1
|
Changes on meat fatty acid profile, cholesterol and hepatic metabolism associated with antioxidants and canola oil supplementation for Nellore cattle. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
2
|
Gaughan SJH, Hirst JD, Croft AK, Jäger CM. Effect of Oriented Electric Fields on Biologically Relevant Iron-Sulfur Clusters: Tuning Redox Reactivity for Catalysis. J Chem Inf Model 2022; 62:591-601. [PMID: 35045248 DOI: 10.1021/acs.jcim.1c00791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Enzyme-based iron-sulfur clusters, exemplified in families such as hydrogenases, nitrogenases, and radical S-adenosylmethionine enzymes, feature in many essential biological processes. The functionality of biological iron-sulfur clusters extends beyond simple electron transfer, relying primarily on the redox activity of the clusters, with a remarkable diversity for different enzymes. The active-site structure and the electrostatic environment in which the cluster resides direct this redox reactivity. Oriented electric fields in enzymatic active sites can be significantly strong, and understanding the extent of their effect on iron-sulfur cluster reactivity can inform first steps toward rationally engineering their reactivity. An extensive systematic density functional theory-based screening approach using OPBE/TZP has afforded a simple electric field-effect representation. The results demonstrate that the orientation of an external electric field of strength 28.8 MV cm-1 at the center of the cluster can have a significant effect on its relative stability in the order of 35 kJ mol-1. This shows clear implications for the reactivity of iron-sulfur clusters in enzymes. The results also demonstrate that the orientation of the electric field can alter the most stable broken-symmetry state, which further has implications on the directionality of initiated electron-transfer reactions. These insights open the path for manipulating the enzymatic redox reactivity of iron-sulfur cluster-containing enzymes by rationally engineering oriented electric fields within the enzymes.
Collapse
Affiliation(s)
- Samuel J H Gaughan
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.,Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Jonathan D Hirst
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Anna K Croft
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Christof M Jäger
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
3
|
Glutathione S-Transferases in Cancer. Antioxidants (Basel) 2021; 10:antiox10050701. [PMID: 33946704 PMCID: PMC8146591 DOI: 10.3390/antiox10050701] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
In humans, the glutathione S-transferases (GST) protein family is composed of seven members that present remarkable structural similarity and some degree of overlapping functionalities. GST proteins are crucial antioxidant enzymes that regulate stress-induced signaling pathways. Interestingly, overactive GST proteins are a frequent feature of many human cancers. Recent evidence has revealed that the biology of most GST proteins is complex and multifaceted and that these proteins actively participate in tumorigenic processes such as cell survival, cell proliferation, and drug resistance. Structural and pharmacological studies have identified various GST inhibitors, and these molecules have progressed to clinical trials for the treatment of cancer and other diseases. In this review, we discuss recent findings in GST protein biology and their roles in cancer development, their contribution in chemoresistance, and the development of GST inhibitors for cancer treatment.
Collapse
|
4
|
Huynh K, Liem-Nguyen V, Feng C, Lindberg R, Björn E. Quantification of total concentration of thiol functional groups in environmental samples by titration with monobromo(trimethylammonio)bimane and determination with tandem mass spectrometry. Talanta 2020; 218:121109. [PMID: 32797873 DOI: 10.1016/j.talanta.2020.121109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 11/16/2022]
Abstract
Thiol compounds (R-SH) have many important biological functions and are principal controls of the speciation of several toxic metals in the environment. However, determining the concentration of thiols associated with environmental matrices is challenging due to the compounds' low abundance and interferences from non-thiol compounds for many available methods. Here a novel method has been developed and validated to quantify the total concentration of thiol functional groups in aqueous samples using derivatization with monobromo(trimethylammonio)bimane (qBBr) and quantification with tandem mass spectrometry. The thiol concentration was determined by titration of the sample with qBBr, which reacts selectively with thiols, and quantification of the residual qBBr. We systematically evaluated potential interferences from various organic compounds, inorganic ions (including sea water matrices), sulfide and mercury (Hg) species, and demonstrate that the method is highly sensitive, selective and robust. The limit of detection (LOD) for total thiols is in the nanomolar concentration range (~6 nM). The method performance was also demonstrated by determination of the total thiol concentration in different natural samples including boreal stream water (1.16 μM), wetland porewater (0.96 μM) and the Suwanee River natural organic matter (NOM) reference material SR101 N (7.9 μmol g-1). The developed method represents a combination of low LOD and high selectivity and robustness that is unsurpassed for total thiol concentration measurements.
Collapse
Affiliation(s)
- Khoa Huynh
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Van Liem-Nguyen
- Laboratory of Advanced Materials Chemistry, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Caiyan Feng
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Richard Lindberg
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
5
|
Determination of picomolar levels of methylmercury complexes with low molecular mass thiols by liquid chromatography tandem mass spectrometry and online preconcentration. Anal Bioanal Chem 2020; 412:1619-1628. [PMID: 31950236 PMCID: PMC7026298 DOI: 10.1007/s00216-020-02389-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 01/19/2023]
Abstract
Methylmercury (MeHg) is one of the most potent neurotoxins. It is produced in nature through the methylation of inorganic divalent mercury (HgII) by phylogenetically diverse anaerobic microbes. The mechanistic understanding of the processes that govern the extent of bacterial export of MeHg, its bioaccumulation, and bio-toxicity depends on accurate quantification of its species, especially its complexation with low molecular mass thiols; organometallic complexes that are difficult to detect and measure in natural conditions. Here, we report the development of a novel analytical method based on liquid chromatography tandem mass spectrometry (LC-MS/MS) to determine 13 MeHg complexes with important thiol compounds which have been observed in the environment and in biological systems. By using online preconcentration via solid phase extraction (SPE), the method offers picomolar (12-530 pM) detection limits, the lowest reported so far for the determination of MeHg compounds. Among three different SPE materials, a weak cation exchange phase showed the best efficiency at a low pH of 2.5. We further report the presence of MeHg-cysteine, MeHg-cysteamine, MeHg-penicillamine, MeHg-cysteinylglycine, and MeHg-glutamylcysteine as the predominant MeHg-thiol complexes in the extracellular milieu of an important HgII methylating bacterium, Geobacter sulfurreducens PCA, exposed to 100 nM of HgII.
Collapse
|
6
|
Bartoccini F, Mari M, Retini M, Fraternale A, Piersanti G. Large-Scale Preparation of N-Butanoyl- l-glutathione (C4-GSH). Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Francesca Bartoccini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
- Gluos s.r.l., Piazza Brancaleoni, 1, 61049 Urbania, Italy
| | - Michele Mari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
- Gluos s.r.l., Piazza Brancaleoni, 1, 61049 Urbania, Italy
| | - Michele Retini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
- Gluos s.r.l., Piazza Brancaleoni, 1, 61049 Urbania, Italy
| | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza Rinascimento 6, 61029 Urbino, PU, Italy
- Gluos s.r.l., Piazza Brancaleoni, 1, 61049 Urbania, Italy
| |
Collapse
|
7
|
Taschner IS, Walker TL, DeHaan HS, Schrage BR, Ziegler CJ, Taschner MJ. Synthesis, Characterization, and Copper(II) Chelates of 1,11-Dithia-4,8-diazacyclotetradecane. J Org Chem 2019; 84:11091-11102. [PMID: 31454235 DOI: 10.1021/acs.joc.9b01682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthesis of 1,11-dithia-4,8-diazacyclotetradecane (L1), a constitutional isomer of the macrocyclic [14]aneN2S2 series, is accompanied with reaction and method optimization. Chelation of L1 with copper(II) provided assessment of lattice packing, ring contortion, and evidence of conformational fluxionality in solution through two unique crystal structures: L1Cu(ClO4)2 and [(L1Cu)2μ-Cl](ClO4)3. Multiple synthetic approaches are presented, supplemented with reaction methodology and reagent screening to access [14]aneN2S2 L1. Reductive alkylation of bis-tosyl-cystamine was integrated into the synthetic route, eliminating the use and isolation of volatile thiols and streamlining the synthetic scale-up. Late-stage cleavage of protecting sulfonamides was addressed using reductive N-S cleavage to furnish macrocyclic freebase L1.
