1
|
Zheng M, Liu Y, Zhang G, Yang Z, Xu W, Chen Q. The Applications and Mechanisms of Superoxide Dismutase in Medicine, Food, and Cosmetics. Antioxidants (Basel) 2023; 12:1675. [PMID: 37759978 PMCID: PMC10525108 DOI: 10.3390/antiox12091675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Superoxide dismutase (SOD) is a class of enzymes that restrict the biological oxidant cluster enzyme system in the body, which can effectively respond to cellular oxidative stress, lipid metabolism, inflammation, and oxidation. Published studies have shown that SOD enzymes (SODs) could maintain a dynamic balance between the production and scavenging of biological oxidants in the body and prevent the toxic effects of free radicals, and have been shown to be effective in anti-tumor, anti-radiation, and anti-aging studies. This research summarizes the types, biological functions, and regulatory mechanisms of SODs, as well as their applications in medicine, food production, and cosmetic production. SODs have proven to be a useful tool in fighting disease, and mimetics and conjugates that report SODs have been developed successively to improve the effectiveness of SODs. There are still obstacles to solving the membrane permeability of SODs and the persistence of enzyme action, which is still a hot spot and difficulty in mining the effect of SODs and promoting their application in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Qinghua Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
2
|
Zou H, Xu K, Yang A, Hu X, Niu A, Li Q. Antimony accumulation in zebrafish (Danio rerio) and its effect on genotoxicity, histopathology, and ultrastructure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 252:106297. [PMID: 36122460 DOI: 10.1016/j.aquatox.2022.106297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Antimony (Sb) is a toxic metal in aquatic ecosystems. In this study, the accumulation of aqueous Sb in the liver, brain, gills and muscle of zebrafish (Danio rerio) and its effect on genotoxicity, histopathology and ultrastructure alterations were evaluated. The fishes were exposed to different concentrations (0, 8.29, 16.58, 33.16 mg L-1) of aqueous Sb for 18 days. The results showed that the order of Sb accumulation in different tissues was liver > gill > muscle > brain, and the accumulation increased with increasing Sb stress concentration. The mRNA expression levels of Nrf2, Cu/Zn-SOD, Mn-SOD, CAT and GPx genes showed different trends. In addition, significant histopathology and ultrastructure alterations were observed in the liver and gills exposed to Sb. Sb could accumulate in different tissues of zebrafish, inducing the expression of oxidative stress genes and activating antioxidant defense systems. Histological and ultrastructural changes could be used as valid biomarkers for the assessment of aqueous Sb contamination.
Collapse
Affiliation(s)
- HaiTao Zou
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Kun Xu
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Aijiang Yang
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China.
| | - Xia Hu
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China
| | - Aping Niu
- The College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, PR China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China
| | - Qing Li
- Guizhou Guida Yuanheng Environmental Protection Technology Co., LTD., Guiyang 550025, PR China; Institute of Environmental Engineering Planning and Designing, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
3
|
Moubasher AE, Taha EA, Younis A, Fakhry ME, Morsy H. Testicular tissue oxidative stress in azoospermic patients: Effect of cryopreservation. Andrologia 2020; 52:e13817. [DOI: 10.1111/and.13817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 11/29/2022] Open
Affiliation(s)
- Alaa E. Moubasher
- Department of Dermatology, Venereology and Andrology Faculty of Medicine Assiut University Assiut Egypt
| | - Emad A. Taha
- Department of Dermatology, Venereology and Andrology Faculty of Medicine Assiut University Assiut Egypt
| | - Aya Younis
- Department of Dermatology, Venereology and Andrology Faculty of Medicine Assiut University Assiut Egypt
| | - Mickel E. Fakhry
- Department of Biochemistry Faculty of Medicine Assiut University Assiut Egypt
| | - Hanan Morsy
- Department of Dermatology, Venereology and Andrology Faculty of Medicine Assiut University Assiut Egypt
| |
Collapse
|
4
|
Su P, Yan J, Li W, Wang L, Zhao J, Ma X, Li A, Wang H, Kong L. A member of wheat class III peroxidase gene family, TaPRX-2A, enhanced the tolerance of salt stress. BMC PLANT BIOLOGY 2020; 20:392. [PMID: 32847515 PMCID: PMC7449071 DOI: 10.1186/s12870-020-02602-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 08/16/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Salt and drought are the main abiotic stresses that restrict the yield of crops. Peroxidases (PRXs) are involved in various abiotic stress responses. Furthermore, only few wheat PRXs have been characterized in the mechanism of the abiotic stress response. RESULTS In this study, a novel wheat peroxidase (PRX) gene named TaPRX-2A, a member of wheat class III PRX gene family, was cloned and its response to salt stress was characterized. Based on the identification and evolutionary analysis of class III PRXs in 12 plants, we proposed an evolutionary model for TaPRX-2A, suggesting that occurrence of some exon fusion events during evolution. We also detected the positive selection of PRX domain in 13 PRXs involving our evolutionary model, and found 2 or 6 positively selected sites during TaPRX-2A evolution. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) results showed that TaPRX-2A exhibited relatively higher expression levels in root tissue than those exhibited in leaf and stem tissues. TaPRX-2A expression was also induced by abiotic stresses and hormone treatments such as polyethylene glycol 6000, NaCl, hydrogen peroxide (H2O2), salicylic acid (SA), methyljasmonic acid (MeJA) and abscisic acid (ABA). Transgenic wheat plants with overexpression of TaPRX-2A showed higher tolerance to salt stress than wild-type (WT) plants. Confocal microscopy revealed that TaPRX-2A-eGFP was mainly localized in cell nuclei. Survival rate, relative water content, and shoot length were higher in TaPRX-2A-overexpressing wheat than in the WT wheat, whereas root length was not significantly different. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were enhanced in TaPRX-2A-overexpressing wheat compared with those in the WT wheat, resulting in the reduction of reactive oxygen species (ROS) accumulation and malondialdehyde (MDA) content. The expression levels of downstream stress-related genes showed that RD22, TLP4, ABAI, GST22, FeSOD, and CAT exhibited higher expressions in TaPRX-2A-overexpressing wheat than in WT under salt stress. CONCLUSIONS The results show that TaPRX-2A plays a positive role in the response to salt stress by scavenging ROS and regulating stress-related genes.
