1
|
Kim MI, Lee C. Human Coronavirus OC43 as a Low-Risk Model to Study COVID-19. Viruses 2023; 15:v15020578. [PMID: 36851792 PMCID: PMC9965565 DOI: 10.3390/v15020578] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has had irreversible and devastating impacts on every aspect of human life. To better prepare for the next similar pandemic, a clear understanding of coronavirus biology is a prerequisite. Nevertheless, the high-risk nature of the causative agent of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), requires the use of a cumbersome biosafety level-3 (BSL-3) confinement facility. To facilitate the development of preventive and therapeutic measures against SARS-CoV-2, one of the endemic strains of low-risk coronaviruses has gained attention as a useful research alternative: human coronavirus OC43 (HCoV-OC43). In this review, its history, classification, and clinical manifestations are first summarized. The characteristics of its viral genomes, genes, and evolution process are then further explained. In addition, the host factors necessary to support the life cycle of HCoV-OC43 and the innate, as well as adaptive, immunological responses to HCoV-OC43 infection are discussed. Finally, the development of in vitro and in vivo systems to study HCoV-OC43 and its application to the discovery of potential antivirals for COVID-19 by using HCoV-OC43 models are also presented. This review should serve as a concise guide for those who wish to use HCoV-OC43 to study coronaviruses in a low-risk research setting.
Collapse
|
2
|
Abstract
The existence of coronaviruses has been known for many years. These viruses cause significant disease that primarily seems to affect agricultural species. Human coronavirus disease due to the 2002 outbreak of Severe Acute Respiratory Syndrome and the 2012 outbreak of Middle East Respiratory Syndrome made headlines; however, these outbreaks were controlled, and public concern quickly faded. This complacency ended in late 2019 when alarms were raised about a mysterious virus responsible for numerous illnesses and deaths in China. As we now know, this novel disease called Coronavirus Disease 2019 (COVID-19) was caused by Severe acute respiratory syndrome-related-coronavirus-2 (SARS-CoV-2) and rapidly became a worldwide pandemic. Luckily, decades of research into animal coronaviruses hastened our understanding of the genetics, structure, transmission, and pathogenesis of these viruses. Coronaviruses infect a wide range of wild and domestic animals, with significant economic impact in several agricultural species. Their large genome, low dependency on host cellular proteins, and frequent recombination allow coronaviruses to successfully cross species barriers and adapt to different hosts including humans. The study of the animal diseases provides an understanding of the virus biology and pathogenesis and has assisted in the rapid development of the SARS-CoV-2 vaccines. Here, we briefly review the classification, origin, etiology, transmission mechanisms, pathogenesis, clinical signs, diagnosis, treatment, and prevention strategies, including available vaccines, for coronaviruses that affect domestic, farm, laboratory, and wild animal species. We also briefly describe the coronaviruses that affect humans. Expanding our knowledge of this complex group of viruses will better prepare us to design strategies to prevent and/or minimize the impact of future coronavirus outbreaks.
Collapse
Key Words
- bcov, bovine coronavirus
- ccov, canine coronavirus
- cov(s), coronavirus(es)
- covid-19, coronavirus disease 2019
- crcov, canine respiratory coronavirus
- e, coronaviral envelope protein
- ecov, equine coronavirus
- fcov, feline coronavirus
- fipv, feline infectious peritonitis virus
- gfcov, guinea fowl coronavirus
- hcov, human coronavirus
- ibv, infectious bronchitis virus
- m, coronaviral membrane protein
- mers, middle east respiratory syndrome-coronavirus
- mhv, mouse hepatitis virus
- pedv, porcine epidemic diarrhea virus
- pdcov, porcine deltacoronavirus
- phcov, pheasant coronavirus
- phev, porcine hemagglutinating encephalomyelitis virus
- prcov, porcine respiratory coronavirus
- rt-pcr, reverse transcriptase polymerase chain reaction
- s, coronaviral spike protein
- sads-cov, swine acute diarrhea syndrome-coronavirus
- sars-cov, severe acute respiratory syndrome-coronavirus
- sars-cov-2, severe acute respiratory syndrome–coronavirus–2
- tcov, turkey coronavirus
- tgev, transmissible gastroenteritis virus
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;,
| | - Tannia S Clark
- Office of Laboratory Animal Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - David M Kurtz
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina
| |
Collapse
|
3
|
Subgenomic RNAs and Their Encoded Proteins Contribute to the Rapid Duplication of SARS-CoV-2 and COVID-19 Progression. Biomolecules 2022; 12:biom12111680. [DOI: 10.3390/biom12111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently widespread throughout the world, accompanied by a rising number of people infected and breakthrough infection of variants, which make the virus highly transmissible and replicable. A comprehensive understanding of the molecular virological events and induced immunological features during SARS-CoV-2 replication can provide reliable targets for vaccine and drug development. Among the potential targets, subgenomic RNAs and their encoded proteins involved in the life cycle of SARS-CoV-2 are extremely important in viral duplication and pathogenesis. Subgenomic RNAs employ a range of coping strategies to evade immune surveillance from replication to translation, which allows RNAs to synthesize quickly, encode structural proteins efficiently and complete the entire process of virus replication and assembly successfully. This review focuses on the characteristics and functions of SARS-CoV-2 subgenomic RNAs and their encoded proteins and explores in depth the role of subgenomic RNAs in the replication and infection of host cells to provide important clues to the mechanism of COVID-19 pathogenesis.
Collapse
|
4
|
Ma Z(S, Zhang YP. Ecology of Human Medical Enterprises: From Disease Ecology of Zoonoses, Cancer Ecology Through to Medical Ecology of Human Microbiomes. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.879130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In nature, the interaction between pathogens and their hosts is only one of a handful of interaction relationships between species, including parasitism, predation, competition, symbiosis, commensalism, and among others. From a non-anthropocentric view, parasitism has relatively fewer essential differences from the other relationships; but from an anthropocentric view, parasitism and predation against humans and their well-beings and belongings are frequently related to heinous diseases. Specifically, treating (managing) diseases of humans, crops and forests, pets, livestock, and wildlife constitute the so-termed medical enterprises (sciences and technologies) humans endeavor in biomedicine and clinical medicine, veterinary, plant protection, and wildlife conservation. In recent years, the significance of ecological science to medicines has received rising attentions, and the emergence and pandemic of COVID-19 appear accelerating the trend. The facts that diseases are simply one of the fundamental ecological relationships in nature, and the study of the relationships between species and their environment is a core mission of ecology highlight the critical importance of ecological science. Nevertheless, current studies on the ecology of medical enterprises are highly fragmented. Here, we (i) conceptually overview the fields of disease ecology of wildlife, cancer ecology and evolution, medical ecology of human microbiome-associated diseases and infectious diseases, and integrated pest management of crops and forests, across major medical enterprises. (ii) Explore the necessity and feasibility for a unified medical ecology that spans biomedicine, clinical medicine, veterinary, crop (forest and wildlife) protection, and biodiversity conservation. (iii) Suggest that a unified medical ecology of human diseases is both necessary and feasible, but laissez-faire terminologies in other human medical enterprises may be preferred. (iv) Suggest that the evo-eco paradigm for cancer research can play a similar role of evo-devo in evolutionary developmental biology. (v) Summarized 40 key ecological principles/theories in current disease-, cancer-, and medical-ecology literatures. (vi) Identified key cross-disciplinary discovery fields for medical/disease ecology in coming decade including bioinformatics and computational ecology, single cell ecology, theoretical ecology, complexity science, and the integrated studies of ecology and evolution. Finally, deep understanding of medical ecology is of obvious importance for the safety of human beings and perhaps for all living things on the planet.
Collapse
|
5
|
Shahrajabian MH. Powerful Stress Relieving Medicinal Plants for Anger, Anxiety, Depression, and Stress During Global Pandemic. Recent Pat Biotechnol 2022; 16:284-310. [PMID: 35319401 DOI: 10.2174/1872208316666220321102216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/01/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Consideration and improvement for anxiety and depression are important during a global pandemic. Appropriate healthcare can be obtained by paying more attention to traditional medicinal sciences. The adverse effects of stress with various symptoms can be managed by introducing plants that boost mental health. The most relevant psychological reactions in the general population related to the global pandemic are pervasive anxiety, frustration and boredom, specific and uncontrolled fear, disabling loneliness, significant lifestyle changes, and psychiatric conditions. Ginseng, chamomile, passionflower, herbal tea, lavender, saffron, kava, rose, cardamom, Chinese date, and some chief formula like yokukansan, Dan-zhi-xiao-yao-san, so-ochim-tang-gamiband, and saikokaryukotsuboreito are notable herbal treatments for mental health problems. The most common medicinal plants that have been used in Iran for the cure of stress and anxiety are Viper's-buglosses, Dracocephalum, valerian, chamomile, common hop, hawthorns, and lavender. Medicinal plants and herbs can be used for the treatment and alleviation of the negative effects of stress, anger, and depression during the global pandemic.