Collapse
Affiliation(s)
- Ian S Taschner
- Department of Chemistry , Indiana University Northwest , Gary , Indiana 46408 , United States
| | - Tia L Walker
- Department of Chemistry , Indiana University Northwest , Gary , Indiana 46408 , United States
| | - Hunter S DeHaan
- Department of Chemistry , Indiana University Northwest , Gary , Indiana 46408 , United States
| | - Briana R Schrage
- Department of Chemistry , The University of Akron , Akron , Ohio 44325 , United States
| | - Christopher J Ziegler
- Department of Chemistry , The University of Akron , Akron , Ohio 44325 , United States
| | - Michael J Taschner
- Department of Chemistry , The University of Akron , Akron , Ohio 44325 , United States
| |
Collapse
|
8
|
Sui B, Cheng C, Xu P. Pyridyl Disulfide Functionalized Polymers as Nanotherapeutic Platforms. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900062] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Binglin Sui
- Department of Discovery and Biomedical Sciences College of Pharmacy University of South Carolina 715 Sumter Columbia SC 29208 USA
| | - Chen Cheng
- Department of Discovery and Biomedical Sciences College of Pharmacy University of South Carolina 715 Sumter Columbia SC 29208 USA
| | - Peisheng Xu
- Department of Discovery and Biomedical Sciences College of Pharmacy University of South Carolina 715 Sumter Columbia SC 29208 USA
| |
Collapse
|
9
|
Lacerda LM, Garcia SC, da Silva LB, de Ávila Dornelles M, Presotto AT, Lourenço ED, de Franceschi ID, Fernandes E, Wannmacher CMD, Brucker N, Sauer E, Gioda A, Machado AB, Oliveira E, Trombini TL, Feksa LR. Evaluation of hematological, biochemical parameters and thiol enzyme activity in chrome plating workers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1892-1901. [PMID: 30460648 DOI: 10.1007/s11356-018-3755-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
The most commonly used solution in chrome plating bath is chromic acid (hexavalent Cr), and a considerable amount of mists is released into the air and consequently produce hazards to workers. Thus, the aim of this study was to evaluate whether the biomarker of exposure to metals, specially Cr levels, presents associations with hematological and biochemical parameters and if they can alter the activity of enzymes that contain thiol groups such as pyruvate kinase, creatine kinase, adenylate kinase, and δ-aminolevulinate dehydratase. Fifty male chrome plating workers were used for exposed group and 50 male non-exposed workers for control group. For that, biological monitoring was performed through quantification of metals on total blood and urine by inductively coupled plasma mass spectrometry (ICP-MS) and enzyme activity was performed by spectrometry in erythrocytes. In addition, chromium levels in water was quantified and ecotoxicology assay was performed with Allium cepa test. The results demonstrated that blood and urinary chromium levels in exposed group were higher than the control group (p < 0.0001). Furthermore, decreased activity of enzymes was found in those that contain thiol groups from exposed group when compared with the control group (p < 0.001). The water analysis did not present a statistical difference between control and exposed groups (p > 0.05), demonstrating that water did not seem to be the source of contamination. In summary, our findings indicated some toxicology effects observed in the exposed group, such as thiol enzyme inhibition, mainly associated with occupational exposure in chrome plating and besides the presence of other metals, and Cr demonstrated to influence the activity of the enzymes analyzed in this research.
Collapse
Affiliation(s)
- Larissa Machado Lacerda
- Environmental Quality Post-Graduation Program, Feevale University, ERS 239, 2755, Novo Hamburgo, RS, 93525-075, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luciano Basso da Silva
- Environmental Quality Post-Graduation Program, Feevale University, ERS 239, 2755, Novo Hamburgo, RS, 93525-075, Brazil
| | | | | | | | | | - Elissa Fernandes
- Biochemistry Department, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Natália Brucker
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Elisa Sauer
- Laboratory of Toxicology (LATOX), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Gioda
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ, Brazil
| | - Aline Belem Machado
- Environmental Quality Post-Graduation Program, Feevale University, ERS 239, 2755, Novo Hamburgo, RS, 93525-075, Brazil.
- Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil.
| | - Evandro Oliveira
- Environmental Quality Post-Graduation Program, Feevale University, ERS 239, 2755, Novo Hamburgo, RS, 93525-075, Brazil
| | - Thereza Luciano Trombini
- Environmental Quality Post-Graduation Program, Feevale University, ERS 239, 2755, Novo Hamburgo, RS, 93525-075, Brazil
| | - Luciane Rosa Feksa
- Environmental Quality Post-Graduation Program, Feevale University, ERS 239, 2755, Novo Hamburgo, RS, 93525-075, Brazil
- Laboratory of Toxicology (LATOX), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
- Health Sciences Institute, Feevale University, Novo Hamburgo, RS, Brazil
- Biochemistry Department, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
10
|
Zhang S, Gilbert ER, Saremi B, Wong EA. Supplemental methionine sources have a neutral impact on oxidative status in broiler chickens. J Anim Physiol Anim Nutr (Berl) 2018; 102:1274-1283. [DOI: 10.1111/jpn.12946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Shuai Zhang
- Department of Animal and Poultry Sciences Virginia Tech Blacksburg Virginia
| | | | | | - Eric A. Wong
- Department of Animal and Poultry Sciences Virginia Tech Blacksburg Virginia
| |
Collapse
|
11
|
Zhang J, Zhang B, Li X, Han X, Liu R, Fang J. Small molecule inhibitors of mammalian thioredoxin reductase as potential anticancer agents: An update. Med Res Rev 2018; 39:5-39. [DOI: 10.1002/med.21507] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Xiao Han
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| | - Ruijuan Liu
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
- School of Pharmacy; Lanzhou University; Lanzhou China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou China
| |
Collapse
|
12
|
Zhang X, Liu P, Zhang C, Chiewchengchol D, Zhao F, Yu H, Li J, Kambara H, Luo KY, Venkataraman A, Zhou Z, Zhou W, Zhu H, Zhao L, Sakai J, Chen Y, Ho YS, Bajrami B, Xu B, Silberstein LE, Cheng T, Xu Y, Ke Y, Luo HR. Positive Regulation of Interleukin-1β Bioactivity by Physiological ROS-Mediated Cysteine S-Glutathionylation. Cell Rep 2018; 20:224-235. [PMID: 28683316 DOI: 10.1016/j.celrep.2017.05.070] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/18/2017] [Accepted: 05/22/2017] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen species (ROS)-induced cysteine S-glutathionylation is an important posttranslational modification (PTM) that controls a wide range of intracellular protein activities. However, whether physiological ROS can modulate the function of extracellular components via S-glutathionylation is unknown. Using a screening approach, we identified ROS-mediated cysteine S-glutathionylation on several extracellular cytokines. Glutathionylation of the highly conserved Cys-188 in IL-1β positively regulates its bioactivity by preventing its ROS-induced irreversible oxidation, including sulfinic acid and sulfonic acid formation. We show this mechanism protects IL-1β from deactivation by ROS in an in vivo system of irradiation-induced bone marrow (BM) injury. Glutaredoxin 1 (Grx1), an enzyme that catalyzes deglutathionylation, was present and active in the extracellular space in serum and the BM, physiologically regulating IL-1β glutathionylation and bioactivity. Collectively, we identify cysteine S-glutathionylation as a cytokine regulatory mechanism that could be a therapeutic target in the treatment of various infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA.