Collapse
Affiliation(s)
- Peisen Su
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Jun Yan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
- College of Information Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018 People’s Republic of China
| | - Wen Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Liang Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Jinxiao Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Anfei Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 People’s Republic of China
| |
Collapse
|
5
|
Zhang SF, Dong YC, Zhang XF, Wu XG, Cheng JJ, Guan LH, Shang YZ. Flavonoids from Scutellaria attenuate okadaic acid-induced neuronal damage in rats. Brain Inj 2015; 29:1376-82. [DOI: 10.3109/02699052.2015.1042053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Camero S, Benítez MJ, Jiménez JS. Anomalous Protein–DNA Interactions Behind Neurological Disorders. PROTEIN-NUCLEIC ACIDS INTERACTIONS 2013; 91:37-63. [DOI: 10.1016/b978-0-12-411637-5.00002-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Gaber A, Ogata T, Maruta T, Yoshimura K, Tamoi M, Shigeoka S. The involvement of Arabidopsis glutathione peroxidase 8 in the suppression of oxidative damage in the nucleus and cytosol. PLANT & CELL PHYSIOLOGY 2012; 53:1596-606. [PMID: 22773682 DOI: 10.1093/pcp/pcs100] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A family of eight genes with homology to mammalian glutathione peroxidase (GPX) isoenzymes, designated AtGPX1-AtGPX8, has been identified in Arabidopsis thaliana. In this study we demonstrated the functional analysis of Arabidopsis AtGPX8 with peroxidase activity toward H(2)O(2) and lipid hydroperoxides using thioredoxin as an electron donor. The transcript and protein levels of AtGPX8 in Arabidopsis were up-regulated coordinately in response to oxidative damage caused by high-light (HL) stress or treatment with paraquat (PQ). Furthermore, the knockout Arabidopsis mutants of AtGPX8 (KO-gpx8) exhibited increased sensitivity to oxidative damage caused by PQ treatment in root elongation compared with the wild-type plants. In contrast, transgenic lines overexpressing AtGPX8 (Ox-AtGPX8) were less sensitive to oxidative damage than the wild-type plants. The levels of oxidized proteins in the KO-gpx8 and Ox-AtGPX8 lines were enhanced and suppressed, respectively, compared with the wild-type plants under HL stress or PQ treatment. The fusion protein of AtGPX8 tagged with green fluorescent protein was localized in the cytosol and nucleus of onion epidermal cells. In addition, the AtGPX8 protein was detected in the cytosolic and nuclear fractions prepared from leaves of Arabidopsis plants using the AtGPX8 antibody. Oxidative DNA damage under treatment with PQ increased in the wild-type and KO-gpx8 plants, while it decreased in the OX-AtGPX8 plants. These results suggest that AtGPX8 plays an important role in the protection of cellular components including nuclear DNA against oxidative stress.
Collapse
MESH Headings
- 8-Hydroxy-2'-Deoxyguanosine
- Arabidopsis/drug effects
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Arabidopsis/radiation effects
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Blotting, Western
- Cell Nucleus/enzymology
- Cytosol/drug effects
- Cytosol/enzymology
- Cytosol/radiation effects
- DNA Damage
- Deoxyguanosine/analogs & derivatives
- Deoxyguanosine/metabolism
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/radiation effects
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/radiation effects
- Genes, Plant/genetics
- Glutathione Peroxidase/genetics
- Glutathione Peroxidase/metabolism
- Green Fluorescent Proteins/metabolism
- Light
- Oxidation-Reduction/drug effects
- Oxidation-Reduction/radiation effects
- Oxidative Stress/drug effects
- Oxidative Stress/radiation effects
- Paraquat/toxicity
- Recombinant Proteins/metabolism
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Stress, Physiological/radiation effects
- Subcellular Fractions/drug effects
- Subcellular Fractions/metabolism
- Subcellular Fractions/radiation effects
- Substrate Specificity/drug effects
- Substrate Specificity/radiation effects
Collapse
Affiliation(s)
- Ahmed Gaber
- Department of Advanced Bioscience, Kinki University, 3327-204 Nakamachi, Nara, 631-8505 Japan
| | | | | | | | | | | |
Collapse
|
8
|
Dhar SK, St Clair DK. Manganese superoxide dismutase regulation and cancer. Free Radic Biol Med 2012; 52:2209-22. [PMID: 22561706 DOI: 10.1016/j.freeradbiomed.2012.03.009] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 03/06/2012] [Accepted: 03/06/2012] [Indexed: 01/03/2023]
Abstract
Mitochondria are the power plants of the eukaryotic cell and the integrators of many metabolic activities and signaling pathways important for the life and death of a cell. Normal aerobic cells use oxidative phosphorylation to generate ATP, which supplies energy for metabolism. To drive ATP production, electrons are passed along the electron transport chain, with some leaking as superoxide during the process. It is estimated that, during normal respiration, intramitochondrial superoxide concentrations can reach 10⁻¹² M. This extremely high level of endogenous superoxide production dictates that mitochondria are equipped with antioxidant systems that prevent consequential oxidative injury to mitochondria and maintain normal mitochondrial functions. The major antioxidant enzyme that scavenges superoxide anion radical in mitochondria is manganese superoxide dismutase (MnSOD). Extensive studies on MnSOD have demonstrated that MnSOD plays a critical role in the development and progression of cancer. Many human cancer cells harbor low levels of MnSOD proteins and enzymatic activity, whereas some cancer cells possess high levels of MnSOD expression and activity. This apparent variation in MnSOD level among cancer cells suggests that differential regulation of MnSOD exists in cancer cells and that this regulation may be linked to the type and stage of cancer development. This review summarizes current knowledge of the relationship between MnSOD levels and cancer with a focus on the mechanisms regulating MnSOD expression.
Collapse
Affiliation(s)
- Sanjit Kumar Dhar
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
9
|
Pautassi RM, Nizhnikov ME, Fabio MC, Spear NE. An acetaldehyde-sequestering agent inhibits appetitive reinforcement and behavioral stimulation induced by ethanol in preweanling rats. Pharmacol Biochem Behav 2010; 97:462-9. [PMID: 20951160 DOI: 10.1016/j.pbb.2010.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/04/2010] [Accepted: 10/06/2010] [Indexed: 02/02/2023]
Abstract
Ethanol's motivational consequences have been related to the actions of acetaldehyde, a metabolic product of ethanol oxidation. The present study assessed the role of acetaldehyde in the motivational effects of ethanol on preweanling rats. In Experiment 1 pups (postnatal days 13-14, PD 13-14) were given systemic administration of D-penicillamine (DP, a drug that sequesters acetaldehyde: 0, 25, 50 or 75 mg/kg) before pairings of 1.0 g/kg ethanol and a rough surface (sandpaper, conditioned stimulus, CS). At test, pups given sandpaper-ethanol pairings exhibited greater preference for the CS than unpaired controls, but this preference was not expressed by pups given DP. Pre-training administration of 25 or 50 mg/kg DP completely blocked the expression of ethanol-mediated appetitive conditioning. D-penicillamine did not alter blood ethanol levels. Subsequent experiments revealed that ethanol-induced activation was blocked by central (intra-cisterna magna injections, volume: 1 μl, dose: 0 or 75 μg) but not systemic treatment with DP (0, 25, 50 or 75 mg/kg; ip). These results indicate that: (a) preweanling rats are sensitive to the reinforcing effect of ethanol, and (b) that this effect is associated with the motor activating effect of the drug. These effects seem to be mediated by the first metabolite of ethanol, acetaldehyde.
