1
|
Meeks KR, Ji J, Scott GK, Campbell AC, Nix JC, Tadeo A, Ellerby LM, Benz CC, Tanner JJ. Biochemical, structural, and cellular characterization of S-but-3-yn-2-ylglycine as a mechanism-based covalent inactivator of the flavoenzyme proline dehydrogenase. Arch Biochem Biophys 2025; 765:110319. [PMID: 39870289 DOI: 10.1016/j.abb.2025.110319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
The mitochondrial flavoenzymes proline dehydrogenase (PRODH) and hydroxyproline dehydrogenase (PRODH2) catalyze the first steps of proline and hydroxyproline catabolism, respectively. The enzymes are targets for chemical probe development because of their roles in cancer cell metabolism (PRODH) and primary hyperoxaluria (PRODH2). Mechanism-based inactivators of PRODH target the FAD by covalently modifying the N5 atom, with N-propargylglycine (NPPG) being the current best-in-class of this type of probe. Here we investigated a close analog of NPPG, but-3-yn-2-ylglycine (B32G), distinguished by having a methyl group adjacent to the ethynyl group of the propargyl warhead. UV-visible spectroscopy shows that a bacterial PRODH catalyzes the oxidation of the S-enantiomer of B32G, a necessary first step in mechanism-based inactivation. In contrast, the enzyme does not react with the R-enantiomer. Enzyme activity assays show that S-B32G inhibits bacterial PRODH in a time-dependent manner consistent with covalent inactivation; however, the inactivation efficiency is ∼600-times lower than NPPG. We generated the crystal structure of PRODH inactivated by S-B32G at 1.68 Å resolution and found that inactivation induces a covalent link between the FAD N5 and the ε-nitrogen of an active site lysine, confirming that S-B32G follows the same mechanism as NPPG. Despite its lower inactivation efficiency at the purified bacterial enzyme, S-B32G exhibited comparable activity to NPPG against PRODH and PRODH2 in human cells and mouse livers. Molecular modeling is used to rationalize the stereospecificity of B32G.
Collapse
Affiliation(s)
- Kaylen R Meeks
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - Juan Ji
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - Gary K Scott
- Buck Institute for Research on Aging, Novato, CA, 94945, United States
| | - Ashley C Campbell
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - Jay C Nix
- Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Ada Tadeo
- Buck Institute for Research on Aging, Novato, CA, 94945, United States
| | - Lisa M Ellerby
- Buck Institute for Research on Aging, Novato, CA, 94945, United States
| | | | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States; Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States.
| |
Collapse
|
2
|
Rougée LRA, Hegde PV, Shin K, Abraham TL, Bell A, Hall SD. Heterotropic allosteric modulation of CYP3A4 in vitro by progesterone: Evidence for improvement in prediction of time-dependent inhibition for macrolides. Drug Metab Dispos 2025; 53:100006. [PMID: 39884818 DOI: 10.1124/dmd.124.001820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 10/18/2024] [Indexed: 01/22/2025] Open
Abstract
Predictions of drug-drug interactions resulting from time-dependent inhibition (TDI) of CYP3A4 have consistently overestimated or mispredicted (ie, false positives) the interaction that is observed in vivo. Recent findings demonstrated that the presence of the allosteric modulator progesterone (PGS) in the in vitro assay could alter the in vitro kinetics of CYP3A4 TDI with inhibitors that interact with the heme moiety, such as metabolic-intermediate complex forming inhibitors. The impact of the presence of 100 μM PGS on the TDI of molecules in the class of macrolides typically associated with metabolic-intermediate complex formation was investigated. The presence of PGS resulted in varied responses across the inhibitors tested. The TDI signal was eliminated for 5 inhibitors, and unaltered in the case of 1, fidaxomicin. The remaining molecules erythromycin, clarithromycin, and troleandomycin were observed to have a decrease in both potency and maximum inactivation rate ranging from 1.7- to 6.7-fold. These changes in TDI kinetics led to a >90% decrease in inactivation efficiency. To determine in vitro conditions that could reproduce in vivo inhibition, varied concentrations of PGS were incubated with clarithromycin and erythromycin. The resulting in vitro TDI kinetics were incorporated into dynamic physiologically based pharmacokinetic models to predict clinically observed interactions. The results suggested that a concentration of ∼45 μM PGS would result in TDI kinetic values that could reproduce in vivo observations and could potentially improve predictions for CYP3A4 TDI. SIGNIFICANCE STATEMENT: The impact of the allosteric heterotropic modulator progesterone on the CYP3A4 time-dependent inhibition kinetics was quantified for a set of metabolic-intermediate complex forming mechanism-based inhibitors. We identify the in vitro conditions that optimally predict time-dependent inhibition for in vivo drug-drug interactions through dynamic physiologically based pharmacokinetic modeling. The optimized assay conditions improve in vitro to in vivo translation and prediction of time-dependent inhibition.
Collapse
Affiliation(s)
- Luc R A Rougée
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana.
| | - Pooja V Hegde
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Kaitlin Shin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Trent L Abraham
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Alec Bell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Stephen D Hall
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|
3
|
Igawa H, Konst ZA, Therrien E, Shelley M, Koldsø H, Bos PH, Negri A, Verras A, Guo J, Dahlgren MK, Levinson A, Parr BT, Kurhade SE, Latthe P, Shetty R, Santhanakrishnan S, Amberg-Johnson K, Futran AS, Atsriku C, Pelletier RD, Liu Z, Bell JA, Bhat S, Svensson M, Gerasyuto AI. Discovery of a Novel Mutant-Selective Epidermal Growth Factor Receptor Inhibitor Using an In Silico Enabled Drug Discovery Platform. J Med Chem 2024; 67:21811-21840. [PMID: 39666597 DOI: 10.1021/acs.jmedchem.4c01405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Despite the success of first, second, and third generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) for non-small cell lung cancer with classical EGFR mutations (L858R or Exon 19 deletions), disease progression occurs due to the acquisition of T790M and C797S resistance. Herein, we report a physics-based computationally driven lead identification approach that identified structurally unique imidazo[3.2-b]pyrazoles as reversible and wild-type-sparing EGFR TKIs of classical mutations bearing both T790M and C797S. During profiling of imidazo[3.2-b]pyrazoles, we elucidated the bioactivation mechanism causing CYP3A4/5 time-dependent inhibition (TDI) and found key modifications to mitigate the TDI. Compound 31 inhibited EGFR L858R/T790M/C797S in biochemical assays with a Ki = 2.1 nM and EGFR del19/T790M/C797S in a Ba/F3 cellular assay with an IC50 = 56.9 nM. The deuterated analogue of 31 (38) demonstrated dose-dependent tumor growth inhibition in a Ba/F3 EGFR del19/T790M/C797S CDX model by 47% at 50 mg/kg BID and 92% at 100 mg/kg BID.