| | - Peng Liu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Christie Zhang
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Direkrit Chiewchengchol
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Fan Zhao
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Hongbo Yu
- Hematopathology, Flow Cytometry, Hematology, and Blood Bank Labs, VA Boston Healthcare System, West Roxbury, MA 02132, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 01605, USA
| | - Jingyu Li
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Hiroto Kambara
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Kate Y Luo
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Arvind Venkataraman
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Ziling Zhou
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | - Haiyan Zhu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Li Zhao
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Jiro Sakai
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Yuanyuan Chen
- Department of Pathology and Pathophysiology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Ye-Shih Ho
- Institute of Environmental Health Sciences and Department of Biochemistry and Molecular Biology, Wayne State University, Detroit, MI 48201, USA
| | - Besnik Bajrami
- Mass Spectrometry Unit, Waters Corporation, Milford, MA 01757, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street MS015, Waltham, MA 02454, USA
| | - Leslie E Silberstein
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Tao Cheng
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Yuanfu Xu
- The State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 288 Nanjing Road, Tianjin 300020, China
| | - Yuehai Ke
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | - Hongbo R Luo
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Department of Lab Medicine, Children's Hospital Boston, Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Afshari P, Yao WD, Middleton FA. Reduced Slc1a1 expression is associated with neuroinflammation and impaired sensorimotor gating and cognitive performance in mice: Implications for schizophrenia. PLoS One 2017; 12:e0183854. [PMID: 28886095 PMCID: PMC5590851 DOI: 10.1371/journal.pone.0183854] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 08/11/2017] [Indexed: 12/11/2022] Open
Abstract
We previously reported a 84-Kb hemi-deletion copy number variant at the SLC1A1 gene locus that reduces its expression and appeared causally linked to schizophrenia. In this report, we characterize the in vivo and in vitro consequences of reduced expression of Slc1a1 in mice. Heterozygous (HET) Slc1a1+/- mice, which more closely model the hemi-deletion we found in human subjects, were examined in a series of behavioral, anatomical and biochemical assays. Knockout (KO) mice were also included in the behavioral studies for comparative purposes. Both HET and KO mice exhibited evidence of increased anxiety-like behavior, impaired working memory, decreased exploratory activity and impaired sensorimotor gating, but no changes in overall locomotor activity. The magnitude of changes was approximately equivalent in the HET and KO mice suggesting a dominant effect of the haploinsufficiency. Behavioral changes in the HET mice were accompanied by reduced thickness of the dorsomedial prefrontal cortex. Whole transcriptome RNA-Seq analysis detected expression changes of genes and pathways involved in cytokine signaling and synaptic functions in both brain and blood. Moreover, the brains of Slc1a1+/- mice displayed elevated levels of oxidized glutathione, a trend for increased oxidative DNA damage, and significantly increased levels of cytokines. This latter finding was further supported by SLC1A1 knockdown and overexpression studies in differentiated human neuroblastoma cells, which led to decreased or increased cytokine expression, respectively. Taken together, our results suggest that partial loss of the Slc1a1 gene in mice causes haploinsufficiency associated with behavioral, histological and biochemical changes that reflect an altered redox state and may promote the expression of behavioral features and inflammatory states consistent with those observed in schizophrenia.
Collapse
Affiliation(s)
- Parisa Afshari
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY United States of America
| | - Wei-Dong Yao
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY United States of America.,Department of Psychiatry & Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, United States of America
| | - Frank A Middleton
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY United States of America.,Department of Psychiatry & Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, United States of America.,Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States of America
| |
Collapse
|
14
|
Neuroprotective Effect of Creatine and Pyruvate on Enzyme Activities of Phosphoryl Transfer Network and Oxidative Stress Alterations Caused by Leucine Administration in Wistar Rats. Neurotox Res 2017; 32:575-584. [DOI: 10.1007/s12640-017-9762-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 01/25/2023]
|
15
|
Fedoseev SV, Belikov MY, Ershov OV, Tafeenko VA. Reductive alkylation of disulfides. Synthesis of 2-(alkylsulfanyl)-1H-pyrrole-3-carbonitriles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1070428016120125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Preissler T, Bristot IJ, Costa BML, Fernandes EK, Rieger E, Bortoluzzi VT, de Franceschi ID, Dutra-Filho CS, Moreira JCF, Wannmacher CMD. Phenylalanine induces oxidative stress and decreases the viability of rat astrocytes: possible relevance for the pathophysiology of neurodegeneration in phenylketonuria. Metab Brain Dis 2016; 31:529-37. [PMID: 26573865 DOI: 10.1007/s11011-015-9763-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/09/2015] [Indexed: 01/05/2023]
Abstract
The aim of this study was to investigate the effects of phenylalanine on oxidative stress and some metabolic parameters in astrocyte cultures from newborn Wistar rats. Astrocytes were cultured under four conditions: control (0.4 mM phenylalanine concentration in the Dulbecco's Modified Eagle Medium (DMEM) solution), Phe addition to achieve 0.5, 1.0 or 1.5 mM final phenylalanine concentrations. After 72 h the astrocytes were separated for the biochemical measurements. Overall measure of mitochondrial function by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and cell viability measured by lactate dehydrogenase (LDH) assays indicated that phenylalanine induced cell damage at the three concentrations tested. The alteration on the various parameters of oxidative stress indicated that phenylalanine was able to induce free radicals production. Therefore, our results strongly suggest that Phe at concentrations usually found in PKU induces oxidative stress and consequently cell death in astrocytes cultures. Considering the importance of the astrocytes for brain function, it is possible that these astrocytes alterations may contribute to the brain damage found in PKU patients.
Collapse
Affiliation(s)
- Thales Preissler
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
| | - Ivi Juliana Bristot
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
| | - Bruna May Lopes Costa
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
| | - Elissa Kerli Fernandes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
| | - Elenara Rieger
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
| | - Vanessa Trindade Bortoluzzi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
| | - Itiane Diehl de Franceschi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
| | - Carlos Severo Dutra-Filho
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
| | - José Claudio Fonseca Moreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil
| | - Clovis Milton Duval Wannmacher
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
17
|
Raman V, Suresh S, Savarimuthu PA, Raman T, Tsatsakis AM, Golokhvast KS, Vadivel VK. Synthesis of Co 3O 4 nanoparticles with block and sphere morphology, and investigation into the influence of morphology on biological toxicity. Exp Ther Med 2015; 11:553-560. [PMID: 26893646 DOI: 10.3892/etm.2015.2946] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 11/11/2015] [Indexed: 01/25/2023] Open
Abstract
In the present study, cobalt oxide (Co3O4) magnetic nanoparticles with block and sphere morphologies were synthesized using various surfactants, and the toxicity of the particles was analyzed by monitoring biomarkers of nanoparticle toxicity in zebrafish. The use of tartarate as a surfactant produced highly crystalline blocks of Co3O4 nanoparticles with pores on the sides, whereas citrate lead to the formation of nanoparticles with a spherical morphology. Co3O4 structure, crystallinity, size and morphology were studied using X-ray diffractogram and field emission scanning electron microscopy. Following an increase in nanoparticle concentration from 1 to 200 ppm, there was a corresponding increase in nitric oxide (NO) generation, induced by both types of nanoparticles [Co3O4-NP-B (block), r=0.953; Co3O4-NP-S (sphere), r=1.140]. Comparative analyses indicated that both types of nanoparticle produced significant stimulation at ≥5 ppm (P<0.05) compared with a control. Upon analyzing the effect of nanoparticle morphology on NO generation, it was observed that Co3O4-NP-S was more effective compared with Co3O4-NP-B (5 and 100 ppm, P<0.05; 200 ppm, P<0.01). Exposure to both types of nanoparticles produced reduction in liver glutathione (GSH) activity with corresponding increase in dose (Co3O4-NP-B, r=-0.359; Co3O4-NP-S, r=-0.429). However, subsequent analyses indicated that Co3O4-NP-B was more potent in inhibiting liver GSH activity compared with Co3O4-NP-S. Co3O4-NP-B proved to be toxic at 5 ppm (P<0.05) and GSH activity was almost completely inhibited at 200 ppm. A similar toxicity was observed with both types of Co3O4-NPs against brain levels of acetylcholinesterase (AChE; Co3O4-NP-B, r=-0.180; Co3O4-NP-S, r=-0.230), indicating the ability of synthesized Co3O4-NPs to cross the blood-brain barrier and produce neuronal toxicity. Co3O4-NP-B showed increased inhibition of brain AChE activity compared with Co3O4-NP-S (1,5, and 10 ppm, P<0.05; 50, 100 and 200 ppm, P<0.01). These results suggested that the morphology of nanoparticle and surface area contribute to toxicity, which may have implications for their biological application.