Collapse
Affiliation(s)
- Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra (INIMEC-CONICET), Córdoba, C.P 5000, Argentina.
| | | | | | | |
Collapse
|
10
|
Lukosz M, Jakob S, Büchner N, Zschauer TC, Altschmied J, Haendeler J. Nuclear redox signaling. Antioxid Redox Signal 2010; 12:713-42. [PMID: 19737086 DOI: 10.1089/ars.2009.2609] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species have been described to modulate proteins within the cell, a process called redox regulation. However, the importance of compartment-specific redox regulation has been neglected for a long time. In the early 1980s and 1990s, many in vitro studies introduced the possibility that nuclear redox signaling exists. However, the functional relevance for that has been greatly disregarded. Recently, it has become evident that nuclear redox signaling is indeed one important signaling mechanism regulating a variety of cellular functions. Transcription factors, and even kinases and phosphatases, have been described to be redox regulated in the nucleus. This review describes several of these proteins in closer detail and explains their functions resulting from nuclear localization and redox regulation. Moreover, the redox state of the nucleus and several important nuclear redox regulators [Thioredoxin-1 (Trx-1), Glutaredoxins (Grxs), Peroxiredoxins (Prxs), and APEX nuclease (multifunctional DNA-repair enzyme) 1 (APEX1)] are introduced more precisely, and their necessity for regulation of transcription factors is emphasized.
Collapse
Affiliation(s)
- Margarete Lukosz
- Molecular Cell & Aging Research, IUF (Institute for Molecular Preventive Medicine), At the University of Duesseldorf gGmbH, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Barbosa LF, Cerqueira FM, Macedo AFA, Garcia CCM, Angeli JPF, Schumacher RI, Sogayar MC, Augusto O, Carrì MT, Di Mascio P, Medeiros MHG. Increased SOD1 association with chromatin, DNA damage, p53 activation, and apoptosis in a cellular model of SOD1-linked ALS. Biochim Biophys Acta Mol Basis Dis 2010; 1802:462-71. [PMID: 20097285 DOI: 10.1016/j.bbadis.2010.01.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/23/2009] [Accepted: 01/15/2010] [Indexed: 12/16/2022]
Abstract
Mutations in the gene encoding cytosolic Cu,Zn-superoxide dismutase (SOD1) have been linked to familial amyotrophic lateral sclerosis (FALS). However the molecular mechanisms of motor neuron death are multi-factorial and remain unclear. Here we examined DNA damage, p53 activity and apoptosis in SH-SY5Y human neuroblastoma cells transfected to achieve low-level expression of either wild-type or mutant Gly(93)-->Ala (G93A) SOD1, typical of FALS. DNA damage was investigated by evaluating the levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and DNA strand breaks. Significantly higher levels of DNA damage, increased p53 activity, and a greater percentage of apoptotic cells were observed in SH-SY5Y cells transfected with G93A SOD1 when compared to cells overexpressing wild-type SOD1 and untransfected cells. Western blot, FACS, and confocal microscopy analysis demonstrated that G93A SOD1 is present in the nucleus in association with DNA. Nuclear G93A SOD1 has identical superoxide dismutase activity but displays increased peroxidase activity when compared to wild-type SOD1. These results indicate that the G93A mutant SOD1 association with DNA might induce DNA damage and trigger the apoptotic response by activating p53. This toxic activity of mutant SOD1 in the nucleus may play an important role in the complex mechanisms associated with motor neuron death observed in ALS pathogenesis.
Collapse
Affiliation(s)
- Livea F Barbosa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Page MM, Salmon AB, Leiser SF, Robb EL, Brown MF, Miller RA, Stuart JA. Mechanisms of stress resistance in Snell dwarf mouse fibroblasts: enhanced antioxidant and DNA base excision repair capacity, but no differences in mitochondrial metabolism. Free Radic Biol Med 2009; 46:1109-18. [PMID: 19439226 PMCID: PMC2683197 DOI: 10.1016/j.freeradbiomed.2009.01.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 12/22/2008] [Accepted: 01/15/2009] [Indexed: 02/07/2023]
Abstract
Dermal fibroblasts from long-lived Snell dwarf mice can withstand a variety of oxidative and non-oxidative stressors compared to normal littermate controls. Here, we report differences in the levels and activities of intracellular antioxidant and DNA repair enzymes between normal and Snell dwarf mice fibroblasts cultured under a variety of conditions, including: 3% and 20% ambient O(2); the presence and absence of serum; and the addition of an exogenous oxidative stress. The only significant difference between normal and dwarf cells cultured in complete medium, at 20% O(2), was an approximately 40% elevation of glutathione peroxidase (GPx) activity in the mutant cells. Serum deprivation elicited increases in GPx in both genotypes, but these activities remained higher in dwarf mouse cells. Dwarf mouse cells deprived of serum and challenged with exposure to paraquat or hydrogen peroxide showed a generally greater upregulation of catalase and DNA base excision repair enzymes. As these toxins can interact with mitochondria to increase mitochondrial ROS production, we explored whether there were differences in mitochondrial metabolism between normal and dwarf mouse cells. However, neither mitochondrial content nor the apparent mitochondrial membrane potential differed between genotypes. Overall, the results suggest that superior hydrogen peroxide metabolism and a marginally greater DNA base excision repair capacity contribute to the stress resistance phenotype of Snell dwarf mouse fibroblasts.
Collapse
Affiliation(s)
- Melissa M Page
- Department of Biological Sciences, Brock University, St Catharines, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
13
|
Barbosa LF, Garcia CCM, Di Mascio P, de Medeiros MHG. DNA oxidation, strand-breaks and etheno-adducts formation promoted by Cu, Zn-superoxide dismutase–H2O2 in the presence and absence of bicarbonate. Dalton Trans 2009:1450-9. [PMID: 19462668 DOI: 10.1039/b813235f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Lívea Fujita Barbosa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05508-900, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
14
|
Dhar SK, Xu Y, Noel T, Clair DK. Chronic exposure to 12-O-tetradecanoylphorbol-13-acetate represses sod2 induction in vivo: the negative role of p50. Carcinogenesis 2007; 28:2605-13. [PMID: 17652337 PMCID: PMC2656647 DOI: 10.1093/carcin/bgm163] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It is well documented that the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) can activate manganese superoxide dismutase (MnSOD) expression. However, it is unclear how repeated exposure to TPA following a single application of tumor initiator 7,12-dimethylbenz-(a)-anthracene causes tumor development. We generated transgenic mice expressing human MnSOD promoter- and enhancer-driven luciferase reporter gene and used a non-invasive imaging system to investigate the effects of TPA on MnSOD expression in vivo. Our data indicate that TPA initially activates MnSOD expression, but this positive effect declines after repeated applications. Changes in MnSOD expression in vivo were verified by measuring MnSOD mRNA and protein levels. Using chromatin immunoprecipitation coupled to Western analysis of the transcription factors known to be essential for the constitutive and TPA-induced transcription of MnSOD, we found that TPA treatment leads to both activation and inactivation of MnSOD gene transcription. During the activation phase, the levels of p50, p65, specificity protein 1 (Sp1) and nucleophosmin (NPM) increase after TPA treatments. Sustained treatments with TPA lead to further increase of p50 but not p65, Sp1 or NPM, suggesting that excess p50 may have inhibitory effects leading to the suppression of MnSOD. Alteration of p50 levels by expressing p50 cDNA or p50 small interfering RNA in mouse epithelial (JB6) cells confirms that p50 is inhibitory to MnSOD transcription. These findings identify p50 as having a negative effect on MnSOD induction upon repeated applications of TPA and provide an insight into a cause for the reduction of MnSOD expression during early stages of skin carcinogenesis.