Collapse
Affiliation(s)
- Hideyuki Igawa
- Schrödinger Inc., New York, New York 10036, United States
| | - Zef A Konst
- Schrödinger Inc., New York, New York 10036, United States
| | - Eric Therrien
- Schrödinger Inc., New York, New York 10036, United States
| | - Mee Shelley
- Schrödinger Inc., Portland, Oregon 97204, United States
| | - Heidi Koldsø
- Schrödinger Inc., New York, New York 10036, United States
| | - Pieter H Bos
- Schrödinger Inc., New York, New York 10036, United States
| | - Ana Negri
- Schrödinger Inc., New York, New York 10036, United States
| | - Andreas Verras
- Schrödinger Inc., New York, New York 10036, United States
| | - Jiaye Guo
- Schrödinger Inc., New York, New York 10036, United States
| | | | - Adam Levinson
- Schrödinger Inc., New York, New York 10036, United States
| | | | | | - Prashant Latthe
- Syngene International Ltd., Bengaluru, Karnataka 560099, India
| | - Rajesha Shetty
- Syngene International Ltd., Bengaluru, Karnataka 560099, India
| | | | | | - Alan S Futran
- Schrödinger Inc., New York, New York 10036, United States
| | | | | | - Zhijian Liu
- Schrödinger Inc., New York, New York 10036, United States
| | - Jeffrey A Bell
- Schrödinger Inc., New York, New York 10036, United States
| | - Sathesh Bhat
- Schrödinger Inc., New York, New York 10036, United States
| | - Mats Svensson
- Schrödinger Inc., New York, New York 10036, United States
| | | |
Collapse
|
4
|
Tanner JJ, Ji J, Bogner AN, Scott GK, Patel SM, Seravalli J, Gates KS, Benz CC, Becker DF. Noncovalent Inhibition and Covalent Inactivation of Proline Dehydrogenase by Analogs of N-Propargylglycine. Biochemistry 2024; 63:2855-2867. [PMID: 39437336 PMCID: PMC11602192 DOI: 10.1021/acs.biochem.4c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The flavoenzyme proline dehydrogenase (PRODH) catalyzes the first step of proline catabolism, the oxidation of l-proline to Δ1-pyrroline-5-carboxylate. The enzyme is a target for chemical probe discovery because of its role in the metabolism of certain cancer cells. N-propargylglycine is the first and best characterized mechanism-based covalent inactivator of PRODH. This compound consists of a recognition module (glycine) that directs the inactivator to the active site and an alkyne warhead that reacts with the FAD after oxidative activation, leading to covalent modification of the FAD N5 atom. Here we report structural and kinetic data on analogs of N-propargylglycine with the goals of understanding the initial docking step of the inactivation mechanism and to test the allyl group as a warhead. The crystal structures of PRODH complexed with unreactive analogs in which N is replaced by S show how the recognition module mimics the substrate proline by forming ion pairs with conserved arginine and lysine residues. Further, the C atom adjacent to the alkyne warhead is optimally positioned for hydride transfer to the FAD, providing the structural basis for the first bond-breaking step of the inactivation mechanism. The structures also suggest new strategies for designing improved N-propargylglycine analogs. N-allylglycine, which consists of a glycine recognition module and allyl warhead, is shown to be a covalent inactivator; however, it is less efficient than N-propargylglycine in both enzyme inactivation and cellular assays. Crystal structures of the N-allylglycine-inactivated enzyme are consistent with covalent modification of the N5 by propanal.
Collapse
Affiliation(s)
- John J. Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States
- Department of Chemistry, University of Missouri, Columbia, MO 65211, United States
| | - Juan Ji
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States
| | - Alexandra N. Bogner
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, United States
| | - Gary K. Scott
- Buck Institute for Research on Aging, Novato, CA, 94945, United States
| | - Sagar M. Patel
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Javier Seravalli
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Kent S. Gates
- Department of Chemistry, University of Missouri, Columbia, MO 65211, United States
| | | | - Donald F. Becker
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| |
Collapse
|
5
|
Work HM, Kandel SE, Lampe JN. Comparison of the CYP3A Selective Inhibitors CYP3cide, Clobetasol, and Azamulin for Their Potential to Distinguish CYP3A7 Activity in the Presence of CYP3A4/5. Drug Metab Dispos 2024; 52:1224-1233. [PMID: 38702193 PMCID: PMC11495666 DOI: 10.1124/dmd.124.001598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024] Open
Abstract
The CYP3A7 enzyme accounts for ∼50% of the total cytochrome P450 (P450) content in fetal and neonatal livers and is the predominant P450 involved in neonatal xenobiotic metabolism. Additionally, it is a key player in healthy birth outcomes through the oxidation of dehydroepiandrosterone (DHEA) and DHEA-sulfate. The amount of the other hepatic CYP3A isoforms, CYP3A4 and CYP3A5, expressed in neonates is low but highly variable, and therefore the activity of individual CYP3A isoforms is difficult to differentiate due to their functional similarities. Consequently, a better understanding of the contribution of CYP3A7 to drug metabolism is essential to identify the risk that drugs may pose to neonates and developing infants. To distinguish CYP3A7 activity from CYP3A4/5, we sought to further characterize the selectivity of the specific CYP3A inhibitors CYP3cide, clobetasol, and azamulin. We used three substrate probes, dibenzylfluorescein, luciferin-PPXE, and midazolam, to determine the IC50 and metabolism-dependent inhibition (MDI) properties of the CYP3A inhibitors. Probe selection had a significant effect on the IC50 values and P450 inactivation across all inhibitory compounds and enzymes. CYP3cide and azamulin were both identified as MDIs and were most specific for CYP3A4. Contrary to previous reports, we found that clobetasol propionate (CP) was not an MDI of CYP3A5 but was more selective for CYP3A5 over CYP3A4/7. We further investigated CYP3cide and CP's ability to differentiate CYP3A7 activity in an equal mixture of recombinant CYP3A4, CYP3A5, and CYP3A7, and our results provide confidence of CYP3cide's and CP's ability to distinguish CYP3A7 activity in the presence of the other CYP3A isoforms. SIGNIFICANCE STATEMENT: These findings provide valuable insight regarding in vitro testing conditions to investigate the metabolism of new drug candidates and help determine drug safety in neonates. The results presented here also clearly demonstrate the effect that probe selection may have on CYP3A cytochrome P450 inhibition studies.
Collapse
Affiliation(s)
- Hannah M Work
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado (H.M.W., S.E.K., J.N.L.)
| | - Sylvie E Kandel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado (H.M.W., S.E.K., J.N.L.)
| | - Jed N Lampe
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado (H.M.W., S.E.K., J.N.L.)
| |
Collapse
|
6
|
Ning J, Tian Z, Wang J, Yan F, Shi C, Zhang S, Feng L, Shu X, Cui J, James TD, Ma X. Rational Molecular Design of a Fluorescent Probe for Selectively Sensing Human Cytochrome P450 2D6. Angew Chem Int Ed Engl 2024; 63:e202409217. [PMID: 38989537 DOI: 10.1002/anie.202409217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
Cytochrome P450 2D6 (CYP2D6) is a key enzyme that mediates the metabolism of various drugs and endogenous substances in humans. However, its biological role in drug-drug interactions especially mechanism-based inactivation (MBI), and various diseases remains poorly understood, owing to the lack of molecular tools suitable for selectively monitoring CYP2D6 in complex biological systems. Herein, using a tailored molecular strategy, we developed a fluorescent probe BDPM for CYP2D6. BDPM exhibits excellent specificity and imaging capability for CYP2D6, making it suitable for the real-time monitoring of endogenous CYP2D6 activity in living bio-samples. Therefore, our tailored strategy proved useful for constructing the highly selective and enzyme-activated fluorescent probes. BDPM as a molecular tool to explore the critical roles of CYP2D6 in the pathogenesis of diseases, high-throughput screening of inhibitors and intensive investigation of CYP2D6-induced MBI in natural systems.
Collapse
Affiliation(s)
- Jing Ning
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Zhenhao Tian
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jiayue Wang
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
- Beijing DP Technology Co., Ltd., Beijing, 100080, China
| | - Fei Yan
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Chao Shi
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Shujing Zhang
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Lei Feng
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Xiaohong Shu
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Tony D James
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Xiaochi Ma
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| |
Collapse
|
7
|
Tan BH, Ahemad N, Pan Y, Ong CE. Mechanism-based inactivation of cytochromes P450: implications in drug interactions and pharmacotherapy. Xenobiotica 2024; 54:575-598. [PMID: 39175333 DOI: 10.1080/00498254.2024.2395557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Cytochrome P40 (CYP) enzymes dominate the metabolism of numerous endogenous and xenobiotic substances. While it is commonly believed that CYP-catalysed reactions result in the detoxication of foreign substances, these reactions can also yield reactive intermediates that can bind to cellular macromolecules to cause cytotoxicity or irreversibly inactivate CYPs that create them.Mechanism-based inactivation (MBI) produces either irreversible or quasi-irreversible inactivation and is commonly caused by CYP metabolic bioactivation to an electrophilic reactive intermediate. Many drugs that have been known to cause MBI in CYPs have been discovered as perpetrators in drug-drug interactions throughout the last 20-30 years.This review will highlight the key findings from the recent literature about the mechanisms of CYP enzyme inhibition, with a focus on the broad mechanistic elements of MBI for widely used drugs linked to the phenomenon. There will also be a brief discussion of the clinical or pharmacokinetic consequences of CYP inactivation with regard to drug interaction and toxicity risk.Gaining knowledge about the selective inactivation of CYPs by common therapeutic drugs helps with the assessment of factors that affect the systemic clearance of co-administered drugs and improves comprehension of anticipated interactions with other drugs or xenobiotics.
