1
|
Hosano N, Moosavi-Nejad Z, Hide T, Hosano H. Focused shock waves and inertial cavitation release tumor-associated antigens from renal cell carcinoma. ULTRASONICS SONOCHEMISTRY 2024:107078. [PMID: 39327122 DOI: 10.1016/j.ultsonch.2024.107078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Tumor biomarkers play an essential role in immunotherapeutic strategies in cancer treatment, contributing to early diagnosis, patient selection, treatment monitoring, and personalized treatment plans. Despite their importance in cancer care, circulating biomarkers may not always be detectable or sufficiently elevated to provide reliable test results. Due to the pressing need for innovative approaches to enhance biomarker levels, this study explored the potential use of focused shock waves and cavitation for non-invasively releasing tumor-associated antigens. Renal carcinoma cell lines ACHN and TOS-1 were used in an in vitro study to analyze the impact of shock waves on two membrane glycosphingolipid antigens, MSGG and G1, respectively. Focused shock waves were generated using a partial spherical piezoceramic dish. Flow-cytometric analysis of treated cells immediately after 1,000 focused shock waves at 16 MPa overpressure showed a 29.4 % and 17.6 % decrease in MSGG and G1 antigens on the cell surfaces. In the immunostaining of glycosphingolipid fractions on thin-layer chromatography (TLC), both tumor markers were reduced by an average of 49.30 % (MSGG) and 57.08 % (G1). Immunoelectron microscopy images confirmed decrease in the cell membrane intensity immediately after shock waves because of the release of antigens into the extracellular spaces. The released antigens were primarily found on cell debris formed by shock waves and cavitation induced damage to the cell membrane. Theoretical analyses were performed to understand antigen release mechanisms. Moreover, the biophysical events that occurred following the interaction of a shock wave with a suspended cell were modeled and clarified. A novel model was used to calculate the tensile stresses following shock waves and to explain the deformations observed in scanning electron microscopy images. The release of tumor antigens by focused shock waves and inertial cavitation represents exciting prospects for advancing cancer care strategies.
Collapse
Affiliation(s)
- Nushin Hosano
- Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto, Japan.
| | - Zahra Moosavi-Nejad
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Takuichiro Hide
- Department of Neurosurgery, School of Medicine, Kitasato University, Yokohama, Japan.
| | - Hamid Hosano
- Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
2
|
Itokazu Y, Ariga T, Fuchigami T, Li D. Gangliosides in neural stem cell fate determination and nerve cell specification--preparation and administration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598109. [PMID: 38915682 PMCID: PMC11195043 DOI: 10.1101/2024.06.09.598109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Gangliosides are sialylated glycosphingolipids with essential but enigmatic functions in healthy and disease brains. GD3 is the predominant species in neural stem cells (NSCs) and GD3-synthase (sialyltransferase II; St8Sia1) knockout (GD3S-KO) revealed reduction of postnatal NSC pools with severe behavioral deficits including cognitive impairment, depression-like phenotypes, and olfactory dysfunction. Exogenous administration of GD3 significantly restored the NSC pools and enhanced the stemness of NSCs with multipotency and self-renewal, followed by restored neuronal functions. Our group discovered that GD3 is involved in the maintenance of NSC fate determination by interacting with epidermal growth factor receptors (EGFRs), by modulating expression of cyclin-dependent kinase (CDK) inhibitors p27 and p21, and by regulating mitochondrial dynamics via associating a mitochondrial fission protein, the dynamin-related protein-1 (Drp1). Furthermore, we discovered that nuclear GM1 promotes neuronal differentiation by an epigenetic regulatory mechanism. GM1 binds with acetylated histones on the promoter of N-acetylgalactosaminyltransferase (GalNAcT; GM2 synthase (GM2S); B4galnt1) as well as on the NeuroD1 in differentiated neurons. In addition, epigenetic activation of the GM2S gene was detected as accompanied by an apparent induction of neuronal differentiation in NSCs responding to an exogenous supplement of GM1. Interestingly, GM1 induced epigenetic activation of the tyrosine hydroxylase (TH) gene, with recruitment of Nurr1 and PITX3, dopaminergic neuron-associated transcription factors, to the TH promoter region. In this way, GM1 epigenetically regulates dopaminergic neuron specific gene expression, and it would modify Parkinson's disease. Multifunctional gangliosides significantly modulate lipid microdomains to regulate functions of important molecules on multiple sites: the plasma membrane, mitochondrial membrane, and nuclear membrane. Versatile gangliosides regulate functional neurons as well as sustain NSC functions via modulating protein and gene activities on ganglioside microdomains. Maintaining proper ganglioside microdomains benefits healthy neuronal development and millions of senior citizens with neurodegenerative diseases. Here, we introduce how to isolate GD3 and GM1 and how to administer them into the mouse brain to investigate their functions on NSC fate determination and nerve cell specification.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta 30912, Georgia, USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta 30912, Georgia, USA
- Y.I. and T.A. contributed equally to this work
| | - Toshio Ariga
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta 30912, Georgia, USA
- Y.I. and T.A. contributed equally to this work
| | - Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta 30912, Georgia, USA
- Departmet of Molecular Diagnosis, Graduate School of Medicine Chiba University, Chiba, 260-8670, Japan
| | - Dongpei Li
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta 30912, Georgia, USA
| |
Collapse
|
3
|
Biricioiu MR, Sarbu M, Ica R, Vukelić Ž, Kalanj-Bognar S, Zamfir AD. Advances in Mass Spectrometry of Gangliosides Expressed in Brain Cancers. Int J Mol Sci 2024; 25:1335. [PMID: 38279335 PMCID: PMC10816113 DOI: 10.3390/ijms25021335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Gangliosides are highly abundant in the human brain where they are involved in major biological events. In brain cancers, alterations of ganglioside pattern occur, some of which being correlated with neoplastic transformation, while others with tumor proliferation. Of all techniques, mass spectrometry (MS) has proven to be one of the most effective in gangliosidomics, due to its ability to characterize heterogeneous mixtures and discover species with biomarker value. This review highlights the most significant achievements of MS in the analysis of gangliosides in human brain cancers. The first part presents the latest state of MS development in the discovery of ganglioside markers in primary brain tumors, with a particular emphasis on the ion mobility separation (IMS) MS and its contribution to the elucidation of the gangliosidome associated with aggressive tumors. The second part is focused on MS of gangliosides in brain metastases, highlighting the ability of matrix-assisted laser desorption/ionization (MALDI)-MS, microfluidics-MS and tandem MS to decipher and structurally characterize species involved in the metastatic process. In the end, several conclusions and perspectives are presented, among which the need for development of reliable software and a user-friendly structural database as a search platform in brain tumor diagnostics.
Collapse
Affiliation(s)
- Maria Roxana Biricioiu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
- Faculty of Physics, West University of Timisoara, 300223 Timisoara, Romania
| | - Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
| | - Raluca Ica
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Svjetlana Kalanj-Bognar
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Alina D. Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
- Department of Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania
| |
Collapse
|
4
|
Fuchigami T, Itokazu Y, Morgan JC, Yu RK. Restoration of Adult Neurogenesis by Intranasal Administration of Gangliosides GD3 and GM1 in The Olfactory Bulb of A53T Alpha-Synuclein-Expressing Parkinson's-Disease Model Mice. Mol Neurobiol 2023; 60:3329-3344. [PMID: 36849668 PMCID: PMC10140382 DOI: 10.1007/s12035-023-03282-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting the body and mind of millions of people in the world. As PD progresses, bradykinesia, rigidity, and tremor worsen. These motor symptoms are associated with the neurodegeneration of dopaminergic neurons in the substantia nigra. PD is also associated with non-motor symptoms, including loss of smell (hyposmia), sleep disturbances, depression, anxiety, and cognitive impairment. This broad spectrum of non-motor symptoms is in part due to olfactory and hippocampal dysfunctions. These non-motor functions are suggested to be linked with adult neurogenesis. We have reported that ganglioside GD3 is required to maintain the neural stem cell (NSC) pool in the subventricular zone (SVZ) of the lateral ventricles and the subgranular layer of the dentate gyrus (DG) in the hippocampus. In this study, we used nasal infusion of GD3 to restore impaired neurogenesis in A53T alpha-synuclein-expressing mice (A53T mice). Intriguingly, intranasal GD3 administration rescued the number of bromodeoxyuridine + (BrdU +)/Sox2 + NSCs in the SVZ. Furthermore, the administration of gangliosides GD3 and GM1 increases doublecortin (DCX)-expressing immature neurons in the olfactory bulb, and nasal ganglioside administration recovered the neuronal populations in the periglomerular layer of A53T mice. Given the relevance of decreased ganglioside on olfactory impairment, we discovered that GD3 has an essential role in olfactory functions. Our results demonstrated that intranasal GD3 infusion restored the self-renewal ability of the NSCs, and intranasal GM1 infusion promoted neurogenesis in the adult brain. Using a combination of GD3 and GM1 has the potential to slow down disease progression and rescue dysfunctional neurons in neurodegenerative brains.
Collapse
Affiliation(s)
- Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - John C Morgan
- Movement Disorders Program, Parkinson's Foundation Center of Excellence, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
5
|
Brodsky VY. Gangliosides in Orchestration of Intercellular Communication, Development, Neuronal Pathology and Carcinogenesis. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Hatton SL, Pandey MK. Fat and Protein Combat Triggers Immunological Weapons of Innate and Adaptive Immune Systems to Launch Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2022; 23:1089. [PMID: 35163013 PMCID: PMC8835271 DOI: 10.3390/ijms23031089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative disease in the world, affecting up to 10 million people. This disease mainly happens due to the loss of dopaminergic neurons accountable for memory and motor function. Partial glucocerebrosidase enzyme deficiency and the resultant excess accumulation of glycosphingolipids and alpha-synuclein (α-syn) aggregation have been linked to predominant risk factors that lead to neurodegeneration and memory and motor defects in PD, with known and unknown causes. An increasing body of evidence uncovers the role of several other lipids and their association with α-syn aggregation, which activates the innate and adaptive immune system and sparks brain inflammation in PD. Here, we review the emerging role of a number of lipids, i.e., triglyceride (TG), diglycerides (DG), glycerophosphoethanolamines (GPE), polyunsaturated fatty acids (PUFA), sphingolipids, gangliosides, glycerophospholipids (GPL), and cholesterols, and their connection with α-syn aggregation as well as the induction of innate and adaptive immune reactions that trigger neuroinflammation in PD.