Collapse
Affiliation(s)
| | | | | | - Daret K.St Clair
- To whom correspondence should be addressed. Tel: +1 859 257 3956; Fax: +1 859 323 1059;
| |
Collapse
|
15
|
Luo XG, Li SF, Lu L, Liu B, Kuang X, Shao GZ, Yu SX. Gene Expression of Manganese-Containing Superoxide Dismutase as a Biomarker of Manganese Bioavailability for Manganese Sources in Broilers. Poult Sci 2007; 86:888-94. [PMID: 17435022 DOI: 10.1093/ps/86.5.888] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The goal of this study was to determine whether Mn-containing superoxide dismutase (MnSOD) gene expression in heart tissue would reflect differences among bioavailabilities of Mn sources earlier than other indices. Broilers were divided into 5 groups and fed a Mn-unsupplemented basal diet (control) or the basal diet supplemented with 120 mg of Mn/kg as Mn sulfate or Mn methionine E (Mn Met E), Mn amino acid B (Mn AA B), or Mn amino acid C (Mn AA C) with weak, moderate, or strong chelation strength, respectively. Heart MnSOD mRNA levels were analyzed using quantitative reverse transcription-PCR at 7, 14, or 21 d. The results showed that heart MnSOD mRNA level increased as dietary Mn level increased at any age. At 7 d, chicks fed the diet supplemented with Mn AA B had higher MnSOD mRNA levels than those fed the diet supplemented with Mn sulfate and Mn Met E, and the same tendency was observed at 14 or 21 d. The results suggest that MnSOD gene expression, which is regulated by dietary Mn at transcriptional level, could reflect differences among bio-availabilities of organic Mn sources as early as 7 d. Therefore, the estimation of relative bioavailabilities of Mn sources based on heart MnSOD mRNA level could require a shorter experimental period and a smaller number of animals, and thus less cost.
Collapse
Affiliation(s)
- X G Luo
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100094, PR China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The essential micronutrient selenium (Se) occurs in the form of the amino acid selenocysteine in selenoproteins which exert various effects, while maintaining the cell reduction-oxidation balance. The discovery that all three deiodinases that convert thyroxine (T4) into triiodothyronine (T3) contain selenocysteine illustrates how the production of the active thyroid hormone is dependent on Se status. The selenoenzyme families of glutathione peroxidases (GPx) and thioredoxin reductases (TRx) possess powerful antioxidant properties and form a complex defense system that protects thyrocytes from oxidative damage. Se supplementation in patients with autoimmune thyroiditis seems to modify the immune response, probably by enhancing plasma GPx activity and decreasing excess levels of hydrogen peroxide. However, the enhancement of immunocompetence may also be the result of the synergistic action of various selenoproteins and not exclusively of GPx. There is evidence supporting considerable oxidative stress in Graves' disease where Se supplementation, because of its free radical scavenging properties, may increase the enzymatic antioxidant activity. TRx has been found significantly elevated in GD revealing its involvement in the pathogenesis of this condition and representing a potential future target for therapeutical intervention. Low Se serum levels have also been associated with increased risk of thyroid cancer and may play a role in carcinogenesis. It is noteworthy, that the Food and Drug Administration has recently determined that there is sufficient evidence to warrant a qualified health claim for Se and cancer. Furthermore, the recent discovery that defects in the SECIS-binding protein 2 (SBP2), which is an indispensable protein for the incorporation of Se into the selenoproteins, result in thyroid dysfunction, together with the recognition of the many roles of selenoprotein P in Se distribution and storage in the human body, reveal not only the indispensability of Se and the selenoproteins as essential factors in thyroid metabolism and pathogenesis, but open up new prospects for enhanced treatment.
Collapse
Affiliation(s)
- Leonidas H Duntas
- Endocrine Unit, Evgenidion Hospital, University of Athens, Medical School, Athens, Greece.
| |
Collapse
|
17
|
Sam F, Kerstetter DL, Pimental DR, Mulukutla S, Tabaee A, Bristow MR, Colucci WS, Sawyer DB. Increased reactive oxygen species production and functional alterations in antioxidant enzymes in human failing myocardium. J Card Fail 2005; 11:473-80. [PMID: 16105639 DOI: 10.1016/j.cardfail.2005.01.007] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 01/11/2005] [Accepted: 01/25/2005] [Indexed: 12/14/2022]
Abstract
BACKGROUND The nature of oxidative stress and the activity of antioxidant enzyme systems are incompletely characterized in the failing human heart. METHODS AND RESULTS We obtained ventricular myocardium from failing, explanted human hearts in patients with nonischemic dilated cardiomyopathy at the time of heart transplant to examine whether reactive oxygen species (ROS) production and antioxidant enzyme activity or expression were altered in end-stage human heart failure. Nonfailing myocardium was obtained from organ donors who were not eligible for transplantation. Electroparamagnetic resonance (EPR) with the O(2)(-) spin trap 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide demonstrated that formation of superoxide anion was increased more than 2-fold in the failing (P < .001 vs. nonfailing) myocardium. Manganese superoxide dismutase (MnSOD) mRNA and catalase mRNA expression were increased by 52% (P=.05) and 116% (P < .05), respectively, in failing vs. nonfailing hearts. Copper-zinc superoxide dismutase (CuZnSOD) mRNA and glutathione peroxidase-1 (GPx-1) mRNA were unchanged. The expression of MnSOD, CuZnSOD, and catalase mRNA showed moderate correlation, suggesting coordinate regulation of gene expression. Activity was no different with regard to catalase, GPx-1, and glucose-6-phosphate dehydrogenase. MnSOD activity accounted for approximately 90% of total SOD activity, and was markedly decreased in failing hearts (by 61%, P < .05). MnSOD protein expression by western blot analysis was decreased in the failing group (P < .05 vs. nonfailing). CONCLUSION The decrease in MnSOD activity in failing myocardium, in the setting of increased mRNA expression, may reflect decreased translation or processing, or a posttranslational modification of MnSOD. The increase in MnSOD mRNA in failing hearts is consistent with the thesis that there is increased oxidative stress in failing myocardium that leads to increase transcription of antioxidant enzymes. The source of this direct measure of ROS is likely superoxide. These observations have implications for the pathophysiology and treatment of heart failure.
Collapse
Affiliation(s)
- Flora Sam
- Myocardial Biology Unit, Boston University School of Medicine, Boston Medical Center, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
García MV, López-Mediavilla C, Juanes de la Peña MC, Medina JM. Antioxidant defence of the neonatal rat brain against acute hyperammonemia. Brain Res 2004; 1001:159-63. [PMID: 14972665 DOI: 10.1016/j.brainres.2003.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2003] [Indexed: 11/25/2022]
Abstract
Oxidative stress associated with the presence of elevated concentrations of ammonia in the brain has been proposed as one possible mechanism involved in ammonia toxicity. In a previous study [Brain Res.973 (2003) 31], we reported that neonatal rats are more resistant to acute ammonia toxicity than adult rats. In the present work, we studied the antioxidant status of the brain in hyperammonemic neonatal rats. Increased activities of the antioxidant enzymes and enhanced glutathione content were found in the brains of the hyperammonemic neonatal rats as compared to the controls. In addition, no changes in brain reactive oxygen species (ROS) levels and lipid peroxidation due to hyperammonemia were found. Therefore, acute ammonia intoxication does not induce oxidative stress in neonatal rats, a fact that may explain the resistance against hyperammonemia shown by neonatal rats.