Collapse
Affiliation(s)
- Boon Hooi Tan
- Division of Applied Biomedical Sciences and Biotechnology, International Medical University, Kuala Lumpur, Malaysia
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Selangor, Malaysia
| | - Yan Pan
- Department of Biomedical Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia
| | - Chin Eng Ong
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Bignucolo MW, Siemann S. Removal of Metal from Carboxypeptidase A Proceeds via a Split Pathway: Implications for the General Mechanisms of Metalloenzyme Inactivation by Chelating Agents. Biochemistry 2024; 63:1969-1979. [PMID: 39046854 DOI: 10.1021/acs.biochem.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The chelation of protein-bound metal ions is typically thought to follow either a dissociative (D) or an associative (A) path. While the former mechanism involves the spontaneous dissociation of the metal from the protein prior to chelation, the latter route is characterized by the formation of an intermediate protein-metal-chelator ternary complex. Using the prototypical zinc protease carboxypeptidase A (CPA) and a variety of charged and neutral chelating agents, we demonstrate that inactivation of the enzyme (and likely other metalloproteins) proceeds through a split pathway with contributions from both D- and A-type mechanisms. In the case of charged chelators such as ethylenediaminetetraacetic acid (EDTA), the proportions of both paths could be tuned over a wide range through variation of the chelator concentration and the ionic strength, I (from ∼95% A type at low I values to ∼5% at high I values). By measuring the EDTA concentration and time dependence of CPA inactivation and fitting the obtained kinetic data to a modified time-dependent inhibition model, we obtained the rate constants for the A and D paths (kinact and koff, respectively) and the inhibition constant (KI) for the formation of the CPA-Zn2+-EDTA ternary complex, indicating that the decreased contribution of the A-type mechanism at high ionic strengths originates from a large (40-fold; at I = 0.5 M) increase in KI. This observation might be related to a triarginine motif in CPA that electrostatically steers negatively charged substrates into the active site and may therefore also guide carboxylate-bearing chelators toward the Zn2+ ion.
Collapse
Affiliation(s)
- Matthew W Bignucolo
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
| | - Stefan Siemann
- School of Natural Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
| |
Collapse
|
9
|
Kahma H, Paludetto MN, Neuvonen M, Kurkela M, Filppula AM, Niemi M, Backman JT. Screening of 16 major drug glucuronides for time-dependent inhibition of nine drug-metabolizing CYP enzymes - detailed studies on CYP3A inhibitors. Eur J Pharm Sci 2024; 198:106735. [PMID: 38423227 DOI: 10.1016/j.ejps.2024.106735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/24/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Time-dependent inhibition of cytochrome P450 (CYP) enzymes has been observed for a few glucuronide metabolites of clinically used drugs. Here, we investigated the inhibitory potential of 16 glucuronide metabolites towards nine major CYP enzymes in vitro. Automated substrate cocktail methods were used to screen time-dependent inhibition of CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2J2 and 3A in human liver microsomes. Seven glucuronides (carvedilol β-D-glucuronide, diclofenac acyl-β-D-glucuronide, 4-hydroxyduloxetine β-D-glucuronide, ezetimibe phenoxy-β-D-glucuronide, raloxifene 4'-glucuronide, repaglinide acyl-β-D-glucuronide and valproic acid β-D-glucuronide) caused NADPH- and time-dependent inhibition of at least one of the CYPs investigated, including CYP2A6, CYP2C19 and CYP3A. In more detailed experiments, we focused on the glucuronides of carvedilol and diclofenac, which inhibited CYP3A. Carvedilol β-D-glucuronide showed weak time-dependent inhibition of CYP3A, but the parent drug carvedilol was found to be a more potent inhibitor of CYP3A, with the half-maximal inhibitor concentration (IC50) decreasing from 7.0 to 1.1 µM after a 30-min preincubation with NADPH. The maximal inactivation constant (kinact) and the inhibitor concentration causing half of kinact (KI) for CYP3A inactivation by carvedilol were 0.051 1/min and 1.8 µM, respectively. Diclofenac acyl-β-D-glucuronide caused time-dependent inactivation of CYP3A at high concentrations, with a 4-fold IC50 shift (from 400 to 98 µM after a 30-min preincubation with NADPH) and KI and kinact values of >2,000 µM and >0.16 1/min. In static predictions, carvedilol caused significant (>1.25-fold) increase in the exposure of the CYP3A substrates midazolam and simvastatin. In conclusion, we identified several glucuronide metabolites with CYP inhibitory properties. Based on detailed experiments, the inactivation of CYP3A by carvedilol may cause clinically significant drug-drug interactions.
Collapse
Affiliation(s)
- Helinä Kahma
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marie-Noëlle Paludetto
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mika Kurkela
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anne M Filppula
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
10
|
Devitt AN, Vargas AL, Zhu W, Des Soye BJ, Butun FA, Alt T, Kaley N, Ferreira GM, Moran G, Kelleher NL, Liu D, Silverman RB. Design, Synthesis, and Mechanistic Studies of ( R)-3-Amino-5,5-difluorocyclohex-1-ene-1-carboxylic Acid as an Inactivator of Human Ornithine Aminotransferase. ACS Chem Biol 2024; 19:1066-1081. [PMID: 38630468 PMCID: PMC11274680 DOI: 10.1021/acschembio.4c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Human ornithine aminotransferase (hOAT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, has been shown to play an essential role in the metabolic reprogramming and progression of hepatocellular carcinoma (HCC). HCC accounts for approximately 75% of primary liver cancers and is within the top three causes of cancer death worldwide. As a result of treatment limitations, the overall 5-year survival rate for all patients with HCC is under 20%. The prevalence of HCC necessitates continued development of novel and effective treatment methods. In recent years, the therapeutic potential of selective inactivation of hOAT has been demonstrated for the treatment of HCC. Inspired by previous increased selectivity for hOAT by the expansion of the cyclopentene ring scaffold to a cyclohexene, we designed, synthesized, and evaluated a series of novel fluorinated cyclohexene analogues and identified (R)-3-amino-5,5-difluorocyclohex-1-ene-1-carboxylic acid as a time-dependent inhibitor of hOAT. Structural and mechanistic studies have elucidated the mechanism of inactivation of hOAT by 5, resulting in a PLP-inactivator adduct tightly bound to the active site of the enzyme. Intact protein mass spectrometry, 19F NMR spectroscopy, transient state kinetic studies, and X-ray crystallography were used to determine the structure of the final adduct and elucidate the mechanisms of inactivation. Interestingly, despite the highly electrophilic intermediate species conferred by fluorine and structural evidence of solvent accessibility in the hOAT active site, Lys292 and water did not participate in nucleophilic addition during the inactivation mechanism of hOAT by 5. Instead, rapid aromatization to yield the final adduct was favored.
Collapse
Affiliation(s)
- Allison N. Devitt
- Department of Chemistry, Chemistry of Life Processes Institute, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Abigail L. Vargas
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Wei Zhu
- Department of Chemistry, Chemistry of Life Processes Institute, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Benjamin James Des Soye
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Fatma Ayaloglu Butun
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Tyler Alt
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Nicholas Kaley
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Glaucio M. Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Graham Moran
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Neil L. Kelleher
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Richard B. Silverman
- Department of Chemistry, Chemistry of Life Processes Institute, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
- Department of Pharmacology, Northwestern University, Chicago, Illinois, 60611, United States
| |
Collapse
|
11
|
Stewart NK, Toth M, Quan P, Buynak JD, Smith CA, Vakulenko SB. Restricted Rotational Flexibility of the C5α-Methyl-Substituted Carbapenem NA-1-157 Leads to Potent Inhibition of the GES-5 Carbapenemase. ACS Infect Dis 2024; 10:1232-1249. [PMID: 38511828 PMCID: PMC11160566 DOI: 10.1021/acsinfecdis.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Carbapenem antibiotics are used as a last-resort treatment for infections caused by multidrug-resistant bacteria. The wide spread of carbapenemases in Gram-negative bacteria has severely compromised the utility of these drugs and represents a serious public health threat. To combat carbapenemase-mediated resistance, new antimicrobials and inhibitors of these enzymes are urgently needed. Here, we describe the interaction of the atypically C5α-methyl-substituted carbapenem, NA-1-157, with the GES-5 carbapenemase. MICs of this compound against Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii producing the enzyme were reduced 4-16-fold when compared to MICs of the commercial carbapenems, reaching clinically sensitive breakpoints. When NA-1-157 was combined with meropenem, a strong synergistic effect was observed. Kinetic and ESI-LC/MS studies demonstrated that NA-1-157 is a potent inhibitor of GES-5, with a high inactivation efficiency of (2.9 ± 0.9) × 105 M-1 s-1. Acylation of GES-5 by NA-1-157 was biphasic, with the fast phase completing within seconds, and the slow phase taking several hours and likely proceeding through a reversible tetrahedral intermediate. Deacylation was extremely slow (k3 = (2.4 ± 0.3) × 10-7 s-1), resulting in a residence time of 48 ± 6 days. MD simulation of the GES-5-meropenem and GES-5-NA-1-157 acyl-enzyme complexes revealed that the C5α-methyl group in NA-1-157 sterically restricts rotation of the 6α-hydroxyethyl group preventing ingress of the deacylating water into the vicinity of the scissile bond of the acyl-enzyme intermediate. These data demonstrate that NA-1-157 is a potent irreversible inhibitor of the GES-5 carbapenemase.