Collapse
Affiliation(s)
- Shelby Loraine Hatton
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
- Department of Pediatrics, Division of Human Genetics, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
7
|
Itokazu Y, Fuchigami T, Morgan JC, Yu RK. Intranasal infusion of GD3 and GM1 gangliosides downregulates alpha-synuclein and controls tyrosine hydroxylase gene in a PD model mouse. Mol Ther 2021; 29:3059-3071. [PMID: 34111562 DOI: 10.1016/j.ymthe.2021.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/20/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is characterized by Lewy bodies (composed predominantly of alpha-synuclein [aSyn]) and loss of pigmented midbrain dopaminergic neurons comprising the nigrostriatal pathway. Most PD patients show significant deficiency of gangliosides, including GM1, in the brain, and GM1 ganglioside appears to keep dopaminergic neurons functioning properly. Thus, supplementation of GM1 could potentially provide some rescuing effects. In this study, we demonstrate that intranasal infusion of GD3 and GM1 gangliosides reduces intracellular aSyn levels. GM1 also significantly enhances expression of tyrosine hydroxylase (TH) in the substantia nigra pars compacta of the A53T aSyn overexpressing mouse, following restored nuclear expression of nuclear receptor related 1 (Nurr1, also known as NR4A2), an essential transcription factor for differentiation, maturation, and maintenance of midbrain dopaminergic neurons. GM1 induces epigenetic activation of the TH gene, including augmentation of acetylated histones and recruitment of Nurr1 to the TH promoter region. Our data indicate that intranasal administration of gangliosides could reduce neurotoxic proteins and restore functional neurons via modulating chromatin status by nuclear gangliosides.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Takahiro Fuchigami
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - John C Morgan
- Movement Disorders Program, Parkinson's Foundation Center of Excellence, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
8
|
Cuello AC. Rita Levi-Montalcini, NGF Metabolism in Health and in the Alzheimer's Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:119-144. [PMID: 34453296 DOI: 10.1007/978-3-030-74046-7_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This chapter relates biographic personal and scientific interactions with Rita Levi-Montalcini. It highlights research from our laboratory inspired by Rita's fundamental discovery. This work from studies on potentially neuro-reparative gangliosides, their interactions with NGF, the role of exogenous NGF in the recovery of degenerating cholinergic neurons of the basal forebrain to the evidence that endogenous NGF maintains the "day-to-day" cortical synaptic phenotype and the discovery of a novel CNS "NGF metabolic pathway." This brain pathway's conceptual platform allowed the investigation of its status during the Alzheimer's disease (AD) pathology. This revealed a major compromise of the conversion of the NGF precursor molecule (proNGF) into the most biologically active molecule, mature NGF (mNGF). Furthermore, in this pathology, we found enhanced protein levels and enzymatic activity of the proteases responsible for the proteolytic degradation of mNGF. A biochemical prospect explaining the tropic factor vulnerability of the NGF-dependent basal forebrain cholinergic neurons and of their synaptic terminals. The NGF deregulation of this metabolic pathway is evident at preclinical stages and reflected in body fluid particularly in the cerebrospinal fluid (CSF). The findings of a deregulation of the NGF metabolic pathway and its reflection in plasma and CSF are opening doors for the development of novel biomarkers for preclinical detection of AD pathology both in Alzheimer's and in Down syndrome (DS) with "silent" AD pathology.
Collapse
Affiliation(s)
- A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Landfield Q, Saito M, Hashim A, Canals-Baker S, Sershen H, Levy E, Saito M. Cocaine Induces Sex-Associated Changes in Lipid Profiles of Brain Extracellular Vesicles. Neurochem Res 2021; 46:2909-2922. [PMID: 34245421 PMCID: PMC8490334 DOI: 10.1007/s11064-021-03395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/27/2022]
Abstract
Cocaine is a highly addictive stimulant with diverse effects on physiology. Recent studies indicate the involvement of extracellular vesicles (EVs) secreted by neural cells in the cocaine addiction process. It is hypothesized that cocaine affects secretion levels of EVs and their cargos, resulting in modulation of synaptic transmission and plasticity related to addiction physiology and pathology. Lipids present in EVs are important for EV formation and for intercellular lipid exchange that may trigger physiological and pathological responses, including neuroplasticity, neurotoxicity, and neuroinflammation. Specific lipids are highly enriched in EVs compared to parent cells, and recent studies suggest the involvement of various lipids in drug-induced synaptic plasticity during the development and maintenance of addiction processes. Therefore, we examined interstitial small EVs isolated from the brain of mice treated with either saline or cocaine, focusing on the effects of cocaine on the lipid composition of EVs. We demonstrate that 12 days of noncontingent repeated cocaine (10 mg/kg) injections to mice, which induce locomotor sensitization, cause lipid composition changes in brain EVs of male mice as compared with saline-injected controls. The most prominent change is the elevation of GD1a ganglioside in brain EVs of males. However, cocaine does not affect the EV lipid profiles of the brain in female mice. Understanding the relationship between lipid composition in EVs and vulnerability to cocaine addiction may provide insight into novel targets for therapies for addiction.
Collapse
Affiliation(s)
- Qwynn Landfield
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA
| | - Mitsuo Saito
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA
| | - Audrey Hashim
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA
| | - Stefanie Canals-Baker
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA
| | - Henry Sershen
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Efrat Levy
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- NYU Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Mariko Saito
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA.
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Porter MJ, Zhang GL, Schnaar RL. Ganglioside Extraction, Purification and Profiling. J Vis Exp 2021. [PMID: 33779615 DOI: 10.3791/62385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Gangliosides are glycosphingolipids that contain one or more sialic acid residues. They are found on all vertebrate cells and tissues but are especially abundant in the brain. Expressed primarily on the outer leaflet of the plasma membranes of cells, they modulate the activities of cell surface proteins via lateral association, act as receptors in cell-cell interactions and are targets for pathogens and toxins. Genetic dysregulation of ganglioside biosynthesis in humans results in severe congenital nervous system disorders. Because of their amphipathic nature, extraction, purification, and analysis of gangliosides require techniques that have been optimized by many investigators in the 80 years since their discovery. Here, we describe bench-level methods for the extraction, purification, and preliminary qualitative and quantitative analyses of major gangliosides from tissues and cells that can be completed in a few hours. We also describe methods for larger scale isolation and purification of major ganglioside species from brain. Together, these methods provide analytical and preparative scale access to this class of bioactive molecules.
Collapse
Affiliation(s)
- Mitchell J Porter
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine
| | - Gao-Lan Zhang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine; Department of Neuroscience, Johns Hopkins University School of Medicine;
| |
Collapse
|
11
|
Allende ML, Zhu H, Kono M, Hoachlander-Hobby LE, Huso VL, Proia RL. Genetic defects in the sphingolipid degradation pathway and their effects on microglia in neurodegenerative disease. Cell Signal 2021; 78:109879. [PMID: 33296739 PMCID: PMC7775721 DOI: 10.1016/j.cellsig.2020.109879] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
Sphingolipids, which function as plasma membrane lipids and signaling molecules, are highly enriched in neuronal and myelin membranes in the nervous system. They are degraded in lysosomes by a defined sequence of enzymatic steps. In the related group of disorders, the sphingolipidoses, mutations in the genes that encode the individual degradative enzymes cause lysosomal accumulation of sphingolipids and often result in severe neurodegenerative disease. Here we review the information indicating that microglia, which actively clear sphingolipid-rich membranes in the brain during development and homeostasis, are directly affected by these mutations and promote neurodegeneration in the sphingolipidoses. We also identify parallels between the sphingolipidoses and more common forms of neurodegeneration, which both exhibit evidence of defective sphingolipid clearance in the nervous system.