Collapse
Affiliation(s)
- M Victoria García
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Salamanca, Edificio Departamental, Plaza de los Doctores de la Reina s/n, E-37007 Salamanca, Spain
| | | | | | | |
Collapse
|
19
|
Dhar SK, Lynn BC, Daosukho C, St Clair DK. Identification of nucleophosmin as an NF-kappaB co-activator for the induction of the human SOD2 gene. J Biol Chem 2004; 279:28209-19. [PMID: 15087454 PMCID: PMC2651640 DOI: 10.1074/jbc.m403553200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Manganese superoxide dismutase (MnSOD) is an antioxidant enzyme essential for the survival of life. We have reported that NF-kappaB is essential but not sufficient for the synergistic induction of MnSOD by phorbol 12-myristate 13-acetate and cytokines. To further identify transcription factors and co-activators that participate in the induction of MnSOD, we used NF-kappaB affinity chromatography to isolate potential NF-kappaB interacting proteins. Proteins eluted from the NF-kappaB affinity column were subjected to proteomic analysis and verified by Western analysis. Nucleophosmin (NPM), a nucleolar phosphoprotein, is the most abundant single protein identified. Co-immunoprecipitation studies suggest a physical interaction between NPM and NF-kappaB proteins. To verify the role of NPM on MnSOD gene transcription, cells were transfected with constructs expressing NPM in sense or antisense orientation as well as interference RNA. The results indicate that an increase NPM expression leads to increased MnSOD gene transcription in a dose-dependent manner. Consistent with this, expression of small interfering RNA for NPM leads to inhibition of MnSOD gene transcription but does not have any effect on the expression of interleukin-8, suggesting that the effect of NPM is selective. These results identify NPM as a partner of the NF-kappaB transcription complex in the induction of MnSOD by phorbol 12-myristate 13-acetate and cytokines.
Collapse
MESH Headings
- Blotting, Northern
- Blotting, Western
- Cell Line
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Chromatography, Affinity
- Cytokines/metabolism
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Exons
- Humans
- Interleukin-8/biosynthesis
- Introns
- Luciferases/metabolism
- Mass Spectrometry
- Models, Genetic
- Mutagenesis, Site-Directed
- NF-kappa B/metabolism
- Nuclear Proteins/metabolism
- Nuclear Proteins/physiology
- Nucleophosmin
- Oligonucleotides, Antisense/pharmacology
- Peptides/chemistry
- Plasmids/metabolism
- Precipitin Tests
- Protein Binding
- RNA/chemistry
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Silver Staining
- Superoxide Dismutase/biosynthesis
- Tetradecanoylphorbol Acetate/metabolism
- Time Factors
- Transcription, Genetic
- Transfection
Collapse
Affiliation(s)
- Sanjit K Dhar
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
20
|
Lièvre V, Becuwe P, Bianchi A, Bossenmeyer-Pourié C, Koziel V, Franck P, Nicolas MB, Dauça M, Vert P, Daval JL. Intracellular generation of free radicals and modifications of detoxifying enzymes in cultured neurons from the developing rat forebrain in response to transient hypoxia. Neuroscience 2002; 105:287-97. [PMID: 11672596 DOI: 10.1016/s0306-4522(01)00189-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To address the influence of oxidative stress and defense capacities in the effects of transient hypoxia in the immature brain, the time course of reactive oxygen species generation was monitored by flow cytometry using dihydrorhodamine 123 and 2',7'-dichlorofluorescein-diacetate in cultured neurons issued from the fetal rat forebrain and subjected to hypoxia/reoxygenation (6 h/96 h). Parallel transcriptional and activity changes of superoxide dismutases, glutathione peroxidase and catalase were analyzed, in line with cell outcome. The study confirmed hypoxia-induced delayed apoptotic death, and depicted increased mitochondrial and cytosolic productions of free radicals (+30%) occurring over the 48-h period after the restoration of oxygen supply, with sequential stimulations of superoxide dismutases. Whereas catalase mRNA levels and activity were augmented by cell reoxygenation, glutathione peroxidase activity was transiently repressed (-24%), along with reduced glutathione reductase activity (-27%) and intracellular glutathione depletion (-19%). Coupled with the neuroprotective effects of the glutathione precursor N-acetyl-cysteine (50 microM), these data suggest that hypoxia/reoxygenation-induced production of reactive oxygen species can overwhelm glutathione-dependent antioxidant capacity, and thus may contribute to the resulting neuronal apoptosis.
Collapse
Affiliation(s)
- V Lièvre
- Adaptation Néonatale et Développement (JE 2164), Université Henri Poincaré, Nancy, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Biagiotti E, Guidi L, Capellacci S, Ambrogini P, Papa S, Del Grande P, Ninfali P. Glucose-6-phosphate dehydrogenase supports the functioning of the synapses in rat cerebellar cortex. Brain Res 2001; 911:152-7. [PMID: 11511383 DOI: 10.1016/s0006-8993(01)02615-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigates heterogeneous glucose-6-phosphate dehydrogenase (G6PD) expression in the rat cerebellar cortex. G6PD activity and its electrophoretic pattern, evaluated on the cerebellar homogenate, were found to be similar to those of other brain areas. However, histochemical and immunohistochemical analyses revealed that the highest expression of G6PD activity and protein was in Purkinje's cells, followed by the molecular and granular layers. Electron microscopy analysis showed that, in Purkinje's cells, the G6PD reaction products were concentrated in the neurites while in the basket cells in the cell body. The granules showed a weaker activity everywhere. The quantitative distribution of G6PD is discussed in the light of the neurochemical function of these cells.
Collapse
Affiliation(s)
- E Biagiotti
- Istituto di Chimica Biologica G. Fornaini, University of Urbino, Via A. Saffi 2, I-61029 (PU) Urbino, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Qiao M, Malisza KL, Del Bigio MR, Tuor UI. Correlation of cerebral hypoxic-ischemic T2 changes with tissue alterations in water content and protein extravasation. Stroke 2001; 32:958-63. [PMID: 11283397 DOI: 10.1161/01.str.32.4.958] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Age-dependent changes in T2-weighted MR images have been reported in cerebral hypoxia-ischemia. However, the biophysical mechanisms responsible for the image changes remain poorly defined. We investigated whether cerebral hypoxia-ischemia-induced T2 changes correlate with alterations in either water content or protein extravasation. METHODS One- and 4-week-old rats were subjected to unilateral carotid artery occlusion plus hypoxia in 8% oxygen. T2 images were acquired before, during, and 1 or 24 hours after hypoxia-ischemia. Blood-brain barrier disruption and brain edema were evaluated by immunohistological detection of IgG extravasation and measurement of water content by dry-wet weight and specific gravity methods. RESULTS In 1-week-old rats, T2 values, areas of hyperintensity on T2-weighted images, and water content in the ipsilateral hemisphere increased during hypoxia-ischemia, recovered at 1 hour after hypoxia-ischemia, and increased again at 24 hours after hypoxia-ischemia. Extravasation of IgG occurred during hypoxia-ischemia and remained detectable 24 hours after hypoxia-ischemia. In 4-week-old rats, an increase in T2 or extravasation of IgG did not occur until 24 hours after hypoxia-ischemia despite a comparable elevation in water content during and soon after hypoxia-ischemia. CONCLUSIONS T2 imaging appears reliable for detecting edema associated with disruption of the blood-brain barrier but not necessarily an increase in cerebral water or plasma proteins alone. The different hypoxic-ischemic changes in T2 in immature and older brain are associated with differences in alterations in water content plus extravasation of protein, consistent with age-dependent differences in hypoxic-ischemic alterations in vascular permeability.