Collapse
Affiliation(s)
- Nichole K. Stewart
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Pojun Quan
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275, USA
| | - John D. Buynak
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275, USA
| | - Clyde A. Smith
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, CA 94025, USA
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Sergei B. Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
12
|
Sheng YJ, Kuo STA, Yang T, Russell DH, Yan X, Xu S, Liu WR, Fierke CA. BRD4354 Is a Potent Covalent Inhibitor against the SARS-CoV-2 Main Protease. Biochemistry 2024:10.1021/acs.biochem.3c00685. [PMID: 38329238 PMCID: PMC11306412 DOI: 10.1021/acs.biochem.3c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Numerous organic molecules are known to inhibit the main protease (MPro) of SARS-CoV-2, the pathogen of Coronavirus Disease 2019 (COVID-19). Guided by previous research on zinc-ligand inhibitors of MPro and zinc-dependent histone deacetylases (HDACs), we identified BRD4354 as a potent inhibitor of MPro. The in vitro protease activity assays show that BRD4354 displays time-dependent inhibition against MPro with an IC50 (concentration that inhibits activity by 50%) of 0.72 ± 0.04 μM after 60 min of incubation. Inactivation follows a two-step process with an initial rapid binding step with a KI of 1.9 ± 0.5 μM followed by a second slow inactivation step, kinact,max of 0.040 ± 0.002 min-1. Native mass spectrometry studies indicate that a covalent intermediate is formed where the ortho-quinone methide fragment of BRD4354 forms a covalent bond with the catalytic cysteine C145 of MPro. Based on these data, a Michael-addition reaction mechanism between MPro C145 and BRD4354 was proposed. These results suggest that both preclinical testing of BRD4354 and structure-activity relationship studies based on BRD4354 are warranted to develop more effective anti-COVID therapeutics.
Collapse
Affiliation(s)
- Yan J. Sheng
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Syuan-Ting Alex Kuo
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Tingyuan Yang
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Xin Yan
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Shiqing Xu
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Wenshe R. Liu
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
- Department of Cell Biology and Genetics, College of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Carol A. Fierke
- Department of Biochemistry, Brandeis University, Waltham, MA 02453, USA
| |
Collapse
|
13
|
Lykins J, Moschitto MJ, Zhou Y, Filippova EV, Le HV, Tomita T, Fox BA, Bzik DJ, Su C, Rajagopala SV, Flores K, Spano F, Woods S, Roberts CW, Hua C, El Bissati K, Wheeler KM, Dovgin S, Muench SP, McPhillie M, Fishwick CW, Anderson WF, Lee PJ, Hickman M, Weiss LM, Dubey JP, Lorenzi HA, Silverman RB, McLeod RL. From TgO/GABA-AT, GABA, and T-263 Mutant to Conception of Toxoplasma. iScience 2024; 27:108477. [PMID: 38205261 PMCID: PMC10776954 DOI: 10.1016/j.isci.2023.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/28/2023] [Accepted: 11/13/2023] [Indexed: 01/12/2024] Open
Abstract
Toxoplasma gondii causes morbidity, mortality, and disseminates widely via cat sexual stages. Here, we find T. gondii ornithine aminotransferase (OAT) is conserved across phyla. We solve TgO/GABA-AT structures with bound inactivators at 1.55 Å and identify an inactivator selective for TgO/GABA-AT over human OAT and GABA-AT. However, abrogating TgO/GABA-AT genetically does not diminish replication, virulence, cyst-formation, or eliminate cat's oocyst shedding. Increased sporozoite/merozoite TgO/GABA-AT expression led to our study of a mutagenized clone with oocyst formation blocked, arresting after forming male and female gametes, with "Rosetta stone"-like mutations in genes expressed in merozoites. Mutations are similar to those in organisms from plants to mammals, causing defects in conception and zygote formation, affecting merozoite capacitation, pH/ionicity/sodium-GABA concentrations, drawing attention to cyclic AMP/PKA, and genes enhancing energy or substrate formation in TgO/GABA-AT-related-pathways. These candidates potentially influence merozoite's capacity to make gametes that fuse to become zygotes, thereby contaminating environments and causing disease.
Collapse
Affiliation(s)
- Joseph Lykins
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Matthew J. Moschitto
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
| | - Ying Zhou
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Ekaterina V. Filippova
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hoang V. Le
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
| | - Tadakimi Tomita
- Division of Parasitology, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Barbara A. Fox
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - David J. Bzik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - Seesandra V. Rajagopala
- Department of Infectious Diseases, The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Kristin Flores
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Furio Spano
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Stuart Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow Scotland, UK
| | - Craig W. Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow Scotland, UK
| | - Cong Hua
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Kamal El Bissati
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Kelsey M. Wheeler
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Sarah Dovgin
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Stephen P. Muench
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, The University of Leeds, Leeds, West York LS2 9JT, UK
| | - Martin McPhillie
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Colin W.G. Fishwick
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Wayne F. Anderson
- Center for Structural Genomics of Infectious Diseases and the Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Patricia J. Lee
- Division of Experimental Therapeutics, Military Malaria Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Mark Hickman
- Division of Experimental Therapeutics, Military Malaria Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA
| | - Louis M. Weiss
- Division of Parasitology, Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jitender P. Dubey
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA
| | - Hernan A. Lorenzi
- Department of Infectious Diseases, The J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850, USA
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208-3113, USA
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Rima L. McLeod
- Department of Ophthalmology and Visual Sciences, The University of Chicago, Chicago, IL 60637, USA
- Department of Pediatrics (Infectious Diseases), Institute of Genomics, Genetics, and Systems Biology, Global Health Center, Toxoplasmosis Center, CHeSS, The College, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
14
|
Lee J, Beers JL, Geffert RM, Jackson KD. A Review of CYP-Mediated Drug Interactions: Mechanisms and In Vitro Drug-Drug Interaction Assessment. Biomolecules 2024; 14:99. [PMID: 38254699 PMCID: PMC10813492 DOI: 10.3390/biom14010099] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Drug metabolism is a major determinant of drug concentrations in the body. Drug-drug interactions (DDIs) caused by the co-administration of multiple drugs can lead to alteration in the exposure of the victim drug, raising safety or effectiveness concerns. Assessment of the DDI potential starts with in vitro experiments to determine kinetic parameters and identify risks associated with the use of comedication that can inform future clinical studies. The diverse range of experimental models and techniques has significantly contributed to the examination of potential DDIs. Cytochrome P450 (CYP) enzymes are responsible for the biotransformation of many drugs on the market, making them frequently implicated in drug metabolism and DDIs. Consequently, there has been a growing focus on the assessment of DDI risk for CYPs. This review article provides mechanistic insights underlying CYP inhibition/induction and an overview of the in vitro assessment of CYP-mediated DDIs.