Collapse
|
6
|
Neagu M, Constantin C, Surcel M. Testing Antigens, Antibodies, and Immune Cells in COVID-19 as a Public Health Topic—Experience and Outlines. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413173. [PMID: 34948782 PMCID: PMC8700871 DOI: 10.3390/ijerph182413173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/14/2022]
Abstract
The current COVID-19 pandemic has triggered an accelerated pace in all research domains, including reliable diagnostics methodology. Molecular diagnostics of the virus and its presence in biological samples relies on the RT-PCR method, the most used and validated worldwide. Nonconventional tests with improved parameters that are in the development stages will be presented, such as droplet digital PCR or CRISPR-based assays. These molecular tests were followed by rapid antigen testing along with the development of antibody tests, whether based on ELISA platform or on a chemiluminescent microparticle immunoassay. Less-conventional methods of testing antibodies (e.g., lateral flow immunoassay) are presented as well. Left somewhere in the backstage of COVID-19 research, immune cells and, furthermore, immune memory cells, are gaining the spotlight, more so in the vaccination context. Recently, methodologies using flow-cytometry evaluate circulating immune cells in infected/recovered patients. The appearance of new virus variants has triggered a surge for tests improvement. As the pandemic has entered an ongoing or postvaccination era, all methodologies that are used to monitor public health focus on diagnostic strategies and this review points out where gaps should be filled in both clinical and research settings.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology Laboratory, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (M.N.); (M.S.)
- Pathology Department, Colentina University Hospital, 19-21 Șoseaua Ștefan cel Mare, 020125 Bucharest, Romania
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, 91-93 Splaiul Independentei, 050095 Bucharest, Romania
| | - Carolina Constantin
- Immunology Laboratory, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (M.N.); (M.S.)
- Pathology Department, Colentina University Hospital, 19-21 Șoseaua Ștefan cel Mare, 020125 Bucharest, Romania
- Correspondence:
| | - Mihaela Surcel
- Immunology Laboratory, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (M.N.); (M.S.)
| |
Collapse
|
7
|
Clementi N, Ghosh S, De Santis M, Castelli M, Criscuolo E, Zanoni I, Clementi M, Mancini N. Viral Respiratory Pathogens and Lung Injury. Clin Microbiol Rev 2021; 34:e00103-20. [PMID: 33789928 PMCID: PMC8142519 DOI: 10.1128/cmr.00103-20] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several viruses target the human respiratory tract, causing different clinical manifestations spanning from mild upper airway involvement to life-threatening acute respiratory distress syndrome (ARDS). As dramatically evident in the ongoing SARS-CoV-2 pandemic, the clinical picture is not always easily predictable due to the combined effect of direct viral and indirect patient-specific immune-mediated damage. In this review, we discuss the main RNA (orthomyxoviruses, paramyxoviruses, and coronaviruses) and DNA (adenoviruses, herpesviruses, and bocaviruses) viruses with respiratory tropism and their mechanisms of direct and indirect cell damage. We analyze the thin line existing between a protective immune response, capable of limiting viral replication, and an unbalanced, dysregulated immune activation often leading to the most severe complication. Our comprehension of the molecular mechanisms involved is increasing and this should pave the way for the development and clinical use of new tailored immune-based antiviral strategies.
Collapse
Affiliation(s)
- Nicola Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sreya Ghosh
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, Massachusetts, USA
| | - Maria De Santis
- Department of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Matteo Castelli
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Criscuolo
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
| | - Ivan Zanoni
- Harvard Medical School, Boston Children's Hospital, Division of Immunology, Boston, Massachusetts, USA
- Harvard Medical School, Boston Children's Hospital, Division of Gastroenterology, Boston, Massachusetts, USA
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
8
|
Peacock TP, Penrice-Randal R, Hiscox JA, Barclay WS. SARS-CoV-2 one year on: evidence for ongoing viral adaptation. J Gen Virol 2021; 102:001584. [PMID: 33855951 PMCID: PMC8290271 DOI: 10.1099/jgv.0.001584] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
SARS-CoV-2 is thought to have originated in the human population from a zoonotic spillover event. Infection in humans results in a variety of outcomes ranging from asymptomatic cases to the disease COVID-19, which can have significant morbidity and mortality, with over two million confirmed deaths worldwide as of January 2021. Over a year into the pandemic, sequencing analysis has shown that variants of SARS-CoV-2 are being selected as the virus continues to circulate widely within the human population. The predominant drivers of genetic variation within SARS-CoV-2 are single nucleotide polymorphisms (SNPs) caused by polymerase error, potential host factor driven RNA modification, and insertion/deletions (indels) resulting from the discontinuous nature of viral RNA synthesis. While many mutations represent neutral 'genetic drift' or have quickly died out, a subset may be affecting viral traits such as transmissibility, pathogenicity, host range, and antigenicity of the virus. In this review, we summarise the current extent of genetic change in SARS-CoV-2, particularly recently emerging variants of concern, and consider the phenotypic consequences of this viral evolution that may impact the future trajectory of the pandemic.
Collapse
Affiliation(s)
- Thomas P. Peacock
- Department of Infectious Diseases, St Marys Medical School, Imperial College London, UK
| | | | - Julian A. Hiscox
- Institute of Infection, Veterinary and Ecology Sciences, University of Liverpool, UK
- A*STAR Infectious Diseases Laboratories (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Wendy S. Barclay
- Department of Infectious Diseases, St Marys Medical School, Imperial College London, UK
| |
Collapse
|
9
|
Biodiversity loss and COVID-19 pandemic: The role of bats in the origin and the spreading of the disease. Biochem Biophys Res Commun 2021; 538:2-13. [PMID: 33092787 PMCID: PMC7566801 DOI: 10.1016/j.bbrc.2020.10.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022]
Abstract
The loss of biodiversity in the ecosystems has created the general conditions that have favored and, in fact, made possible, the insurgence of the COVID-19 pandemic. A lot of factors have contributed to it: deforestation, changes in forest habitats, poorly regulated agricultural surfaces, mismanaged urban growth. They have altered the composition of wildlife communities, greatly increased the contacts of humans with wildlife, and altered niches that harbor pathogens, increasing their chances to come in contact with humans. Among the wildlife, bats have adapted easily to anthropized environments such as houses, barns, cultivated fields, orchards, where they found the suitable ecosystem to prosper. Bats are major hosts for αCoV and βCoV: evolution has shaped their peculiar physiology and their immune system in a way that makes them resistant to viral pathogens that would instead successfully attack other species, including humans. In time, the coronaviruses that bats host as reservoirs have undergone recombination and other modifications that have increased their ability for inter-species transmission: one modification of particular importance has been the development of the ability to use ACE2 as a receptor in host cells. This particular development in CoVs has been responsible for the serious outbreaks in the last two decades, and for the present COVID-19 pandemic.
Collapse
|
10
|
Haake C, Cook S, Pusterla N, Murphy B. Coronavirus Infections in Companion Animals: Virology, Epidemiology, Clinical and Pathologic Features. Viruses 2020; 12:E1023. [PMID: 32933150 PMCID: PMC7551689 DOI: 10.3390/v12091023] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022] Open
Abstract
Coronaviruses are enveloped RNA viruses capable of causing respiratory, enteric, or systemic diseases in a variety of mammalian hosts that vary in clinical severity from subclinical to fatal. The host range and tissue tropism are largely determined by the coronaviral spike protein, which initiates cellular infection by promoting fusion of the viral and host cell membranes. Companion animal coronaviruses responsible for causing enteric infection include feline enteric coronavirus, ferret enteric coronavirus, canine enteric coronavirus, equine coronavirus, and alpaca enteric coronavirus, while canine respiratory coronavirus and alpaca respiratory coronavirus result in respiratory infection. Ferret systemic coronavirus and feline infectious peritonitis virus, a mutated feline enteric coronavirus, can lead to lethal immuno-inflammatory systemic disease. Recent human viral pandemics, including severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and most recently, COVID-19, all thought to originate from bat coronaviruses, demonstrate the zoonotic potential of coronaviruses and their potential to have devastating impacts. A better understanding of the coronaviruses of companion animals, their capacity for cross-species transmission, and the sharing of genetic information may facilitate improved prevention and control strategies for future emerging zoonotic coronaviruses. This article reviews the clinical, epidemiologic, virologic, and pathologic characteristics of nine important coronaviruses of companion animals.
Collapse
Affiliation(s)
- Christine Haake
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Sarah Cook
- Graduate Group Integrative Pathobiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Nicola Pusterla
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Brian Murphy
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| |
Collapse
|
11
|
Matsuba I, Hatori N, Koido N, Watanabe Y, Ebara F, Matsuzawa Y, Nishikawa T, Kunishima T, Degawa H, Nishikawa M, Ono Y, Kanamori A. Survey of the current status of subclinical coronavirus disease 2019 (COVID-19). J Infect Chemother 2020; 26:1294-1300. [PMID: 32958395 PMCID: PMC7474902 DOI: 10.1016/j.jiac.2020.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVES We investigated relationships between subclinical COVID-19 (coronavirus disease 2019) and background factors. METHODS We determined SARS-CoV-2 antibody (IgG) prevalence in 1603 patients, doctors, and nurses in 65 medical institutions in Kanagawa Prefecture, Japan and investigated their background factors. Antibodies (IgG) against SARS-CoV-2 were analyzed by Immunochromatographic test. RESULTS The 39 subjects (2.4%) were found to be IgG antibody-positive: 29 in the patient group (2.9%), 10 in the doctor/nurse group (2.0%), and 0 in the control group. After adjustment for age, sex, and the antibody prevalence in the control group, antibody prevalence was 2.7% in the patient group and 2.1% in the doctor/nurse group. There was no significant difference between the antibody-positive subjects and the antibody-negative subjects in any background factors investigated including overseas travel, contact with overseas travelers, presence/absence of infected individuals in the living area, use of trains 5 times a week or more, BCG vaccination, and use of ACE inhibitor and ARB. CONCLUSIONS Antibody prevalence in the present survey at medical institution is higher than that in Tokyo and in Osaka measured by the government suggesting that subclinical infections are occurring more frequently than expected. No background factor that influenced antibody-positive status due to subclinical infection was identified.