Collapse
Affiliation(s)
- M Qiao
- Institute for Biodiagnostics, National Research Council Canada, Department of Pathology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | |
Collapse
|
23
|
Raha S, McEachern GE, Myint AT, Robinson BH. Superoxides from mitochondrial complex III: the role of manganese superoxide dismutase. Free Radic Biol Med 2000; 29:170-80. [PMID: 10980405 DOI: 10.1016/s0891-5849(00)00338-5] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this report we show that ubiquinone cytochrome c reductase (complex III) from isolated rat heart mitochondria when inhibited with antimycin A, produces a large amount of superoxide as measured by the chemiluminescent probe coelenterazine. When mitochondria are inhibited with myxothiazol or stigmatellin, there is no detectable formation of superoxide. The antimycin A-sensitive free radical production can be dramatically reduced using either myxothiazol or stigmatellin. This suggests that the antimycin A-sensitive generation of superoxides originates primarily from the Q(o) semiubiquinone. When manganese superoxide dismutase depleted submitochondrial particles (SMP) were inhibited with myxothiazol or stigmatellin, a large superoxide signal was observed. These two inhibitors likely increase the concentration of the Q(i) semiquinone at the N center. The antimycin A-sensitive signal can, in the case of both the mitochondria and the SMP, be dissipated by the addition of copper zinc superoxide dismutase, suggesting that the measured coelenterazine signal was a result of superoxide production. Taken together, this data suggests that free radicals generated from the Q(i) species are more effectively eliminated by MnSOD in intact mitochondria.
Collapse
Affiliation(s)
- S Raha
- Hospital for Sick Children, Metabolism Research Programme, Toronto, ON, Canada
| | | | | | | |
Collapse
|
24
|
Ninfali P, Aluigi G, Pompella A. Postnatal expression of glucose-6-phosphate dehydrogenase in different brain areas. Neurochem Res 1998; 23:1197-204. [PMID: 9712191 DOI: 10.1023/a:1020734203128] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The activity of glucose-6-phosphate dehydrogenase (G6PD) was studied in five brain areas of rats aged 5 to 90 days. The areas studied were: the olfactory bulb (OB), cortex, hippocampus, striatum and septum. The G6PD activity increased more than 2-fold from 5 to 90 days in the OB, while it was almost constant in the other areas. At every stage of development, the G6PD activity was significantly higher in the OB than in the other areas. The G6PD pattern was compared with 6-phosphogluconate dehydrogenase (6PGD), glutathione reductase (GR); glutathione peroxidase (GPX), catalase (CAT) and superoxide dismutase (SOD) in order to find synergistic interactions among activities of these enzymes during development. Over the considered period, the activity of 6PGD increased significantly in the OB, while no significant difference in activity was detected in the other areas. GR increased significantly and progressively at each developmental stage in all areas. GPX showed a progressive increase in the OB, while in other areas a significant increase was detected at 90 days only. CAT and SOD showed a different and independent pattern which differed from the G6PD pattern. CAT showed the highest level of activity at 5 days then progressively decreased or was constant until 90 days; SOD had the highest value at 5 days, than it decreased at 10 days and increased from 10 to 90 days. In all areas, G6PD activity showed three electrophoretic bands, whose relative activity changed with development. At histochemical level, we found a marked G6PD activity in the periglomerular zone of the OB, which increased with age, while other areas showed a homogeneous staining. The present results demonstrate that G6PD activity increases in the OB during the developmental stages and there is a coordinated simultaneous activation of 6PGD, GPX and GR. It is likely that this enzyme induction increases the antioxidant defense of periglomerular cells that are subject to a rapid renewal and thus much more exposed to oxidant stress.
Collapse
Affiliation(s)
- P Ninfali
- Istituto di Chimica Biologica, Università di Urbino, Italy.
| | | | | |
Collapse
|
25
|
Ninfali P, Aluigi G, Balduini W, Pompella A. Glucose-6-phosphate dehydrogenase activity is higher in the olfactory bulb than in other brain areas. Brain Res 1997; 744:138-42. [PMID: 9030422 DOI: 10.1016/s0006-8993(96)00933-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The activity of antioxidant enzymes was measured in the olfactory bulb (OB) of rat and compared with cortex, hippocampus, striatum and septum. Glutathione reductase, glutathione peroxidase, catalase and superoxide dismutase were not significantly different in the five brain areas, while glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase activities were four times higher in the OB than in the other areas. This picture prompted us to explore the reasons of the marked increase of G6PD, since it is the enzyme that regulates the operation of the hexose monophosphate shunt. A first approach was to analyze the G6PD electrophoretic pattern. The analysis revealed that the high G6PD activity of the bulb was neither due to new isoenzymes nor to a modification of the equilibrium between the G6PD dimers. We secondly hypothesized an induction of G6PD activity in the OB by oxidant stress. The assay of markers of the oxidant stress, such as thiobarbituric acid reactive substances, oxidized and reduced glutathione, did not confirm this hypothesis. A third approach was the cytochemical analysis of cryostat sections of OB. By this method we identified a particular cell type which was very rich in G6PD and located at the border of the glomerular layer. Thus, we attributed the high G6PD activity of the OB to the consistent presence of periglomerular cells, that probably need a high G6PD activity for their regulatory function in the neurochemical transmission.
Collapse
Affiliation(s)
- P Ninfali
- Istituto di Chimica Biologica e di, Università di Urbino, Italy
| | | | | | | |
Collapse
|
26
|
Devi BG, Schenker S, Mazloum B, Henderson GI. Ethanol-induced oxidative stress and enzymatic defenses in cultured fetal rat hepatocytes. Alcohol 1996; 13:327-32. [PMID: 8836319 DOI: 10.1016/0741-8329(96)00002-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Previously, we have documented an ethanol (E)-induced oxidative stress (OS) in cultured fetal rat hepatocytes (FRH). The cause of this is uncertain, but an inhibition of key antioxidant enzymes could be a/the factor. OS was also observed in fetal liver (FL) during in utero E exposure, but not in maternal liver, a difference that might be related to selectively lower enzymatic defenses in the fetus. Here, we record effects of E on activities of catalase (Cat), superoxide dismutase (Cu, Zn SOD and Mn SOD), glutathione peroxidase (GPX), and glutathione-S-transferase (GST) in FRH isolated from 20-day-old fetuses and exposed to E (2 mg/ml) for up to 24 h and we compare these to adult rat liver data. E treatment decreased fetal liver reduced glutathione (GSH) pools by 23% (p < 0.05) and increased malondialdehyde (MDA) by 14% (p < 0.05) within 24 h of E exposure. E caused an increase in fetal liver Cat by 18%, 32%, and 47% by 3, 6, and 24 h of E, respectively (p < 0.05). A 24-h E exposure increased Cu, Zn SOD by 22% (p < 0.05) and Mn SOD by 21% (p < 0.05). A 24 h E treatment increased GPX by 18% (p < 0.05) and GST by 17% (p < 0.05). Cat in whole FL was 26% of adult (p < 0.05) whereas Cu, Zn SOD and Mn SOD in whole FL were 12% and 11% of adult levels (p < 0.05). GPX and GST in FL were 11% and 28% of adult values (p < 0.05). It is concluded that in FRH, E-induced OS is not caused by impaired activities of these enzymes, but their low basal activities (vs. adult) may predispose the fetus to OS.