Collapse
Affiliation(s)
- Jonghwa Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.L.B.); (R.M.G.)
| | | | | | - Klarissa D. Jackson
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (J.L.B.); (R.M.G.)
| |
Collapse
|
15
|
Wang S, Ballard TE, Christopher LJ, Foti RS, Gu C, Khojasteh SC, Liu J, Ma S, Ma B, Obach RS, Schadt S, Zhang Z, Zhang D. The Importance of Tracking "Missing" Metabolites: How and Why? J Med Chem 2023; 66:15586-15612. [PMID: 37769129 DOI: 10.1021/acs.jmedchem.3c01293] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Technologies currently employed to find and identify drug metabolites in complex biological matrices generally yield results that offer a comprehensive picture of the drug metabolite profile. However, drug metabolites can be missed or are captured only late in the drug development process. This could be due to a variety of factors, such as metabolism that results in partial loss of the molecule, covalent bonding to macromolecules, the drug being metabolized in specific human tissues, or poor ionization in a mass spectrometer. These scenarios often draw a great deal of attention from chemistry, safety assessment, and pharmacology. This review will summarize scenarios of missing metabolites, why they are missing, and associated uncovering strategies from deeper investigations. Uncovering previously missed metabolites can have ramifications in drug development with toxicological and pharmacological consequences, and knowledge of these can help in the design of new drugs.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - T Eric Ballard
- Takeda Development Center Americas, Inc., 35 Landsdowne St, Cambridge, Massachusetts 02139, United States
| | - Lisa J Christopher
- Department of Clinical Pharmacology, Pharmacometrics, Disposition & Bioanalysis, Bristol-Myers Squibb, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Robert S Foti
- Preclinical Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Chungang Gu
- Drug Metabolism and Pharmacokinetics, Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Joyce Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shuguang Ma
- Drug Metabolism and Pharmacokinetics, Pliant Therapeutics, 260 Littlefield Avenue, South San Francisco, California 94080, United States
| | - Bin Ma
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - R Scott Obach
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Simone Schadt
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacher Strasse 124, 4070 Basel, Switzerland
| | - Zhoupeng Zhang
- DMPK Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
16
|
Chen L, Nikolic D, Li G, Liu J, van Breemen RB. In vitro inhibition of human cytochrome P450 enzymes by licoisoflavone B from Glycyrrhiza uralensis Fisch. ex DC. Toxicol Sci 2023; 196:16-24. [PMID: 37535691 PMCID: PMC10613970 DOI: 10.1093/toxsci/kfad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Glycyrrhiza uralensis Fisch. ex DC, one of the 3 pharmacopeial species of licorice and widely used in dietary supplements, can inhibit certain cytochrome P450 (CYP) enzymes. Thereby, G. uralensis preparations have the potential to cause pharmacokinetic drug interactions when consumed along with prescription medicines. One compound (1.34 mg dry weight) responsible for inhibiting CYP2B6, CYP2C8, and CYP2C9 was isolated using bioactivity-guided fractionation from 250 g dried roots, stolons, and rhizomes. The enzyme kinetics and mechanisms of inhibition were determined using human liver microsomes, recombinant enzymes, and UHPLC-MS/MS-based assays. Identified as licoisoflavone B, this compound displayed reversible inhibition of CYP2C8 with an IC50 value of 7.4 ± 1.1 µM and reversible inhibition of CYP2C9 with an IC50 value of 4.9 ± 0.4 µM. The enzyme kinetics indicated that the mechanism of inhibition was competitive for recombinant CYP2C8, with a Ki value of 7.0 ± 0.7 μM, and mixed-type inhibition for recombinant CYP2C9, with a Ki value of 1.2 ± 0.2 μM. Licoisoflavone B moderately inhibited CYP2B6 through a combination of irreversible and reversible mechanisms with an IC50 value of 16.0 ± 3.9 µM.
Collapse
Affiliation(s)
- Luying Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, USA
| | - Dejan Nikolic
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, Chicago, Illinois 60612, USA
| | - Guannan Li
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, Chicago, Illinois 60612, USA
| | - Jialin Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, USA
| | - Richard B van Breemen
- Department of Pharmaceutical Sciences, College of Pharmacy, Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331, USA
- UIC/NIH Center for Botanical Dietary Supplements Research, University of Illinois College of Pharmacy, Chicago, Illinois 60612, USA
| |
Collapse
|
17
|
Rougée LRA, Bedwell DW, Hansen K, Abraham TL, Hall SD. Impact of Heterotropic Allosteric Modulation on the Time-Dependent Inhibition of Cytochrome P450 3A4. Drug Metab Dispos 2023; 51:1372-1380. [PMID: 37524542 DOI: 10.1124/dmd.123.001382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
The current study was designed to investigate the influence of allosteric effectors on the metabolism of the prototypical cytochrome P450 (CYP) 3A4 substrate midazolam (MDZ), and on the determination in vitro time-dependent inhibition (TDI) of CYP3A4 using human liver microsomes (HLM). As the concentration of midazolam increased to 250 µM in HLMs, homotropic cooperativity resulted in a decrease in the 1'-hydroxymidazolam to 4-hydroxymidazolam ratio to a maximum of 1.1. The presence of varying concentrations of testosterone, progesterone (PGS), or carbamazepine (CBZ) in HLMs with MDZ could recapitulate the effect of homotropic cooperativity such that the formation rates of the 1'hydroxymidazolam and 4-hydroxymidazolam were equal even at low concentrations of MDZ. The presence of PGS (10 or 100 µM) and CBZ (100 or 1000 µM) in in vitro TDI determination of four known CYP3A4 time-dependent inactivators (clarithromycin, troleandomycin, mibefradil, raloxifene) simultaneously decreased potency and inactivation rate constant, resulting in fold changes in inactivation efficiency on average of 1.6-fold and 13-fold for the low and high concentrations of allosteric modulator tested, respectively. The formation of a metabolic-intermediate complex (MIC) for clarithromycin and troleandomycin decreased in the presence of the allosteric modulators in a concentration-dependent manner, reaching a new steady state formation that could not be overcome with increased incubation time. Maximum reduction of the MIC formed by clarithromycin was up to ∼91%, while troleandomycin MIC decreased up to ∼31%. These findings suggest that the absence of endogenous allosteric modulators may contribute to the poor translation of HLM-based drug-drug interaction predictions. SIGNIFICANCE STATEMENT: The reported overprediction of in vitro human liver microsome time-dependent inhibition of CYP3A4 and observed drug interactions in vivo remains an issue in drug development. We provide characterization of allosteric modulators on the CYP3A4 metabolism of the prototypical substrate midazolam, demonstrating the ability of the modulators to recapitulate the homotropic cooperativity of midazolam. Furthermore, we demonstrate that allosteric heterotropic cooperativity of CYP3A4 can impact the time-dependent inhibition kinetics of known mechanisms-based inhibitors, providing a potential mechanism to explain the overprediction.
Collapse
Affiliation(s)
- Luc R A Rougée
- Lilly Research Laboratories; Eli Lilly and Company, Indianapolis, Indiana
| | - David W Bedwell
- Lilly Research Laboratories; Eli Lilly and Company, Indianapolis, Indiana
| | - Kasi Hansen
- Lilly Research Laboratories; Eli Lilly and Company, Indianapolis, Indiana
| | - Trent L Abraham
- Lilly Research Laboratories; Eli Lilly and Company, Indianapolis, Indiana
| | - Stephen D Hall
- Lilly Research Laboratories; Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|
18
|
Bhujbal SP, Hah JM. An Innovative Approach to Address Neurodegenerative Diseases through Kinase-Targeted Therapies: Potential for Designing Covalent Inhibitors. Pharmaceuticals (Basel) 2023; 16:1295. [PMID: 37765103 PMCID: PMC10537995 DOI: 10.3390/ph16091295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Owing to the dysregulation of protein kinase activity in various diseases such as cancer and autoimmune, cardiovascular, neurodegenerative, and inflammatory conditions, the protein kinase family has emerged as a crucial drug target in the 21st century. Notably, many kinases have been targeted to address cancer and neurodegenerative diseases using conventional ATP-mimicking kinase inhibitors. Likewise, irreversible covalent inhibitors have also been developed for different types of cancer. The application of covalent modification to target proteins has led to significant advancements in the treatment of cancer. However, while covalent drugs have significantly impacted medical treatment, their potential for neurodegenerative diseases remains largely unexplored. Neurodegenerative diseases present significant risks to brain function, leading to progressive deterioration in sensory, motor, and cognitive abilities. Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), and multiple sclerosis (MS) are among the various examples of such disorders. Numerous research groups have already reported insights through reviews and research articles on FDA-approved covalent inhibitors, revealing their mechanisms and the specific covalent warheads that preferentially interact with particular amino acid residues in intricate detail. Hence, in this review, we aim to provide a concise summary of these critical topics. This summary endeavors to guide medicinal chemists in their quest to design covalent inhibitors for protein kinases, specifically targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Swapnil P. Bhujbal
- College of Pharmacy, Hanyang University, Ansan 426-791, Republic of Korea;
| | - Jung-Mi Hah
- Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| |
Collapse
|
19
|
Shen S, Butrin A, Beaupre BA, Ferreira GM, Doubleday PF, Grass DH, Zhu W, Kelleher NL, Moran GR, Liu D, Silverman RB. Structural and Mechanistic Basis for the Inactivation of Human Ornithine Aminotransferase by (3 S,4 S)-3-Amino-4-fluorocyclopentenecarboxylic Acid. Molecules 2023; 28:1133. [PMID: 36770800 PMCID: PMC9921285 DOI: 10.3390/molecules28031133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Ornithine aminotransferase (OAT) is overexpressed in hepatocellular carcinoma (HCC), and we previously showed that inactivation of OAT inhibits the growth of HCC. Recently, we found that (3S,4S)-3-amino-4-fluorocyclopentenecarboxylic acid (5) was a potent inactivator of γ-aminobutyric acid aminotransferase (GABA-AT), proceeding by an enamine mechanism. Here we describe our investigations into the activity and mechanism of 5 as an inactivator of human OAT. We have found that 5 exhibits 10-fold less inactivation efficiency (kinact/KI) against hOAT than GABA-AT. A comprehensive mechanistic study was carried out to understand its inactivation mechanism with hOAT. pKa and electrostatic potential calculations were performed to further support the notion that the α,β-unsaturated alkene of 5 is critical for enhancing acidity and nucleophilicity of the corresponding intermediates and ultimately responsible for the improved inactivation efficiency of 5 over the corresponding saturated analogue (4). Intact protein mass spectrometry and the crystal structure complex with hOAT provide evidence to conclude that 5 mainly inactivates hOAT through noncovalent interactions, and that, unlike with GABA-AT, covalent binding with hOAT is a minor component of the total inhibition which is unique relative to other monofluoro-substituted derivatives. Furthermore, based on the results of transient-state measurements and free energy calculations, it is suggested that the α,β-unsaturated carboxylate group of PLP-bound 5 may be directly involved in the inactivation cascade by forming an enolate intermediate. Overall, compound 5 exhibits unusual structural conversions which are catalyzed by specific residues within hOAT, ultimately leading to an enamine mechanism-based inactivation of hOAT through noncovalent interactions and covalent modification.