Collapse
|
12
|
Chia WN, Tan CW, Foo R, Kang AEZ, Peng Y, Sivalingam V, Tiu C, Ong XM, Zhu F, Young BE, Chen MIC, Tan YJ, Lye DC, Anderson DE, Wang LF. Serological differentiation between COVID-19 and SARS infections. Emerg Microbes Infect 2020; 9:1497-1505. [PMID: 32529906 PMCID: PMC7473126 DOI: 10.1080/22221751.2020.1780951] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In response to the coronavirus disease 2019 (COVID-19) outbreak, caused by SARS-CoV-2, multiple diagnostic tests are required for acute disease diagnosis, contact tracing, monitoring asymptomatic infection rates and assessing herd immunity. While PCR remains the frontline test of choice in the acute diagnostic setting, serological tests are urgently needed. Unlike PCR tests which are highly specific, cross-reactivity is a major challenge for COVID-19 antibody tests considering there are six other coronaviruses known to infect humans. SARS-CoV is genetically related to SARS-CoV-2 sharing approximately 80% sequence identity and both belong to the species SARS related coronavirus in the genus Betacoronavirus of family Coronaviridae. We developed and compared the performance of four different serological tests to comprehensively assess the cross-reactivity between COVID-19 and SARS patient sera. There is significant cross-reactivity when N protein of either virus is used. The S1 or RBD regions from the spike (S) protein offers better specificity. Amongst the different platforms, capture ELISA performed best. We found that SARS survivors all have significant levels of antibodies remaining in their blood 17 years after infection. Anti-N antibodies waned more than anti-RBD antibodies, and the latter is known to play a more important role in providing protective immunity.
Collapse
Affiliation(s)
- Wan Ni Chia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Randy Foo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Adrian Eng Zheng Kang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Yilong Peng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Velraj Sivalingam
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Charles Tiu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Xin Mei Ong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Barnaby E Young
- National Centre for Infectious Diseases, Singapore, Singapore.,Tan Tock Seng Hospital, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Mark I-C Chen
- National Centre for Infectious Diseases, Singapore, Singapore.,Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Yee-Joo Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - David C Lye
- National Centre for Infectious Diseases, Singapore, Singapore.,Tan Tock Seng Hospital, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Danielle E Anderson
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
13
|
Millán-Oñate J, Rodriguez-Morales AJ, Camacho-Moreno G, Mendoza-Ramírez H, Rodríguez-Sabogal IA, Álvarez-Moreno C. A new emerging zoonotic virus of concern: the 2019 novel Coronavirus (COVID-19). INFECTIO 2020. [DOI: 10.22354/in.v24i3.848] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
14
|
COVID-19, an Emerging Coronavirus Infection: Current Scenario and Recent Developments – An Overview. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.02] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
15
|
Conceição-Neto N, Theuns S, Cui T, Zeller M, Yinda CK, Christiaens I, Heylen E, Van Ranst M, Carpentier S, Nauwynck HJ, Matthijnssens J. Identification of an enterovirus recombinant with a torovirus-like gene insertion during a diarrhea outbreak in fattening pigs. Virus Evol 2017; 3:vex024. [PMID: 28924489 PMCID: PMC5591953 DOI: 10.1093/ve/vex024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diarrhea outbreaks in pig farms have raised major concerns in Europe and USA, as they can lead to dramatic pig losses. During a suspected outbreak in Belgium of porcine epidemic diarrhea virus (PEDV), we performed viral metagenomics to assess other potential viral pathogens. Although PEDV was detected, its low abundance indicated that other viruses were involved in the outbreak. Interestingly, a porcine bocavirus and several enteroviruses were most abundant in the sample. We also observed the presence of a porcine enterovirus genome with a gene insertion, resembling a C28 peptidase gene found in toroviruses, which was confirmed using re-sequencing, bioinformatics, and proteomics approaches. Moreover, the predicted cleavage sites for the insertion suggest that this gene was being expressed as a single protein, rather than a fused protein. Recombination in enteroviruses has been reported as a major mechanism to generate genetic diversity, but gene insertions across viral families are rather uncommon. Although such inter-family recombinations are rare, our finding suggests that these events may significantly contribute to viral evolution.
Collapse
Affiliation(s)
- Nádia Conceição-Neto
- Laboratory of Viral Metagenomics, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, B-3000 Leuven, Belgium.,Laboratory of Clinical Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, B-3000 Leuven, Belgium
| | - Sebastiaan Theuns
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Tingting Cui
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Mark Zeller
- Laboratory of Viral Metagenomics, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, B-3000 Leuven, Belgium
| | - Claude Kwe Yinda
- Laboratory of Viral Metagenomics, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, B-3000 Leuven, Belgium.,Laboratory of Clinical Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, B-3000 Leuven, Belgium
| | - Isaura Christiaens
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Elisabeth Heylen
- Laboratory of Viral Metagenomics, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, B-3000 Leuven, Belgium
| | - Marc Van Ranst
- Laboratory of Clinical Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, B-3000 Leuven, Belgium
| | - Sebastien Carpentier
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven - University of Leuven, B-3000 Leuven, Belgium.,Facility for Systems Biology Based Mass Spectrometry (SYBIOMA), KU Leuven - University of Leuven, B-3000 Leuven, Belgium
| | - Hans J Nauwynck
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven - University of Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
16
|
Menachery VD, Graham RL, Baric RS. Jumping species-a mechanism for coronavirus persistence and survival. Curr Opin Virol 2017; 23:1-7. [PMID: 28214731 PMCID: PMC5474123 DOI: 10.1016/j.coviro.2017.01.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/01/2017] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Abstract
Zoonotic transmission of novel viruses represents a significant threat to global public health and is fueled by globalization, the loss of natural habitats, and exposure to new hosts. For coronaviruses (CoVs), broad diversity exists within bat populations and uniquely positions them to seed future emergence events. In this review, we explore the host and viral dynamics that shape these CoV populations for survival, amplification, and possible emergence in novel hosts.
Collapse
Affiliation(s)
- Vineet D Menachery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rachel L Graham
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
17
|
Huang C, Liu WJ, Xu W, Jin T, Zhao Y, Song J, Shi Y, Ji W, Jia H, Zhou Y, Wen H, Zhao H, Liu H, Li H, Wang Q, Wu Y, Wang L, Liu D, Liu G, Yu H, Holmes EC, Lu L, Gao GF. A Bat-Derived Putative Cross-Family Recombinant Coronavirus with a Reovirus Gene. PLoS Pathog 2016; 12:e1005883. [PMID: 27676249 PMCID: PMC5038965 DOI: 10.1371/journal.ppat.1005883] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/19/2016] [Indexed: 12/21/2022] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 has generated enormous interest in the biodiversity, genomics and cross-species transmission potential of coronaviruses, especially those from bats, the second most speciose order of mammals. Herein, we identified a novel coronavirus, provisionally designated Rousettus bat coronavirus GCCDC1 (Ro-BatCoV GCCDC1), in the rectal swab samples of Rousettus leschenaulti bats by using pan-coronavirus RT-PCR and next-generation sequencing. Although the virus is similar to Rousettus bat coronavirus HKU9 (Ro-BatCoV HKU9) in genome characteristics, it is sufficiently distinct to be classified as a new species according to the criteria defined by the International Committee of Taxonomy of Viruses (ICTV). More striking was that Ro-BatCoV GCCDC1 contained a unique gene integrated into the 3'-end of the genome that has no homologs in any known coronavirus, but which sequence and phylogeny analyses indicated most likely originated from the p10 gene of a bat orthoreovirus. Subgenomic mRNA and cellular-level observations demonstrated that the p10 gene is functional and induces the formation of cell syncytia. Therefore, here we report a putative heterologous inter-family recombination event between a single-stranded, positive-sense RNA virus and a double-stranded segmented RNA virus, providing insights into the fundamental mechanisms of viral evolution.
Collapse
Affiliation(s)
- Canping Huang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - William J. Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wen Xu
- Yunnan Provincial Center for Disease Control and Prevention, Kunming Yunnan, China
| | - Tao Jin
- China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Yingze Zhao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Jingdong Song
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei Ji
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Hao Jia
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongming Zhou
- Yunnan Provincial Center for Disease Control and Prevention, Kunming Yunnan, China
| | - Honghua Wen
- Center for Disease Control and Prevention of Mengla County, Mengla Yunnan, China
| | - Honglan Zhao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Huaxing Liu
- Center for Disease Control and Prevention of Mengla County, Mengla Yunnan, China
| | - Hong Li
- Yunnan Provincial Center for Disease Control and Prevention, Kunming Yunnan, China
| | - Qihui Wang
- CAS Key Laboratory of Microbial and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ying Wu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liang Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Di Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Network Information Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guang Liu
- China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, China
| | - Hongjie Yu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-warning on Infectious Disease, Chinese Centre for Disease Control and Prevention, Beijing, China
| | - Edward C. Holmes
- Marie Bashir Institute of Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Lin Lu
- Yunnan Provincial Center for Disease Control and Prevention, Kunming Yunnan, China
| | - George F. Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- Office of Director-General, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| |
Collapse
|
18
|
Affiliation(s)
- Lanlan Liu
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
- Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China
- Research Center for Prevention and Control of Infectious Diseases of Guangdong Province, Guangzhou, 510080, China
- One Health Center, Guangzhou, 510080, China
| | - Tao Wang
- Zhongshan Centers for Disease Control and Prevention, Zhongshan, 528400, China
- Zhongshan Research Institute, Zhongshan, 528400, China
| | - Jiahai Lu
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
- Key Laboratory for Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China.
