in glycoprotein B gene, on the BstEII restriction site, which generates the profile specific of BoHV-5b. Conclusions This is the first report of circulation of BoHV-5a in Argentina as the prevailing subtype. Therefore the circulation of BoHV-5b was restricted to a few years in Argentina, speculating that this subtype was not able to be maintained in the bovine population. The mutation in the gB gene is associated with the difference in the restriction patterns between subtypes "a" and "b".
Collapse
Affiliation(s)
- Silvina S Maidana
- Veterinary and Agricultural Science Research Centre (CICVyA), National Institute of Agricultural Technology (INTA), N, Repetto y Los Reseros S/N, CC25 (B1712WAA), Castelar, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Impact of valency of a glycoprotein B-specific monoclonal antibody on neutralization of herpes simplex virus. J Virol 2010; 85:1793-803. [PMID: 21123390 DOI: 10.1128/jvi.01924-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) glycoprotein B (gB) is an integral part of the multicomponent fusion system required for virus entry and cell-cell fusion. Here we investigated the mechanism of viral neutralization by the monoclonal antibody (MAb) 2c, which specifically recognizes the gB of HSV type 1 (HSV-1) and HSV-2. Binding of MAb 2c to a type-common discontinuous epitope of gB resulted in highly efficient neutralization of HSV at the postbinding/prefusion stage and completely abrogated the viral cell-to-cell spread in vitro. Mapping of the antigenic site recognized by MAb 2c to the recently solved crystal structure of the HSV-1 gB ectodomain revealed that its discontinuous epitope is only partially accessible within the observed multidomain trimer conformation of gB, likely representing its postfusion conformation. To investigate how MAb 2c may interact with gB during membrane fusion, we characterized the properties of monovalent (Fab and scFv) and bivalent [IgG and F(ab')(2)] derivatives of MAb 2c. Our data show that the neutralization capacity of MAb 2c is dependent on cross-linkage of gB trimers. As a result, only bivalent derivatives of MAb 2c exhibited high neutralizing activity in vitro. Notably, bivalent MAb 2c not only was capable of preventing mucocutaneous disease in severely immunodeficient NOD/SCID mice upon vaginal HSV-1 challenge but also protected animals even with neuronal HSV infection. We also report for the first time that an anti-gB specific monoclonal antibody prevents HSV-1-induced encephalitis entirely independently from complement activation, antibody-dependent cellular cytotoxicity, and cellular immunity. This indicates the potential for further development of MAb 2c as an anti-HSV drug.
Collapse
|
15
|
Däumer MP, Schneider B, Giesen DM, Aziz S, Kaiser R, Kupfer B, Schneweis KE, Schneider-Mergener J, Reineke U, Matz B, Eis-Hübinger AM. Characterisation of the epitope for a herpes simplex virus glycoprotein B-specific monoclonal antibody with high protective capacity. Med Microbiol Immunol 2010; 200:85-97. [PMID: 20931340 DOI: 10.1007/s00430-010-0174-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Indexed: 02/07/2023]
Abstract
Monoclonal antibody (MAb) 2c, specific for glycoprotein B of herpes simplex virus (HSV), had been shown to mediate clearance of infection from the mucous membranes of mice, thereby completely inhibiting mucocutaneous inflammation and lethality, even in mice depleted of both CD4(+) and CD8(+) cells. Additionally, ganglionic infection was highly restricted. In vitro, MAb 2c exhibits a potent complement-independent neutralising activity against HSV type 1 and 2, completely inhibits the viral cell-to-cell spread as well as the syncytium formation induced by syncytial HSV strains (Eis-Hübinger et al. in Intervirology 32:351-360, 1991; Eis-Hübinger et al. in J Gen Virol 74:379-385, 1993). Here, we describe the mapping of the epitope for MAb 2c. The antibody was found to recognise a discontinuous epitope comprised of the HSV type 1 glycoprotein B residues 299 to 305 and one or more additional discontinuous regions that can be mimicked by the sequence FEDF. Identification of the epitope was confirmed by loss of antibody binding to mutated glycoprotein B with replacement of the epitopic key residues, expressed in COS-1 cells. Similarly, MAb 2c was not able to neutralise HSV mutants with altered key residues, and MAb 2c was ineffective in mice inoculated with such mutants. Interestingly, identification and fine-mapping of the discontinuous epitope was not achieved by binding studies with truncated glycoprotein B variants expressed in COS cells but by peptide scanning with synthetic overlapping peptides and peptide key motif analysis. Reactivity of MAb 2c was immensely increased towards a peptide composed of the glycoprotein B residues 299 to 305, a glycine linker, and a C-terminal FEDF motif. If it could be demonstrated that antibodies of the specificity and bioactivity of MAb 2c can be induced by the epitope or a peptide mimicking the epitope, strategies for active immunisation might be conceivable.
Collapse
Affiliation(s)
- Martin P Däumer
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mutagenesis of varicella-zoster virus glycoprotein B: putative fusion loop residues are essential for viral replication, and the furin cleavage motif contributes to pathogenesis in skin tissue in vivo. J Virol 2009; 83:7495-506. [PMID: 19474103 DOI: 10.1128/jvi.00400-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoprotein B (gB), the most conserved protein in the family Herpesviridae, is essential for the fusion of viral and cellular membranes. Information about varicella-zoster virus (VZV) gB is limited, but homology modeling showed that the structure of VZV gB was similar to that of herpes simplex virus (HSV) gB, including the putative fusion loops. In contrast to HSV gB, VZV gB had a furin recognition motif ([R]-X-[KR]-R-|-X, where | indicates the position at which the polypeptide is cleaved) at residues 491 to 494, thought to be required for gB cleavage into two polypeptides. To investigate their contribution, the putative primary fusion loop or the furin recognition motif was mutated in expression constructs and in the context of the VZV genome. Substitutions in the primary loop, W180G and Y185G, plus the deletion mutation Delta491RSRR494 and point mutation 491GSGG494 in the furin recognition motif did not affect gB expression or cellular localization in transfected cells. Infectious VZV was recovered from parental Oka (pOka)-bacterial artificial chromosomes that had either the Delta491RSRR494 or 491GSGG494 mutation but not the point mutations W180G and Y185G, demonstrating that residues in the primary loop of gB were essential but gB cleavage was not required for VZV replication in vitro. Virion morphology, protein localization, plaque size, and replication were unaffected for the pOka-gBDelta491RSRR494 or pOka-gB491GSGG494 virus compared to pOka in vitro. However, deletion of the furin recognition motif caused attenuation of VZV replication in human skin xenografts in vivo. This is the first evidence that cleavage of a herpesvirus fusion protein contributes to viral pathogenesis in vivo, as seen for fusion proteins in other virus families.
Collapse
|
17
|
Roller DG, Dollery SJ, Doyle JL, Nicola AV. Structure-function analysis of herpes simplex virus glycoprotein B with fusion-from-without activity. Virology 2008; 382:207-16. [PMID: 18950828 DOI: 10.1016/j.virol.2008.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/18/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
Abstract
Fusion-from-without (FFWO) is the rapid induction of cell fusion by virions in the absence of viral protein synthesis. The combination of two amino acid mutations in envelope glycoprotein B (gB), one in the ectodomain and one in the cytoplasmic tail, can confer FFWO activity to wild type herpes simplex virus (HSV). In this report, we analyzed the entry and cell fusion phenotypes of HSV that contains FFWO gB, with emphasis on the cellular receptors for HSV, nectin-1, nectin-2 and HVEM. The ability of an HSV strain with FFWO gB to efficiently mediate FFWO via a specific gD-receptor correlated with its ability to mediate viral entry by that receptor. A FFWO form of gB was not sufficient to switch the entry of HSV from a pH-dependent, endocytic pathway to a direct fusion, pH-independent pathway. The conformation of gB with FFWO activity was not globally altered relative to wild type. However, distinct monoclonal antibodies had reduced reactivity with FFWO gB, suggesting an altered antigenic structure relative to wild type. FFWO was blocked by preincubation of virions with neutralizing antibodies to gB or gD. Together with previous studies, the results indicate that the roles of gB in FFWO and in virus-cell fusion during entry are related but not identical. This study also suggests that the FFWO function of gB is not a specific determinant for the selection of HSV entry pathway and that antigenic differences in FFWO gB may reflect its enhanced fusion activity.