Collapse
Affiliation(s)
- Sida Shen
- Department of Chemistry and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208, USA
| | - Arseniy Butrin
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| | - Brett A. Beaupre
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| | - Glaucio M. Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Peter F. Doubleday
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, IL 60208, USA
| | - Daniel H. Grass
- Department of Chemistry and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208, USA
| | - Wei Zhu
- Department of Chemistry and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208, USA
| | - Neil L. Kelleher
- Department of Chemistry and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, IL 60208, USA
| | - Graham R. Moran
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60660, USA
| | - Richard B. Silverman
- Department of Chemistry and Center for Developmental Therapeutics, Northwestern University, Evanston, IL 60208, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
20
|
Brody SI, Buonomo JA, Orimoloye MO, Jia Z, Sharma S, Brown CD, Baughn AD, Aldrich CC. A Nucleophilic Activity-Based Probe Enables Profiling of PLP-Dependent Enzymes. Chembiochem 2023; 24:e202200669. [PMID: 36652345 DOI: 10.1002/cbic.202200669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/19/2023]
Abstract
PLP-dependent enzymes represent an important class of highly "druggable" enzymes that perform a wide array of critical reactions to support all organisms. Inhibition of individual members of this family of enzymes has been validated as a therapeutic target for pathologies ranging from infection with Mycobacterium tuberculosis to epilepsy. Given the broad nature of the activities within this family of enzymes, we envisioned a universally acting probe to characterize existing and putative members of the family that also includes the necessary chemical moieties to enable activity-based protein profiling experiments. Hence, we developed a probe that contains an N-hydroxyalanine warhead that acts as a covalent inhibitor of PLP-dependent enzymes, a linear diazirine for UV crosslinking, and an alkyne moiety to enable enrichment of crosslinked proteins. Our molecule was used to study PLP-dependent enzymes in vitro as well as look at whole-cell lysates of M. tuberculosis and assess inhibitory activity. The probe was able to enrich and identify LysA, a PLP-dependent enzyme crucial for lysine biosynthesis, through mass spectrometry. Overall, our study shows the utility of this trifunctional first-generation probe. We anticipate further optimization of probes for PLP-dependent enzymes will enable the characterization of rationally designed covalent inhibitors of PLP-dependent enzymes, which will expedite the preclinical characterization of these important therapeutic targets.
Collapse
Affiliation(s)
- Scott I Brody
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Joseph A Buonomo
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Moyosore O Orimoloye
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Ziyi Jia
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Sachin Sharma
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Christopher D Brown
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Anthony D Baughn
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota-Twin Cities, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
21
|
Oyarzun Mejia AP, Hyman MR. Diyne inactivators and activity-based fluorescent labeling of phenol hydroxylase in Pseudomonas sp. CF600. FEMS Microbiol Lett 2023; 370:6973202. [PMID: 36617235 DOI: 10.1093/femsle/fnad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/09/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
An activity-based labeling (ABL) approach was investigated for the phenol-oxidizing bacterium, Pseudomonas sp. CF600. Phenol-grown cells were exposed to several different terminal diynes, and following cell breakage, extracts of these cells were added to copper-catalyzed alkyne/azide cycloaddition reactions containing Alexa Fluor 647 azide. Analysis of total cell proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and near-infrared scanning demonstrated covalent fluorescent labeling of a 58- and a 34-kDa polypeptide in all diyne-treated cell types. Further studies using 1,4-diethynylbenzene (DEB) demonstrated that these labeled polypeptides were consistently detected in cells grown on substrates that exhibited phenol-dependent O2 uptake activity but not observed when cells were grown on substrates such as dextrose or catechol that did not support this activity. Fluorescent labeling of the two polypeptides in DEB-treated, phenol-grown cells was time dependent and was inhibited by several known substrates for phenol hydroxylase. These results suggest that diverse diynes act as mechanism-based inactivators of phenol hydroxylase in Pseudomonas sp. CF600 and that this effect can be exploited by ABL approaches to selectively label the major 58- and 34-kDa subunits of the hydroxylase component of this complex enzyme.
Collapse
Affiliation(s)
| | - Michael R Hyman
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
22
|
Ngo LT, Lee J, Yun HY, Chae JW. Development of a Physiologically Based Pharmacokinetic Model for Tegoprazan: Application for the Prediction of Drug-Drug Interactions with CYP3A4 Perpetrators. Pharmaceutics 2023; 15:pharmaceutics15010182. [PMID: 36678810 PMCID: PMC9862396 DOI: 10.3390/pharmaceutics15010182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
Tegoprazan is a novel potassium-competitive acid blocker (P-CAB) developed by CJ Healthcare (Korea) for the treatment of gastroesophageal reflux disease and helicobacter pylori infections. Tegoprazan is mainly metabolized by cytochrome P450 (CYP) 3A4. Considering the therapeutic indications, tegoprazan is likely to be administered in combination with various drugs. Therefore, the investigation of drug-drug interactions (DDI) between tegoprazan and CYP3A4 perpetrators is imperative. In the present study, we first aimed to develop a physiologically based pharmacokinetic (PK) model for tegoprazan and its major metabolite, M1, using PK-Sim®. This model was applied to predict the DDI between tegoprazan and CYP3A4 perpetrators. Clarithromycin, a potent inhibitor of CYP3A4, and rifampicin, a strong inducer of CYP3A4, were selected as case studies. Our results show that clarithromycin significantly increased the exposure of tegoprazan. The area under the concentration-time curve (AUC) and Cmax of tegoprazan in the steady state increased up to 4.54- and 2.05-fold, respectively, when tegoprazan (50 mg, twice daily) was coadministered with clarithromycin (500 mg, three times daily). Rifampicin significantly reduced the exposure of tegoprazan. The AUC and Cmax of tegoprazan were reduced by 5.71- and 3.51-fold when tegoprazan was coadministered with rifampicin (600 mg, once daily). Due to the high DDI potential, the comedication of tegoprazan with CYP3A4 perpetrators should be controlled. The dosage adjustment for each individual is suggested.
Collapse
|
23
|
Abstract
Proper elucidation of drug-target interaction is one of the most significant steps at the early stages of the drug development research. Computer-aided drug design tools have substantial contribution to this stage. In this chapter, we specifically concentrate on the computational methods widely used to develop reversible inhibitors for monoamine oxidase (MAO) isozymes. In this context, current computational techniques in identifying the best drug candidates showing high potency are discussed. The protocols of structure-based drug design methodologies, namely, molecular docking, in silico screening, and molecular dynamics simulations, are presented. Employing case studies of safinamide binding to MAO B, we demonstrate how to use AutoDock 4.2.6 and NAMD software packages.