- Research Center for Prevention and Control of Infectious Diseases of Guangdong Province, Guangzhou, 510080, China.
- One Health Center, Guangzhou, 510080, China.
- Zhongshan Research Institute, Zhongshan, 528400, China.
| |
Collapse
|
19
|
Liu DX, Fung TS, Chong KKL, Shukla A, Hilgenfeld R. Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res 2014; 109:97-109. [PMID: 24995382 PMCID: PMC7113789 DOI: 10.1016/j.antiviral.2014.06.013] [Citation(s) in RCA: 303] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 01/21/2023]
Abstract
The huge RNA genome of SARS coronavirus comprises a number of open reading frames that code for a total of eight accessory proteins. Although none of these are essential for virus replication, some appear to have a role in virus pathogenesis. Notably, some SARS-CoV accessory proteins have been shown to modulate the interferon signaling pathways and the production of pro-inflammatory cytokines. The structural information on these proteins is also limited, with only two (p7a and p9b) having their structures determined by X-ray crystallography. This review makes an attempt to summarize the published knowledge on SARS-CoV accessory proteins, with an emphasis on their involvement in virus-host interaction. The accessory proteins of other coronaviruses are also briefly discussed. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses" (see Introduction by Hilgenfeld and Peiris (2013)).
Collapse
Affiliation(s)
- Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - To Sing Fung
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Kelvin Kian-Long Chong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Aditi Shukla
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; German Center for Infection Research (DZIF), University of Lübeck, Germany
| | - Rolf Hilgenfeld
- Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; German Center for Infection Research (DZIF), University of Lübeck, Germany
| |
Collapse
|
20
|
Characterization of a novel influenza virus in cattle and Swine: proposal for a new genus in the Orthomyxoviridae family. mBio 2014; 5:e00031-14. [PMID: 24595369 PMCID: PMC3958797 DOI: 10.1128/mbio.00031-14] [Citation(s) in RCA: 248] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have recently reported the isolation of a novel virus, provisionally designated C/swine/Oklahoma/1334/2011 (C/OK), with 50% overall homology to human influenza C viruses (ICV), from a pig in Oklahoma. Deep RNA sequencing of C/OK virus found a matrix 1 (M1) protein expression strategy that differed from that of ICV. The novelty of C/OK virus prompted us to investigate whether C/OK virus could exist in a nonswine species. Significantly, we found that C/OK virus was widespread in U.S. bovine herds, as demonstrated by reverse transcription (RT)-PCR and serological assays. Genome sequencing of three bovine viruses isolated from two herds in different states further confirmed these findings. To determine whether swine/bovine C/OK viruses can undergo reassortment with human ICV, and to clarify the taxonomic status of C/OK, in vitro reassortment and serological typing by agar gel immunodiffusion (AGID) were conducted. In vitro reassortment using two human ICV and two swine and bovine C/OK viruses demonstrated that human ICV and C/OK viruses were unable to reassort and produce viable progeny. Antigenically, no cross-recognition of detergent split virions was observed in AGID between human and nonhuman viruses by using polyclonal antibodies that were reactive to cognate antigens. Taken together, these results demonstrate that C/OK virus is genetically and antigenically distinct from ICV. The classification of the new virus in a separate genus of the Orthomyxoviridae family is proposed. The finding of C/OK virus in swine and bovine indicates that this new virus may spread and establish infection in other mammals, including humans. Influenza C viruses (ICV) are common human pathogens, infecting most people during childhood and adolescence, and typically cause mild respiratory symptoms. While ICV have been isolated from both pigs and dogs, humans are thought to be the natural viral reservoir. Previously, we characterized an ICV-like virus isolated from pigs exhibiting symptoms of influenza virus-like illness. Here, we show molecular and serological data demonstrating widespread circulation of similar viruses in bovines. Deep RNA sequencing, phylogenetic analysis, and in vitro reassortment experiments demonstrate that animal ICV-like viruses are genetically distinct from human ICV. Antigenically, we show that ICV-like viruses are not recognized by ICV antibodies. En masse, these results suggest that bovine influenza virus warrants classification as a new genus of influenza virus. The finding of this novel virus that can infect multiple mammalian species warrants further research into its role in human health.
Collapse
|
21
|
Human coronaviruses: Clinical features and phylogenetic analysis. Biomedicine (Taipei) 2013; 3:43-50. [PMID: 32289002 PMCID: PMC7103958 DOI: 10.1016/j.biomed.2012.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/23/2012] [Accepted: 12/19/2012] [Indexed: 12/19/2022] Open
Abstract
Strains of human coronavirus (HCoV), namely HCoV-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1, primarily infect the upper respiratory and gastrointestinal tracts and are the most common cause of non-rhinovirus-induced common cold in humans. Although the manifestations of coronavirus infection (i.e., rhinorrhea, sneezing, cough, nasal obstruction, and bronchitis) are generally self-limiting in healthy adults, certain strains such as HCoV-NL63 and HCoV-HKU1 can cause severe lower respiratory tract infection and febrile seizure, especially in infants, people of advanced age, and immunocompromised hosts. In 2003, a novel HCoV strain was identified as the causative agent of the severe acute respiratory syndrome (SARS) epidemic that began in Asia in 2002. The strain has hence been referred to as SARS-CoV. In addition, as recently as September 2012, another novel HCoV, human betacoronavirus 2c EMC2012, was identified as being the cause of fever, renal failure, pneumonia, and severe respiratory distress in two patients in the Middle East. Phylogenetic analysis has revealed highly conserved sequences of ORF1ab, spike, nucleocapsid, and envelope protein genes, but not membrane protein genes, between human betacoronavirus 2c EMC2012 and SARS-CoV. This review focuses on the differences in the genomes of certain HCoV strains, the pathogenesis of said strains, and recent developments in the establishment of therapeutic agents that might aid in the treatment of patients with such infections.
Collapse
|
22
|
The acetyl-esterase activity of the hemagglutinin-esterase protein of human coronavirus OC43 strongly enhances the production of infectious virus. J Virol 2013; 87:3097-107. [PMID: 23283955 DOI: 10.1128/jvi.02699-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Most betacoronaviruses possess an hemagglutinin-esterase (HE) protein, which appears to play a role in binding to or release from the target cell. Since this HE protein possesses an acetyl-esterase activity that removes acetyl groups from O-acetylated sialic acid, a role as a receptor-destroying enzyme has been postulated. However, the precise function of HE and of its enzymatic activity remains poorly understood. Making use of neutralizing antibody and of molecular clones of recombinant human coronavirus OC43 (HCoV-OC43), our results suggest that the HE protein of this HCoV could be associated with infection of target cells and, most notably, is important in the production of infectious viral particles. Indeed, after transfecting BHK-21 cells with various cDNA infectious clones of HCoV-OC43, either lacking the HE protein or bearing an HE protein with a nonfunctional acetyl-esterase enzymatic activity, we were reproducibly unable to detect recombinant infectious viruses compared to the reference infectious HCoV-OC43 clone pBAC-OC43(FL). Complementation experiments, using BHK-21 cells expressing wild-type HE, either transiently or in a stable ectopic expression, demonstrate that this protein plays a very significant role in the production of infectious recombinant coronaviral particles that can subsequently more efficiently infect susceptible epithelial and neuronal cells. Even though the S protein is the main viral factor influencing coronavirus infection of susceptible cells, our results taken together indicate that a functionally active HE protein enhances the infectious properties of HCoV-OC43 and contributes to efficient virus dissemination in cell culture.
Collapse
|
23
|
Park JE, Cruz DJM, Shin HJ. Trypsin-induced hemagglutination activity of porcine epidemic diarrhea virus. Arch Virol 2010; 155:595-9. [PMID: 20217154 PMCID: PMC7087193 DOI: 10.1007/s00705-010-0620-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 12/23/2009] [Indexed: 11/30/2022]
Abstract
The hemagglutination (HA) activity of porcine epidemic diarrhea virus (PEDV) was investigated. Two cell-adapted strains of PEDV (KPEDV-9 and SM98LVec) were subjected to HA test against erythrocytes of various origin. Both strains showed HA activity with rabbit erythrocytes only after treatment with trypsin or neuraminidase. Optimal conditions for inducing HA activity of PEDV were 2 h incubation at 37 degrees C using phosphate-buffered saline containing 0.1% BSA. These results suggest that the HA activity of PEDV is most likely caused by proteolytic action on it, which could be developed as a new diagnostic method to rapidly detect and differentiate PEDV infections from other enteric diseases.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Infectious Disease, College of Veterinary Medicine, Chungnam National University, Daejeon 305-764, Korea
| | | | | |
Collapse
|
24
|
Vabret A, Dina J, Brison E, Brouard J, Freymuth F. [Human coronaviruses]. PATHOLOGIE-BIOLOGIE 2009; 57:149-60. [PMID: 18456429 PMCID: PMC7125620 DOI: 10.1016/j.patbio.2008.02.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 02/28/2008] [Indexed: 01/19/2023]
Abstract
Coronaviruses are a large group of viruses and infect a lot of species of mammals and birds. Five coronaviruses currently infect humans: HCoVs 229E and OC43, identified in the 1960s, SARS-CoV identified in March 2003 during the SARS epidemic, and the HCoVs NL63 and HKU1, identified in 2004 and 2005 respectively. The genome of the coronaviruses is a linear, non-segmented, positive-sense single-stranded RNA molecule of approximately 30kb. The evolution of these viruses occurs through some features: the generation of multiple mutants during the replication resulting on a quasispecies structure of the viral population, the demonstrated ability of coronaviruses to establish persistent infections, the flexibility of the genome due to a high frequency of homologue or heterologue recombinations, the ability to jump barrier species and to adapt to the new environment. Two epidemiologic pictures of HCoV infections have to be distinguished: as suggested by recent studies, HCoVs except SARS-CoV, are distributed worldwide and cocirculate during seasonal outbreaks. The distribution of the different HCoV species varies according to the geographic area and season. In contrast, the SARS-CoV is responsible of the first emerging infectious disease of this millennium, infecting more than 8000 people between November 2002 and July 2003. Its circulation has been stopped by drastic public health policy. Human coronaviruses may be also involved in enteric and neurologic diseases. The detection of these viruses is difficult and mainly based on molecular assays (RT-PCR). There is no established specific therapy to date.