Collapse
Affiliation(s)
- Venkataramanan Raman
- Department of Bioengineering, School of Chemical & Biotechnology, SASTRA University, Thanjavur 613401, India
| | - Shruthi Suresh
- Department of Bioengineering, School of Chemical & Biotechnology, SASTRA University, Thanjavur 613401, India
| | | | - Thiagarajan Raman
- Department of Bioengineering, School of Chemical & Biotechnology, SASTRA University, Thanjavur 613401, India; Department of Centre for Research on Infectious Diseases, School of Chemical & Biotechnology, SASTRA University, Thanjavur 613401, India
| | - Aristides Michael Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece; Scientific Educational Center of Nanotechnology, Far Eastern Federal University, Vladivostok 690990, Russian Federation
| | - Kiril Sergeevich Golokhvast
- Scientific Educational Center of Nanotechnology, Far Eastern Federal University, Vladivostok 690990, Russian Federation
| | - Vinod Kumar Vadivel
- Department of Chemistry, School of Chemical & Biotechnology, SASTRA University, Thanjavur 613401, India
| |
Collapse
|
18
|
Lifschitz AM, Rosen MS, McGuirk CM, Mirkin CA. Allosteric Supramolecular Coordination Constructs. J Am Chem Soc 2015; 137:7252-61. [DOI: 10.1021/jacs.5b01054] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Alejo M. Lifschitz
- Department
of Chemistry and
The International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Mari S. Rosen
- Department
of Chemistry and
The International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - C. Michael McGuirk
- Department
of Chemistry and
The International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Chad A. Mirkin
- Department
of Chemistry and
The International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
19
|
Aoyama K, Nakaki T. Glutathione in Cellular Redox Homeostasis: Association with the Excitatory Amino Acid Carrier 1 (EAAC1). Molecules 2015; 20:8742-58. [PMID: 26007177 PMCID: PMC6272787 DOI: 10.3390/molecules20058742] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/11/2015] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) are by-products of the cellular metabolism of oxygen consumption, produced mainly in the mitochondria. ROS are known to be highly reactive ions or free radicals containing oxygen that impair redox homeostasis and cellular functions, leading to cell death. Under physiological conditions, a variety of antioxidant systems scavenge ROS to maintain the intracellular redox homeostasis and normal cellular functions. This review focuses on the antioxidant system’s roles in maintaining redox homeostasis. Especially, glutathione (GSH) is the most important thiol-containing molecule, as it functions as a redox buffer, antioxidant, and enzyme cofactor against oxidative stress. In the brain, dysfunction of GSH synthesis leading to GSH depletion exacerbates oxidative stress, which is linked to a pathogenesis of aging-related neurodegenerative diseases. Excitatory amino acid carrier 1 (EAAC1) plays a pivotal role in neuronal GSH synthesis. The regulatory mechanism of EAAC1 is also discussed.
Collapse
Affiliation(s)
| | - Toshio Nakaki
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-3-3964-3793; Fax: +81-3-3964-0602
| |
Collapse
|
20
|
Belikov MY, Fedoseev SV, Ievlev MY, Ershov OV, Tafeenko VA. Interaction of 4-oxoalkane-1,1,2,2-tetracarbonitriles with Lawesson's reagent – a new approach to the synthesis of 2,2′-disulfanediylbis(1H-pyrroles). The synthesis of photochromic diarylethene with a disulfide bridge. RSC Adv 2015. [DOI: 10.1039/c5ra11304k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Transformation of 4-oxoalkane-1,1,2,2-tetracarbonitriles under the action of Lawesson's reagent leads to 2,2′-disulfanediylbis(1H-pyrrole-3-carbonitriles) in good yields.
Collapse
|
21
|
Liem-Nguyen V, Bouchet S, Björn E. Determination of Sub-Nanomolar Levels of Low Molecular Mass Thiols in Natural Waters by Liquid Chromatography Tandem Mass Spectrometry after Derivatization with p-(Hydroxymercuri) Benzoate and Online Preconcentration. Anal Chem 2014; 87:1089-96. [DOI: 10.1021/ac503679y] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Van Liem-Nguyen
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Sylvain Bouchet
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
22
|
Co-administration of creatine plus pyruvate prevents the effects of phenylalanine administration to female rats during pregnancy and lactation on enzymes activity of energy metabolism in cerebral cortex and hippocampus of the offspring. Neurochem Res 2014; 39:1594-602. [PMID: 24916961 DOI: 10.1007/s11064-014-1353-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 05/26/2014] [Accepted: 06/03/2014] [Indexed: 12/18/2022]
Abstract
Phenylketonuria (PKU) is the most frequent inborn error of metabolism. It is caused by deficiency in the activity of phenylalanine hydroxylase, leading to accumulation of phenylalanine and its metabolites. Untreated maternal PKU or hyperphenylalaninemia may result in nonphenylketonuric offspring with low birth weight and neonatal sequelae, especially microcephaly and intellectual disability. The mechanisms underlying the neuropathology of brain injury in maternal PKU syndrome are poorly understood. In the present study, we evaluated the possible preventive effect of the co-administration of creatine plus pyruvate on the effects elicited by phenylalanine administration to female Wistar rats during pregnancy and lactation on some enzymes involved in the phosphoryltransfer network in the brain cortex and hippocampus of the offspring at 21 days of age. Phenylalanine administration provoked diminution of body, brain cortex an hippocampus weight and decrease of adenylate kinase, mitochondrial and cytosolic creatine kinase activities. Co-administration of creatine plus pyruvate was effective in the prevention of those alterations provoked by phenylalanine, suggesting that altered energy metabolism may be important in the pathophysiology of maternal PKU. If these alterations also occur in maternal PKU, it is possible that pyruvate and creatine supplementation to the phenylalanine-restricted diet might be beneficial to phenylketonuric mothers.