Collapse
Affiliation(s)
- Maria L Allende
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongling Zhu
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mari Kono
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lila E Hoachlander-Hobby
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vienna L Huso
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard L Proia
- Genetics of Development and Disease Section, Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, 9000 Rockville Pike, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Cheeseman J, Kuhnle G, Spencer DI, Osborn HM. Assays for the identification and quantification of sialic acids: Challenges, opportunities and future perspectives. Bioorg Med Chem 2021; 30:115882. [DOI: 10.1016/j.bmc.2020.115882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/23/2022]
|
13
|
Itokazu Y, Li D, Yu RK. Intracerebroventricular Infusion of Gangliosides Augments the Adult Neural Stem Cell Pool in Mouse Brain. ASN Neuro 2020; 11:1759091419884859. [PMID: 31635474 PMCID: PMC6806120 DOI: 10.1177/1759091419884859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We previously reported that ganglioside GD3 is the predominant species in
neural stem cells (NSCs) and reduced postnatal NSC pools are observed
in both the subventricular zone and dentate gyrus (DG) of GD3-synthase
knockout (GD3S-KO) mouse brains. Specifically, deficiency of GD3 in
GD3S-KO animals revealed a dramatic reduction in cellularity in the DG
of the hippocampus of the developing mouse brain, resulting in severe
behavioral deficits in these animals. To further evaluate the
functional role of GD3 in postnatal brain, we performed rescue
experiments by intracerebroventricular infusion of ganglioside GD3 in
adult GD3S-KO animals and found that it could restore the NSC pools
and enhance the NSCs for self-renewal. Furthermore, 5xFAD mouse model
was utilized, and GD3 restored NSC numbers and GM1 promoted neuronal
differentiation. Our results thus demonstrate that exogenously
administered gangliosides are capable to restore the function of
postnatal NSCs. Since ganglioside expression profiles are associated
not only with normal brain development but also with pathogenic
mechanisms of diseases, such as Alzheimer’s disease, we anticipate
that the administration of exogenous gangliosides, such as GD3 and
GM1, may represent a novel and effective strategy for promoting adult
neurogenesis in damaged brain for disease treatment.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, GA, USA
| | - Dongpei Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, GA, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, GA, USA
| |
Collapse
|
14
|
Jasminka Rešić Karara, Kowalski M, Markotić A, Zemunik T, Čulić VČ. Distinct Cerebellar Glycosphingolipid Phenotypes in Wistar and Lewis Rats. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Wang X, Wang Y, Xu J, Xue C. Sphingolipids in food and their critical roles in human health. Crit Rev Food Sci Nutr 2020; 61:462-491. [PMID: 32208869 DOI: 10.1080/10408398.2020.1736510] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sphingolipids (SLs) are ubiquitous structural components of cell membranes and are essential for cell functions under physiological conditions or during disease progression. Abundant evidence supports that SLs and their metabolites, including ceramide (Cer), ceramide-1-phosphate (C1P), sphingosine (So), sphingosine-1-phosphate (S1P), are signaling molecules that regulate a diverse range of cellular processes and human health. However, there are limited reviews on the emerging roles of exogenous dietary SLs in human health. In this review, we discuss the ubiquitous presence of dietary SLs, highlighting their structures and contents in foodstuffs, particularly in sea foods. The digestion and metabolism of dietary SLs is also discussed. Focus is given to the roles of SLs in both the etiology and prevention of diseases, including bacterial infection, cancers, neurogenesis and neurodegenerative diseases, skin integrity, and metabolic syndrome (MetS). We propose that dietary SLs represent a "functional" constituent as emerging strategies for improving human health. Gaps in research that could be of future interest are also discussed.
Collapse
Affiliation(s)
- Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Yuming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong, China.,Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China
| |
Collapse
|
16
|
Mojumdar EH, Grey C, Sparr E. Self-Assembly in Ganglioside‒Phospholipid Systems: The Co-Existence of Vesicles, Micelles, and Discs. Int J Mol Sci 2019; 21:ijms21010056. [PMID: 31861839 PMCID: PMC6982371 DOI: 10.3390/ijms21010056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Ganglioside lipids have been associated with several physiological processes, including cell signaling. They have also been associated with amyloid aggregation in Parkinson’s and Alzheimer’s disease. In biological systems, gangliosides are present in a mix with other lipid species, and the structure and properties of these mixtures strongly depend on the proportions of the different components. Here, we study self-assembly in model mixtures composed of ganglioside GM1 and a zwitterionic phospholipid, 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC). We characterize the structure and molecular dynamics using a range of complementary techniques, including cryo-TEM, polarization transfer solid state NMR, diffusion NMR, small-angle X-ray scattering (SAXS), dynamic light scattering (DLS), and calorimetry. The main findings are: (1) The lipid acyl chains are more rigid in mixtures containing both lipid species compared to systems that only contain one of the lipids. (2) The system containing DOPC with 10 mol % GM1 contains both vesicles and micelles. (3) At higher GM1 concentrations, the sample is more heterogenous and also contains small disc-like or rod-like structures. Such a co-existence of structures can have a strong impact on the overall properties of the lipid system, including transport, solubilization, and partitioning, which can be crucial to the understanding of the role of gangliosides in biological systems.
Collapse
Affiliation(s)
- Enamul Haque Mojumdar
- Physical Chemistry, Lund University, 221 00 Lund, Sweden
- Correspondence: (E.H.M.); (E.S.); Tel.: +46-46-222-33-32 (E.H.M.); +46-46-222-15-36 (E.S.)
| | - Carl Grey
- Division of Biotechnology, Lund University, 221 00 Lund, Sweden;
| | - Emma Sparr
- Physical Chemistry, Lund University, 221 00 Lund, Sweden
- Correspondence: (E.H.M.); (E.S.); Tel.: +46-46-222-33-32 (E.H.M.); +46-46-222-15-36 (E.S.)
| |
Collapse
|
17
|
Norris T, Souza R, Xia Y, Zhang T, Rowan A, Gallier S, Zhang H, Qi H, Baker P. Effect of supplementation of complex milk lipids in pregnancy on fetal growth: results from the Complex Lipids in Mothers and Babies (CLIMB) randomized controlled trial. J Matern Fetal Neonatal Med 2019; 34:3313-3322. [PMID: 31744345 DOI: 10.1080/14767058.2019.1683539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Gangliosides (GAs) are important for neuronal function and development of the brain, accumulating rapidly in the fetal brain during the last trimester of pregnancy. No study in humans has investigated whether maternal supplementation of GAs during pregnancy has an effect on fetal growth, particularly of the head circumference. OBJECTIVE To evaluate the effect of maternal dietary supplementation of complex milk lipids (CML; gangliosides and phospholipids) from the milk fat globule membrane (MFGM) during pregnancy on fetal growth. DESIGN Double-blind three-arm parallel randomized controlled trial of 1500 pregnant women from the Chongqing Municipality of China, recruited between 11 and 14 weeks of pregnancy. Intervention was in the form of supplementation with: control maternal milk formulation containing a minimum of 2 mg GA per serving (4 mg GA per day) versus a CML-enriched (CML-E) maternal milk formulation containing a minimum of 4 mg GA per serving (8 mg GA per day) versus no maternal milk supplementation, but with standard obstetric care including prenatal folic acid supplementation. Main outcomes and measures were ultrasonographically-derived estimates of fetal growth in head circumference (HC) & biparietal diameter (BPD) (primary outcomes); and abdominal circumference (AC), femur length (FL) and estimated fetal weight (EFW) (secondary outcomes) (Clinical trial registry: ChiCTR-IOR-16007700). RESULTS Supplementation with CML-E milk had no effects on size at midpregnancy or growth trajectories in any of the fetal biometric dimensions. CONCLUSIONS Supplementation of CML from the MFGM from the end of the first trimester did not have any effects on fetal growth. The absence of any adverse growth outcomes suggests that maternal MFGM supplementation during pregnancy is safe and using CML-E milk formula can be a method of providing an increased GA and phospholipid supply in early life, which has been associated with neurodevelopmental benefits. CLINICAL TRIAL REGISTRY ChiCTR-IOR-16007700 (http://www.chictr.org.cn/enindex.aspx).
Collapse
Affiliation(s)
- Tom Norris
- Loughborough University, Loughborough, UK
| | - Renato Souza
- Obstetrics and Gynecology, Universidade Estadual de Campinas, Campinas, Brazil
| | - Yinyin Xia
- Chongqing Medical University Affiliated Children's Hospital, Chongqing, China
| | - Ting Zhang
- Chongqing Medical University Affiliated Children's Hospital, Chongqing, China
| | - Angela Rowan
- Fonterra Cooperative Group Ltd, Auckland, New Zealand
| | | | - Hua Zhang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Philip Baker
- Biological Sciences and Psychology, University of Leicester College of Medicine, Leicester, UK
| |
Collapse
|
18
|
Ji L, Qiao Z, Zhang X, Cheng X, Wang W, Zhang F, Zhou Y, Yuan Y. Preparation of Ganglioside GM1 by Supercritical CO2 Extraction and Immobilized Sialidase. Molecules 2019; 24:molecules24203732. [PMID: 31623198 PMCID: PMC6832980 DOI: 10.3390/molecules24203732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/06/2019] [Accepted: 10/15/2019] [Indexed: 11/25/2022] Open
Abstract
Monosialotetrahexosylganglioside (GM1) has good activity on brain diseases and was developed to be a drug applied in clinics for neurological disorders and nerve injury. It is difficult to isolate GM1 in industry scale from the brains directly. In this work, a simple and highly efficient method with high yield was developed for the isolation, conversion, and purification of GM1 from a pig brain. Gangliosides (GLS) were first extracted by supercritical CO2 (SCE). The optimum extraction time of GLS by SCE was 4 h, and the ratio of entrainer to acetone powder from the pig brain was 3:1 (v/w). GM1 was then prepared from GLS by immobilized sialidase and purified by reverse-phase silica gel. Sodium alginate embedding was used for the immobilization of sialidase. Under the optimized method, the yield of high-purity GM1 was around 0.056%. This method has the potential to be applied in the production of GM1 in the industry.
Collapse
Affiliation(s)
- Li Ji
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Zhonghui Qiao
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Xin Zhang
- College of Biology and Agricultural Engineering, Jilin University, Changchun 130022, China.
| | - Xiaolei Cheng
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Weiyang Wang
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Fan Zhang
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yifa Zhou
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Ye Yuan
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
19
|
Cavdarli S, Groux-Degroote S, Delannoy P. Gangliosides: The Double-Edge Sword of Neuro-Ectodermal Derived Tumors. Biomolecules 2019; 9:E311. [PMID: 31357634 PMCID: PMC6723632 DOI: 10.3390/biom9080311] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
Gangliosides, the glycosphingolipids carrying one or several sialic acid residues, are mostly localized at the plasma membrane in lipid raft domains and implicated in many cellular signaling pathways mostly by interacting with tyrosine kinase receptors. Gangliosides are divided into four series according to the number of sialic acid residues, which can be also modified by O-acetylation. Both ganglioside expression and sialic acid modifications can be modified in pathological conditions such as cancer, which can induce either pro-cancerous or anti-cancerous effects. In this review, we summarize the specific functions of gangliosides in neuro-ectodermal derived tumors, and their roles in reprogramming the lipidomic profile of cell membrane occurring with the induction of epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Sumeyye Cavdarli
- Université de Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F59000 Lille, France
| | - Sophie Groux-Degroote
- Université de Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F59000 Lille, France
| | - Philippe Delannoy
- Université de Lille, CNRS, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F59000 Lille, France.
| |
Collapse
|
20
|
Abstract
Anti-ganglioside antibodies are principally associated with autoimmune peripheral neuropathies. In these disorders, immune attack is inadvertently directed at peripheral nerve by autoantibodies that target glycan structures borne by glycolipids, particularly gangliosides concentrated in nerve myelin and axons. The most thoroughly studied disorder is the acute paralytic disease, Guillain-Barré syndrome (GBS) in which IgG autoantibodies against gangliosides arise following acute infections, notably Campylobacter jejuni enteritis. Additionally, chronic autoimmune neuropathies are associated with IgM antibodies directed against many glycolipids including gangliosides. This introductory chapter briefly summarizes the immunological and pathological features of these disorders, focusing on the methodological development of antibody measurement and of animal models.