Collapse
Affiliation(s)
- A Vabret
- Laboratoire de virologie, EA 2128, centre hospitalo-universitaire de Caen, avenue Georges-Clemenceau, 14033 Caen cedex, France.
| | | | | | | | | |
Collapse
|
25
|
Garry CE, Garry RF. Proteomics computational analyses suggest that baculovirus GP64 superfamily proteins are class III penetrenes. Virol J 2008; 5:28. [PMID: 18282283 PMCID: PMC2288602 DOI: 10.1186/1743-422x-5-28] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 02/18/2008] [Indexed: 11/10/2022] Open
Abstract
Background Members of the Baculoviridae encode two types of proteins that mediate virus:cell membrane fusion and penetration into the host cell. Alignments of primary amino acid sequences indicate that baculovirus fusion proteins of group I nucleopolyhedroviruses (NPV) form the GP64 superfamily. The structure of these viral penetrenes has not been determined. The GP64 superfamily includes the glycoprotein (GP) encoded by members of the Thogotovirus genus of the Orthomyxoviridae. The entry proteins of other baculoviruses, group II NPV and granuloviruses, are class I penetrenes. Results Class III penetrenes encoded by members of the Rhabdoviridae and Herpesviridae have an internal fusion domain comprised of beta sheets, other beta sheet domains, an extended alpha helical domain, a membrane proximal stem domain and a carboxyl terminal anchor. Similar sequences and structural/functional motifs that characterize class III penetrenes are located collinearly in GP64 of group I baculoviruses and related glycoproteins encoded by thogotoviruses. Structural models based on a prototypic class III penetrene, vesicular stomatitis virus glycoprotein (VSV G), were established for Thogoto virus (THOV) GP and Autographa california multiple NPV (AcMNPV) GP64 demonstrating feasible cysteine linkages. Glycosylation sites in THOV GP and AcMNPV GP64 appear in similar model locations to the two glycosylation sites of VSV G. Conclusion These results suggest that proteins in the GP64 superfamily are class III penetrenes.
Collapse
Affiliation(s)
- Courtney E Garry
- Department of Biology, The University of Texas at Austin, Austin, Texas, 78701, USA.
| | | |
Collapse
|
26
|
Chu VC, McElroy LJ, Aronson JM, Oura TJ, Harbison CE, Bauman BE, Whittaker GR. Feline aminopeptidase N is not a functional receptor for avian infectious bronchitis virus. Virol J 2007; 4:20. [PMID: 17324273 PMCID: PMC1810517 DOI: 10.1186/1743-422x-4-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 02/26/2007] [Indexed: 12/31/2022] Open
Abstract
Background Coronaviruses are an important cause of infectious diseases in humans, including severe acute respiratory syndrome (SARS), and have the continued potential for emergence from animal species. A major factor in the host range of a coronavirus is its receptor utilization on host cells. In many cases, coronavirus-receptor interactions are well understood. However, a notable exception is the receptor utilization by group 3 coronaviruses, including avian infectious bronchitis virus (IBV). Feline aminopeptidase N (fAPN) serves as a functional receptor for most group 1 coronaviruses including feline infectious peritonitis virus (FIPV), canine coronavirus, transmissible gastroenteritis virus (TGEV), and human coronavirus 229E (HCoV-229E). A recent report has also suggested a role for fAPN during IBV entry (Miguel B, Pharr GT, Wang C: The role of feline aminopeptidase N as a receptor for infectious bronchitis virus. Brief review. Arch Virol 2002, 147:2047–2056. Results Here we show that, whereas both transient transfection and constitutive expression of fAPN on BHK-21 cells can rescue FIPV and TGEV infection in non-permissive BHK cells, fAPN expression does not rescue infection by the prototype IBV strain Mass41. To account for the previous suggestion that fAPN could serve as an IBV receptor, we show that feline cells can be infected with the prototype strain of IBV (Mass 41), but with low susceptibility compared to primary chick kidney cells. We also show that BHK-21 cells are slightly susceptible to certain IBV strains, including Ark99, Ark_DPI, CA99, and Iowa97 (<0.01% efficiency), but this level of infection is not increased by fAPN expression. Conclusion We conclude that fAPN is not a functional receptor for IBV, the identity of which is currently under investigation.
Collapse
Affiliation(s)
- Victor C Chu
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Lisa J McElroy
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Jed M Aronson
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Trisha J Oura
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Carole E Harbison
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Beverley E Bauman
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Gary R Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
27
|
Tang XC, Zhang JX, Zhang SY, Wang P, Fan XH, Li LF, Li G, Dong BQ, Liu W, Cheung CL, Xu KM, Song WJ, Vijaykrishna D, Poon LLM, Peiris JSM, Smith GJD, Chen H, Guan Y. Prevalence and genetic diversity of coronaviruses in bats from China. J Virol 2006; 80:7481-90. [PMID: 16840328 PMCID: PMC1563713 DOI: 10.1128/jvi.00697-06] [Citation(s) in RCA: 259] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coronaviruses can infect a variety of animals including poultry, livestock, and humans and are currently classified into three groups. The interspecies transmissions of coronaviruses between different hosts form a complex ecosystem of which little is known. The outbreak of severe acute respiratory syndrome (SARS) and the recent identification of new coronaviruses have highlighted the necessity for further investigation of coronavirus ecology, in particular the role of bats and other wild animals. In this study, we sampled bat populations in 15 provinces of China and reveal that approximately 6.5% of the bats, from diverse species distributed throughout the region, harbor coronaviruses. Full genomes of four coronavirues from bats were sequenced and analyzed. Phylogenetic analyses of the spike, envelope, membrane, and nucleoprotein structural proteins and the two conserved replicase domains, putative RNA-dependent RNA polymerase and RNA helicase, revealed that bat coronaviruses cluster in three different groups: group 1, another group that includes all SARS and SARS-like coronaviruses (putative group 4), and an independent bat coronavirus group (putative group 5). Further genetic analyses showed that different species of bats maintain coronaviruses from different groups and that a single bat species from different geographic locations supports similar coronaviruses. Thus, the findings of this study suggest that bats may play an integral role in the ecology and evolution of coronaviruses.
Collapse
Affiliation(s)
- X C Tang
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, The University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Vabret A, Dina J, Gouarin S, Petitjean J, Corbet S, Freymuth F. Detection of the new human coronavirus HKU1: a report of 6 cases. Clin Infect Dis 2006; 42:634-9. [PMID: 16447108 PMCID: PMC7107802 DOI: 10.1086/500136] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 10/04/2005] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Human coronavirus HKU1 (HCoV-HKU1), a new group 2 coronavirus, was first characterized in 2005 from 2 adults with pneumonia in Hong Kong, China. To the best of our knowledge, there is no other report to date about the detection of this new virus. We report a molecular method allowing for the detection of HCoV-HKU1 and also report the clinical presentation of 6 infected patients. METHODS We screened 141 specimens (135 nasal samples and 6 stool samples) received in February and March 2005 in our laboratory and obtained from 135 hospitalized patients (61.5% of whom were <5 years old and 34.1% of whom were >20 years old) for HCoV-HKU1. RESULTS HCoV-HKU1 was detected in 6 (4.4%) of the 135 nasal specimens and in 2 (33.3%) of the 6 stool samples; the positive samples were obtained from 6 patients (5 children and 1 adult). The clinical presentation of these 6 patients was as follows: 3 were admitted to the hospital for acute enteric disease resulting in severe dehydration associated with upper respiratory symptoms; 1 had fever, otitis, and febrile seizure; 1 had a sample obtained to investigate failure to thrive; and 1 had a sample obtained for exploration of X-linked agammaglobulinemia and hyperleucocytosis. CONCLUSION HCoV-HKU1 can be detected in respiratory and stool samples from children and adults in a part of the world other than Hong Kong. Our results suggest that HCoV-HKU1 could be associated with respiratory and enteric diseases, and its detection can be related to a persistent asymptomatic infection in patients with poor underlying conditions.