Collapse
Affiliation(s)
- Devin G Roller
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298-0678, USA
| | | | | | | |
Collapse
|
18
|
Beitia Ortiz de Zarate I, Cantero-Aguilar L, Longo M, Berlioz-Torrent C, Rozenberg F. Contribution of endocytic motifs in the cytoplasmic tail of herpes simplex virus type 1 glycoprotein B to virus replication and cell-cell fusion. J Virol 2007; 81:13889-903. [PMID: 17913800 PMCID: PMC2168835 DOI: 10.1128/jvi.01231-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The use of endocytic pathways by viral glycoproteins is thought to play various functions during viral infection. We previously showed in transfection assays that herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) is transported from the cell surface back to the trans-Golgi network (TGN) and that two motifs of gB cytoplasmic tail, YTQV and LL, function distinctly in this process. To investigate the role of each of these gB trafficking signals in HSV-1 infection, we constructed recombinant viruses in which each motif was rendered nonfunctional by alanine mutagenesis. In infected cells, wild-type gB was internalized from the cell surface and concentrated in the TGN. Disruption of YTQV abolished internalization of gB during infection, whereas disruption of LL induced accumulation of internalized gB in early recycling endosomes and impaired its return to the TGN. The growth of both recombinants was moderately diminished. Moreover, the fusion phenotype of cells infected with the gB recombinants differed from that of cells infected with the wild-type virus. Cells infected with the YTQV-mutated virus displayed reduced cell-cell fusion, whereas giant syncytia were observed in cells infected with the LL-mutated virus. Furthermore, blocking gB internalization or impairing gB recycling to the cell surface, using drugs or a transdominant negative form of Rab11, significantly reduced cell-cell fusion. These results favor a role for endocytosis in virus replication and suggest that gB intracellular trafficking is involved in the regulation of cell-cell fusion.
Collapse
|
19
|
Saddi M, Sanna A, Cottiglia F, Chisu L, Casu L, Bonsignore L, De Logu A. Antiherpevirus activity of Artemisia arborescens essential oil and inhibition of lateral diffusion in Vero cells. Ann Clin Microbiol Antimicrob 2007; 6:10. [PMID: 17894898 PMCID: PMC2099429 DOI: 10.1186/1476-0711-6-10] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 09/26/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND New prophylactic and therapeutic tools are needed for the treatment of herpes simplex virus infections. Several essential oils have shown to possess antiviral activity in vitro against a wide spectrum of viruses. AIM The present study was assess to investigate the activities of the essential oil obtained from leaves of Artemisia arborescens against HSV-1 and HSV-2 METHODS The cytotoxicity in Vero cells was evaluated by the MTT reduction method. The IC50 values were determined by plaque reduction assay. In order to characterize the mechanism of action, yield reduction assay, inhibition of plaque development assay, attachment assay, penetration assay and post-attachment virus neutralization assay were also performed. RESULTS The IC50 values, determined by plaque reduction assay, were 2.4 and 4.1 microg/ml for HSV-1 and HSV-2, respectively, while the cytotoxicity assay against Vero cells, as determined by the MTT reduction method, showed a CC50 value of 132 mug/ml, indicating a CC50/IC50 ratio of 55 for HSV-1 and 32.2 for HSV-2. The antiviral activity of A. arborescens essential oil is principally due to direct virucidal effects. A poor activity determined by yield reduction assay was observed against HSV-1 at higher concentrations when added to cultures of infected cells. No inhibition was observed by attachment assay, penetration assay and post-attachment virus neutralization assay. Furthermore, inhibition of plaque development assay showed that A. arborescens essential oil inhibits the lateral diffusion of both HSV-1 and HSV-2. CONCLUSION This study demonstrates the antiviral activity of the essential oil in toto obtained from A. arborescens against HSV-1 and HSV-2. The mode of action of the essential oil as antiherpesvirus agent seems to be particularly interesting in consideration of its ability to inactivate the virus and to inhibit the cell-to-cell virus diffusion.
Collapse
Affiliation(s)
- Manuela Saddi
- Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Microbiologia Medica, Viale Sant'Ignazio 38, 09123 Cagliari, Italy
| | - Adriana Sanna
- Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Microbiologia Medica, Viale Sant'Ignazio 38, 09123 Cagliari, Italy
- Dipartimento di Sanità Pubblica, Università di Cagliari, Cagliari, Italy
| | - Filippo Cottiglia
- Dipartimento Farmaco Chimico Tecnologico, Università di Cagliari, Cagliari, Italy
- Facoltà di Farmacia, Università di Cagliari, Cagliari, Italy
| | - Lorenza Chisu
- Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Microbiologia Medica, Viale Sant'Ignazio 38, 09123 Cagliari, Italy
| | - Laura Casu
- Dipartimento Farmaco Chimico Tecnologico, Università di Cagliari, Cagliari, Italy
- Facoltà di Farmacia, Università di Cagliari, Cagliari, Italy
| | - Leonardo Bonsignore
- Dipartimento Farmaco Chimico Tecnologico, Università di Cagliari, Cagliari, Italy
- Facoltà di Farmacia, Università di Cagliari, Cagliari, Italy
| | - Alessandro De Logu
- Dipartimento di Scienze e Tecnologie Biomediche, Sezione di Microbiologia Medica, Viale Sant'Ignazio 38, 09123 Cagliari, Italy
- Facoltà di Farmacia, Università di Cagliari, Cagliari, Italy
| |
Collapse
|
20
|
Digel M, Sampaio KL, Jahn G, Sinzger C. Evidence for direct transfer of cytoplasmic material from infected to uninfected cells during cell-associated spread of human cytomegalovirus. J Clin Virol 2006; 37:10-20. [PMID: 16815742 DOI: 10.1016/j.jcv.2006.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 05/15/2006] [Accepted: 05/18/2006] [Indexed: 10/24/2022]
Abstract
Cell-associated spread is assumed to be the predominant mode of human cytomegalovirus (HCMV) dissemination in infected patients, however the underlying mechanisms are poorly understood. We tested the hypothesis that cell-to-cell spread of HCMV may be associated with direct transfer of cytoplasmic material by analyzing focal growth of green fluorescent HCMVDeltaUL16GFP. In this recombinant virus, UL16 was partially replaced by the green fluorescent protein (EGFP). The resulting HCMVDeltaUL16GFP showed unrestricted growth and expressed EGFP from the early UL16 promoter. EGFP transmission was then investigated in relation to viral spread from productively infected cells to cocultured uninfected cells. Alternatively, microinjection of fluorescent dextrane allowed for direct visualization of inter-cell-connections. Within 5h of coculture, 8% of cells neighbouring productively infected cells had acquired EGFP. Detection of EGFP in the absence of IE antigen and during cycloheximide block excluded the possibility of de novo synthesis. Immediate distribution of microinjected fluorescent dyes from infected cells to adjacent cells proved the existence of cell-cell-fusions. These data demonstrate that focal spread of HCMV is associated with direct transfer of cytoplasmic material, most likely through cell-cell-fusions. This would withdraw the virus from the control of neutralizing antibodies and thus provide an explanation for the limited antiviral effect of the humoral immune response.
Collapse
Affiliation(s)
- Margarete Digel
- Institute of Medical Virology, University of Tübingen, Elfriede-Aulhorn-Strasse 6, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
21
|
Perez-Romero P, Fuller AO. The C terminus of the B5 receptor for herpes simplex virus contains a functional region important for infection. J Virol 2005; 79:7431-7. [PMID: 15919899 PMCID: PMC1143627 DOI: 10.1128/jvi.79.12.7431-7437.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of a previously uncharacterized human hfl-B5 cDNA confers susceptibility for herpes simplex virus (HSV) to porcine cells and fulfills criteria as an HSV entry receptor (A. Perez, Q.-X. Li, P. Perez-Romero, G. DeLassus, S. R. Lopez, S. Sutter, N. McLaren, and A. Oveta Fuller, J. Virol. 79:7419-7430, 2005). Heptad repeats found in the B5 C terminus are predicted to form an alpha-helix for coiled coil structure. We used mutagenesis and synthetic peptides with wild-type and mutant sequences to examine the function of the heptad repeat motif in HSV binding and entry into porcine cells that express B5 and for infection of naturally susceptible human HEp-2 cells. B5 with point mutations predicted to disrupt the putative C-terminal coiled coil failed to mediate HSV binding and entry into porcine cells. Synthetic peptides that contain the single amino acid changes lose the blocking activity of HSV entry. We concluded that the C terminus of B5 contains a functional region that is important for the B5 receptor to mediate events in HSV entry. Structural evidence that this functional region forms coiled coil structures is under investigation. Blocking of HSV interaction with the C-terminal region of the B5 receptor is a new potential target site to intervene in the virus infection of human cells.