Collapse
Affiliation(s)
- Hugh J Willison
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK.
| |
Collapse
|
21
|
FURUKAWA K, OHMI Y, KONDO Y, BHUIYAN RH, TAJIMA O, ZHANG P, OHKAWA Y, FURUKAWA K. Elucidation of the enigma of glycosphingolipids in the regulation of inflammation and degeneration - Great progress over the last 70 years. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:136-149. [PMID: 30853699 PMCID: PMC6541724 DOI: 10.2183/pjab.95.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
Since globotetraosylceramide was defined as a major glycosphingolipid in human erythrocytes, various glycolipids have been found in normal cells and diseased organs. However, the implications of their polymorphic structures in the function of individual cells and tissues have not been clarified. Genetic manipulation of glycosphingolipids in cultured cells and experimental animals has enabled us to substantially elucidate their roles. In fact, great progress has been achieved in the last 70 years in revealing that glycolipids are essential in the maintenance of integrity of nervous tissues and other organs. Furthermore, the correct composition of glycosphingolipids has been shown to be critical for the protection against inflammation and degeneration. Here, we summarized historic information and current knowledge about glycosphingolipids, with a focus on their involvement in inflammation and degeneration. This topic is significant for understanding the biological responses to various stresses, because glycosphingolipids play roles in the interaction with various intrinsic and extrinsic factors. These findings are also important for the application of therapeutic interventions of various diseases.
Collapse
Affiliation(s)
- Koichi FURUKAWA
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuhsuke OHMI
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Yuji KONDO
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Robiul H. BHUIYAN
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Orie TAJIMA
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Pu ZHANG
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
- Department of Biochemistry II, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki OHKAWA
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| | - Keiko FURUKAWA
- Department of Biomedical Sciences, Chubu University College of Life and Health Sciences, Kasugai, Japan
| |
Collapse
|
22
|
Tamadon-Nejad S, Ouliass B, Rochford J, Ferland G. Vitamin K Deficiency Induced by Warfarin Is Associated With Cognitive and Behavioral Perturbations, and Alterations in Brain Sphingolipids in Rats. Front Aging Neurosci 2018; 10:213. [PMID: 30061825 PMCID: PMC6054920 DOI: 10.3389/fnagi.2018.00213] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/25/2018] [Indexed: 01/07/2023] Open
Abstract
Initially discovered for its role in blood coagulation, there is now convincing evidence that vitamin K (VK) has important actions in the nervous system. In brain, VK is present in the form of menaquinone-4 (MK-4), a byproduct of the main dietary source, phylloquinone. It contributes to the biological activation of various proteins (i.e., Gas6), and participates in the synthesis of sphingolipids, a class of lipids widely present in brain cell membranes with important cell signaling functions. In a previous study, we reported that lifetime consumption of a low VK diet resulted in mild cognitive impairment in aged rats, a finding associated with an alteration of the sphingolipid profile. To confirm the role of VK as it relates to sphingolipids, cognition, and behavior outside the context of aging, we conducted a study of acute VK deficiency using a pharmacological model of VK deficiency in brain. In this procedure, rats (8 weeks) are maintained on a ratio of warfarin (a VK antagonist) to VK whereby coagulation is maintained while inducing VK deficiency in extrahepatic tissues. After 10 weeks of treatment, rats who were subjected to the warfarin plus phylloquinone protocol (WVK) exhibited longer latencies in the Morris water maze test as well as lower locomotor activity and exploratory behavior in the open field test, when compared to control rats. The WVK treatment resulted in a dramatic decrease in MK-4 level in all brain regions despite the presence of high local concentrations of phylloquinone, which suggests an inhibition of the biosynthetic MK-4 pathway in the presence of warfarin. Additionally, WVK treatment affected sphingolipid concentrations in key brain regions, notably those of the ganglioside family. Finally, brain MK-4 was correlated with performances in the open field test. This study confirms the modulatory role of VK in cognition and behavior and the implication of sphingolipids, notably those of the ganglioside family.
Collapse
Affiliation(s)
| | - Bouchra Ouliass
- Montreal Heart Institute Research Centre, Montreal, QC, Canada
| | - Joseph Rochford
- Douglas Institute Research Center, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Guylaine Ferland
- Montreal Heart Institute Research Centre, Montreal, QC, Canada.,Département de Nutrition, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
23
|
Kholodenko IV, Kalinovsky DV, Doronin II, Deyev SM, Kholodenko RV. Neuroblastoma Origin and Therapeutic Targets for Immunotherapy. J Immunol Res 2018; 2018:7394268. [PMID: 30116755 PMCID: PMC6079467 DOI: 10.1155/2018/7394268] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/27/2018] [Indexed: 01/30/2023] Open
Abstract
Neuroblastoma is a pediatric solid cancer of heterogeneous clinical behavior. The unique features of this type of cancer frequently hamper the process of determining clinical presentation and predicting therapy effectiveness. The tumor can spontaneously regress without treatment or actively develop and give rise to metastases despite aggressive multimodal therapy. In recent years, immunotherapy has become one of the most promising approaches to the treatment of neuroblastoma. Still, only one drug for targeted immunotherapy of neuroblastoma, chimeric monoclonal GD2-specific antibodies, is used in the clinic today, and its application has significant limitations. In this regard, the development of effective and safe GD2-targeted immunotherapies and analysis of other potential molecular targets for the treatment of neuroblastoma represents an important and topical task. The review summarizes biological characteristics of the origin and development of neuroblastoma and outlines molecular markers of neuroblastoma and modern immunotherapy approaches directed towards these markers.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Orekhovich Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow 119121, Russia
| | - Daniel V. Kalinovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| | - Igor I. Doronin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Real Target LLC, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University “MEPhI”, Moscow 115409, Russia
| | - Roman V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Real Target LLC, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| |
Collapse
|
24
|
Steil D, Pohlentz G, Legros N, Mormann M, Mellmann A, Karch H, Müthing J. Combining Mass Spectrometry, Surface Acoustic Wave Interaction Analysis, and Cell Viability Assays for Characterization of Shiga Toxin Subtypes of Pathogenic Escherichia coli Bacteria. Anal Chem 2018; 90:8989-8997. [PMID: 29939014 DOI: 10.1021/acs.analchem.8b01189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) and enterohemorrhagic E. coli (EHEC) as a human pathogenic subgroup of STEC are characterized by releasing Stx AB5-toxin as the major virulence factor. Worldwide disseminated EHEC strains cause sporadic infections and outbreaks in the human population and swine pathogenic STEC strains represent greatly feared pathogens in pig breeding and fattening plants. Among the various Stx subtypes, Stx1a and Stx2a are of eminent clinical importance in human infections being associated with life-threatening hemorrhagic colitis and hemolytic uremic syndrome, whereas Stx2e subtype is associated with porcine edema disease with a generalized fatal outcome for the animals. Binding toward the glycosphingolipid globotriaosylceramide (Gb3Cer) is a common feature of all Stx subtypes analyzed so far. Here, we report on the development of a matched strategy combining (i) miniaturized one-step affinity purification of native Stx subtypes from culture supernatant of bacterial wild-type strains using Gb3-functionalized magnetic beads, (ii) structural analysis and identification of Stx holotoxins by electrospray ionization ion mobility mass spectrometry (ESI MS), (iii) functional Stx-receptor real-time interaction analysis employing the surface acoustic wave (SAW) technology, and (iv) Vero cell culture assays for determining Stx-caused cytotoxic effects. Structural investigations revealed diagnostic tryptic peptide ions for purified Stx1a, Stx2a, and Stx2e, respectively, and functional analysis resulted in characteristic binding kinetics of each Stx subtype. Cytotoxicity studies revealed differing toxin-mediated cell damage ranked with Stx1a > Stx2a > Stx2e. Collectively, this matched procedure represents a promising clinical application for the characterization of life-endangering Stx subtypes at the protein level.
Collapse
Affiliation(s)
- Daniel Steil
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany
| | - Gottfried Pohlentz
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany
| | - Nadine Legros
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany
| | - Michael Mormann
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany
| | - Alexander Mellmann
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany.,Interdisciplinary Center for Clinical Research (IZKF) Münster , Domagkstrasse 3 , D-48149 Münster , Germany
| | - Helge Karch
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany.,Interdisciplinary Center for Clinical Research (IZKF) Münster , Domagkstrasse 3 , D-48149 Münster , Germany
| | - Johannes Müthing
- Institute for Hygiene , University of Münster , Robert-Koch-Strasse 41 , D-48149 Münster , Germany.,Interdisciplinary Center for Clinical Research (IZKF) Münster , Domagkstrasse 3 , D-48149 Münster , Germany
| |
Collapse
|
25
|
Legros N, Pohlentz G, Steil D, Kouzel IU, Liashkovich I, Mellmann A, Karch H, Müthing J. Membrane assembly of Shiga toxin glycosphingolipid receptors and toxin refractiveness of MDCK II epithelial cells. J Lipid Res 2018; 59:1383-1401. [PMID: 29866658 DOI: 10.1194/jlr.m083048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/22/2018] [Indexed: 12/16/2022] Open
Abstract
Shiga toxins (Stxs) are the major virulence factors of Stx-producing Escherichia coli (STEC), which cause hemorrhagic colitis and severe extraintestinal complications due to injury of renal endothelial cells, resulting in kidney failure. Since kidney epithelial cells are suggested additional targets for Stxs, we analyzed Madin-Darby canine kidney (MDCK) II epithelial cells for presence of Stx-binding glycosphingolipids (GSLs), determined their distribution to detergent-resistant membranes (DRMs), and ascertained the lipid composition of DRM and non-DRM preparations. Globotriaosylceramide and globotetraosylceramide, known as receptors for Stx1a, Stx2a, and Stx2e, and Forssman GSL as a specific receptor for Stx2e, were found to cooccur with SM and cholesterol in DRMs of MDCK II cells, which was shown using TLC overlay assay detection combined with mass spectrometry. The various lipoforms of GSLs were found to mainly harbor ceramide moieties composed of sphingosine (d18:1) and C24:1/C24:0 or C16:0 FA. The cells were highly refractory toward Stx1a, Stx2a, and Stx2e, most likely due to the absence of Stx-binding GSLs in the apical plasma membrane determined by immunofluorescence confocal laser scanning microscopy. The results suggest that the cellular content of Stx receptor GSLs and their biochemical detection in DRM preparations alone are inadequate to predict cellular sensitivity toward Stxs.