Collapse
|
23
|
Jerng HH, Pfaffinger PJ. S-glutathionylation of an auxiliary subunit confers redox sensitivity to Kv4 channel inactivation. PLoS One 2014; 9:e93315. [PMID: 24675763 PMCID: PMC3968176 DOI: 10.1371/journal.pone.0093315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 03/04/2014] [Indexed: 12/24/2022] Open
Abstract
Reactive oxygen species (ROS) regulate ion channels, modulate neuronal excitability, and contribute to the etiology of neurodegenerative disorders. ROS differentially suppress fast "ball-and-chain" N-type inactivation of cloned Kv1 and Kv3 potassium channels but not of Kv4 channels, likely due to a lack of reactive cysteines in Kv4 N-termini. Recently, we discovered that N-type inactivation of Kv4 channel complexes can be independently conferred by certain N-terminal variants of Kv4 auxiliary subunits (DPP6a, DPP10a). Here, we report that both DPP6a and DPP10a, like Kv subunits with redox-sensitive N-type inactivation, contain a highly conserved cysteine in their N-termini (Cys-13). To test if N-type inactivation mediated by DPP6a or DPP10a is redox sensitive, Xenopus oocyte recordings were performed to examine the effects of two common oxidants, tert-butyl hydroperoxide (tBHP) and diamide. Both oxidants markedly modulate DPP6a- or DPP10a-conferred N-type inactivation of Kv4 channels, slowing the overall inactivation and increasing the peak current. These functional effects are fully reversed by the reducing agent dithiothreitol (DTT) and appear to be due to a selective modulation of the N-type inactivation mediated by these auxiliary subunits. Mutation of DPP6a Cys-13 to serine eliminated the tBHP or diamide effects, confirming the importance of Cys-13 to the oxidative regulation. Biochemical studies designed to elucidate the underlying molecular mechanism show no evidence of protein-protein disulfide linkage formation following cysteine oxidation. Instead, using a biotinylated glutathione (BioGEE) reagent, we discovered that oxidation by tBHP or diamide leads to S-glutathionylation of Cys-13, suggesting that S-glutathionylation underlies the regulation of fast N-type inactivation by redox. In conclusion, our studies suggest that Kv4-based A-type current in neurons may show differential redox sensitivity depending on whether DPP6a or DPP10a is highly expressed, and that the S-glutathionylation mechanism may play a previously unappreciated role in mediating excitability changes and neuropathologies associated with ROS.
Collapse
Affiliation(s)
- Henry H. Jerng
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| | - Paul J. Pfaffinger
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
24
|
|
25
|
Aoyama K, Nakaki T. Impaired glutathione synthesis in neurodegeneration. Int J Mol Sci 2013; 14:21021-44. [PMID: 24145751 PMCID: PMC3821656 DOI: 10.3390/ijms141021021] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 12/20/2022] Open
Abstract
Glutathione (GSH) was discovered in yeast cells in 1888. Studies of GSH in mammalian cells before the 1980s focused exclusively on its function for the detoxication of xenobiotics or for drug metabolism in the liver, in which GSH is present at its highest concentration in the body. Increasing evidence has demonstrated other important roles of GSH in the brain, not only for the detoxication of xenobiotics but also for antioxidant defense and the regulation of intracellular redox homeostasis. GSH also regulates cell signaling, protein function, gene expression, and cell differentiation/proliferation in the brain. Clinically, inborn errors in GSH-related enzymes are very rare, but disorders of GSH metabolism are common in major neurodegenerative diseases showing GSH depletion and increased levels of oxidative stress in the brain. GSH depletion would precipitate oxidative damage in the brain, leading to neurodegenerative diseases. This review focuses on the significance of GSH function, the synthesis of GSH and its metabolism, and clinical disorders of GSH metabolism. A potential approach to increase brain GSH levels against neurodegeneration is also discussed.
Collapse
Affiliation(s)
- Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan.
| | | |
Collapse
|
26
|
Mó O, Lamsabhi AM, Yáñez M, Heverly-Coulson GS, Boyd RJ. Dramatic substituent effects on the mechanisms of nucleophilic attack on Se-S bridges. J Comput Chem 2013; 34:2537-47. [PMID: 24037744 DOI: 10.1002/jcc.23417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/26/2013] [Accepted: 07/27/2013] [Indexed: 11/06/2022]
Abstract
The reactions of XSeSX, XSeSY, and YSeSX (X, Y = CH3, NH2, OH, F) with F(-) and CN(-) nucleophiles have been investigated by means of B3PW91/6-311+G(2df,p) and G4 calculations. In systems where the two substituents are not identical (XSeSY), the more stable of the two possible isomers corresponds to those in which the most electronegative substituent is attached to Se. Nucleophilic attack takes place at Se, independent of the nature of the nucleophile, with the only exception being XSeSF (X = CH3 , NH2 , OH), in which case the attack occurs at S. In agreement with recent results for disulfide and diselenide linkages, the mechanisms leading to Se-S bond cleavage are not always the more favorable ones because for highly electronegative substituents the most favorable process is fission of the chalcogen-substituent bond. These dissimilarities in the observed reactivity pattern as a function of the electronegativity of the substituents are due to the fact that the σ-type Se-S antibonding orbital, which for low-electronegative substituents is the lowest unnoccupied molecular orbital (LUMO), becomes strongly destabilized when the electronegativity of the substituent increases, and is replaced by an antibonding π-type Se-X (or S-X) orbital. In contrast, however, with what has been found for disulfide and diselenide derivatives, the observed reactivity does not change with the nature of the nucleophile. The activation strain model provides interesting insight into these processes, showing that in most cases the activation barriers are the consequence of subtle differences in the strain or in the interaction energies.
Collapse
Affiliation(s)
- Otilia Mó
- Departamento de Química, Facultad de Ciencias, Módulo 13, Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
| | | | | | | | | |
Collapse
|
27
|
Paulsen C, Carroll KS. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev 2013; 113:4633-79. [PMID: 23514336 PMCID: PMC4303468 DOI: 10.1021/cr300163e] [Citation(s) in RCA: 828] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Indexed: 02/06/2023]
Affiliation(s)
- Candice
E. Paulsen
- Department of Chemistry, The Scripps Research
Institute, Jupiter, Florida, 33458, United States
| | - Kate S. Carroll
- Department of Chemistry, The Scripps Research
Institute, Jupiter, Florida, 33458, United States
| |
Collapse
|
28
|
Pillay CS, Hofmeyr JH, Mashamaite LN, Rohwer JM. From top-down to bottom-up: computational modeling approaches for cellular redoxin networks. Antioxid Redox Signal 2013; 18:2075-86. [PMID: 23249367 DOI: 10.1089/ars.2012.4771] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Thioredoxin, glutaredoxin, and peroxiredoxin systems play critical roles in a large number of redox-sensitive cellular processes. These systems are linked to each other by coupled redox cycles and common reaction intermediates into a larger network. Given the scale and connectivity of this network, computational approaches are required to analyze its dynamics and organization. RECENT ADVANCES Theoretical advances, as well as new redox proteomic methods, have led to the development of both top-down and bottom-up systems biology approaches to analyze the these systems and the network as a whole. Top-down approaches have been based on modifications to the Nernst equation or on graph theoretical approaches, while bottom-up approaches have been based on kinetic or stoichiometric modeling techniques. CRITICAL ISSUES This review will consider the rationale behind these approaches and focus on their advantages and limitations. Further, the review will discuss modeling standards to ensure model accuracy and availability. FUTURE DIRECTIONS Top-down and bottom-up approaches have distinct strengths and limitations in describing cellular redoxin networks. The availability of methods to overcome these limitations, together with the adoption of common modeling standards, is expected to increase the pace of model-led discovery within the redox biology field.
Collapse
Affiliation(s)
- Ché S Pillay
- School of Life Sciences, University of Kwa-Zulu Natal, Scottsville, South Africa.
| | | | | | | |
Collapse
|
29
|
Ghezzi P. Protein glutathionylation in health and disease. Biochim Biophys Acta Gen Subj 2013; 1830:3165-72. [DOI: 10.1016/j.bbagen.2013.02.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/10/2013] [Accepted: 02/07/2013] [Indexed: 12/31/2022]
|
30
|
Abstract
Many proteins contain free thiols that can be modified by the reversible formation of mixed disulfides with glutathione. Protein glutathionylation is of significance for defense against oxidative damage and in redox signaling. Here we outline the mechanisms and possible significance of protein glutathionylation.