Collapse
Affiliation(s)
- Astrid Vabret
- Laboratory of Virology, University Hospital of Caen, Caen, France.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
The world was shocked in early 2003 when a pandemic of severe acute respiratory syndrome (SARS) was imminent. The outbreak of this novel disease, caused by a novel coronavirus (the SARS-coronavirus), hit hardest in the Asian Pacific region, though eventually it spread to five continents. The speed of the spread of the SARS epidemic was unprecedented due to the highly efficient intercontinental transportation. An international collaborative effort through the World Health Organization (WHO) has helped to identify the aetiological agent about 1 month after the onset of the epidemic. The power of molecular biology and bioinformatics has enabled the complete decoding of the viral genome within weeks. Over 1000 publications on the phylogeny, epidemiology, genomics, laboratory diagnostics, antiviral, immunization, pathogenesis, clinical disease, and management accumulated within just 1 year. Although the exact animal reservoir of virus and how it evolved into a human pathogen are still obscure, accurate diagnosis and epidemiological control of the disease are now possible. This article reviews what is currently known about the virus and the disease.
Collapse
Affiliation(s)
- Samson S. Y. Wong
- Department of Microbiology, The University of Hong Kong, University Pathology Building, Queen Mary Hospital, Pokfulam Road, Hong Kong
| | - K. Y. Yuen
- Department of Microbiology, The University of Hong Kong, University Pathology Building, Queen Mary Hospital, Pokfulam Road, Hong Kong
| |
Collapse
|
30
|
Vijgen L, Keyaerts E, Lemey P, Moës E, Li S, Vandamme AM, Van Ranst M. Circulation of genetically distinct contemporary human coronavirus OC43 strains. Virology 2005; 337:85-92. [PMID: 15914223 PMCID: PMC7111800 DOI: 10.1016/j.virol.2005.04.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 04/05/2005] [Accepted: 04/07/2005] [Indexed: 11/25/2022]
Abstract
In this study, we report the complete genome sequence of two contemporary human coronavirus OC43 (HCoV-OC43) strains detected in 2003 and 2004, respectively. Comparative genetic analyses of the circulating strains and the prototype HCoV-OC43 strain (ATCC VR759) were performed. Remarkably, a lower than expected similarity is found between the complete genomes and more in particular between the spike genes of the BE03 and BE04 strains. This finding suggests the existence of two genetically distinct HCoV-OC43 strains, circulating in Belgium in 2003 and 2004. Spike gene sequencing of three additional 2003 and two additional 2004 HCoV-OC43 strains, and subsequent phylogenetic analysis confirm this assumption. Compared to the ATCC prototype HCoV-OC43 strain, an important amino acid substitution is present in the potential cleavage site sequence of the spike protein of all contemporary strains, restoring the N-RRXRR-C motif, associated with increased spike protein cleavability in bovine coronaviruses. We here describe specific characteristics associated with circulating HCoV-OC43 strains, and we provide substantial evidence for the genetic variability of HCoV-OC43.
Collapse
Affiliation(s)
- Leen Vijgen
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
31
|
Vijgen L, Keyaerts E, Moës E, Thoelen I, Wollants E, Lemey P, Vandamme AM, Van Ranst M. Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J Virol 2005; 79:1595-604. [PMID: 15650185 PMCID: PMC544107 DOI: 10.1128/jvi.79.3.1595-1604.2005] [Citation(s) in RCA: 402] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coronaviruses are enveloped, positive-stranded RNA viruses with a genome of approximately 30 kb. Based on genetic similarities, coronaviruses are classified into three groups. Two group 2 coronaviruses, human coronavirus OC43 (HCoV-OC43) and bovine coronavirus (BCoV), show remarkable antigenic and genetic similarities. In this study, we report the first complete genome sequence (30,738 nucleotides) of the prototype HCoV-OC43 strain (ATCC VR759). Complete genome and open reading frame (ORF) analyses were performed in comparison to the BCoV genome. In the region between the spike and membrane protein genes, a 290-nucleotide deletion is present, corresponding to the absence of BCoV ORFs ns4.9 and ns4.8. Nucleotide and amino acid similarity percentages were determined for the major HCoV-OC43 ORFs and for those of other group 2 coronaviruses. The highest degree of similarity is demonstrated between HCoV-OC43 and BCoV in all ORFs with the exception of the E gene. Molecular clock analysis of the spike gene sequences of BCoV and HCoV-OC43 suggests a relatively recent zoonotic transmission event and dates their most recent common ancestor to around 1890. An evolutionary rate in the order of 4 x 10(-4) nucleotide changes per site per year was estimated. This is the first animal-human zoonotic pair of coronaviruses that can be analyzed in order to gain insights into the processes of adaptation of a nonhuman coronavirus to a human host, which is important for understanding the interspecies transmission events that led to the origin of the severe acute respiratory syndrome outbreak.
Collapse
Affiliation(s)
- Leen Vijgen
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, BE-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Vijgen L, Keyaerts E, Moës E, Thoelen I, Wollants E, Lemey P, Vandamme AM, Van Ranst M. Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J Virol 2005. [PMID: 15650185 DOI: 10.1128/jvi.79.3.1595–1604.2005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023] Open
Abstract
Coronaviruses are enveloped, positive-stranded RNA viruses with a genome of approximately 30 kb. Based on genetic similarities, coronaviruses are classified into three groups. Two group 2 coronaviruses, human coronavirus OC43 (HCoV-OC43) and bovine coronavirus (BCoV), show remarkable antigenic and genetic similarities. In this study, we report the first complete genome sequence (30,738 nucleotides) of the prototype HCoV-OC43 strain (ATCC VR759). Complete genome and open reading frame (ORF) analyses were performed in comparison to the BCoV genome. In the region between the spike and membrane protein genes, a 290-nucleotide deletion is present, corresponding to the absence of BCoV ORFs ns4.9 and ns4.8. Nucleotide and amino acid similarity percentages were determined for the major HCoV-OC43 ORFs and for those of other group 2 coronaviruses. The highest degree of similarity is demonstrated between HCoV-OC43 and BCoV in all ORFs with the exception of the E gene. Molecular clock analysis of the spike gene sequences of BCoV and HCoV-OC43 suggests a relatively recent zoonotic transmission event and dates their most recent common ancestor to around 1890. An evolutionary rate in the order of 4 x 10(-4) nucleotide changes per site per year was estimated. This is the first animal-human zoonotic pair of coronaviruses that can be analyzed in order to gain insights into the processes of adaptation of a nonhuman coronavirus to a human host, which is important for understanding the interspecies transmission events that led to the origin of the severe acute respiratory syndrome outbreak.
Collapse
Affiliation(s)
- Leen Vijgen
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Minderbroedersstraat 10, BE-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
To investigate whether rubella virus (RUB) undergoes intermolecular RNA-RNA recombination, cells were cotransfected with pairs of in vitro transcripts from genomic cDNA plasmid vectors engineered to contain nonoverlapping deletions: the replicative transcript maintained the 5'-proximal nonstructural (NS) ORF (which contained the replicase, making it RNA replication competent), had a deletion in the 3'-proximal structural protein (SP) ORF, and maintained the 3' end of the genome, including the putative 3' cis-acting elements (CSE), while the nonreplicative transcript consisted of the 3' half of the genome including the SP-ORF and 3' CSE. Cotransfection yielded plaque-forming virus that synthesized the standard genomic and subgenomic RNAs and thus was generated by RNA-RNA recombination. Using transcripts tagged with a 3'-terminal deletion, it was found that recombinants contained the 3' end derived from the replicative strand, indicating a cis-preference for initiation of negative-strand synthesis. In cotransfections in which the replicative transcript lacked the 3' CSE, recombination occurred, albeit at lower efficiency, indicating that initiation in trans from the NS-ORF can occur. The 3' CSE was sufficient as a nonreplicative transcript, showing that it can serve as a promoter for negative-strand RNA synthesis. While deletion mutagenesis showed that the presence of the junction untranslated region (J-UTR) between the ORFs appeared to be necessary on both transcripts for recombination in this region of the genome, analysis with transcripts tagged with restriction sites showed that the J-UTR was not a hot spot for recombination compared to neighboring regions in both ORFs. Sequence analysis of recombinants revealed that both precise (homologous) and imprecise recombination (aberrant, homologous resulting in duplications) occurred; however, imprecise recombination only involved the J-UTR or the 3' end of the NS-ORF and the J-UTR (maintaining the NS-ORF), indicating selection pressure against duplications in other regions of the genome.