Collapse
Affiliation(s)
- Kemal Yelekçi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey.
| | - Safiye Sağ Erdem
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| |
Collapse
|
24
|
Metabolic activation of drugs by cytochrome P450 enzymes: Biochemical insights into mechanism-based inactivation by fibroblast growth factor receptor inhibitors and chemical approaches to attenuate reactive metabolite formation. Biochem Pharmacol 2022; 206:115336. [DOI: 10.1016/j.bcp.2022.115336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
25
|
Guengerich FP. Roles of cytochrome P450 enzymes in pharmacology and toxicology: Past, present, and future. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:1-47. [PMID: 35953152 PMCID: PMC9869358 DOI: 10.1016/bs.apha.2021.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of the cytochrome P450 (P450) field has been remarkable in the areas of pharmacology and toxicology, particularly in drug development. Today it is possible to use the knowledge base and relatively straightforward assays to make intelligent predictions about drug disposition prior to human dosing. Much is known about the structures, regulation, chemistry of catalysis, and the substrate and inhibitor specificity of human P450s. Many aspects of drug-drug interactions and side effects can be understood in terms of P450s. This knowledge has also been useful in pharmacy practice, as well as in the pharmaceutical industry and medical practice. However, there are still basic and practical questions to address regarding P450s and their roles in pharmacology and toxicology. Another aspect is the discovery of drugs that inhibit P450 to treat diseases.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States.
| |
Collapse
|
26
|
Johnson CM, Fast W. On the kinetic mechanism of dimethylarginine dimethylaminohydrolase. Bioorg Med Chem 2022; 66:116816. [PMID: 35598478 DOI: 10.1016/j.bmc.2022.116816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022]
Abstract
Dimethylarginine dimethylaminohydrolase (DDAH, EC 3.5.3.18) catalyzes the hydrolysis of asymmetric Nω,Nω-dimethyl-l-arginine (ADMA), an endogenous inhibitor of human nitric oxide synthases. The active-site cysteine residue has been proposed to serve as the catalytic nucleophile, forming an S-alkylthiourea reaction intermediate, and serving as a target for covalent inhibitors. Inhibition can lead to ADMA accumulation and downstream inhibition of nitric oxide production. Prior studies have provided experimental evidence for formation of this covalent adduct but have not characterized it kinetically. Here, rapid quench-flow is used with ADMA and the DDAH from Pseudomonas aeruginosa to determine the rate constants for formation (k2 = 17 ± 2 s-1) and decay (k3 = 1.5 ± 0.1 s-1) of the covalent S-alkylthiourea adduct. A minimal kinetic mechanism for DDAH is proposed that supports the kinetic competence of this species as a covalent reaction intermediate and assigns the rate-limiting step in substrate turnover as hydrolysis of this intermediate. This work helps elucidate the different reactivities of S-alkylthiourea intermediates found among the mechanistically diverse pentein superfamily of guanidine-modifying enzymes and provides information useful for inhibitor development.
Collapse
Affiliation(s)
- Corey M Johnson
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, TX 78712, USA; Department of Chemistry and Biochemistry, Howard College of Arts and Sciences, Samford University, Birmingham, AL 35229, USA
| | - Walter Fast
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
27
|
Tang LWT, Wu G, Chan ECY. Identification of Infigratinib as a Potent Reversible Inhibitor and Mechanism-Based Inactivator of CYP2J2: Nascent Evidence for a Potential In Vivo Metabolic Drug-Drug Interaction with Rivaroxaban. J Pharmacol Exp Ther 2022; 382:123-134. [PMID: 35640957 PMCID: PMC9639665 DOI: 10.1124/jpet.122.001222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/04/2022] [Indexed: 11/22/2022] Open
Abstract
Infigratinib (INF) is a fibroblast growth factor receptor inhibitor that was recently FDA-approved for the treatment of advanced or metastatic cholangiocarcinoma. We previously established that INF inhibited and inactivated cytochrome P450 3A4 (CYP3A4). Here, in a follow-up to our previous study, we identified for the first time that INF also elicited potent competitive inhibition and mechanism-based inactivation (MBI) of CYP2J2 with kinetic parameters K i, K I, k inact, and partition ratio of 1.94 µM, 0.10 µM, 0.026 min-1 and ~3 respectively when rivaroxaban was harnessed as the probe substrate. Inactivation was revealed to exhibit cofactor-dependency and was attenuated by an alternative substrate (astemizole) and direct inhibitor (nilotinib) of CYP2J2. Additionally, the nature of inactivation was unlikely to be pseudo-irreversible and instead arose from covalent modification due to the lack of substantial enzyme activity recovery following dialysis and chemical oxidation as well as the lack of a resolvable Soret band in spectral scans. Glutathione trapping confirmed that the identity of the putative reactive intermediate implicated in the covalent inactivation of both CYP2J2 and CYP3A4 was identical and likely attributable to an electrophilic p-benzoquinonediimine intermediate of INF. Finally, mechanistic static modelling revealed that by integrating the previously arcane inhibition and inactivation kinetic parameters of CYP2J2-mediated rivaroxaban hydroxylation by INF illuminated in this work together with those previously documented for CYP3A4, a 49% increase in the systemic exposure of rivaroxaban was projected. Our modelling results predicted a potential risk of metabolic DDI between the clinically-relevant combination of rivaroxaban and INF in the setting of cancer. Significance Statement In this study, we reported that INF elicits potent reversible inhibition and MBI of CYP2J2. Furthermore, static modelling predicted that its coadministration with the direct oral anticoagulant rivaroxaban may potentially culminate in an metabolic DDI leading to an increased risk of major bleeding. As rivaroxaban is steadily gaining prominence as the anticoagulant of choice in the treatment of cancer-associated venous thromboembolism, the DDI projections reported here are clinically-relevant and warrants further investigation via physiologically-based pharmacokinetic modelling and simulation.
Collapse
Affiliation(s)
| | - Guoyi Wu
- National University of Singapore, Singapore
| | | |
Collapse
|
28
|
Guglielmi P, Carradori S, D'Agostino I, Campestre C, Petzer JP. An updated patent review on monoamine oxidase (MAO) inhibitors. Expert Opin Ther Pat 2022; 32:849-883. [PMID: 35638744 DOI: 10.1080/13543776.2022.2083501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Monoamine oxidase (MAO) inhibitors are currently used as antidepressants (selective MAO-A inhibitors) or as co-adjuvants for neurodegenerative diseases (selective MAO-B inhibitors). The research within this field is attracting attention due to their crucial role in the modulation of brain functions, mood and cognitive activity, and monoamine catabolism. AREAS COVERED MAO inhibitors (2018-2021) are discussed according to their chemotypes. Structure-activity relationships are derived for each chemical scaffold (propargylamines, chalcones, indoles, benzimidazoles, (iso)coumarins, (iso)benzofurans, xanthones, and tetralones), while the chemical entities were divided into newly synthesized molecules and natural metabolites. The mechanism of action and type of inhibition are also considered. Lastly, new therapeutic applications are reported, which demonstrates the clinical potential of these inhibitors as well as the possibility of repurposing existing drugs for a variety of diseases. EXPERT OPINION MAO inhibitors here reported exhibit different potencies (from the micro- to nanomolar range) and isoform selectivity. These compounds are clinically licensed for multi-faceted neurodegenerative pathologies due to their ability to also act against other relevant targets (cholinesterases, inflammation, and oxidative stress). Moreover, the drug repurposing approach is an attractive strategy by which MAO inhibitors may be applied for the treatment of prostate cancer, inflammation, vertigo, and type 1 diabetes.