Collapse
Affiliation(s)
- Pilar Perez-Romero
- Department of Microbiology and Immunology, 6736 Medical Sciences II, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109-0620, USA
| | | |
Collapse
|
22
|
Jiang C, Wechuck JB, Goins WF, Krisky DM, Wolfe D, Ataai MM, Glorioso JC. Immobilized cobalt affinity chromatography provides a novel, efficient method for herpes simplex virus type 1 gene vector purification. J Virol 2004; 78:8994-9006. [PMID: 15308696 PMCID: PMC506967 DOI: 10.1128/jvi.78.17.8994-9006.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a promising vector for gene therapy applications, particularly at peripheral nerves, the natural site of virus latency. Many gene vectors require large particle numbers for even early-phase clinical trials, emphasizing the need for high-yield, scalable manufacturing processes that result in virus preparations that are nearly free of cellular DNA and protein contaminants. HSV-1 is an enveloped virus that requires the development of gentle purification methods. Ideally, such methods should avoid centrifugation and may employ selective purification processes that rely on the recognition of a unique envelope surface chemistry. Here we describe a novel method that fulfills these criteria. An immobilized metal affinity chromatography (IMAC) method was developed for the selective purification of vectors engineered to display a high-affinity binding peptide. Feasibility studies involving various transition metal ions (Cu2+, Zn2+, Ni2+, and Co2+) showed that cobalt had the most desirable features, which include a low level of interaction with either the normal virus envelope or contaminating DNA and proteins. The introduction of a cobalt-specific recognition element into the virus envelope may provide a suitable target for cobalt-dependent purification. To test this possibility, we engineered a peptide with affinity for immobilized cobalt in frame in the heparan sulfate binding domain of HSV-1 glycoprotein B, which is known to be exposed on the surface of the virion particle and recombined into the viral genome. By optimizing the IMAC loading conditions and reducing cobalt ion leakage, we recovered 78% of the tagged HSV-1 recombinant virus, with a >96% reduction in contaminating proteins and DNA.
Collapse
Affiliation(s)
- Canping Jiang
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
It was recently demonstrated that herpes simplex virus (HSV) successfully infects Chinese hamster ovary (CHO) cells expressing glycoprotein D (gD) receptors and HeLa cells by an endocytic mechanism (A. V. Nicola, A. M. McEvoy, and S. E. Straus, J. Virol. 77:5324-5332, 2003). Here we define cellular and viral requirements of this pathway. Uptake of intact, enveloped HSV from the cell surface into endocytic vesicles was rapid (t(1/2) of 8 to 9 min) and independent of the known cell surface gD receptors. Following uptake from the surface, recovery of intracellular, infectious virions increased steadily up to 20 min postinfection (p.i.), which corresponds to accumulation of enveloped virus in intracellular compartments. There was a sharp decline in recovery by 30 min p.i., suggesting loss of the virus envelope as a result of capsid penetration from endocytic organelles into the cytosol. In the absence of gD receptors, endocytosed virions did not successfully penetrate into the cytosol but were instead transported to lysosomes for degradation. Inhibitors of phosphatidylinositol (PI) 3-kinase, such as wortmannin, blocked transport of incoming HSV to the nuclear periphery and virus-induced gene expression but had no effect on virus binding or uptake. This suggests a role for PI 3-kinase activity in trafficking of HSV through the cytosol. Viruses that lack viral glycoproteins gB, gD, or gH-gL were defective in transport to the nucleus and had reduced infectivity. Thus, similar to entry via direct penetration at the cell surface, HSV entry into cells by wortmannin-sensitive endocytosis is efficient, involves rapid cellular uptake of viral particles, and requires gB, gD, and gH-gL.
Collapse
Affiliation(s)
- Anthony V Nicola
- Medical Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1888, USA.
| | | |
Collapse
|
24
|
Verschoor A, Brockman MA, Gadjeva M, Knipe DM, Carroll MC. Myeloid C3 determines induction of humoral responses to peripheral herpes simplex virus infection. THE JOURNAL OF IMMUNOLOGY 2004; 171:5363-71. [PMID: 14607939 DOI: 10.4049/jimmunol.171.10.5363] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The complement system, in addition to its role in innate immunity, is an important regulator of the B cell response. Complement exists predominantly in the circulation and although the primary source is hepatic, multiple additional cellular sources have been described that can contribute substantially to the complement pool. To date, however, complement produced by these secondary sources has been deemed redundant to that secreted by the liver. In contrast, using a bone marrow chimeric model, we observed that C3 synthesis by myeloid cells, a relatively minor source of complement, provided a critical function during the induction of humoral responses to peripheral HSV infection. Anti-viral Ab, as generated in an efficient humoral response, has been associated with protection from severe consequences of HSV dissemination. This report offers insight into the generation of the adaptive immune response in the periphery and describes a unique role for a nonhepatic complement source.
Collapse
Affiliation(s)
- Admar Verschoor
- Center for Blood Research, Boston, MA 02115. Pathology, Pediatrics, and Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
25
|
Diakidi-Kosta A, Michailidou G, Kontogounis G, Sivropoulou A, Arsenakis M. A single amino acid substitution in the cytoplasmic tail of the glycoprotein B of herpes simplex virus 1 affects both syncytium formation and binding to intracellular heparan sulfate. Virus Res 2003; 93:99-108. [PMID: 12727347 DOI: 10.1016/s0168-1702(03)00070-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Herpes simplex virus 1 (HSV-1) (S) is a spontaneous syncytial mutant derived from the prototype HSV-1(F) after extensive plaque purification, and produces large syncytial plaques on Vero cells. Marker transfer experiments and DNA sequence analysis mapped the syncytial phenotype to a T-C base substitution at codon 787 of the cytoplasmic domain of mature gB, that results in Leu to Pro substitution and consequently belongs to the syn 3 locus. Both the cytoplasmic and the extracellular domains of gB are active in the fusion event since the addition of anti-gB monoclonal antibodies that recognize the extracellular domain of gB prevent HSV-1(S) induced cell fusion. Similarly, gD also participates in cell fusion since addition of anti-gD monoclonal antibodies also prevent HSV-1(S) induced cell fusion. Furthermore the glycoproteins B and D formed complexes in cells infected with mutant or wild type viruses. The amount of gB bound to total heparan sulfate is lower in the mutant than in the wild type strain. This difference becomes particularly profound when gB is associated with a portion of heparan sulfate intercalated to the membranes. The discrepancy in the binding of the mutant and wild type gB to heparan sulfate may be related to the mechanism of cell fusion induced by HSV-1(S).
Collapse
Affiliation(s)
- A Diakidi-Kosta
- Laboratory of General Microbiology, Section of Genetics, Development and Molecular Biology, School of Biology, Aristotle University, Thessaloniki 54124, Greece
| | | | | | | | | |
Collapse
|
26
|
Abstract
Herpes simplex virus (HSV) is a neurotropic DNA virus with many favorable properties as a gene delivery vector. HSV is highly infectious, so HSV vectors are efficient vehicles for the delivery of exogenous genetic material to cells. Viral replication is readily disrupted by null mutations in immediate early genes that in vitro can be complemented in trans, enabling straightforward production of high-titre pure preparations of non-pathogenic vector. The genome is large (152 Kb) and many of the viral genes are dispensable for replication in vitro, allowing their replacement with large or multiple transgenes. Latent infection with wild-type virus results in episomal viral persistence in sensory neuronal nuclei for the duration of the host lifetime. Transduction with replication-defective vectors causes a latent-like infection in both neural and non-neural tissue; the vectors are non-pathogenic, unable to reactivate and persist long-term. The latency active promoter complex can be exploited in vector design to achieve long-term stable transgene expression in the nervous system. HSV vectors transduce a broad range of tissues because of the wide expression pattern of the cellular receptors recognized by the virus. Increasing understanding of the processes involved in cellular entry has allowed preliminary steps to be taken towards targeting the tropism of HSV vectors. Using replication-defective HSV vectors, highly encouraging results have emerged from recent pre-clinical studies on models of neurological disease, including glioma, peripheral neuropathy, chronic pain and neurodegeneration. Consequently, HSV vectors encoding appropriate transgenes to tackle these pathogenic processes are poised to enter clinical trials.