Collapse
Affiliation(s)
- B G Devi
- University of Texas Health Science Center at San Antonio, Department of Medicine 78284-7878, USA
| | | | | | | |
Collapse
|
27
|
Iantomasi T, Favilli F, Marraccini P, Stio M, Treves C, Quattrone A, Capaccioli S, Vincenzini MT, Quatrone A [corrected to Quattrone A]. Age and GSH metabolism in rat cerebral cortex, as related to oxidative and energy parameters. Mech Ageing Dev 1993; 70:65-82. [PMID: 8231290 DOI: 10.1016/0047-6374(93)90060-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A comprehensive study on GSH metabolism in relation to some markers of oxidative and energy status in rat cerebral cortex as a function of age was performed. Reduced GSH, total GSH and the GSH Redox Index decreased both during growth (defined as the period between 1 and 5 months) and during aging (defined as the period between 5 and 27 months) while GSSG levels increased during the two periods, but most significantly during aging. Also GSH-associated enzymes and adenine-pyridine nucleotide levels show age characteristic changes. The obtained results suggest that decreases in oxidative and energy metabolism occur during aging. They probably contribute to decreases in the activity of the biosynthetic processes (i.e., NADP+(H) and GSH synthesis) and in the antioxidant capacity of the GSH system. However, the oxidative stress does not seem to be a typical characteristic of the aging period; as an oxidative status is present during the growth period too. Typical parameters of aging process are mainly the low levels of reduced GSH, total GSH and GSH Redox Index and the high levels of GSSG as well as the high levels of GSH peroxidase and GSH transferase and the low levels of gamma-glutamylcysteine synthetase.
Collapse
Affiliation(s)
- T Iantomasi
- Department of Biochemical Sciences, University of Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Buckman TD, Sutphin MS, Mitrovic B. Oxidative stress in a clonal cell line of neuronal origin: effects of antioxidant enzyme modulation. J Neurochem 1993; 60:2046-58. [PMID: 8492117 DOI: 10.1111/j.1471-4159.1993.tb03489.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effects of intracellularly generated H2O2 on cell viability, morphology, and biochemical markers of injury have been investigated in a clonal cell line of neuronal origin (140-3, mouse neuroblastoma X rat glioma) as a cell culture model for the role of oxidative stress in the long-term loss of neurons in the brain. The H2O2 was generated from the redox cycling of menadione, or by the oxidation of serotonin catalyzed by monoamine oxidase, to simulate the effect of amine neurotransmitter turnover. Incubation with menadione at concentrations as low as 10 microM for several hours resulted in significant losses of cell viability and altered morphology. Similar effects were evident in the presence of serotonin only after incubation overnight with concentrations > 1 mM. The cytotoxicity of either agent was potentiated by preincubation with specific inhibitors of two enzymes important to cellular antioxidant defenses, 3-amino-1,2,4-triazole for catalase and 1,3-bis(chloromethyl)-1-nitrosourea for glutathione reductase. Activity of another antioxidant enzyme of particular importance to antioxidant defenses in brain, the selenoprotein glutathione peroxidase, was stimulated fourfold by growth of cultures in the presence of sodium selenite as a source of active-site Se for the enzyme. The only effect of the selenite on other functionally coupled antioxidant enzymes was a decrease in activity of superoxide dismutase at concentrations > 200 nM. The selenite substantially protected cells against oxidative stress induced by combinations of menadione, 3-amino-1,2,4-triazole, and 1,3-bis(chloromethyl)-1-nitrosourea, but was only marginally effective with serotonin as a source of oxidative stress. The monoamine oxidase inhibitor pargyline increased cell survival in the presence of serotonin, demonstrating the role of this enzyme in its cytotoxicity. DNA damage (single strand breaks), but not lipid peroxidation, correlated with the cytotoxic effects of menadione.
Collapse
Affiliation(s)
- T D Buckman
- Department of Environmental Health Sciences, UCLA School of Public Health 90024
| | | | | |
Collapse
|
29
|
Buckman TD, Sutphin MS, Eckhert CD. A comparison of the effects of dietary selenium on selenoprotein expression in rat brain and liver. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1163:176-84. [PMID: 8490049 DOI: 10.1016/0167-4838(93)90179-u] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In studies with rodents, when dietary supplies of the essential nutrient Se are restricted, in most tissues there are parallel substantial losses of the element and the important antioxidant selenoenzyme glutathione peroxidase (GPx) for which it is a cofactor. In brain, however, there appears to be both a sequestration of Se and a conservation of GPx activity when dietary Se is limited. To further explore the relation between these phenomena, we have undertaken a comparison of the effects of diets low, normal and high in Se on GPx activity, and labeling of selenoproteins following short-term (72 h) in vivo exposure to 75Se, in subcellular fractions from rat brain and liver, the latter serving as a representative tissue which does not retain Se and is depleted of most GPx activity following dietary restriction. Brains and livers from animals on the three diets showed different patterns of response with respect to both GPx activity and retention of the 75Se dose. The low-Se diet (0.006 ppm) substantially reduced GPx activity in liver but not brain, while high levels (1 ppm) did not increase GPx in either tissue relative to a normal (0.1 ppm) intake. The 75Se was retained in brain homogenates and subcellular fractions to the greatest extent by rats on the restricted diet, while in liver, retention was greater in rats fed the normal supplement than in animals on either the low- or high-Se diets. Levels of non-protein-bound 75Se were higher in brain than liver and increased with dietary Se in both tissues. When proteins in brain and liver homogenates and subcellular fractions where separated by one-dimensional SDS-PAGE and exposed to X-ray film, the resulting autoradiograms revealed the existence of seven distinct selenoprotein bands in brain and eight in liver. Different patterns of selenoprotein expression were observed in subcellular fractions isolated from both tissues. Dependence of levels of individual selenoproteins on diet paralleled the effects on 75Se retention. Dietary influences on expression of protein bands tentatively identified as GPx were more pronounced in liver than brain. All of these observations provide further evidence of the unique nature of Se metabolism in brain.