Collapse
Affiliation(s)
- Nadine Legros
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Daniel Steil
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Ivan U Kouzel
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.,Interdisciplinary Center for Clinical Research, University of Münster, D-48149 Münster, Germany
| | - Ivan Liashkovich
- Institute of Physiology II, University of Münster, D-48149 Münster, Germany
| | - Alexander Mellmann
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.,Interdisciplinary Center for Clinical Research, University of Münster, D-48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany.,Interdisciplinary Center for Clinical Research, University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany .,Interdisciplinary Center for Clinical Research, University of Münster, D-48149 Münster, Germany
| |
Collapse
|
26
|
Goodfellow JA, Willison HJ. Gangliosides and Autoimmune Peripheral Nerve Diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:355-382. [DOI: 10.1016/bs.pmbts.2017.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Shiga Toxin Glycosphingolipid Receptors in Human Caco-2 and HCT-8 Colon Epithelial Cell Lines. Toxins (Basel) 2017; 9:toxins9110338. [PMID: 29068380 PMCID: PMC5705953 DOI: 10.3390/toxins9110338] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/11/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022] Open
Abstract
Shiga toxins (Stxs) released by enterohemorrhagic Escherichia coli (EHEC) into the human colon are the causative agents for fatal outcome of EHEC infections. Colon epithelial Caco-2 and HCT-8 cells are widely used for investigating Stx-mediated intestinal cytotoxicity. Only limited data are available regarding precise structures of their Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), and lipid raft association. In this study we identified Gb3Cer and Gb4Cer lipoforms of serum-free cultivated Caco-2 and HCT-8 cells, chiefly harboring ceramide moieties composed of sphingosine (d18:1) and C16:0, C22:0 or C24:0/C24:1 fatty acid. The most significant difference between the two cell lines was the prevalence of Gb3Cer with C16 fatty acid in HCT-8 and Gb4Cer with C22–C24 fatty acids in Caco-2 cells. Lipid compositional analysis of detergent-resistant membranes (DRMs), which were used as lipid raft-equivalents, indicated slightly higher relative content of Stx receptor Gb3Cer in DRMs of HCT-8 cells when compared to Caco-2 cells. Cytotoxicity assays revealed substantial sensitivity towards Stx2a for both cell lines, evidencing little higher susceptibility of Caco-2 cells versus HCT-8 cells. Collectively, Caco-2 and HCT-8 cells express a plethora of different receptor lipoforms and are susceptible towards Stx2a exhibiting somewhat lower sensitivity when compared to Vero cells.
Collapse
|
28
|
Interaction Between Luteinizing Hormone-Releasing Hormone and GM1-Doped Cholesterol/Sphingomyelin Vesicles: A Spectroscopic Study. J Membr Biol 2017; 250:617-627. [PMID: 28894900 DOI: 10.1007/s00232-017-9987-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 09/01/2017] [Indexed: 12/24/2022]
Abstract
Understanding the role of neural membrane in translocation and action of neurohormone is of great importance. Luteinizing hormone-releasing hormone (LHRH) is a neuropeptide hormone and it acts as a final signaling molecule by stimulating the synthesis of LH and FSH to maintain reproduction in all vertebrates. The receptors of LHRH are found in breast tumors and pituitary gland in the brain. Moreover, neural plasma membrane is also found to contain specific binding site for LHRH. The mechanism by which LHRH binds to membrane before it binds to the receptors is a very critical step and can have a profound impact upon the translation of peptide across the membrane. A complex form of glycosphingolipids known as Ganglioside is an important component of plasma membrane of nerve cells and breast tumor tissues. They play an important role in various physiological membrane processes. Therefore, the interaction of ganglioside-containing membrane with LHRH might be crucial in aiding the LHRH to translate through the neural membrane and reach its receptor for binding and activation. Using CD, UV-Absorbance, and fluorescence spectroscopy, the effect of Ganglioside Monosialo 1(GM1)-induced conformational changes of LHRH in the presence of Cholesterol (CHOL)/Sphingomyelin (SM) and GM1/CHOL/SM vesicles was studied. The aforesaid spectroscopic studies show that LHRH is able to bind with both the vesicles, but GM1-containing vesicles interact more effectively than vesicles without GM1. CHOL/SM vesicles partially disturb the conformation of the peptide. Moreover, binding of LHRH to GM1/CHOL/SM vesicles induces loss of conformational rigidity and attainment of a random coil.
Collapse
|
29
|
Perea-Sanz L, Garcia-Llatas G, Lagarda MJ. Gangliosides in human milk and infant formula: A review on analytical techniques and contents. FOOD REVIEWS INTERNATIONAL 2017. [DOI: 10.1080/87559129.2017.1347671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Laura Perea-Sanz
- Nutrition and Food Science Area, University of Valencia, Valencia, Spain
| | | | | |
Collapse
|
30
|
Wang L, Shao C, Yang C, Kang X, Zhang G. Association of anti-gangliosides antibodies and anti-CMV antibodies in Guillain-Barré syndrome. Brain Behav 2017; 7:e00690. [PMID: 28523231 PMCID: PMC5434194 DOI: 10.1002/brb3.690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/10/2017] [Accepted: 02/28/2017] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Numerous types of infection were closely related to GBS, mainly including Campylobacter jejuni, Cytomegalovirus, which may lead to the production of anti-gangliosides antibodies (AGA). Currently, although there are increased studies on the AGA and a few studies of anti-CMV antibodies in GBS, the association between them remains poorly documented. Therefore, our research aims to analyze the correlation of anti-CMV antibodies and AGA in GBS. METHODS A total of 29 patients with GBS were enrolled in this study. The CMV antibodies were tested by the electrochemiluminescence immunoassay "ECLIA" (Roche Diagnostics GmbH). The serum gangliosides were determined by The EUROLINE test kit. RESULTS Of the 29 patients with GBS, 9 (31%) were AGA-seropositive, in which 22 were CMV-IgG positive in CSF at the same time, but all 29 samples were CMV-IgM negative in both serum and CSF. In the AGA-positive group, the rate of both serum and CSF positive was 87.5% (7/8), higher than 50% (7/14) of the negative group, although no statistical significance was found. In addition, we found that there was a trend of higher ratio of men, a younger age onset, less frequent preceding infection, a higher level of CSF proteins, and less frequent cranial nerve deficits, although the data did not reach a statistical significance. CONCLUSION In spite of no statistical significance association was found between serum AGA and CMV-IgG in serum and CSF. However, we found that there was a trend of high positive rate of both serum and CSF-CMV-IgG in AGA-positive than the negative group. So we should further expand the sample size to analyze the association between AGA and CMV or other neurotropic virus antibodies in various diseases, to observe whether they could be serological marker of these diseases (especially GBS) or the underlying pathogenesis.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Clinical Laboratory Beijing Tiantan Hospital Capital Medical University Beijing China
| | - Chunqing Shao
- Department of Clinical Laboratory Beijing Tiantan Hospital Capital Medical University Beijing China
| | - Chunjiao Yang
- Department of Clinical Laboratory Beijing Tiantan Hospital Capital Medical University Beijing China
| | - Xixiong Kang
- Department of Clinical Laboratory Beijing Tiantan Hospital Capital Medical University Beijing China.,China National Clinical Research Center for Neurological Diseases Beijing China.,Monogenic Disease Research Center for Neurological Disorder Beijing China
| | - Guojun Zhang
- Department of Clinical Laboratory Beijing Tiantan Hospital Capital Medical University Beijing China.,China National Clinical Research Center for Neurological Diseases Beijing China.,Monogenic Disease Research Center for Neurological Disorder Beijing China
| |
Collapse
|
31
|
Lipid glycosylation: a primer for histochemists and cell biologists. Histochem Cell Biol 2016; 147:175-198. [DOI: 10.1007/s00418-016-1518-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2016] [Indexed: 12/14/2022]
|
32
|
Kuchař L, Asfaw B, Rybová J, Ledvinová J. Tandem Mass Spectrometry of Sphingolipids: Applications for Diagnosis of Sphingolipidoses. Adv Clin Chem 2016; 77:177-219. [PMID: 27717417 DOI: 10.1016/bs.acc.2016.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years, mass spectrometry (MS) has become the dominant technology in lipidomic analysis. It is widely used in diagnosis and research of lipid metabolism disorders including those characterized by impairment of lysosomal functions and storage of nondegraded-degraded substrates. These rare diseases, which include sphingolipidoses, have severe and often fatal clinical consequences. Modern MS methods have contributed significantly to achieve a definitive diagnosis, which is essential in clinical practice to begin properly targeted patient care. Here we summarize MS and tandem MS methods used for qualitative and quantitative analysis of sphingolipids (SL) relative to the diagnostic process for sphingolipidoses and studies focusing on alterations in cell functions due to these disorders. This review covers the following topics: Tandem MS is sensitive and robust in determining the composition of sphingolipid classes in various biological materials. Its ability to establish SL metabolomic profiles using MS bench-top analyzers, significantly benefits the first stages of a diagnosis as well as metabolic studies of these disorders. It can thus contribute to a better understanding of the biological significance of SL.