Collapse
Affiliation(s)
- Edward A Burton
- Department of Clinical Neurology, University of Oxford, United Kingdom
| | | | | |
Collapse
|
27
|
Gomi Y, Sunamachi H, Mori Y, Nagaike K, Takahashi M, Yamanishi K. Comparison of the complete DNA sequences of the Oka varicella vaccine and its parental virus. J Virol 2002; 76:11447-59. [PMID: 12388706 PMCID: PMC136748 DOI: 10.1128/jvi.76.22.11447-11459.2002] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DNA sequences of the Oka varicella vaccine virus (V-Oka) and its parental virus (P-Oka) were completed. Comparison of the sequences revealed 42 base substitutions, which led to 20 amino acid conversions and length differences in tandem repeat regions (R1, R3, and R4) and in an origin of DNA replication. Amino acid substitutions existed in open reading frames (ORFs) 6, 9A, 10, 21, 31, 39, 50, 52, 55, 59, 62, and 64. Of these, 15 base substitutions, leading to eight amino acid substitutions, were in the gene 62 region alone. Further DNA sequence analysis showed that these substitutions were specific for V-Oka and were not present in nine clinical isolates. The immediate-early gene 62 product (IE62) of P-Oka had stronger transactivational activity than the mutant IE62 contained in V-Oka in 293 and CV-1 cells. An infectious center assay of a plaque-purified clone (S7-01) from the V-Oka with 8 amino acid substitutions in ORF 62 showed smaller plaque formation and less-efficient virus-spreading activity than did P-Oka in human embryonic lung cells. Another clone (S-13) with only five substitutions in ORF 62 spread slightly faster than S7-01 but not as effectively as P-Oka. Moreover, transient luciferase assay in 293 cells showed that transactivational activities of IE62s of S7-01 and S7-13 were lower than that of P-Oka. Based on these results, it appears that amino acid substitutions in ORF 62 are responsible for virus growth and spreading from infected to uninfected cells. Furthermore, the Oka vaccine virus was completely distinguishable from P-Oka and 54 clinical isolates by seven restriction-enzyme fragment length polymorphisms that detected differences in the DNA sequence.
Collapse
Affiliation(s)
- Yasuyuki Gomi
- Kanonji Institute, The Research Foundation for Microbial Diseases of Osaka University, Kanonji, Kagawa, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Lee HH, Cha SC, Jang DJ, Lee JK, Choo DW, Kim YS, Uh HS, Kim SY. Immunization with combined HSV-2 glycoproteins B2 : D2 gene DNAs: protection against lethal intravaginal challenges in mice. Virus Genes 2002; 25:179-88. [PMID: 12416680 DOI: 10.1023/a:1020113902834] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The immunity of a combined DNA vaccine of HSV-2 glycoproteins B2 (gB2) and D2 (gD2) genes in comparison to individual vaccines was studied with regard to protecting against the HSV infection. Two recombinant DNA vaccines of the pHS2-gB2 or pHS2-gD2 were constructed and formulated. The neutralizing antibody titers appeared higher in the B2 : D2 gene cocktail-vaccinated mice than that of the individual B2 or D2 gene-vaccinated group alone, and the positive KOS control induced higher titer of the neutralizing antibody than combined or individual gene vaccines. The mock-immunized mice failed to induce enough. The ranks for the CTL activity and the protection rates against the lethal intravaginal challenge were shown as KOS > B2:D2 cocktail > D2 > B2 gene vaccines. The vaginal external diseases in the B2 : D2 or D-vaccinated mice were significantly reduced against the challenging dosages. The virus titers in the vaginal secretions of the vaccinated mice significantly reduced with time, and the B2 : D2 gene vaccine decreased more than each individual vaccine alone. It can be concluded that the cocktailed vaccines are more effective in the humoral and cellular immune responses in the mice, and in the protection of the mice against the intravaginal challenging dosages when compared with individual gene vaccines. All the DNA vaccines failed to block the latent infection in sensory nerves.
Collapse
Affiliation(s)
- Hyung Hoan Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Cha SC, Kim YS, Cho JK, Cho J, Kim SY, Kang H, Cho MH, Lee HH. Enhanced protection against HSV lethal challenges in mice by immunization with a combined HSV-1 glycoprotein B:H:L gene DNAs. Virus Res 2002; 86:21-31. [PMID: 12076826 DOI: 10.1016/s0168-1702(02)00037-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effectiveness of a cocktailed HSV-1 three-glycoprotein B, H, and L gene vaccine in comparison to individual glycoprotein gene vaccines was studied with regard to protecting against the HSV-1 infection. Three glycoprotein gene recombinant DNA vaccines, which produced the corresponding glycoproteins in Vero cells, were constructed using a CMV promoter. The cocktailed DNA vaccines were prepared by combining all three genes. The titers of neurtalizing antibody following the immunization of the five vaccines were KOS(1/1024)>B:H:L=B(1/512)>H:L(1/64)>H(1/16) genes. The mice, which were immunized with L gene alone failed to induce enough neutralizing antibody. The CTL activity was rated as KOS (95%)>B:H:L (80%)>B(60%)>H:L(50%)> H (35%) gene vaccines at an E:T ratio of 50:1. The H gene alone or L gene vaccine alone induced little CTL activity. The protection rates of the DNA-vaccinated mice against the lethal intraperitoneal (i.p.) or i.m challenges were shown as KOS>B:H:L>B>H:L>H gene vaccines, and the protection activity depended on the lethal dosage of the challenging virus, which are inversely proportional to each other. Compared with the mice, which were vaccinated with individual DNA vaccines, the mice, which were vaccinated with the cocktailed three-gene vaccine, were shown to be better protected against the lethal challenging doses. It can be concluded that vaccination with the cocktailed three gene vaccines is more effective in protecting mice from the viral challenge and the protection rate varies inversely with the amount of lethal challenging dose used, although all DNA vaccines failed to block the latent infection in sensory nerves.
Collapse
Affiliation(s)
- Soung Chul Cha
- Department of Biological Sciences, Konkuk University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Herpes simplex virus (HSV) is an encapsulated DNA virus, with many favourable properties for use as a gene transfer vector. For gene therapy applications, it may be desirable to restrict transgene expression to pre-defined subsets of cells. One potential method for achieving targeted transgene expression using the HSV vector system might involve dictating the cell types to which the vector will transfer the therapeutic transgene of interest. HSV delivers its genetic payload to cells directly through the plasmalemma; the mechanisms are complex and involve multiple viral and cell surface determinants. We have investigated several ways in which each component of the cell entry cascade may be manipulated in order to restrict viral DNA and transgene delivery to particular cellular populations. Our results indicate that targeted transduction may be a viable approach to achieving our goal of targeted HSV-mediated transgene expression.
Collapse
Affiliation(s)
- E A Burton
- University of Pittsburgh School of Medicine, Department of Molecular Genetics and Biochemistry, E1240 Biomedical Sciences Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
31
|
Theiler RN, Compton T. Characterization of the signal peptide processing and membrane association of human cytomegalovirus glycoprotein O. J Biol Chem 2001; 276:39226-31. [PMID: 11504733 DOI: 10.1074/jbc.m106300200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human cytomegalovirus (HCMV) has a structurally complex envelope that contains multiple glycoproteins. These glycoproteins are involved in virus entry, virus maturation, and cell-cell spread of infection. Glycoprotein H (gH), glycoprotein L (gL), and glycoprotein O (gO) associate covalently to form a unique disulfide-bonded tripartite complex. Glycoprotein O was recently discovered, and its basic structure, as well as that of the tripartite complex, remains uncharacterized. Based on hydropathy analysis, we hypothesized that gO could adopt a type II transmembrane orientation. The data presented here, however, reveal that the single hydrophobic domain of gO functions as a cleavable signal peptide that is absent from the mature molecule. Although it lacks a membrane anchor, glycoprotein O is associated with the membranes of HCMV-infected cells. The sophisticated organization of the gH.gL.gO complex reflects the intricate nature of the multicomponent entry and fusion machinery encoded by HCMV.