Collapse
Affiliation(s)
- T D Buckman
- Department of Environmental Health Sciences, UCLA School of Public Health 90024
| | | | | |
Collapse
|
30
|
Affiliation(s)
- R Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
31
|
Wedler FC. Biological significance of manganese in mammalian systems. PROGRESS IN MEDICINAL CHEMISTRY 1993; 30:89-133. [PMID: 7905650 DOI: 10.1016/s0079-6468(08)70376-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- F C Wedler
- Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802
| |
Collapse
|
32
|
Wilson JX, Lui EM, Del Maestro RF. Developmental profiles of antioxidant enzymes and trace metals in chick embryo. Mech Ageing Dev 1992; 65:51-64. [PMID: 1405790 DOI: 10.1016/0047-6374(92)90125-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It has been previously well documented that partial pressure of oxygen (PO2) and weight-specific rate of O2 consumption in chick embryo (Gallus gallus domesticus) transiently increase midway through the 21-day in ovo incubation period. The present study found that these oxidative changes were paralleled by the concentrations of glutathione (GSH) and Zn in liver and by the specific activity of superoxide dismutase (SOD) in brain. Levels of antioxidant enzymes and their trace metal cofactors were markedly higher in liver than in brain. Hepatic catalase activity changed in parallel with the concentration of its cofactor, Fe. However, the relative abundance of metal cofactors did not appear to be the determining influence on other antioxidant enzyme activities. Rates of extra-mitochondrial hydrogen peroxide release were also much greater in liver than in brain. Taken together, the results of this initial study of embryonic chick antioxidant systems suggest that certain antioxidants may be regulated by PO2 and rate of oxidative metabolism during fetal development.
Collapse
Affiliation(s)
- J X Wilson
- Department of Physiology, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
33
|
Castorina C, Campisi A, Di Giacomo C, Sorrenti V, Russo A, Vanella A. Lipid peroxidation and antioxidant enzymatic systems in rat retina as a function of age. Neurochem Res 1992; 17:599-604. [PMID: 1603266 DOI: 10.1007/bf00968789] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the present study, we have assayed the enzymatic activity of Cu,Zn-SOD, Mn-SOD, GSH-Px, GSH-Red, Cat, and G6PD in rat retina as a function of age. Conjugated diene levels and MDA formation were also determined. The conjugated diene levels in rat retina were found to increase significantly with age, accompanied by a marked decrease in GSH-Px and Cat activities. No age-related change in MDA levels and in GSH-Red and G6PD activity was found, whereas a significant increase in SOD activity was observed between 1 and 4 months. Decreased GSH-Px and Cat activity is related to increased lipid peroxidation with age.
Collapse
Affiliation(s)
- C Castorina
- Institute of Biochemistry, University of Catania, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Del Maestro RF, Lopez-Torres M, McDonald WB, Stroude EC, Vaithilingam IS. The effect of tumor necrosis factor-alpha on human malignant glial cells. J Neurosurg 1992; 76:652-9. [PMID: 1312141 DOI: 10.3171/jns.1992.76.4.0652] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The influence of human recombinant tumor necrosis factor-alpha has been assessed on a cell line (U-251) derived from a human malignant glial tumor. The results of this study demonstrate that tumor necrosis factor-alpha at doses of 50 and 100 ng/ml: 1) did not have cytotoxic or cytostatic effects on the U-251 cell line; 2) significantly increased the intracellular activity of manganese superoxide dismutase but had no effect on copper and zinc superoxide dismutase, catalase, or glutathione peroxidase activity; and 3) did not significantly alter the intracellular or extracellular general protease and collagenase type IV activity of these cells. The resistance of the U-251 cell line to tumor necrosis factor-alpha cytotoxicity may be related in part to the high intrinsic manganese superoxide dismutase activity present in this cell line combined with the ability of this cell line to induce substantial amounts of protective manganese superoxide dismutase activity in response to tumor necrosis factor-alpha.
Collapse
Affiliation(s)
- R F Del Maestro
- Brain Research Laboratories, University of Western Ontario, Victoria Hospital, London, Canada
| | | | | | | | | |
Collapse
|
35
|
de Haan JB, Newman JD, Kola I. Cu/Zn superoxide dismutase mRNA and enzyme activity, and susceptibility to lipid peroxidation, increases with aging in murine brains. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1992; 13:179-87. [PMID: 1593944 DOI: 10.1016/0169-328x(92)90025-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To protect against reactive oxygen species, prokaryotic and eukaryotic cells have developed an antioxidant defence mechanism where O2- is converted to H2O2 by superoxide dismutase (Sod), and in a second step, H2O2 is converted to H2O by catalase (Cat) and/or glutathione peroxidase (Gpx). If Sod levels are increased without a concomitant Gpx increase, then the intermediate H2O2 accumulates. This intermediate could undergo the Fenton's reaction, generating hydroxyl radicals which may lead to lipid peroxidation in cells. In this study, we investigate the expression of Sod1, Gpx1 and susceptibility to lipid peroxidation during the aging process in mouse brains. We demonstrate that the mRNA levels and enzyme activity of Sod1 are higher in brains from adult mice compared to neonatal mice. Furthermore, we show that a linear increase in Sod1 mRNA and enzyme activity occurs with aging (1-100 weeks). On the contrary, we find that the mRNA and enzyme activity for Gpx1 does not increase with aging in mouse brains. In addition, our results demonstrate that the susceptibility of murine brains to lipid peroxidation increases with aging. The data in this study are consistent with the notion that reactive oxygen species may contribute to the aging process in mammalian brains. These results are discussed in relation to the normal aging process in mammals, and to the premature aging and mental retardation in Down syndrome.
Collapse
Affiliation(s)
- J B de Haan
- Molecular Embryology and Birth Defects Laboratory, Monash University, Clayton, Vic., Australia
| | | | | |
Collapse
|
36
|
Sutphin MS, Buckman TD. Effects of low selenium diets on antioxidant status and MPTP toxicity in mice. Neurochem Res 1991; 16:1257-63. [PMID: 1784323 DOI: 10.1007/bf00966655] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To investigate the role of chronic oxidative stress in MPTP neurotoxicity, C57BL mice were maintained 6-8 weeks on diets deficient in nutrients essential to cellular antioxidant defenses, selenium (Se) and alpha-tocopherol (vit E), and the effects on tissue antioxidant status and MPTP toxicity were evaluated relative to controls on supplemented diets. Activities of the major antioxidant enzymes, glutathione peroxidase (GPx), catalase, and superoxide dismutase, and levels of malondialdehyde as a marker for oxidative stress, were measured in brain, lung, liver and blood. Caudate depletion of dopamine and its metabolites served as a measure of MPTP neurotoxicity. For mice on the Se deficient diet, levels of the selenoenzyme GPx decreased from 50% in brain to 90% in blood. No compensatory changes in the activities of the other antioxidant enzymes were observed and addition of vit E to the diet did not alter antioxidant enzyme activities or malondialdehyde levels. In animals not treated with MPTP, the Se deficient diet significantly increased malondialdehyde only in liver. No protective effect of the antioxidant supplements against caudate depletion of dopamine and its metabolites were observed. However, malondialdehyde levels were increased in the brains of MPTP treated mice on the low Se diets, suggesting the possibility of secondary oxidative damage to tissues accompanying the destruction of substantia nigra neurons by MPTP.
Collapse
Affiliation(s)
- M S Sutphin
- Division of Nutritional Sciences, UCLA School of Public Health 90024
| | | |
Collapse
|
37
|
Adams JD, Odunze IN. Biochemical mechanisms of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity. Could oxidative stress be involved in the brain? Biochem Pharmacol 1991; 41:1099-105. [PMID: 2009088 DOI: 10.1016/0006-2952(91)90646-m] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- J D Adams
- School of Pharmacy, University of Southern California, Los Angeles 90033
| | | |
Collapse
|