Collapse
Affiliation(s)
- Sandra D Adams
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | |
Collapse
|
34
|
Regl G, Kaser A, Iwersen M, Schmid H, Kohla G, Strobl B, Vilas U, Schauer R, Vlasak R. The hemagglutinin-esterase of mouse hepatitis virus strain S is a sialate-4-O-acetylesterase. J Virol 1999; 73:4721-7. [PMID: 10233932 PMCID: PMC112514 DOI: 10.1128/jvi.73.6.4721-4727.1999] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/1998] [Accepted: 03/05/1999] [Indexed: 11/20/2022] Open
Abstract
By comparative analysis of the hemagglutinin-esterase (HE) protein of mouse hepatitis virus strain S (MHV-S) and the HE protein of influenza C virus, we found major differences in substrate specificities. In striking contrast to the influenza C virus enzyme, the MHV-S esterase was unable to release acetate from bovine submandibulary gland mucin. Furthermore, MHV-S could not remove influenza C virus receptors from erythrocytes. Analysis with free sialic acid derivatives revealed that the MHV-S HE protein specifically de-O-acetylates 5-N-acetyl-4-O-acetyl sialic acid (Neu4, 5Ac2) but not 5-N-acetyl-9-O-acetyl sialic acid (Neu5,9Ac2), which is the major substrate for esterases of influenza C virus and bovine coronaviruses. In addition, the MHV-S esterase converted glycosidically bound Neu4,5Ac2 of guinea pig serum glycoproteins to Neu5Ac. By expression of the MHV esterase with recombinant vaccinia virus and incubation with guinea pig serum, we demonstrated that the viral HE possesses sialate-4-O-acetylesterase activity. In addition to observed enzymatic activity, MHV-S exhibited affinity to guinea pig and horse serum glycoproteins. Binding required sialate-4-O-acetyl groups and was abolished by chemical de-O-acetylation. Since Neu4,5Ac2 has not been identified in mice, the nature of potential substrates and/or secondary receptors for MHV-S in the natural host remains to be determined. The esterase of MHV-S is the first example of a viral enzyme with high specificity and affinity toward 4-O-acetylated sialic acids.
Collapse
Affiliation(s)
- G Regl
- Austrian Academy of Sciences, Institute of Molecular Biology, A-5020 Salzburg, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chouljenko VN, Kousoulas KG, Lin X, Storz J. Nucleotide and predicted amino acid sequences of all genes encoded by the 3' genomic portion (9.5 kb) of respiratory bovine coronaviruses and comparisons among respiratory and enteric coronaviruses. Virus Genes 1998; 17:33-42. [PMID: 9778786 PMCID: PMC7089133 DOI: 10.1023/a:1008048916808] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The 3'-ends of the genomes (9538 bp) of two wild-type respiratory bovine coronavirus (RBCV) isolates LSU and OK were obtained by cDNA sequencing. In addition, the 3'-end of the genome (9545) of the wild-type enteric bovine coronavirus (EBCV) strain LY-138 was assembled from available sequences and by cDNA sequencing of unknown genomic regions. Comparative analyses of RBCV and EBCV nucleotide and deduced amino acid sequences revealed that RBCV-specific nucleotide and amino acid differences were disproportionally concentrated within the S gene and the genomic region between the S and E genes. Comparisons among virulent and avirulent BCV strains revealed that virulence-specific nucleotide and amino acid changes were located within the S and E genes, and the 32 kDa open reading frame.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cattle
- Coronavirus, Bovine/genetics
- Coronavirus, Bovine/pathogenicity
- DNA, Viral/chemistry
- DNA, Viral/genetics
- Digestive System/virology
- Genes, Viral/genetics
- Humans
- Membrane Glycoproteins/genetics
- Molecular Sequence Data
- Open Reading Frames/genetics
- Phylogeny
- Respiratory System/virology
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Species Specificity
- Spike Glycoprotein, Coronavirus
- Tumor Cells, Cultured
- Viral Envelope Proteins/genetics
- Viral Proteins/genetics
- Viral Structural Proteins/genetics
- Virulence
Collapse
Affiliation(s)
- V N Chouljenko
- Department of Veterinary Microbiology and Parasitology, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70803, USA
| | | | | | | |
Collapse
|
36
|
Fitz W, Rosenthal PB, Wong CH. Synthesis and inhibitory properties of a thiomethylmercuric sialic acid with application to the X-ray structure determination of 9-O-acetylsialic acid esterase from influenza C virus. Bioorg Med Chem 1996; 4:1349-53. [PMID: 8879557 PMCID: PMC7172942 DOI: 10.1016/0968-0896(96)00123-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/1996] [Accepted: 04/29/1996] [Indexed: 02/02/2023]
Abstract
2-alpha-Thiomethylmercuryl 9-acetamido-9-deoxy-sialoside was prepared and found to inhibit the 9-O-acetylsialic acid esterase from influenza C virus in a competitive manner with a Ki of 4.2 +/- 0.5 mM. The inhibitor is being used in the X-ray determination of the crystal structure of the esterase.
Collapse
Affiliation(s)
- W Fitz
- Department of Chemistry, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
37
|
Baca-Estrada ME, Liang X, Babiuk LA, Yoo D. Induction of mucosal immunity in cotton rats to haemagglutinin-esterase glycoprotein of bovine coronavirus by recombinant adenovirus. Immunology 1995; 86:134-140. [PMID: 7590874 PMCID: PMC1383821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
An effective vaccine against enteric bovine coronavirus (BCV) must be able to induce mucosal immunity. We recently described the construction of recombinant human adenovirus type 5 (hAd5) carrying the BCV haemagglutinin-esterase (HE) gene in the early transcription region 3 of the adenovirus genome. In this study, we examined the induction of systemic and mucosal immune responses to the hAd5 vector carrying the BCV HE gene (AdBcHE) following intranasal or enteric immunization of cotton rats. Regardless of the route of administration, mucosal immunization with AdBcHE induced significant levels of anti-HE IgG antibodies in serum. In addition, following intranasal immunization with AdBcHE, significant levels of anti-HE IgA antibodies were found in lung washes of immunized cotton rats. Furthermore, the specific anti-HE antibodies in sera and mucosal secretions efficiently neutralized BCV infectivity in vitro. T-cell proliferation and cell-mediated cytotoxic responses against the BCV HE were elicited in the spleen of intranasally immunized animals. The results demonstrate that mucosal immunization with AdBcHE is capable of inducing both systemic and mucosal immunity to the BCV HE. These immune responses may be important in protecting animals from BCV infection.
Collapse
Affiliation(s)
- M E Baca-Estrada
- Veterinary Infectious Disease Organization, Saskatoon, Saskatchewan, Canada
| | | | | | | |
Collapse
|
38
|
Gagneten S, Gout O, Dubois-Dalcq M, Rottier P, Rossen J, Holmes KV. Interaction of mouse hepatitis virus (MHV) spike glycoprotein with receptor glycoprotein MHVR is required for infection with an MHV strain that expresses the hemagglutinin-esterase glycoprotein. J Virol 1995; 69:889-95. [PMID: 7815557 PMCID: PMC188656 DOI: 10.1128/jvi.69.2.889-895.1995] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In addition to the spike (S) glycoprotein that binds to carcinoembryonic antigen-related receptors on the host cell membrane, some strains of mouse coronavirus (mouse hepatitis virus [MHV]) express a hemagglutinin esterase (HE) glycoprotein with hemagglutinating and acetylesterase activity. Virions of strains that do not express HE, such as MHV-A59, can infect mouse fibroblasts in vitro, showing that the HE glycoprotein is not required for infection of these cells. The present work was done to study whether interaction of the HE glycoprotein with carbohydrate moieties could lead to virus entry and infection in the absence of interaction of the S glycoprotein with its receptor glycoprotein, MHVR. The DVIM strain of MHV expresses large amounts of HE glycoprotein, as shown by hemadsorption, acetylesterase activity, and immunoreactivity with antibodies directed against the HE glycoprotein of bovine coronavirus. A monoclonal anti-MHVR antibody, MAb-CC1, blocks binding of virus S glycoprotein to MHVR and blocks infection of MHV strains that do not express HE. MAb-CC1 also prevented MHV-DVIM infection of mouse DBT cells and primary mouse glial cell cultures. Although MDCK-I cells express O-acetylated sialic acid residues on their plasma membranes, these canine cells were resistant to infection with MHV-A59 and MHV-DVIM. Transfection of MDCK-I cells with MHVR cDNA made them susceptible to infection with MHV-A59 and MHV-DVIM. Thus, the HE glycoprotein of an MHV strain did not lead to infection of cultured murine neural cells or of nonmurine cells that express the carbohydrate ligand of the HE glycoprotein. Therefore, interaction of the spike glycoprotein of MHV with its carcinoembryonic antigen-related receptor glycoprotein is required for infectivity of MHV strains whether or not they express the HE glycoprotein.
Collapse
Affiliation(s)
- S Gagneten
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | | | | | | | | | | |
Collapse
|
39
|
Vieler E, Schlapp T, Anders C, Herbst W. Genomic relationship of porcine hemagglutinating encephalomyelitis virus to bovine coronavirus and human coronavirus OC43 as studied by the use of bovine coronavirus S gene-specific probes. Arch Virol 1995; 140:1215-23. [PMID: 7646353 PMCID: PMC7087123 DOI: 10.1007/bf01322747] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The genomic relationship of porcine hemagglutinating encephalomyelitis virus (HEV) to bovine coronavirus (BCV) and human coronavirus (HCV) strain OC43 was examined by dot blot hybridization assays. Two BCV S gene-specific probes were generated by polymerase chain reaction from the avirulent L9-strain of BCV. Probes were located in the S1 and the S2 region of the peplomeric (S) glycoprotein gene. The S1 probe (726 bp) hybridized with BCV and HCV-OC43, but not with HEV under moderate stringency hybridization conditions (50 degrees C). Only slight signals were present with mouse hepatitis virus (MHV) and no signals were observed with feline infectious peritonitis virus (FIPV) or canine coronavirus (CCV). At high stringency conditions (60 degrees C) the S1 probe hybridized with BCV only. Using the S2 probe (680 bp) under moderate stringency conditions, hybridization signals were obtained with BCV, HCV-OC43 and HEV (strains 67N, NT9, VW572). The signals obtained by the three HEV strains were altogether weaker than with BCV and HCV-OC43. The S2 probe did not react with MHV, FIPV and CCV. At high stringency the S2-specific probe hybridized with BCV and HCV-OC43 but did not hybridize with HEV. Nucleotide sequence analysis of the region covering the S2 probe in HEV revealed 92.6% nucleotide sequence homology to BCV and 91.9% to HCV-OC43. In contrast, the region covering the S1 probe in HEV could not be amplified using the BCV S1-specific primers. The hybridization and sequencing results thus indicate a closer genomic relationship between BCV and HCV-OC43 than there is between HEV and BCV or HCV-OC43 respectively.