Collapse
Affiliation(s)
- R N Theiler
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison Medical School, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
32
|
Verschoor A, Brockman MA, Knipe DM, Carroll MC. Cutting edge: myeloid complement C3 enhances the humoral response to peripheral viral infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2446-51. [PMID: 11509581 DOI: 10.4049/jimmunol.167.5.2446] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
HSV-1 is the causative agent of cutaneous lesions, commonly referred to as cold sores. Primary exposure to the virus ordinarily occurs through the periphery, in particular through abraded skin or mucosal membranes. Under certain circumstances (e.g., in neonatals or AIDS patients), the infection becomes disseminated, often with severe consequences. Spread of HSV-1 is limited by virus-specific Ab. The development of an efficient humoral response to the virus is dependent on innate immunity component complement C3. The liver is the major source of C3, but there are also extrahepatic origins of C3 such as lymphoid macrophages. In the present study, the significance of C3 synthesis by bone marrow-derived cells was assessed by the transfer of wild-type bone marrow into irradiated C3-deficient mice. Using these chimeric mice, extrahepatic C3 was determined sufficient to initiate specific Ab and memory responses to a peripheral HSV-1 infection.
Collapse
Affiliation(s)
- A Verschoor
- Department of Pathology, Harvard Medical School. The Center for Blood Research, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
33
|
Abstract
Kainic acid (KA), a potent neurotoxin and excitatory amino acid, leads to derangements and modulation of brain proteins. No global brain protein expression pattern induced by KA-treatment has been reported yet. We therefore studied the effect of systemic KA administration on the levels of brain proteins. Rats were injected placebo or KA intraperitoneally and brain was taken after one week. The mitochondrial and cytosolic fractions of the brain proteins were analyzed by proteomics technologies and the levels of selected proteins were quantified using specific software. Heat shock protein HSP 27 was exclusively detected in brains of animals treated with KA, whereas the glucose regulated protein GRP 78 was downregulated. The levels of neurofilaments and alpha-internexin were significantly decreased and a fragment of tubulin alpha-1 chain was manifold increased in KA-brains. The mitochondrial enzymes dihydrolipoamide dehydrogenase, ATP synthase beta chain and isocitrate dehydrogenase were reduced and pyruvate kinase M1 was increased following KA treatment. We conclude that the concomitant determination of the brain proteins indicates altered regulation of heat shock proteins, neuronal death, cytoskeletal disruption, and mitochondrial derangement by systemic KA administration. This report confirms and extends previous studies on the effect of KA on the expression of brain proteins and suggests that our analytical system can serve as a model for neurotoxicological, neurobiological, and neuropathological proteome studies.
Collapse
Affiliation(s)
- K Krapfenbauer
- F. Hoffman-La Roche Ltd, Pharmaceutical Research, Genomics Technologies, Basel, Switzerland
| | | | | | | |
Collapse
|
34
|
Schwartz JA, Lium EK, Silverstein SJ. Herpes simplex virus type 1 entry is inhibited by the cobalt chelate complex CTC-96. J Virol 2001; 75:4117-28. [PMID: 11287561 PMCID: PMC114157 DOI: 10.1128/jvi.75.9.4117-4128.2001] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CTC series of cobalt chelates display in vitro and in vivo activity against herpes simplex virus types 1 and 2 (HSV-1 and HSV-2). The experiments described here identify the stage in the virus life cycle where CTC-96 acts and demonstrate that the drug inhibits infection of susceptible cells. CTC-96 at 50 microg/ml has no effect on adsorption of virions to Vero cell monolayers. Penetration assays reveal that CTC-96 inhibits entry of the virus independent of gC and cellular entry receptors. This observation was supported by the failure to detect the accumulation of virus-specified proteins and alpha mRNA transcripts when CTC-96 is present at the onset of infection. Moreover, virion-associated alphaTIF does not accumulate in the nucleus of cells infected in the presence of CTC-96. CTC-96 targets the initial fusion event between the virus and the cell and also inhibits cell-to-cell spread and syncytium formation. Furthermore, CTC-96 inhibits plaque formation by varicella-zoster virus and vesicular stomatitis virus as efficiently as by HSV-1. Collectively, these experiments suggest that CTC-96 is a broad-spectrum inhibitor of infection by enveloped viruses and that it inhibits HSV-1 infection at the point of membrane fusion independent of the type of virus and cellular receptors present.
Collapse
Affiliation(s)
- J A Schwartz
- Integrated Program in Cellular, Molecular and Biophysical Studies, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
35
|
Sakisaka T, Taniguchi T, Nakanishi H, Takahashi K, Miyahara M, Ikeda W, Yokoyama S, Peng YF, Yamanishi K, Takai Y. Requirement of interaction of nectin-1alpha/HveC with afadin for efficient cell-cell spread of herpes simplex virus type 1. J Virol 2001; 75:4734-43. [PMID: 11312345 PMCID: PMC114228 DOI: 10.1128/jvi.75.10.4734-4743.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently found a novel cell-cell adhesion system at cadherin-based adherens junctions (AJs), consisting at least of nectin, a Ca(2+)-independent homophilic immunoglobulin-like adhesion molecule, and afadin, an actin filament-binding protein that connects nectin to the actin cytoskeleton. Nectin is associated with cadherin through afadin and alpha-catenin. The cadherin-catenin system increases the concentration of nectin at AJs in an afadin-dependent manner. Nectin constitutes a family consisting of three members: nectin-1, -2, and -3. Nectin-1 serves as an entry and cell-cell spread mediator of herpes simplex virus type 1 (HSV-1). We studied here a role of the interaction of nectin-1alpha with afadin in entry and/or cell-cell spread of HSV-1. By the use of cadherin-deficient L cells overexpressing the full length of nectin-1alpha capable of interacting with afadin and L cells overexpressing a truncated form of nectin-1alpha incapable of interacting with afadin, we found that the interaction of nectin-1alpha with afadin increased the efficiency of cell-cell spread, but not entry, of HSV-1. This interaction did not affect the binding to nectin-1alpha of glycoprotein D, a viral component mediating entry of HSV-1 into host cells. Furthermore, the cadherin-catenin system increased the efficiency of cell-cell spread of HSV-1, although it also increased the efficiency of entry of HSV-1. It is likely that efficient cell-cell spread of HSV-1 is caused by afadin-dependent concentrated localization of nectin-1alpha at cadherin-based AJs.
Collapse
Affiliation(s)
- T Sakisaka
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
De Logu A, Loy G, Pellerano ML, Bonsignore L, Schivo ML. Inactivation of HSV-1 and HSV-2 and prevention of cell-to-cell virus spread by Santolina insularis essential oil. Antiviral Res 2000; 48:177-85. [PMID: 11164504 DOI: 10.1016/s0166-3542(00)00127-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The essential oil obtained in toto from Santolina insularis was investigated for its antiviral activity on herpes simplex type 1 (HSV-1) and type 2 (HSV-2) in vitro. The IC(50) values, determined by plaque reduction assays, were 0.88 and 0.7 microg/ml for HSV-1 and HSV-2, respectively, while the CC(50) determined by the MTT test on Vero cells was 112 microg/ml, indicating a CC(50)/IC(50) ratio of 127 for HSV-1 and 160 for HSV-2. Results obtained by plaque reduction assays also indicated that the antiviral activity of S. insularis was principally due to direct virucidal effects. Antiviral activity against HSV-1 and HSV-2 was not observed in a post-attachment assay, and attachment assays indicated that virus adsorption was not inhibited. Up to 80% inhibition of HSV-1 was achieved at the concentration of 40 microg/ml by yield reduction assay. Furthermore, reduction of plaque formation assays also showed that S. insularis essential oil inhibits cell-to-cell transmission of both HSV-1 and HSV-2.