Collapse
Affiliation(s)
- L Kuchař
- Charles University in Prague and General University Hospital, Prague, Czech Republic.
| | - B Asfaw
- Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - J Rybová
- Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - J Ledvinová
- Charles University in Prague and General University Hospital, Prague, Czech Republic.
| |
Collapse
|
33
|
Steil D, Schepers CL, Pohlentz G, Legros N, Runde J, Humpf HU, Karch H, Müthing J. Shiga toxin glycosphingolipid receptors of Vero-B4 kidney epithelial cells and their membrane microdomain lipid environment. J Lipid Res 2015; 56:2322-36. [PMID: 26464281 DOI: 10.1194/jlr.m063040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Indexed: 12/12/2022] Open
Abstract
Shiga toxins (Stxs) are produced by enterohemorrhagic Escherichia coli (EHEC), which cause human infections with an often fatal outcome. Vero cell lines, derived from African green monkey kidney, represent the gold standard for determining the cytotoxic effects of Stxs. Despite their global use, knowledge about the exact structures of the Stx receptor glycosphingolipids (GSLs) and their assembly in lipid rafts is poor. Here we present a comprehensive structural analysis of Stx receptor GSLs and their distribution to detergent-resistant membranes (DRMs), which were prepared from Vero-B4 cells and used as lipid raft equivalents. We identified globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) as the GSL receptors for Stx1a, Stx2a, and Stx2e subtypes using TLC overlay detection combined with MS. The uncommon Stx receptor, globopentaosylceramide (Gb5Cer, Galβ3GalNAcβ3Galα4Galβ4Glcβ1Cer), which was specifically recognized (in addition to Gb3Cer and Gb4Cer) by Stx2e, was fully structurally characterized. Lipoforms of Stx receptor GSLs were found to mainly harbor ceramide moieties composed of sphingosine (d18:1) and C24:0/C24:1 or C16:0 fatty acid. Moreover, co-occurrence with lipid raft markers, SM and cholesterol, in DRMs suggested GSL association with membrane microdomains. This study provides the basis for further exploring the functional impact of lipid raft-associated Stx receptors for toxin-mediated injury of Vero-B4 cells.
Collapse
Affiliation(s)
- Daniel Steil
- Institutes for Hygiene University of Münster, D-48149 Münster, Germany
| | | | | | - Nadine Legros
- Institutes for Hygiene University of Münster, D-48149 Münster, Germany
| | - Jana Runde
- Food Chemistry, University of Münster, D-48149 Münster, Germany
| | | | - Helge Karch
- Institutes for Hygiene University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institutes for Hygiene University of Münster, D-48149 Münster, Germany Interdisciplinary Center for Clinical Research (IZKF), University of Münster, D-48149 Münster, Germany
| |
Collapse
|
34
|
Yu RK, Usuki S, Itokazu Y, Wu HC. Novel GM1 ganglioside-like peptide mimics prevent the association of cholera toxin to human intestinal epithelial cells in vitro. Glycobiology 2015; 26:63-73. [PMID: 26405107 DOI: 10.1093/glycob/cwv080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/11/2015] [Indexed: 02/03/2023] Open
Abstract
Cholera is an acute diarrheal disease caused by infection in the gastrointestinal tract by the gram-negative bacterium, Vibrio cholerae, and is a serious public health threat worldwide. There has not been any effective treatment for this infectious disease. Cholera toxin (CT), which is secreted by V. cholerae, can enter host cells by binding to GM1, a monosialoganglioside widely distributed on the plasma membrane surface of various animal epithelial cells. The present study was undertaken to generate peptides that are conformationally similar to the carbohydrate epitope of GM1 for use in the treatment of cholera and related bacterial infection. For this purpose, we used cholera toxin B (CTB) subunit to select CTB-binding peptides that structurally mimic GM1 from a dodecamer phage-display library. Six GM1-replica peptides were selected by biopanning based on CTB recognition. Five of the six peptides showed inhibitory activity for GM1 binding to CTB. To test the potential of employing the peptide mimics for intervening with the bacterial infection, those peptides were examined for their binding capacity, functional inhibitory activity and in vitro effects using a human intestinal epithelial cell line, Caco-2 cells. One of the peptides, P3 (IPQVWRDWFKLP), was most effective in inhibiting cellular uptake of CTB and suppressing CT-stimulated cyclic adenosine monophosphate production in the cells. Our results thus provide convincing evidence that GM1-replica peptides could serve as novel agents to block CTB binding on epithelial cells and prevent the ensuing physiological effects of CT.
Collapse
Affiliation(s)
- Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Seigo Usuki
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Yutaka Itokazu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| |
Collapse
|
35
|
Saito M, Wu G, Hui M, Masiello K, Dobrenis K, Ledeen RW, Saito M. Ganglioside accumulation in activated glia in the developing brain: comparison between WT and GalNAcT KO mice. J Lipid Res 2015; 56:1434-48. [PMID: 26063460 PMCID: PMC4513985 DOI: 10.1194/jlr.m056580] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 06/08/2015] [Indexed: 12/30/2022] Open
Abstract
Our previous studies have shown accumulation of GM2 ganglioside during ethanol-induced neurodegeneration in the developing brain, and GM2 elevation has also been reported in other brain injuries and neurodegenerative diseases. Using GM2/GD2 synthase KO mice lacking GM2/GD2 and downstream gangliosides, the current study explored the significance of GM2 elevation in WT mice. Immunohistochemical studies indicated that ethanol-induced acute neurodegeneration in postnatal day 7 (P7) WT mice was associated with GM2 accumulation in the late endosomes/lysosomes of both phagocytic microglia and increased glial fibrillary acidic protein (GFAP)-positive astrocytes. However, in KO mice, although ethanol induced robust neurodegeneration and accumulation of GD3 and GM3 in the late endosomes/lysosomes of phagocytic microglia, it did not increase the number of GFAP-positive astrocytes, and the accumulation of GD3/GM3 in astrocytes was minimal. Not only ethanol, but also DMSO, induced GM2 elevation in activated microglia and astrocytes along with neurodegeneration in P7 WT mice, while lipopolysaccharide, which did not induce significant neurodegeneration, caused GM2 accumulation mainly in lysosomes of activated astrocytes. Thus, GM2 elevation is associated with activation of microglia and astrocytes in the injured developing brain, and GM2, GD2, or other downstream gangliosides may regulate astroglial responses in ethanol-induced neurodegeneration.
Collapse
Affiliation(s)
- Mariko Saito
- Divisions of Neurochemistry Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016
| | - Gusheng Wu
- Department of Neurology and Neurosciences, Rutgers-New Jersey Medical School, Newark, NJ 07103
| | - Maria Hui
- Divisions of Neurochemistry Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962
| | - Kurt Masiello
- Divisions of Neurochemistry Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962
| | - Kostantin Dobrenis
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461
| | - Robert W. Ledeen
- Department of Neurology and Neurosciences, Rutgers-New Jersey Medical School, Newark, NJ 07103
| | - Mitsuo Saito
- Analytical Psychopharmacology, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016
| |
Collapse
|
36
|
Palmano K, Rowan A, Guillermo R, Guan J, McJarrow P. The role of gangliosides in neurodevelopment. Nutrients 2015; 7:3891-913. [PMID: 26007338 PMCID: PMC4446785 DOI: 10.3390/nu7053891] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/04/2015] [Accepted: 05/08/2015] [Indexed: 11/18/2022] Open
Abstract
Gangliosides are important components of neuronal cell membranes and it is widely accepted that they play a critical role in neuronal and brain development. They are functionally involved in neurotransmission and are thought to support the formation and stabilization of functional synapses and neural circuits required as the structural basis of memory and learning. Available evidence, as reviewed herein, suggests that dietary gangliosides may impact positively on cognitive functions, particularly in the early postnatal period when the brain is still growing. Further, new evidence suggests that the mechanism of action may be through an effect on the neuroplasticity of the brain, mediated through enhanced synaptic plasticity in the hippocampus and nigro-striatal dopaminergic pathway.
Collapse
Affiliation(s)
| | - Angela Rowan
- Fonterra Co-operative Group Ltd., Private Bag 11029, Palmerston North 4442, New Zealand.
| | - Rozey Guillermo
- Centre for Brain Research, Auckland University, Private Bag 92019, Auckland 1142, New Zealand.
| | - Jian Guan
- Centre for Brain Research, Auckland University, Private Bag 92019, Auckland 1142, New Zealand.
| | - Paul McJarrow
- Fonterra Co-operative Group Ltd., Private Bag 11029, Palmerston North 4442, New Zealand.
| |
Collapse
|
37
|
Chakrabarti A, Patra M. Differential interactions of two local anesthetics with phospholipid membrane and nonerythroid spectrin: Localization in presence of cholesterol and ganglioside, GM1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:821-32. [DOI: 10.1016/j.bbamem.2014.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022]
|
38
|
Efficient biotransformation of polysialogangliosides for preparation of GM1 by Cellulosimicrobium sp. 21. Molecules 2014; 19:16001-12. [PMID: 25299818 PMCID: PMC6271061 DOI: 10.3390/molecules191016001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 11/17/2022] Open
Abstract
A new ganglioside transformed strain isolated from soil was identified as Cellulosimicrobium sp. 21. It produced a sialidase which transformed polysialo-gangliosides GD1 and GT1 into a monosialoterahexosylganglioside, i.e., ganglioside GM1. The sialidase had both NeuAc-α-2,3- and NeuAc-α-2,8-sialidase activity without producing asiolo-GM1. The optimum conditions were evaluated and it was found that the transformation was optimally performed at 30 °C and pH 7.0. The substrate should be added at the beginning of the reaction and the concentration of substrate was 3% (w/v). Under these optimum conditions, Cellulosimicrobium sp. 21 converted GD1 and GT1 into GM1 in inorganic medium in a 5 L bioreactor with the recovery rate of 69.3%. The product contained 50.3% GM1 and was purified on silica to give the product with 95% of GM1 with a recovery rate of 30.5%. Therefore, Cellulosimicrobium sp. 21 has potential to be applied in the production of GM1 in the pharmaceutical industry.