Collapse
|
31
|
Heverly-Coulson GS, Boyd RJ, Mó O, Yáñez M. Revealing Unexpected Mechanisms for Nucleophilic Attack on SS and SeSe Bridges. Chemistry 2013; 19:3629-38. [DOI: 10.1002/chem.201203328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/28/2012] [Indexed: 01/01/2023]
|
32
|
Borguet YP, Tsarevsky NV. Controlled radical polymerization of a styrenic sulfonium monomer and post-polymerization modifications. Polym Chem 2013. [DOI: 10.1039/c2py21106h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Rojas DB, de Andrade RB, Gemelli T, Oliveira LS, Campos AG, Dutra-Filho CS, Wannmacher CMD. Effect of histidine administration to female rats during pregnancy and lactation on enzymes activity of phosphoryltransfer network in cerebral cortex and hippocampus of the offspring. Metab Brain Dis 2012; 27:595-603. [PMID: 22638695 DOI: 10.1007/s11011-012-9319-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/15/2012] [Indexed: 01/01/2023]
Abstract
Histidinemia is an inborn error of metabolism of amino acids caused by deficiency of histidase activity in liver and skin with consequent accumulation of histidine in plasma and tissues. Histidinemia is an autosomal recessive trait usually considered harmless to patients and their offspring, but some patients and children born from histidinemic mothers have mild neurologic alterations. Considering that histidinemia is one of the most frequently identified metabolic conditions, in the present study we investigated the effect of L-histidine load to female rats during pregnancy and lactation on some parameters of phosphoryltransfer network in cerebral cortex and hippocampus of the offspring. Pyruvate kinase, cytosolic and mitochondrial creatine kinase activities decreased in cerebral cortex and in hippocampus of rats at 21 days of age and this pattern remained in the cerebral cortex and in hippocampus at 60 days of age. Moreover, adenylate kinase activity was reduced in the cerebral cortex and in hippocampus of the offspring at 21 days of age, whereas the activity was increased in the two tissues at 60 days of age. These results suggest that administration of L-histidine to female rats in the course of pregnancy and lactation could impair energy homeostasis in the cerebral cortex and hippocampus of the offspring. Considering that histidinemia is usually a benign condition and little attention has been given to maternal histidinemia, it seems important to perform more studies in the children born from histidinemic mothers.
Collapse
Affiliation(s)
- Denise Bertin Rojas
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 anexo, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
34
|
Feksa LR, Oliveira E, Trombini T, Luchese M, Bisi S, Linden R, Berlese DB, Rojas DB, Andrade RB, Schuck PF, Lacerda LM, Wajner M, Wannmacher CMD, Emanuelli T. Pyruvate kinase activity and δ-aminolevulinic acid dehydratase activity as biomarkers of toxicity in workers exposed to lead. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 63:453-460. [PMID: 22864587 DOI: 10.1007/s00244-012-9786-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 07/07/2012] [Indexed: 06/01/2023]
Abstract
Lead (Pb(2+)) is a heavy metal that has long been used by humans for a wide range of technological purposes, which is the main reason for its current widespread distribution. Pb(2+) is thought to enter erythrocytes through anion exchange and to remain in the cell by binding to thiol groups. Pyruvate kinase (PK) is a thiol-containing enzyme that plays a key role in erythrocyte cellular energy homeostasis. δ-aminolevulinic acid dehydratase (δ-ALAD) is the second enzyme in the heme biosynthetic pathway and plays a role in the pathogenesis of Pb poisoning. Our primary objective was to investigate the effect of Pb(2+) on the activity of the thiolenzymes δ-ALAD and PK and on the concentration of glutathione (GSH), a nonenzymatic antioxidant defense, in erythrocytes from Pb-exposed workers. The study sample comprised 22 male Pb workers and 21 normal volunteers (15 men and 6 women). The Pb-exposed workers were employed in manufacturing and recycling of automotive batteries. Basic red-cell parameters were assayed and total white blood cell counts performed. PK and δ-ALAD activity and blood Pb (BPb) concentrations were determined in all subjects. Pb-exposed individuals had significantly greater BPb levels than controls. Both PK and δ-ALAD activity levels were significantly lower in Pb-exposed individuals than in controls. Pb significantly inhibited PK and δ-ALAD activity in a dose-dependent manner. We found that erythrocyte GSH levels were lower in Pb-exposed individuals than normal volunteers. Pb-exposed individuals had lower values than controls for several red cell parameters (hemoglobin, hematocrit, red blood cell count, mean corpuscular volume). These results suggest that Pb inhibits δ-ALAD and PK activity by interacting with their thiol groups. It is therefore possible that Pb disrupts energy homeostasis and may be linked with decreased glucose metabolism because it affects the heme synthesis pathway in erythrocytes, contributing to the cell dysfunction observed in these in Pb-exposed individuals. These results indicate an apparent dose-effect relationship between PK activity and BPb. PK activity in human erythrocytes can be used for biological monitoring of Pb exposure. Study of the mechanisms by which Pb acts may contribute to greater understanding of the symptoms caused by Pb.
Collapse
Affiliation(s)
- Luciane Rosa Feksa
- Instituto de Ciências da Saúde, Grupo de Pesquisa em Bioanálise, Universidade Feevale, RS 239, 2755, Novo Hamburgo, RS CEP 93352-000, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Häfner AK, Cernescu M, Hofmann B, Ermisch M, Hörnig M, Metzner J, Schneider G, Brutschy B, Steinhilber D. Dimerization of human 5-lipoxygenase. Biol Chem 2012; 392:1097-111. [PMID: 22050225 DOI: 10.1515/bc.2011.200] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human 5-lipoxygenase (5-LO) can form dimers as shown here via native gel electrophoresis, gel filtration chromatography and LILBID (laser induced liquid bead ion desorption) mass spectrometry. After glutathionylation of 5-LO by diamide/glutathione treatment, dimeric 5-LO was no longer detectable and 5-LO almost exclusively exists in the monomeric form which showed full catalytic activity. Incubation of 5-LO with diamide alone led to a disulfide-bridged dimer and to oligomer formation which displays a strongly reduced catalytic activity. The bioinformatic analysis of the 5-LO surface for putative protein-protein interaction domains and molecular modeling of the dimer interface suggests a head to tail orientation of the dimer which also explains the localization of previously reported ATP binding sites. This interface domain was confirmed by the observation that 5-LO dimer formation and inhibition of activity by diamide was largely prevented when four cysteines (C159S, C300S, C416S, C418S) in this domain were mutated to serines.
Collapse
Affiliation(s)
- Ann-Kathrin Häfner
- Institute of Pharmaceutical Chemistry/ZAFES, University of Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Murphy MP. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid Redox Signal 2012; 16:476-95. [PMID: 21954972 DOI: 10.1089/ars.2011.4289] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE The mitochondrial matrix contains much of the machinery at the heart of metabolism. This compartment is also exposed to a high and continual flux of superoxide, hydrogen peroxide, and related reactive species. To protect mitochondria from these sources of oxidative damage, there is an integrated set of thiol systems within the matrix comprising the thioredoxin/peroxiredoxin/methionine sulfoxide reductase pathways and the glutathione/glutathione peroxidase/glutathione-S-transferase/glutaredoxin pathways that in conjunction with protein thiols prevent much of this oxidative damage. In addition, the changes in the redox state of many components of these mitochondrial thiol systems may transduce and relay redox signals within and through the mitochondrial matrix to modulate the activity of biochemical processes. RECENT ADVANCES Here, mitochondrial thiol systems are reviewed, and areas of uncertainty are pointed out, focusing on recent developments in our understanding of their roles. CRITICAL ISSUES The areas of particular focus are on the multiple, overlapping roles of mitochondrial thiols and on understanding how these thiols contribute to both antioxidant defenses and redox signaling. FUTURE DIRECTIONS Recent technical progress in the identification and quantification of thiol modifications by redox proteomics means that many of the questions raised about the multiple roles of mitochondrial thiols can now be addressed.