Collapse
Affiliation(s)
- A De Logu
- Dipartimento di Scienze Chirurgiche e Trapianti d'Organo, Sezione di Microbiologia e Virologia, Università di Cagliari, Via Palabanda 14, 09123, Cagliari, Italy.
| | | | | | | | | |
Collapse
|
37
|
Campadelli-Fiume G, Cocchi F, Menotti L, Lopez M. The novel receptors that mediate the entry of herpes simplex viruses and animal alphaherpesviruses into cells. Rev Med Virol 2000. [DOI: 10.1002/1099-1654(200009/10)10:5%3c305::aid-rmv286%3e3.0.co;2-t] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Campadelli-Fiume G, Cocchi F, Menotti L, Lopez M. The novel receptors that mediate the entry of herpes simplex viruses and animal alphaherpesviruses into cells. Rev Med Virol 2000; 10:305-19. [PMID: 11015742 DOI: 10.1002/1099-1654(200009/10)10:5<305::aid-rmv286>3.0.co;2-t] [Citation(s) in RCA: 198] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An extended array of cell surface molecules serve as receptors for HSV entry into cells. In addition to the heparan sulphate glycosaminoglycans, which mediate the attachment of virion to cells, HSV requires an entry receptor. The repertoire of entry receptors into human cells includes molecules from three structurally unrelated molecular families. They are (i) HveA (herpesvirus entry mediator A), (ii) members of the nectin family, (iii) 3-O-sulphated heparan sulphate. The molecules have different attributes and play potentially different roles in HSV infection and spread to human tissues. All the human entry receptors interact physically with the virion envelope glycoprotein D (gD). (i) HveA is a member of the TNF-receptor family. It mediates entry of a restricted range of HSV strains. Its expression is restricted to few lineages (e.g. T-lymphocytes). (ii) The human nectin1alpha (HIgR), nectin1delta (PRR1-HveC), and the nectin2alpha (PRR2alpha-HveB) and nectin2delta (PRR2delta) belong to the immunoglobulin superfamily. They are homologues of the poliovirus receptor (CD155), with which they share the overall structure of the ectodomain. The human nectin1alpha-delta are broadly expressed in cell lines of different lineages, are expressed in human tissue targets of HSV infection, serve as receptors for all HSV-1 and HSV-2 strains tested and mediate entry not only of free virions, but also cell-to-cell spread of virus. (iii) The 3-O-sulphated heparan sulphate is expressed in some selected human cell lines (e.g. endothelial and mast cells) and human tissues, and mediates entry of HSV-1, but not HSV-2. The human nectin2alpha and nectin2delta serve as receptors for a narrow range of viruses. A characteristic of the human nectin1alpha-delta is the promiscuous species non-specific receptor activity towards the animal alphaherpesviruses, pseudorabies virus (PrV) and bovine herpesvirus 1 (BHV-1). By contrast with the human nectin1delta, its murine homologue (mNectin1delta) does not bind gD at detectable level, yet it mediates entry of HSV, as well as of PrV and BHV-1. This provides the first example of a mediator of HSV entry independent of a detectable interaction with gD.
Collapse
Affiliation(s)
- G Campadelli-Fiume
- Department of Experimental Pathology, Section on Microbiology and Virology, University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy.
| | | | | | | |
Collapse
|
39
|
Nixdorf R, Klupp BG, Karger A, Mettenleiter TC. Effects of truncation of the carboxy terminus of pseudorabies virus glycoprotein B on infectivity. J Virol 2000; 74:7137-45. [PMID: 10888654 PMCID: PMC112232 DOI: 10.1128/jvi.74.15.7137-7145.2000] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoproteins homologous to the type I membrane glycoprotein B (gB) of herpes simplex virus 1 (HSV-1) are the most highly conserved glycoproteins within the family Herpesviridae and are present in members of each herpesvirus subfamily. In the alphaherpesvirus pseudorabies virus (PrV), gB is required for entry into target cells and for direct viral cell-to-cell spread. These processes, though related, appear to be distinct, and thus it was interesting to analyze whether they require different functions of gB. To this end, we established cell lines stably expressing different carboxy-terminally truncated versions of PrV gB by deleting either (i) one predicted intracytoplasmic alpha-helical domain encompassing putative YQRL and dileucine internalization signals, (ii) two predicted intracytoplasmic alpha-helical domains, (iii) the complete intracytoplasmic domain, or (iv) the intracytoplasmic domain and the transmembrane anchor region. Confocal laser scanning microscopy showed that gB derivatives lacking at least the last 29 amino acids (aa) localize close to the plasma membrane, while the full-length protein accumulates in intracellular aggregations. Trans-complementation studies with a gB-deleted PrV (PrV-gB(-)) demonstrated that the 29-aa truncated form lacking the putative internalization signals and the C-terminal alpha-helical domain (gB-008) was efficiently incorporated into PrV-gB(-) virions and efficiently complemented infectivity and cell-to-cell spread. Moreover, gB-008 exhibited an enhanced fusogenic activity. In contrast, gB proteins lacking both alpha-helical domains (gB-007), the complete intracytoplasmic domain, or the intracytoplasmic domain and transmembrane anchor were only inefficiently or not at all incorporated into PrV-gB(-) virions and did not complement infectivity. However, gB-007 was able to mediate cell-to-cell spread of PrV-gB(-). Similar phenotypes were observed when virus recombinants expressing gB-008 or gB-007, respectively, instead of wild-type gB were isolated and analyzed. Thus, our data show that internalization of gB is not required for gB incorporation into virions nor for its function in either entry or cell-to-cell spread. Moreover, they indicate different requirements for gB in these membrane fusion processes.
Collapse
Affiliation(s)
- R Nixdorf
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany
| | | | | | | |
Collapse
|
40
|
Kosovský J, Vojvodová A, Oravcová I, Kúdelová M, Matis J, Rajcáni J. Herpes simplex virus 1 (HSV-1) strain HSZP glycoprotein B gene: comparison of mutations among strains differing in virulence. Virus Genes 2000; 20:27-33. [PMID: 10766304 DOI: 10.1023/a:1008104006007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The nonpathogenic HSZP strain of HSV-1 induces large polykaryocytes due to a syn3 mutation (His for Arg at residue 858) in the C-terminal endodomain of glycoprotein B (gB) (40). We determined the nucleotide (nt) sequence of the UL27 gene specifying the gB polypeptide of HSZP (gBHSZP) and found 3 mutations in its ectodomain at aminoacids (aa) 59, 79 and 108. The ANGpath virus, which also has a syn3 mutation in the C-terminal endodomain of gB (Val for Ala at residue 855) is pathogenic for adult mice (39), but can be made nonpathogenic by replacing the gBANGpath gene by the corresponding gBKOS sequence (21). The gBANGpath had three ectodomain mutations (at aa 62, 77 and 285), while gBKOS had at least four ectomain mutations (aa 59, 79, 313, and 553). Two mutations (aa 59 and 79) in the latter, located in the variable antigenic site IV/D1 were common for gBKOS and gBHSZP. These together with the gBANGpath mutations at aa 62 and 77 create a cluster of 4 mutations in diverse region of the N-terminal part of gB (between aa 59-79), in which the gBs of pathogenic ANGpath and 17 viruses differ from the gBs of nonpathogenic HSZP and KOS viruses. The lower pathogenicity of KOS as related to gBKOS, is furthermore associated with the change of Ser to Thr at aa 313 (locus III/D2). The possibility is discussed that mutations in both above mentioned antigenic loci could result in higher immunogenicity of the corresponding antigenic epitopes, which, in turn, would contribute to the decreased virulence of HSZP and KOS viruses.
Collapse
Affiliation(s)
- J Kosovský
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
41
|
Cocchi F, Menotti L, Dubreuil P, Lopez M, Campadelli-Fiume G. Cell-to-cell spread of wild-type herpes simplex virus type 1, but not of syncytial strains, is mediated by the immunoglobulin-like receptors that mediate virion entry, nectin1 (PRR1/HveC/HIgR) and nectin2 (PRR2/HveB). J Virol 2000; 74:3909-17. [PMID: 10729168 PMCID: PMC111902 DOI: 10.1128/jvi.74.8.3909-3917.2000] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The immunoglobulin-like receptors that mediate entry of herpes simplex virus type 1 (HSV-1) into human cells were found to mediate the direct cell-to-cell spread of wild-type virus. The receptors here designated Nectin1alpha and -delta and Nectin2alpha were originally designated HIgR, PRR1/HveC, and PRR2alpha/HveB, respectively. We report the following. (i) Wild-type HSV-1 spreads from cell to cell in J cells expressing nectin1alpha or nectin1delta but not in parental J cells that are devoid of entry receptors. A monoclonal antibody to nectin1, which blocks entry, also blocked cell-to-cell spread in nectin1-expressing J cells. Moreover, wild-type virus did not spread from a receptor-positive to a receptor-negative cell. (ii) The antibody to nectin1 blocked transmission of wild-type virus in a number of human cell lines, with varying efficiencies, suggesting that nectin1 is the principal mediator of wild-type virus spread in a variety of human cell lines. (iii) Nectin1 did not mediate cell fusion induced by the syncytial strains HSV-1(MP) and HFEM-syn. (iv) Nectin2alpha could serve as a receptor for spread of a mutant virus carrying the L25P substitution in glycoprotein D, but not of wild-type virus, in agreement with its ability to mediate entry of the mutant but not of wild-type virus.