Collapse
|
39
|
Moussavou G, Kwak DH, Lim MU, Kim JS, Kim SU, Chang KT, Choo YK. Role of gangliosides in the differentiation of human mesenchymal-derived stem cells into osteoblasts and neuronal cells. BMB Rep 2014; 46:527-32. [PMID: 24152915 PMCID: PMC4133840 DOI: 10.5483/bmbrep.2013.46.11.179] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/05/2013] [Accepted: 09/11/2013] [Indexed: 01/06/2023] Open
Abstract
Gangliosides are complex glycosphingolipids that are the major component of cytoplasmic cell membranes, and play a role in the control of biological processes. Human mesenchymal stem cells (hMSCs) have received considerable attention as alternative sources of adult stem cells because of their potential to differentiate into multiple cell lineages. In this study, we focus on various functional roles of gangliosides in the differentiation of hMSCs into osteoblasts or neuronal cells. A relationship between gangliosides and epidermal growth factor receptor (EGFR) activation during osteoblastic differentiation of hMSCs was observed, and the gangliosides may play a major role in the regulation of the differentiation. The roles of gangliosides in osteoblast differentiation are dependent on the origin of hMSCs. The reduction of ganglioside biosynthesis inhibited the neuronal differentiation of hMSCs during an early stage of the differentiation process, and the ganglioside expression can be used as a marker for the identification of neuronal differentiation from hMSCs. [BMB Reports 2013; 46(11): 527-532]
Collapse
Affiliation(s)
- Ghislain Moussavou
- Department of Biological Science, Wonkwang University, Iksan 570-749, Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Molecular dynamics study of the conformations of glycosidic linkages in sialic acid modified ganglioside GM3 analogues. Glycoconj J 2014; 31:365-86. [PMID: 24909815 DOI: 10.1007/s10719-014-9532-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/25/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022]
Abstract
The objective of the present study is to model the analogues of monosialoganglioside (GM3) by making modifications in its sialic acid residue with different substitutions in aqueous environment and to determine their structural stability based upon computational molecular dynamics. Molecular mechanics and molecular dynamics investigation was carried out to study the conformational preferences of the analogues of GM3. Dynamic simulations were carried out on the analogues of GM3 varying in the substituents at C-1, C-4, C-5, C-8 and C-9 positions of their sialic acid or Neuraminic acid (NeuAc) residue. The analogues are soaked in a periodic box of TIP3P water as solvent and subjected to a 10 ns molecular dynamics (MD) simulation using AMBER ff03 and gaff force fields with 30 ps equilibration. The analogue of GM3 with 9-N-succNeuAc (analogue5, C9 substitution) was observed to have the lowest energy of -6112.5 kcal/mol. Graphical analysis made on the MD trajectory reveals the direct and water mediated hydrogen bonds existing in these sialic acid analogues. The preferable conformations for glycosidic linkages of GM3 analogues found in different minimum energy regions in the conformational maps were identified. This study sheds light on the conformational preferences of GM3 analogues which may be essential for the design of GM3 analogues as inhibitors for different ganglioside specific pathogenic proteins such as bacterial toxins, influenza toxins and neuraminidases.
Collapse
|
41
|
Usuki S, O'Brien D, Rivner MH, Yu RK. A new approach to ELISA-based anti-glycolipid antibody evaluation of highly adhesive serum samples. J Immunol Methods 2014; 408:52-63. [PMID: 24861939 DOI: 10.1016/j.jim.2014.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/06/2014] [Accepted: 05/08/2014] [Indexed: 12/14/2022]
Abstract
The enzyme-linked immunosorbent assay (ELISA) is a standard immunoassay used in measuring antibody reactivity (expressed as titers) for glycosphingolipids (GSLs) such as gangliosides and sulfoglycolipids in the sera of patients with Guillain-Barré syndrome (GBS), variants of GBS, and chronic inflammatory demyelinating polyneuropathy (CIDP). In the present study, anti-GSL antibodies were evaluated using a new formula of affinity parametric complex (APC), calculated from limiting-dilution serum assay data, followed by affinity parametric complex criterion (APCC). Using assay results based on APCC, we analyzed serum samples categorized into acute inflammatory demyelinating polyneuropathy (AIDP), acute motor-sensory axonal neuropathy (AMSAN), CIDP, CIDP with myasthenia gravis (MG), and amyotrophic lateral sclerosis (ALS). We were able to determine the affinity strength of antibodies otherwise hidden in the non-specific background activity in highly adhesive serum samples. The thin-layer chromatography (TLC)-immuno-overlay method assured us that this new method is an accurate and reliable way for evaluating anti-GSL antibodies using ELISA serum sample data.
Collapse
Affiliation(s)
- Seigo Usuki
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Dawn O'Brien
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Michael H Rivner
- Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | - Robert K Yu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
42
|
Berois N, Osinaga E. Glycobiology of neuroblastoma: impact on tumor behavior, prognosis, and therapeutic strategies. Front Oncol 2014; 4:114. [PMID: 24904828 PMCID: PMC4033258 DOI: 10.3389/fonc.2014.00114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/02/2014] [Indexed: 01/28/2023] Open
Abstract
Neuroblastoma (NB), accounting for 10% of childhood cancers, exhibits aberrant cell-surface glycosylation patterns. There is evidence that changes in glycolipids and protein glycosylation pathways are associated to NB biological behavior. Polysialic acid (PSA) interferes with cellular adhesion, and correlates with NB progression and poor prognosis, as well as the expression of sialyltransferase STX, the key enzyme responsible for PSA synthesis. Galectin-1 and gangliosides, overexpressed and actively shedded by tumor cells, can modulate normal cells present in the tumor microenvironment, favoring angiogenesis and immunological escape. Different glycosyltransferases are emerging as tumor markers and potential molecular targets. Immunotherapy targeting disialoganglioside GD2 rises as an important treatment option. One anti-GD2 antibody (ch14.18), combined with IL-2 and GM-CSF, significantly improves survival for high-risk NB patients. This review summarizes our current knowledge on NB glycobiology, highlighting the molecular basis by which carbohydrates and protein–carbohydrate interactions impact on biological behavior and patient clinical outcome.
Collapse
Affiliation(s)
- Nora Berois
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo , Montevideo , Uruguay
| | - Eduardo Osinaga
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo , Montevideo , Uruguay ; Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República , Montevideo , Uruguay
| |
Collapse
|
43
|
Doronin II, Vishnyakova PA, Kholodenko IV, Ponomarev ED, Ryazantsev DY, Molotkovskaya IM, Kholodenko RV. Ganglioside GD2 in reception and transduction of cell death signal in tumor cells. BMC Cancer 2014; 14:295. [PMID: 24773917 PMCID: PMC4021548 DOI: 10.1186/1471-2407-14-295] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 04/22/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ganglioside GD2 is expressed on plasma membranes of various types of malignant cells. One of the most promising approaches for cancer immunotherapy is the treatment with monoclonal antibodies recognizing tumor-associated markers such as ganglioside GD2. It is considered that major mechanisms of anticancer activity of anti-GD2 antibodies are complement-dependent cytotoxicity and/or antibody-mediated cellular cytotoxicity. At the same time, several studies suggested that anti-GD2 antibodies are capable of direct induction of cell death of number of tumor cell lines, but it has not been investigated in details. In this study we investigated the functional role of ganglioside GD2 in the induction of cell death of multiple tumor cell lines by using GD2-specific monoclonal antibodies. METHODS Expression of GD2 on different tumor cell lines was analyzed by flow cytometry using anti-GD2 antibodies. By using HPTLC followed by densitometric analysis we measured the amount of ganglioside GD2 in total ganglioside fractions isolated from tumor cell lines. An MTT assay was performed to assess viability of GD2-positive and -negative tumor cell lines treated with anti-GD2 mAbs. Cross-reactivity of anti-GD2 mAbs with other gangliosides or other surface molecules was investigated by ELISA and flow cytometry. Inhibition of GD2 expression was achieved by using of inhibitor for ganglioside synthesis PDMP and/or siRNA for GM2/GD2 and GD3 synthases. RESULTS Anti-GD2 mAbs effectively induced non-classical cell death that combined features of both apoptosis and necrosis in GD2-positive tumor cells and did not affect GD2-negative tumors. Anti-GD2 mAbs directly induced cell death, which included alteration of mitochondrial membrane potential, induction of apoptotic volume decrease and cell membrane permeability. This cytotoxic effect was mediated exclusively by specific binding of anti-GD2 antibodies with ganglioside GD2 but not with other molecules. Moreover, the level of GD2 expression correlated with susceptibility of tumor cell lines to cytotoxic effect of anti-GD2 antibodies. CONCLUSIONS Results of this study demonstrate that anti-GD2 antibodies not only passively bind to the surface of tumor cells but also directly induce rapid cell death after the incubation with GD2-positive tumor cells. These results suggest a new role of GD2 as a receptor that actively transduces death signal in malignant cells.