Collapse
|
37
|
Gatterdam V, Stoess T, Menge C, Heckel A, Tampé R. Photoaktivierbares Glutathion - lichtgesteuerte Proteinwechselwirkung. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201108073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
38
|
Gatterdam V, Stoess T, Menge C, Heckel A, Tampé R. Caged Glutathione - Triggering Protein Interaction by Light. Angew Chem Int Ed Engl 2012; 51:3960-3. [DOI: 10.1002/anie.201108073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Indexed: 12/15/2022]
|
39
|
Correa LB, Zanetti MA, Del Claro GR, de Melo MP, Rosa AF, Saran Netto A. Effect of supplementation of two sources and two levels of copper on lipid metabolism in Nellore beef cattle. Meat Sci 2012; 91:466-71. [PMID: 22444665 DOI: 10.1016/j.meatsci.2012.02.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 01/13/2012] [Accepted: 02/27/2012] [Indexed: 11/17/2022]
Abstract
UNLABELLED This study was conducted with 35 Nellore beef cattle to determine the effect of supplementation of two levels and two copper sources (organic and inorganic) on metabolism of lipids and cholesterol of meat. The five treatments used were: CONTROL without copper supplementation, I10 or I40: 10 or 40 mg/kg DM (as Cu sulfate), O10 or O40: 10 or 40 mg/kg DM (as Cu proteinate). In general, the copper supplementation changed the fatty acid profile of meat (p<0.05), with a higher proportion of unsaturated fatty acids and reduction of saturated fatty acids. There was no effect of supplementation on blood cholesterol and triglycerides, however; in general, there was a reduction in cholesterol concentration in the L. dorsi (p<0.05) compared to the control treatment through the reduction (p<0.05) in the concentrations of GSH and GSH/GSSG ratio. The Cu supplementation did have an influence on metabolism of lipids. The production of healthier meat is beneficial to public health by reducing the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Lisia Bertonha Correa
- College of Animal Science and Food Engineering, FZEA, University of São Paulo, USP, Av Duque de Caxias Norte 225, CEP 13635-900, Pirassununga, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
40
|
Häfner AK, Cernescu M, Hofmann B, Ermisch M, Hörnig M, Metzner J, Schneider G, Brutschy B, Steinhilber D. Dimerization of human 5-lipoxygenase. Biol Chem 2011. [PMID: 22050225 DOI: 10.1515/bc-2011-200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human 5-lipoxygenase (5-LO) can form dimers as shown here via native gel electrophoresis, gel filtration chromatography and LILBID (laser induced liquid bead ion desorption) mass spectrometry. After glutathionylation of 5-LO by diamide/glutathione treatment, dimeric 5-LO was no longer detectable and 5-LO almost exclusively exists in the monomeric form which showed full catalytic activity. Incubation of 5-LO with diamide alone led to a disulfide-bridged dimer and to oligomer formation which displays a strongly reduced catalytic activity. The bioinformatic analysis of the 5-LO surface for putative protein-protein interaction domains and molecular modeling of the dimer interface suggests a head to tail orientation of the dimer which also explains the localization of previously reported ATP binding sites. This interface domain was confirmed by the observation that 5-LO dimer formation and inhibition of activity by diamide was largely prevented when four cysteines (C159S, C300S, C416S, C418S) in this domain were mutated to serines.
Collapse
Affiliation(s)
- Ann-Kathrin Häfner
- Institute of Pharmaceutical Chemistry/ZAFES, University of Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hill BG, Bhatnagar A. Protein S-glutathiolation: redox-sensitive regulation of protein function. J Mol Cell Cardiol 2011; 52:559-67. [PMID: 21784079 DOI: 10.1016/j.yjmcc.2011.07.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/05/2011] [Accepted: 07/09/2011] [Indexed: 10/17/2022]
Abstract
Reversible protein S-glutathiolation has emerged as an important mechanism of post-translational modification. Under basal conditions several proteins remain adducted to glutathione, and physiological glutathiolation of proteins has been shown to regulate protein function. Enzymes that promote glutathiolation (e.g., glutathione-S-transferase-P) or those that remove glutathione from proteins (e.g., glutaredoxin) have been identified. Modification by glutathione has been shown to affect protein catalysis, ligand binding, oligomerization and protein-protein interactions. Conditions associated with oxidative or nitrosative stress, such as ischemia-reperfusion, hypertension and tachycardia increase protein glutathiolation via changes in the glutathione redox status (GSH/GSSG) or through the formation of sulfenic acid (SOH) or nitrosated (SNO) cysteine intermediates. These "activated" thiols promote reversible S-glutathiolation of key proteins involved in cell signaling, energy production, ion transport, and cell death. Hence, S-glutathiolation is ideally suited for integrating and mounting fine-tuned responses to changes in the redox state. S-glutathiolation also provides a temporary glutathione "cap" to protect protein thiols from irreversible oxidation and it could be an important mechanism of protein "encryption" to maintain proteins in a functionally silent state until they are needed during conditions of stress. Current evidence suggests that the glutathiolation-deglutathiolation cycle integrates and interacts with other post-translational mechanisms to regulate signal transduction, metabolism, inflammation, and apoptosis. This article is part of a Special Section entitled "Post-translational Modification."
Collapse
Affiliation(s)
- Bradford G Hill
- Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
| | | |
Collapse
|
42
|
Lewerenz J, Maher P. Control of redox state and redox signaling by neural antioxidant systems. Antioxid Redox Signal 2011; 14:1449-65. [PMID: 20812872 DOI: 10.1089/ars.2010.3600] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The glutathione/glutathione disulfide (GSH/GSSG) redox pair forms the major redox couple in cells and as such plays a critical role in regulating redox-dependent cellular functions. Not only does GSH act as an antioxidant but it can also modulate the activity of a variety of different proteins. An impairment in GSH status is thought to be the precipitating event in a wide range of neurological disorders. Therefore, understanding how to maintain GSH in the CNS could provide a valuable therapeutic approach. Intracellular GSH levels are regulated by a complex series of pathways that include substrate transport and availability, rates of synthesis and regeneration, GSH utilization, and GSH efflux. To date, the most effective approaches for maintaining GSH levels in the CNS include enhancing cyst(e)ine uptake both directly and indirectly via transcriptional upregulation of system x(c)(-), increasing GSH synthesis via transcriptional upregulation of the rate limiting enzyme in GSH biosynthesis, and decreasing GSH utilization. Among the transcription factors that play critical roles in GSH metabolism are NF-E2-related factor 2 (Nrf2) and activating transcription factor 4 (ATF4). Thus, compounds that can upregulate these transcription factors may be particularly useful in promoting the functional maintenance of the CNS through their effects on GSH metabolism.