Collapse
Affiliation(s)
- F Cocchi
- Department of Experimental Pathology, Section on Microbiology and Virology, University of Bologna, 40126 Bologna, Italy
| | | | | | | | | |
Collapse
|
42
|
Wanas E, Efler S, Ghosh K, Ghosh HP. Mutations in the conserved carboxy-terminal hydrophobic region of glycoprotein gB affect infectivity of herpes simplex virus. J Gen Virol 1999; 80 ( Pt 12):3189-3198. [PMID: 10567651 DOI: 10.1099/0022-1317-80-12-3189] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycoprotein gB is the most highly conserved glycoprotein in the herpesvirus family and plays a critical role in virus entry and fusion. Glycoprotein gB of herpes simplex virus type 1 contains a hydrophobic stretch of 69 aa near the carboxy terminus that is essential for its biological activity. To determine the role(s) of specific amino acids in the carboxy-terminal hydrophobic region, a number of amino acids were mutagenized that are highly conserved in this region within the gB homologues of the family HERPESVIRIDAE: Three conserved residues in the membrane anchor domain, namely A786, A790 and A791, as well as amino acids G743, G746, G766, G770 and P774, that are non-variant in Herpesviridae, were mutagenized. The ability of the mutant proteins to rescue the infectivity of the gB-null virus, K082, in trans was measured by a complementation assay. All of the mutant proteins formed dimers and were incorporated in virion particles produced in the complementation assay. Mutants G746N, G766N, F770S and P774L showed negligible complementation of K082, whereas mutant G743R showed a reduced activity. Virion particles containing these four mutant glycoproteins also showed a markedly reduced rate of entry compared to the wild-type. The results suggest that non-variant residues in the carboxy-terminal hydrophobic region of the gB protein may be important in virus infectivity.
Collapse
Affiliation(s)
- Essam Wanas
- Department of Biochemistry, Health Sciences Centre, McMaster University, 1200 Main St W., Hamilton, Ontario, Canada L8N 3Z51
| | - Sue Efler
- Department of Biochemistry, Health Sciences Centre, McMaster University, 1200 Main St W., Hamilton, Ontario, Canada L8N 3Z51
| | - Kakoli Ghosh
- Department of Biochemistry, Health Sciences Centre, McMaster University, 1200 Main St W., Hamilton, Ontario, Canada L8N 3Z51
| | - Hara P Ghosh
- Department of Biochemistry, Health Sciences Centre, McMaster University, 1200 Main St W., Hamilton, Ontario, Canada L8N 3Z51
| |
Collapse
|
43
|
Hsiao JC, Chung CS, Chang W. Vaccinia virus envelope D8L protein binds to cell surface chondroitin sulfate and mediates the adsorption of intracellular mature virions to cells. J Virol 1999; 73:8750-61. [PMID: 10482629 PMCID: PMC112896 DOI: 10.1128/jvi.73.10.8750-8761.1999] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We previously showed that an envelope A27L protein of intracellular mature virions (IMV) of vaccinia virus binds to cell surface heparan sulfate during virus infection. In the present study we identified another viral envelope protein, D8L, that binds to chondroitin sulfate on cells. Soluble D8L protein interferes with the adsorption of wild-type vaccinia virions to cells, indicating a role in virus entry. To explore the interaction of cell surface glycosaminoglycans and vaccinia virus, we generated mutant viruses from a control virus, WR32-7/Ind14K (A27L(+) D8L(+)) to be defective in expression of either the A27L or the D8L gene (A27L(+) D8L(-) or A27L(-) D8L(+)) or both (A27L(-) D8L(-)). The A27L(+) D8L(+) and A27L(-) D8L(+) mutants grew well in BSC40 cells, consistent with previous observations. However, the IMV titers of A27L(+) D8L(-) and A27L(-) D8L(-) viruses in BSC40 cells were reduced, reaching only 10% of the level for the control virus. The data suggested an important role for D8L protein in WR32-7/Ind14K virus growth in cell cultures. A27L protein, on the other hand, could not complement the functions of D8L protein. The low titers of the A27L(+) D8L(-) and A27L(-) D8L(-) mutant viruses were not due to defects in the morphogenesis of IMV, and the mutant virions demonstrated a brick shape similar to that of the control virions. Furthermore, the infectivities of the A27L(+) D8L(-) and A27L(-) D8L(-) mutant virions were 6 to 10% of that of the A27L(+) D8L(+) control virus. Virion binding assays revealed that A27L(+) D8L(-) and A27L(-) D8L(-) mutant virions bound less well to BSC40 cells, indicating that binding of viral D8L protein to cell surface chondroitin sulfate could be important for vaccinia virus entry.
Collapse
Affiliation(s)
- J C Hsiao
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | | | | |
Collapse
|
44
|
Terry-Allison T, Montgomery RI, Whitbeck JC, Xu R, Cohen GH, Eisenberg RJ, Spear PG. HveA (herpesvirus entry mediator A), a coreceptor for herpes simplex virus entry, also participates in virus-induced cell fusion. J Virol 1998; 72:5802-10. [PMID: 9621040 PMCID: PMC110382 DOI: 10.1128/jvi.72.7.5802-5810.1998] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/1997] [Accepted: 04/07/1998] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to determine whether a cell surface protein that can serve as coreceptor for herpes simplex virus type 1 (HSV-1) entry, herpesvirus entry mediator (previously designated HVEM but renamed HveA), also mediates HSV-1-induced cell-cell fusion. We found that transfection of DNA from KOS-804, a previously described HSV-1 syncytial (Syn) strain whose Syn mutation was mapped to an amino acid substitution in gK, induced numerous large syncytia on HveA-expressing Chinese hamster ovary cells (CHO-HVEM12) but not on control cells (CHO-C8). Antibodies specific for gD as well as for HveA were effective inhibitors of KOS-804-induced fusion, consistent with previously described direct interactions between gD and HveA. Since mutations in gD determine the ability of HSV-1 to utilize HveA for entry, we examined whether the form of virally expressed gD also influenced the ability of HveA to mediate fusion. We produced a recombinant virus carrying the KOS-804 Syn mutation and the KOS-Rid1 gD mutation, which significantly reduces viral entry via HveA, and designated it KOS-SR1. KOS-SR1 DNA had a markedly reduced ability to induce syncytia on CHO-HVEM12 cells and a somewhat enhanced ability to induce syncytia on CHO-C8 cells. These results support previous findings concerning the relative abilities of KOS and KOS-Rid1 to infect CHO-HVEM12 and CHO-C8 cells. Thus, HveA mediates cell-cell fusion as well as viral entry and both activities of HveA are contingent upon the form of gD expressed by the virus.
Collapse
Affiliation(s)
- T Terry-Allison
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Molecular Chaperone GRP94 Binds to the Fanconi Anemia Group C Protein and Regulates Its Intracellular Expression. Blood 1998. [DOI: 10.1182/blood.v91.11.4379] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe FAC protein encoded by the gene defective in Fanconi anemia (FA) complementation group C binds to at least three ubiquitous cytoplasmic proteins in vitro. We used here the complete coding sequence ofFAC in a yeast two-hybrid screen to identify interacting proteins. The molecular chaperone GRP94 was isolated twice from a B-lymphocyte cDNA library. Binding was confirmed by coimmunoprecipitation of FAC and GRP94 from cytosolic, but not nuclear, lysates of transfected COS-1 cells, as well as from mouse liver cytoplasmic extracts. Deletion mutants of FAC showed that residues 103-308 were required for interaction with GRP94, and a natural splicing mutation within the IVS-4 of FAC that removes residues 111-148 failed to bind GRP94. Ribozyme-mediated inactivation of GRP94 in the rat NRK cell line led to significantly reduced levels of immunoreactive FAC and concomitant hypersensitivity to mitomycin C, similar to the cellular phenotype of FA. Our results demonstrate that GRP94 interacts with FAC both in vitro and in vivo and regulates its intracellular level in a cell culture model. In addition, the pathogenicity of the IVS-4 splicing mutation in the FAC gene may be mediated in part by its inability to bind to GRP94.