Collapse
Affiliation(s)
- Igor I Doronin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia
| | - Polina A Vishnyakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia
| | - Irina V Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia
- Orekhovich Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, 10, Pogodinskaya St., Moscow 119121, Russia
| | - Eugene D Ponomarev
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
| | - Dmitry Y Ryazantsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia
| | - Irina M Molotkovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia
| | - Roman V Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya St., 16/10, Moscow 117997, Russia
| |
Collapse
|
44
|
Sun CQ, Hubl U, Hoefakker P, Vasudevamurthy MK, Johnson KD. A new assay for determining ganglioside sialyltransferase activities lactosylceramide-2,3-sialyltransferase (SAT I) and monosialylganglioside-2,3-sialyltransferase (SAT IV). PLoS One 2014; 9:e94206. [PMID: 24718572 PMCID: PMC3981761 DOI: 10.1371/journal.pone.0094206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 03/13/2014] [Indexed: 12/02/2022] Open
Abstract
A new assay for the determination of lactosylceramide-2,3-sialyltransferase (SAT I, EC 2.4.99.9) and monosialoganglioside sialyltransferase (SAT IV, EC 2.4.99.2) is described. The assay utilised the commercially available fluorophore labelled sphingolipids, boron dipyrromethene difluoride (BODIPY) lactosylceramide (LacCer), and BODIPY-monosialotetrahexosylganglioside (GM1) as the acceptor substrates, for SAT I and SAT IV, respectively. HPLC coupled with fluorescence detection was used to analyse product formation. The analysis was performed in a quick and automated fashion. The assay showed good linearity for both BODIPY sphingolipids with a quantitative detection limit of 0.05 pmol. The high sensitivity enabled the detection of SAT I and SAT IV activities as low as 0.001 μU, at least 200 fold lower than that of most radiometric assays. This new assay was applied to the screening of SAT I and SAT IV activities in ovine and bovine organs (liver, heart, kidney, and spleen). The results provided evidence that young animals, such as calves, start to produce ganglioside sialyltransferases as early as 7 days after parturition and that levels change during maturation. Among the organs tested from a bovine source, spleen had the highest specific ganglioside sialyltransferase activity. Due to the organ size, the greatest total ganglioside sialyltransferase activities (SAT I and SAT IV) were detected in the liver of both bovine and ovine origin.
Collapse
Affiliation(s)
- Cynthia Q. Sun
- Callaghan Innovation Research Ltd, Lower Hutt, New Zealand
| | - Ulrike Hubl
- Callaghan Innovation Research Ltd, Lower Hutt, New Zealand
| | | | | | | |
Collapse
|
45
|
Prada CE, Grabowski GA. Neuronopathic lysosomal storage diseases: clinical and pathologic findings. ACTA ACUST UNITED AC 2014; 17:226-46. [PMID: 23798011 DOI: 10.1002/ddrr.1116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND The lysosomal-autophagocytic system diseases (LASDs) affect multiple body systems including the central nervous system (CNS). The progressive CNS pathology has its onset at different ages, leading to neurodegeneration and early death. METHODS Literature review provided insight into the current clinical neurological findings, phenotypic spectrum, and pathogenic mechanisms of LASDs with primary neurological involvement. CONCLUSIONS CNS signs and symptoms are variable and related to the disease-specific underlying pathogenesis. LAS dysfunction leads to diverse global cellular consequences in the CNS ranging from specific axonal and dendritic abnormalities to neuronal death. Pathogenic mechanisms for disease progression vary from impaired autophagy, massive storage, regional involvement, to end-stage inflammation. Some of these features are also found in adult neurodegenerative disorders, for example, Parkinson's and Alzheimer's diseases. Lack of effective therapies is a significant unmet medical need.
Collapse
Affiliation(s)
- Carlos E Prada
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Ohio, USA
| | | |
Collapse
|
46
|
Itokazu Y, Pagano RE, Schroeder AS, O'Grady SM, Limper AH, Marks DL. Reduced GM1 ganglioside in CFTR-deficient human airway cells results in decreased β1-integrin signaling and delayed wound repair. Am J Physiol Cell Physiol 2014; 306:C819-30. [PMID: 24500283 DOI: 10.1152/ajpcell.00168.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Loss of cystic fibrosis transmembrane conductance regulator (CFTR) function reduces chloride secretion and increases sodium uptake, but it is not clear why CFTR mutation also results in progressive lung inflammation and infection. We previously demonstrated that CFTR-silenced airway cells migrate more slowly during wound repair than CFTR-expressing controls. In addition, CFTR-deficient cells and mouse models have been reported to have altered sphingolipid levels. Here, we investigated the hypothesis that reduced migration in CFTR-deficient airway epithelial cells results from altered sphingolipid composition. We used cell lines derived from a human airway epithelial cell line (Calu-3) stably transfected with CFTR short hairpin RNA (CFTR-silenced) or nontargeting short hairpin RNA (controls). Cell migration was measured by electric cell substrate impedance sensing (ECIS). Lipid analyses, addition of exogenous glycosphingolipids, and immunoblotting were performed. We found that levels of the glycosphingolipid, GM1 ganglioside, were ~60% lower in CFTR-silenced cells than in controls. CFTR-silenced cells exhibited reduced levels of activated β1-integrin, phosphorylated tyrosine 576 of focal adhesion kinase (pFAK), and phosphorylation of Crk-associated substrate (pCAS). Addition of GM1 (but not GM3) ganglioside to CFTR-silenced cells restored activated β1-integrin, pFAK, and pCAS to near control levels and partially restored (~40%) cell migration. Our results suggest that decreased GM1 in CFTR-silenced cells depresses β1-integrin signaling, which contributes to the delayed wound repair observed in these cells. These findings have implications for the pathology of cystic fibrosis, where altered sphingolipid levels in airway epithelial cells could result in a diminished capacity for wound repair after injury.
Collapse
Affiliation(s)
- Yutaka Itokazu
- Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota
| | | | | | | | | | | |
Collapse
|
47
|
Garcia AD, Chavez JL, Mechref Y. Rapid and sensitive LC-ESI-MS of gangliosides. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 947-948:1-7. [DOI: 10.1016/j.jchromb.2013.11.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 11/12/2013] [Accepted: 11/17/2013] [Indexed: 11/30/2022]
|
48
|
Park H, Zhou Y, Costello CE. Direct analysis of sialylated or sulfated glycosphingolipids and other polar and neutral lipids using TLC-MS interfaces. J Lipid Res 2014; 55:773-81. [PMID: 24482490 DOI: 10.1194/jlr.d046128] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Gangliosides and sulfatides (STs) are acidic glycosphingolipids (GSLs) that have one or more sialic acids or sulfate substituents, in addition to neutral sugars, attached to the C-1 hydroxyl group of the ceramide long chain base. TLC is a widely employed and convenient technique for separation and characterization of GSLs. When TLC is directly coupled to MS, it provides both the molecular mass and structural information without further purification. Here, after development of the TLC plates, the structural analyses of acidic GSLs, including gangliosides and STs, were investigated using the liquid extraction surface analysis (LESA™) and CAMAG TLC-MS interfaces coupled to an ESI QSTAR Pulsar i quadrupole orthogonal TOF mass spectrometer. Coupling TLC with ESI-MS allowed the acquisition of high resolution mass spectra of the acidic GSLs with high sensitivity and mass accuracy, without the loss of sialic acid residues that frequently occurs during low-pressure MALDI MS. These systems were then applied to the analysis of total lipid extracts from bovine brain. This allowed profiling of many different lipid classes, not only gangliosides and STs, but also SMs, neutral GSLs, and phospholipids.
Collapse
Affiliation(s)
- Hyejung Park
- Mass Spectrometry Resource and Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118
| | | | | |
Collapse
|
49
|
Abstract
A wide range of neuroimmunological diseases affect the central and peripheral nervous systems. These disorders are caused by autoimmune attack directed against structurally and functionally diverse nervous system antigens. One such category comprises peripheral nervous system (PNS) diseases, termed peripheral neuropathies, in which the target antigens for autoantibody-directed nerve injury are glycan structures borne by glycoproteins and glycolipids, particularly gangliosides that are concentrated in peripheral nerve. The archetypal PNS disorder is the acute paralytic disease, Guillain-Barré syndrome (GBS) in which autoantibodies against glycolipids arise in the context of acute infections that precede the clinical onset, notably Campylobacter jejuni enteritis. In addition, several chronic autoimmune neuropathies are associated with IgM antibodies directed against nerve glycans including sulphated glucuronic acid epitopes present on myelin-associated glycoprotein and sulphated glucuronyl paragloboside, a range of disialylated gangliosides including GD1b and GD3, and GM1 ganglioside. This chapter describes the immunological, pathological and clinical features of these disorders in the context of our broader knowledge of the glycobiology underpinning this neuroimmunological field.
Collapse
Affiliation(s)
- Hugh J Willison
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK,
| |
Collapse
|
50
|
Lee H, German JB, Kjelden R, Lebrilla CB, Barile D. Quantitative analysis of gangliosides in bovine milk and colostrum-based dairy products by ultrahigh performance liquid chromatography-tandem mass spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:9689-9696. [PMID: 24024650 DOI: 10.1021/jf402255g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Milk gangliosides have gained considerable attention because they participate in diverse biological processes, including neural development, pathogen binding, and activation of the immune system. Herein, we present a quantitative measurement of the gangliosides present in bovine milk and other dairy products and byproducts. Ultrahigh performance liquid chromatography separation was used for high-throughput analysis and achieved a short running time without sacrificing chromatographic resolution. Dynamic multiple reaction monitoring was conducted for 12 transitions for GM3 and 12 transitions for GD3. Transitions to sialic acid fragments (m/z 290.1) were chosen for the quantitation. There was a considerable amount of gangliosides in day 2 milk (GM3, 0.98 mg/L; GD3, 15.2 mg/L) which dramatically decreased at day 15 and day 90. GM3 and GD3 were also analyzed in pooled colostrum, colostrum cream, colostrum butter, and colostrum buttermilk. The separation and analytical approaches here proposed could be integrated into the dairy industry processing adding value to side-streams.
Collapse
Affiliation(s)
- Hyeyoung Lee
- Department of Food Science and Technology, ‡Department of Chemistry, and §Foods for Health Institute, University of California-Davis , Davis, California 95616, United States
| | | | | | | | | |
Collapse
|