Collapse
Affiliation(s)
- E Vieler
- Institut für Hygiene und Infektionskrankheiten, Tiere der Justus-Liebig-Universität Giessen, Federal Republic of Germany
| | | | | | | |
Collapse
|
40
|
Zhang XM, Herbst W, Kousoulas KG, Storz J. Biological and genetic characterization of a hemagglutinating coronavirus isolated from a diarrhoeic child. J Med Virol 1994; 44:152-61. [PMID: 7852955 PMCID: PMC7166597 DOI: 10.1002/jmv.1890440207] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The coronavirus strain HECV-4408 was isolated from diarrhea fluid of a 6-year-old child with acute diarrhea and propagated in human rectal tumor (HRT-18) cells. Electron microscopy revealed coronavirus particles in the diarrhea fluid sample and the infected HRT-18 cell cultures. This virus possessed hemagglutinating and acetylesterase activities and caused cytopathic effects in HRT-18 cells but not in MDBK, GBK and FE cells. One of four S-specific monoclonal antibodies reacted in Western blots with HECV-4408, BCV-L9 and BCV-LY138 but not with HCV-OC43, and two reacted with BCV-L9 but not with HECV-4408, BCV-LY138 and HCV-OC43. One S-specific and two N-specific monoclonal antibodies reacted with all of these strains. cDNA encompassing the 3' 8.5 kb of the viral RNA genome was isolated by reverse transcription followed by polymerase chain reaction amplification had size and restriction endonuclease patterns similar to those of BCV-L9 and BCV-LY138. In contrast, the M gene of HCV-OC43 differed in restriction patterns from HECV-4408 and BCV. A genomic deletion located between the S and M within the non-structural genes of HCV-OC43 was not detected in HECV-4408. DNA sequence analyses of the S and HE genes revealed more than 99% nucleotide and deduced amino acid homologies between HECV-4408 and the virulent wild-type BCV. Forty-nine nucleotide and 22 amino acid differences were found between the HE genes of HECV-4408 and HCV-OC43, while only 16 nucleotide and 3 amino acid differences occurred between the HE genes of HECV-4408 and BCV-LY138. We thus conclude that the strain HECV-4408 is a hemagglutinating enteric coronavirus that is biologically, antigenically and genomically more closely related to the virulent BCV-LY138 than to HCV-OC43.
Collapse
Affiliation(s)
- X M Zhang
- Department of Veterinary Microbiology and Parasitology, School of Veterinary Medicine, Louisiana State University, Baton Rouge
| | | | | | | |
Collapse
|
41
|
|
42
|
Zhang X, Herbst W, Kousoulas KG, Storz J. Comparison of the S genes and the biological properties of respiratory and enteropathogenic bovine coronaviruses. Arch Virol 1994; 134:421-6. [PMID: 8129626 PMCID: PMC7087011 DOI: 10.1007/bf01310579] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The nucleotide sequence of the S gene of the bovine respiratory coronavirus (BRCV) strain G95, which was isolated from nasal swabs of a calf suffering from respiratory disorders, was determined and compared with the S gene of the enteropathogenic bovine coronavirus (BECV) strain LY138. Sequence analysis revealed 98.7% nucleotide and 98.3% deduced amino acid identities between the S genes of BRCV-G95 and BECV-LY138 without any deletions or insertions. Nucleotide substitutions were distributed randomly throughout the gene. Five monoclonal antibodies specific for the S protein distinguished BRCV-G95 from BECV-L9, but failed to differentiate it from BECV-LY138 in Western blots under denatured and native conditions. BRCV-G95 induced cytopathic changes in cell cultures that were similar to BECV-LY138 but different from BECV-L9. These results suggest that strain BRCV-G95 is more closely related to the virulent strain BECV-LY138 than to the avirulent, cell culture-adapted strain BECV-L9.
Collapse
Affiliation(s)
- X Zhang
- Department of Veterinary Microbiology and Parasitology, School of Veterinary Medicine, Louisiana State University, Baton Rouge
| | | | | | | |
Collapse
|
43
|
Mounir S, Labonté P, Talbot PJ. Characterization of the nonstructural and spike proteins of the human respiratory coronavirus OC43: comparison with bovine enteric coronavirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 342:61-7. [PMID: 8209772 DOI: 10.1007/978-1-4615-2996-5_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The nucleotide sequence of the region between the spike (S) and the membrane (M) protein genes, and sequences of the S and ns2 genes of the OC43 strain of human coronavirus (HCV-OC43) were determined. The ns2 gene comprises an open reading frame (ORF) encoding a putative nonstructural (ns) protein of 279 amino acids with a predicted molecular mass of 32-kDa. The S gene comprises an ORF encoding a protein of 1353 amino acid residues, with a predicted molecular weight of 149,918. Sequence comparison between HCV-OC43 and the antigenically related bovine coronavirus (BCV) revealed more sequence divergence in the putative bulbous part of the S protein (S1) than in the stem region (S2). The cysteine residues near the transmembrane domain and the internal predicted protease cleavage site are conserved in the HCV-OC43 S protein. Nucleotide sequence analysis of the region between the S and M gene loci revealed the presence of an unexpected intragenomic partial leader sequence and two ORFs encoding potential proteins of 12.9 and 9.5-kDa. These two proteins were identified as nonstructural by comparison with the homologous BCV genes. In vitro translation analyses demonstrated that the HCV-OC43 9.5-kDa protein, like its BCV counterpart, is poorly translated when situated down-stream of the 12.9-kDa ORF, but is expressed in infected cells, as shown by immunofluorescence. Interestingly, two ORFs, potentially encoding 4.9 and 4.8-kDa ns proteins in BCV are absent in HCV-OC43, indicating that they are not essential for viral replication in HRT-18 cells.
Collapse
Affiliation(s)
- S Mounir
- Centre de Recherche en Virologie, Institut Armand-Frappier, Université du Québec, Laval, Canada
| | | | | |
Collapse
|
44
|
Décimo D, Philippe H, Hadchouel M, Tardieu M, Meunier-Rotival M. The gene encoding the nucleocapsid protein: sequence analysis in murine hepatitis virus type 3 and evolution in Coronaviridae. Arch Virol 1993; 130:279-88. [PMID: 8390823 PMCID: PMC7086934 DOI: 10.1007/bf01309660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The nucleoprotein-encoding gene (N) of murine hepatitis virus type 3 (MHV 3), from the Mill Hill strain, was cloned and sequenced. It was compared to gene N from other murine coronaviruses and was found to share more similarities with N sequences from MHV 1 and MHV JHM strains than with the published MHV 3 N sequence which is almost identical to MHV A59. We suggest that the evolution of some MHV N sequences resulted from a double recombination phenomenon between two ancestors. Furthermore, comparison of protein N from avian and mammalian coronaviruses leads to the hypothesis that horizontal transfer events of the virus from one host species to another have occurred.
Collapse
Affiliation(s)
- D Décimo
- INSERM Unité 347 affiliée au CNRS, Université Paris XI, Hôpital de Kremlin-Bicêtre, France
| | | | | | | | | |
Collapse
|
45
|
Michaud L, Dea S. Characterization of monoclonal antibodies to bovine enteric coronavirus and antigenic variability among Quebec isolates. Arch Virol 1993; 131:455-65. [PMID: 8347084 PMCID: PMC7086900 DOI: 10.1007/bf01378646] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Twenty monoclonal antibodies (MAbs) were prepared against the Mebus strain of bovine enteric coronavirus, 14 of them reacting with the peplomeric S (gp 100) glycoprotein. Competition binding assays allowed the definition of at least 4 distinct antigenic domains for the S glycoprotein, designated as A, B, C, and D; epitopes associated to neutralizing activity being located in sites A, B, and C. One MAb directed to the hemagglutinin HE (gp 140/gp 65) glycoprotein inhibited the hemagglutinating activity of the virus, but had no neutralizing activity. Comparison of Quebec enteropathogenic BCV isolates using polyclonal antiserum and MAbs directed to the S glycoprotein confirmed their close antigenic relationship, but also revealed the occurrence of at least three distinct antigenic subgroups. Antigenic domain D was highly conserved among BCV isolates, as well as non-neutralizing epitopes assigned to antigenic domains A and C. The Minnesota strain of turkey enteric coronavirus could be distinguished from BCV isolates by MAbs directed to epitopes of antigenic domain C, whereas human coronavirus HCV-OC 43 could be distinguished by MAbs directed to epitopes of antigenic domain A. The porcine hemagglutinating encephalomyelitis virus could be distinguished from the other hemagglutinating coronaviruses by neutralizing epitopes located on antigenic domains A, B, and C.
Collapse
Affiliation(s)
- L Michaud
- Centre de Recherche en Virologie, Institut Armand-Frappier, Université du Québec, Laval-des-Rapides, Canada
| | | |
Collapse
|