Collapse
|
46
|
Abstract
The FAC protein encoded by the gene defective in Fanconi anemia (FA) complementation group C binds to at least three ubiquitous cytoplasmic proteins in vitro. We used here the complete coding sequence ofFAC in a yeast two-hybrid screen to identify interacting proteins. The molecular chaperone GRP94 was isolated twice from a B-lymphocyte cDNA library. Binding was confirmed by coimmunoprecipitation of FAC and GRP94 from cytosolic, but not nuclear, lysates of transfected COS-1 cells, as well as from mouse liver cytoplasmic extracts. Deletion mutants of FAC showed that residues 103-308 were required for interaction with GRP94, and a natural splicing mutation within the IVS-4 of FAC that removes residues 111-148 failed to bind GRP94. Ribozyme-mediated inactivation of GRP94 in the rat NRK cell line led to significantly reduced levels of immunoreactive FAC and concomitant hypersensitivity to mitomycin C, similar to the cellular phenotype of FA. Our results demonstrate that GRP94 interacts with FAC both in vitro and in vivo and regulates its intracellular level in a cell culture model. In addition, the pathogenicity of the IVS-4 splicing mutation in the FAC gene may be mediated in part by its inability to bind to GRP94.
Collapse
|
47
|
Laquerre S, Anderson DB, Argnani R, Glorioso JC. Herpes simplex virus type 1 glycoprotein B requires a cysteine residue at position 633 for folding, processing, and incorporation into mature infectious virus particles. J Virol 1998; 72:4940-9. [PMID: 9573262 PMCID: PMC110055 DOI: 10.1128/jvi.72.6.4940-4949.1998] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) resides in the virus envelope in an oligomeric form and plays an essential role in virus entry into susceptible host cells. The oligomerizing domain is a movable element consisting of amino acids 626 to 653 in the gB external domain. This domain contains a single cysteine residue at position 633 (Cys-633) that is predicted to form an intramolecular disulfide bridge with Cys-596. In this study, we examined gB oligomerization, processing, and incorporation into mature virus during infection by two mutant viruses in which either the gB Cys-633 [KgB(C633S)] or both Cys-633 and Cys-596 [KgB(C596S/C633S)] residues were mutated to serine. The result of immunofluorescence studies and analyses of released virus particles showed that the mutant gB molecules were not transported to the cell surface or incorporated into mature virus envelopes and thus infectious virus was not produced. Immunoprecipitation studies revealed that the mutant gB molecules were in an oligomeric configuration and that these mutants produced hetero-oligomers with a truncated form of gB consisting of residues 1 to 43 and 595 to 904, the latter containing the oligomerization domain. Pulse-chase experiments in combination with endoglycosidase H treatment determined that the mutant molecules were improperly processed, having been retained in the endoplasmic reticulum (ER). Coimmunoprecipitation experiments revealed that the cysteine mutations resulted in gB misfolding and retention by the molecular chaperones calnexin, calreticulin, and Grp78 in the ER. The altered conformation of the gB mutant glycoproteins was directly detected by a reduction in monoclonal antibody recognition of two previously defined distinct antigenic sites located within residues 381 to 441 and 595 to 737. The misfolded molecules were not transported to the cell surface as hetero-oligomers with wild-type gB, suggesting that the conformational change could not be corrected by intermolecular interactions with the wild-type molecule. Together, these experiments confirmed that a disulfide bridge involving Cys-633 and Cys-596 is not essential for oligomerization but rather is required for proper folding and maintenance of a gB domain essential to complete posttranslational modification, transport, and incorporation into mature virus particles.
Collapse
Affiliation(s)
- S Laquerre
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
48
|
Jacquet A, Haumont M, Chellun D, Massaer M, Tufaro F, Bollen A, Jacobs P. The varicella zoster virus glycoprotein B (gB) plays a role in virus binding to cell surface heparan sulfate proteoglycans. Virus Res 1998; 53:197-207. [PMID: 9620211 DOI: 10.1016/s0168-1702(97)00149-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Varicella-zoster virus (VZV) interacts with cell surface heparan sulfate proteoglycans during virus attachment. In the present study, we investigated the potential involvement of two VZV glycoproteins, gB and gE, in the virus adsorption process. We showed that gB, but not gE, binds specifically to cellular heparan sulfate proteoglycans (HSPGs). Indeed, soluble recombinant gB protein (recgB) was found to bind to immobilized heparin and to MRC5 and L cells, a binding which was inhibited by heparin. Furthermore, recgB binding to two heparan sulfate-minus mutant L cell lines, gro2C and sog9 cells, was markedly reduced as compared to the parental L strain. Under the same experimental conditions, soluble recombinant VZV gE protein did not interact with heparin or with cell surfaces. We also demonstrated that the gB-HSPGs interactions were relevant to the VZV attachment to cells. Indeed, although polyclonal antibodies directed to gB did not impair the VZV binding, recgB could delay the virus adsorption. Our results thus strongly suggest that the interactions between gB and heparan sulfate proteoglycans take part in the initial VZV attachment to cell surfaces.
Collapse
Affiliation(s)
- A Jacquet
- Applied Genetics, Free University of Brussels, Nivelles, Belgium.
| | | | | | | | | | | | | |
Collapse
|
49
|
Evans C, Goins WF, Schmidt MC, Robbins PD, Ghivizzani SC, Oligino T, Marconi P, Krisky D, Glorioso JC. Progress in development of herpes simplex virus gene vectors for treatment of rheumatoid arthritis. Adv Drug Deliv Rev 1997; 27:41-57. [PMID: 10837550 DOI: 10.1016/s0169-409x(97)00021-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Arthritis is presently incurable and poorly treatable, but there are good grounds for expecting gene therapy to improve matters considerably. Although local ex vivo delivery of anti-arthritic genes to the synovial lining of joints has shown considerable promise, intraarticular gene delivery may be desirable. Herpes simplex virus (HSV) may be a viable vector for in vivo transfer of anti-arthritic genes to joints. HSV has the advantages of high infectivity, large carrying capacity and high titer. The large packaging capacity would permit the inclusion of multiple anti-arthritic genes and necessary regulatory elements. Recombinant vectors produced by this laboratory infect synovial cells efficiently, permitting prolonged expression of transgenes in vitro and in vivo without evidence of cytotoxicity. Further improvements to this vector system include taking advantage of an endogenous HSV 'stealthing' gene, ICP47, which interferes with formation of antigen-class I complexes. Inclusion of inducible promoters to appropriately regulate expression of anti-arthritic genes should further improve this system.
Collapse
Affiliation(s)
- C Evans
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15621, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Li Y, van Drunen Littel-van den Hurk S, Liang X, Babiuk LA. Functional analysis of the transmembrane anchor region of bovine herpesvirus 1 glycoprotein gB. Virology 1997; 228:39-54. [PMID: 9024808 DOI: 10.1006/viro.1996.8372] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In herpesviruses, homologues of glycoprotein B (gB) are essential membrane proteins which are involved in fusion. However, there is no clear evidence regarding the location of the fusogenic domain on gB. By using bovine herpesvirus 1 (BHV-1) as a model, we studied the relationship between the structure and the fusogenic activity of gB. This was achieved by expressing genes of different gB derivatives containing specific truncations at the end of segments 2 or 3 of the transmembrane region in Madin-Darby bovine kidney cells under the control of the bovine heat-shock protein hsp70A gene promoter. All expressed gB products were structurally similar to authentic gB. One truncated form of gB, gBt, which contains residues 1-763, was efficiently secreted. However, gBtM (residues 1-807), which includes the first two segments at the carboxyl terminus, showed unstable retention on the cell surface, whereas gBtMA (residues 1 829), which contains all three membrane-spanning segments, was mostly intracellularly retained with some unstable surface anchorage. Another truncated gB, gBtDAF, which has gB residues 1-763 (gBt) and a human decay-accelerating factor (DAF) carboxyl tail, was also expressed. The DAF fragment provided a signal for the addition of a glycosyl phosphatidylinositol-based membrane anchor, which could target the gBt chimeric protein on the cell membrane. Immunofluorescence staining and pulse-chase kinetic studies support the theory that gBtM, gBtMA, and gBtDAF are retained on nuclear and cellular membranes via different segments of the transmembrane region or the DAF fragment, respectively. For the cells expressing gBt or gBtM, no cell fusion was observed, whereas cells expressing gBtMA clearly showed fusion. However, in gBtDAF cells, the overexpression and cellular accumulation of recombinant gB products did not cause fusion either, which supports our contention that the fusion phenomenon in gBtMA cells is caused by the fusogenic activity of the expressed gBtMA. With the help of sequence analysis, our results indicate that segment 2 of the transmembrane anchor region might be a fusogenic domain, whereas the real anchor is segment 3.
Collapse
Affiliation(s)
- Y Li
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|