Collapse
Affiliation(s)
- Jan Lewerenz
- Department for Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
43
|
Generation of the oxidized form protects human brain type creatine kinase against cystine-induced inactivation. Int J Biol Macromol 2011; 48:239-42. [DOI: 10.1016/j.ijbiomac.2010.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 09/26/2010] [Accepted: 09/27/2010] [Indexed: 11/19/2022]
|
44
|
Alvarez S, Galant A, Jez JM, Hicks LM. Redox-regulatory mechanisms induced by oxidative stress in Brassica juncea
roots monitored by 2-DE proteomics. Proteomics 2011; 11:1346-50. [DOI: 10.1002/pmic.201000450] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 12/01/2010] [Accepted: 12/20/2010] [Indexed: 12/19/2022]
|
45
|
Nti-Addae KW, Laurence JS, Skinner AL, Stella VJ. Reversion of sulfenamide prodrugs in the presence of free thiol-containing proteins. J Pharm Sci 2011; 100:3023-7. [PMID: 21547913 DOI: 10.1002/jps.22505] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 01/04/2011] [Accepted: 01/07/2011] [Indexed: 11/11/2022]
Abstract
The purpose of this work was to study the reaction kinetics between two model sulfenamide prodrugs of linezolid, N-(phenylthio)linezolid and N-[(2-ethoxycarbonyl)ethylthio]linezolid, with free thiol-containing proteins; commercial human serum albumin (HSA); a constitutively active mutant of the protein tyrosine phosphatase PRL-1 (PRL-1-C170S-C171S), a model protein; and diluted fresh human plasma. The reaction was followed by high-performance liquid chromatography, both for the loss of prodrug and appearance of linezolid, and at different pH values with molar excess of the proteins relative to the prodrugs. Pseudo first-order kinetics was observed. Consistent with earlier findings for the reaction between similar sulfenamides and small-molecule thiols, the reaction kinetics appeared to be consistent with thiolate attack at the sulfenamide bond to release the parent drug. The proteins reacted significantly slower on a molar basis than their small-molecule counterparts. It appears that proteins such as HSA may play a role in the in vivo conversion of sulfenamide prodrugs to their parent drug.
Collapse
Affiliation(s)
- Kwame W Nti-Addae
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA
| | | | | | | |
Collapse
|
46
|
Requejo R, Chouchani ET, James AM, Prime TA, Lilley KS, Fearnley IM, Murphy MP. Quantification and identification of mitochondrial proteins containing vicinal dithiols. Arch Biochem Biophys 2010; 504:228-35. [DOI: 10.1016/j.abb.2010.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/01/2010] [Accepted: 09/05/2010] [Indexed: 10/19/2022]
|
47
|
Lepper TW, Oliveira E, Koch GDW, Berlese DB, Feksa LR. Lead inhibits in vitro creatine kinase and pyruvate kinase activity in brain cortex of rats. Toxicol In Vitro 2010; 24:1045-51. [DOI: 10.1016/j.tiv.2009.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/06/2009] [Accepted: 11/09/2009] [Indexed: 01/22/2023]
|
48
|
Gao XH, Bedhomme M, Veyel D, Zaffagnini M, Lemaire SD. Methods for analysis of protein glutathionylation and their application to photosynthetic organisms. MOLECULAR PLANT 2009; 2:218-35. [PMID: 19825609 DOI: 10.1093/mp/ssn072] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Protein S-glutathionylation, the reversible formation of a mixed-disulfide between glutathione and protein thiols, is involved in protection of protein cysteines from irreversible oxidation, but also in protein redox regulation. Recent studies have implicated S-glutathionylation as a cellular response to oxidative/nitrosative stress, likely playing an important role in signaling. Considering the potential importance of glutathionylation, a number of methods have been developed for identifying proteins undergoing glutathionylation. These methods, ranging from analysis of purified proteins in vitro to large-scale proteomic analyses in vivo, allowed identification of nearly 200 targets in mammals. By contrast, the number of known glutathionylated proteins is more limited in photosynthetic organisms, although they are severely exposed to oxidative stress. The aim of this review is to detail the methods available for identification and analysis of glutathionylated proteins in vivo and in vitro. The advantages and drawbacks of each technique will be discussed as well as their application to photosynthetic organisms. Furthermore, an overview of known glutathionylated proteins in photosynthetic organisms is provided and the physiological importance of this post-translational modification is discussed.
Collapse
Affiliation(s)
- Xing-Huang Gao
- Institut de Biotechnologie des Plantes, UMR 8618, CNRS/Université Paris-Sud 11, Bâtiment 630, Orsay 91405, Cedex, France
| | | | | | | | | |
Collapse
|
49
|
Holtgrefe S, Gohlke J, Starmann J, Druce S, Klocke S, Altmann B, Wojtera J, Lindermayr C, Scheibe R. Regulation of plant cytosolic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications. PHYSIOLOGIA PLANTARUM 2008; 133:211-28. [PMID: 18298409 DOI: 10.1111/j.1399-3054.2008.01066.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cytosolic NAD-dependent glyceraldehyde 3-P dehydrogenase (GAPDH; GapC; EC 1.2.1.12) catalyzes the oxidation of triose phosphates during glycolysis in all organisms, but additional functions of the protein has been put forward. Because of its reactive cysteine residue in the active site, it is susceptible to protein modification and oxidation. The addition of GSSG, and much more efficiently of S-nitrosoglutathione, was shown to inactivate the enzymes from Arabidopsis thaliana (isoforms GapC1 and 2), spinach, yeast and rabbit muscle. Inactivation was fully or at least partially reversible upon addition of DTT. The incorporation of glutathione upon formation of a mixed disulfide could be shown using biotinylated glutathione ethyl ester. Furthermore, using the biotin-switch assay, nitrosylated thiol groups could be shown to occur after treatment with nitric oxide donors. Using mass spectrometry and mutant proteins with one cysteine lacking, both cysteines (Cys-155 and Cys-159) were found to occur as glutathionylated and as nitrosylated forms. In preliminary experiments, it was shown that both GapC1 and GapC2 can bind to a partial gene sequence of the NADP-dependent malate dehydrogenase (EC 1.2.1.37; At5g58330). Transiently expressed GapC-green fluorescent protein fusion proteins were localized to the nucleus in A. thaliana protoplasts. As nuclear localization and DNA binding of GAPDH had been shown in numerous systems to occur upon stress, we assume that such mechanism might be part of the signaling pathway to induce increased malate-valve capacity and possibly other protective systems upon overreduction and initial formation of reactive oxygen and nitrogen species as well as to decrease and protect metabolism at the same time by modification of essential cysteine residues.
Collapse
Affiliation(s)
- Simone Holtgrefe
- Department of Plant Physiology, University of Osnabrueck, D-49069 Osnabrueck, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rech VC, Feksa LR, Fleck RMM, Athaydes GA, Dornelles PKB, Rodrigues-Junior V, Wannmacher CMD. Cysteamine prevents inhibition of thiol-containing enzymes caused by cystine or cystine dimethylester loading in rat brain cortex. Metab Brain Dis 2008; 23:133-45. [PMID: 18418703 DOI: 10.1007/s11011-008-9081-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Accepted: 12/10/2007] [Indexed: 12/18/2022]
Abstract
Cystinosis is a systemic genetic disease caused by a lysosomal transport deficiency accumulating cystine in the lysosomes of all tissues. Although tissue damage might depend on cystine accumulation, the mechanisms of tissue damage are still obscures. Considering that thiol-containing enzymes are critical for several metabolic pathways, our main objective was to investigate the effects of cystine or cystine dimethylester load on the thiol-containing enzymes creatine kinase and pyruvate kinase, in the brain cortex of young Wistar rats. The animals were injected twice a day with 1.6 micromol/g body weight of cystine dimethylester or 1 micromol/g body weight of cystine and/or 0.46 micromol/g body weight of cysteamine from the 16th to the 20th postpartum day and sacrificed after 12 h. Cystine or cystine dimethylester administration inhibited the two enzyme activities. Co-administration of cysteamine, the drug used to treat cystinotic patients, normalized the two enzyme activities. Lactate dehydrogenase activity, a nonthiol-containing enzyme was not affected by cystine dimethylester administration. Cystine inhibits creatine kinase and pyruvate activities possibly by oxidation of the sulfhydryl groups of the enzymes. Considering that creatine kinase and pyruvate kinase, like other thiol-containing enzymes, are crucial for energy homeostasis and antioxidant defenses, the enzymes inhibition caused by cystine released from lysosomes could be one of the mechanisms of tissue damage in patients with cystinosis.
Collapse
Affiliation(s)
- Virginia Cielo Rech
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Rua Ramiro Barcelos 2600, CEP 90.035-003, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | |
Collapse
|