Collapse
Affiliation(s)
- Paolo Guglielmi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Ilaria D'Agostino
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Cristina Campestre
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Jacobus P Petzer
- Pharmaceutical Chemistry and Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
29
|
Tang LWT, Fu J, Koh SK, Wu G, Zhou L, Chan ECY. Metabolic Activation of the Acrylamide Michael Acceptor Warhead in Futibatinib to an Epoxide Intermediate Engenders Covalent Inactivation of Cytochrome P450 3A. Drug Metab Dispos 2022; 50:931-941. [PMID: 35512804 DOI: 10.1124/dmd.122.000895] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
Futibatinib (FUT) is a potent inhibitor of fibroblast growth factor receptor (FGFR) 1-4 that is currently under clinical investigation for intrahepatic cholangiocarcinoma. Unlike its predecessors, FUT possesses an acrylamide warhead which enables it to bind covalently to a free cysteine residue in the FGFR kinase domain. However, it remains uninterrogated if this electrophilic α,β-unsaturated carbonyl scaffold could also directly or indirectly engender off-target covalent binding to nucleophilic centres on other cellular proteins. Here, we discovered that FUT inactivated both cytochrome P450 3A (CYP3A) isoforms with K I, k inact, and partition ratio of 12.5 and 51.4 µM, 0.25 and 0.06 min-1 and ~52 and ~58 for CYP3A4 and CYP3A5, respectively. Along with its time-, concentration- and cofactor-dependent inhibitory profile, FUT also exhibited several cardinal features that were consistent with mechanism-based inactivation. Moreover, the nature of inactivation was unlikely to be pseudo-irreversible and instead arose from the covalent modification of the P450 apoprotein and/or its heme moiety due to the lack of substantial enzyme activity recovery following dialysis and chemical oxidation as well as the absence of the diagnostic Soret peak in spectral analyses. Finally, utilizing GSH trapping and high-resolution mass spectrometry, we illuminated that while the acrylamide moiety in FUT could nonenzymatically conjugate to GSH via Michael addition, it was not implicated in the covalent inactivation of CYP3A. Rather, we surmised that it likely stemmed from the metabolic activation of its acrylamide covalent warhead to a highly electrophilic epoxide intermediate that could covalently modify CYP3A and culminate in its catalytic inactivation. Significance Statement In this study, we reported for the first time the inactivation of CYP3A by FUT. Furthermore, using FUT as an exemplary targeted covalent inhibitor, our study revealed the propensity for its acrylamide Michael acceptor moiety to be metabolically activated to a highly electrophilic epoxide. Due to the growing resurgence of covalent inhibitors and the well-established toxicological ramifications associated with epoxides, we advocate that closer scrutiny be adopted when profiling the reactive metabolites of compounds possessing an α,β-unsaturated carbonyl scaffold.
Collapse
Affiliation(s)
| | - Jiaxin Fu
- National University of Singapore, Singapore
| | | | - Guoyi Wu
- National University of Singapore, Singapore
| | - Lei Zhou
- Singapore Eye Research Institute, Singapore
| | | |
Collapse
|
30
|
C6 Hydroxymethyl-Substituted Carbapenem MA-1-206 Inhibits the Major Acinetobacter baumannii Carbapenemase OXA-23 by Impeding Deacylation. mBio 2022; 13:e0036722. [PMID: 35420470 PMCID: PMC9239083 DOI: 10.1128/mbio.00367-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Acinetobacter baumannii has become a major nosocomial pathogen, as it is often multidrug-resistant, which results in infections characterized by high mortality rates. The bacterium achieves high levels of resistance to β-lactam antibiotics by producing β-lactamases, enzymes which destroy these valuable agents. Historically, the carbapenem family of β-lactam antibiotics have been the drugs of choice for treating A. baumannii infections. However, their effectiveness has been significantly diminished due to the pathogen’s production of carbapenem-hydrolyzing class D β-lactamases (CHDLs); thus, new antibiotics and inhibitors of these enzymes are urgently needed. Here, we describe a new carbapenem antibiotic, MA-1-206, in which the canonical C6 hydroxyethyl group has been replaced with hydroxymethyl. The antimicrobial susceptibility studies presented here demonstrated that this compound is more potent than meropenem and imipenem against A. baumannii producing OXA-23, the most prevalent CHDL of this pathogen, and also against strains producing the CHDL OXA-24/40 and the class B metallo-β-lactamase VIM-2. Our kinetic and mass spectrometry studies revealed that this drug is a reversible inhibitor of OXA-23, where inhibition takes place through a branched pathway. X-ray crystallographic studies, molecular docking, and molecular dynamics simulations of the OXA-23-MA-1-206 complex show that the C6 hydroxymethyl group forms a hydrogen bond with the carboxylated catalytic lysine of OXA-23, effectively preventing deacylation. These results provide a promising strategy for designing a new generation of CHDL-resistant carbapenems to restore their efficacy against deadly A. baumannii infections.
Collapse
|
31
|
Tang LWT, Wei W, Verma RK, Koh SK, Zhou L, Fan H, Chan ECY. Direct and Sequential Bioactivation of Pemigatinib to Reactive Iminium Ion Intermediates Culminate in Mechanism-Based Inactivation of Cytochrome P450 3A. Drug Metab Dispos 2022; 50:529-540. [DOI: 10.1124/dmd.121.000804] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/01/2022] [Indexed: 11/22/2022] Open
|
32
|
Ning J, Tian Z, Wang J, Wang B, Tian X, Yu Z, Huo X, Feng L, Cui J, James TD, Ma X. Rational Design of a Two‐Photon Fluorescent Probe for Human Cytochrome P450 3A and the Visualization of Mechanism‐Based Inactivation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jing Ning
- Second Affiliated Hospital of Dalian Medical University Dalian 116023 China
- College of Integrative Medicine College of Pharmacy Dalian Medical University Dalian 116044 China
| | - Zhenhao Tian
- School of Life Sciences Northwestern Polytechnical University Xi'an 710072 China
| | - Jiayue Wang
- College of Integrative Medicine College of Pharmacy Dalian Medical University Dalian 116044 China
- Department of Pharmacy Peking University Shenzhen Hospital Shenzhen 518036 China
| | - Bo Wang
- School of Medicine & Holistic Integrative Medicine Nanjing University of Chinese Medicine Nanjing China
| | - Xiangge Tian
- College of Integrative Medicine College of Pharmacy Dalian Medical University Dalian 116044 China
| | - Zhenlong Yu
- College of Integrative Medicine College of Pharmacy Dalian Medical University Dalian 116044 China
| | - Xiaokui Huo
- College of Integrative Medicine College of Pharmacy Dalian Medical University Dalian 116044 China
| | - Lei Feng
- Second Affiliated Hospital of Dalian Medical University Dalian 116023 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Tony D. James
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
- Department of Chemistry University of Bath Bath BA2 7AY United Kingdom
| | - Xiaochi Ma
- Second Affiliated Hospital of Dalian Medical University Dalian 116023 China
- College of Integrative Medicine College of Pharmacy Dalian Medical University Dalian 116044 China
| |
Collapse
|
33
|
Ning J, Tian Z, Wang J, Wang B, Tian X, Yu Z, Huo X, Feng L, Cui J, James TD, Ma X. Rational Design of a Two-Photon Fluorescent Probe for Human Cytochrome P450 3A and the Visualization of Mechanism-Based Inactivation. Angew Chem Int Ed Engl 2022; 61:e202113191. [PMID: 34851011 DOI: 10.1002/anie.202113191] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Indexed: 12/18/2022]
Abstract
Mechanism-based inactivation (MBI) can mediate adverse reactions and hepatotoxicity from drugs, which is a result of their conversion into highly reactive metabolites catalyzed by enzymes such as cytochrome P450 3A (CYP3A). In the present research, we optimized the key interaction domain of the fluorophore with the target protein to develop a two-photon fluorescent probe for CYP3A that is involved in the metabolism of more than half of all clinical drugs. The developed BN-1 probe exhibited appropriate selectivity and sensitivity for the semi-quantitative detection and imaging of endogenous CYP3A activity in various living systems, thereby providing a high-throughput screening system enabling evaluation of MBI-associated hepatotoxicity by CYP3A. Using BN-1 as a fluorescent molecular tool facilitates the efficient discovery and characterization of CYP3A-induced MBI in natural systems.
Collapse
Affiliation(s)
- Jing Ning
- Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Zhenhao Tian
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jiayue Wang
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Bo Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiangge Tian
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Zhenlong Yu
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Xiaokui Huo
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Lei Feng
- Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Tony D James
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Xiaochi Ma
- Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
- College of Integrative Medicine, College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| |
Collapse
|
34
|
Guengerich FP. Inhibition of Cytochrome P450 Enzymes by Drugs-Molecular Basis and Practical Applications. Biomol Ther (Seoul) 2022; 30:1-18. [PMID: 34475272 PMCID: PMC8724836 DOI: 10.4062/biomolther.2021.102] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/22/2021] [Indexed: 11/05/2022] Open
Abstract
Drug-drug interactions are a major cause of hospitalization and deaths related to drug use. A large fraction of these is due to inhibition of enzymes involved in drug metabolism and transport, particularly cytochrome P450 (P450) enzymes. Understanding basic mechanisms of enzyme inhibition is important, particularly in terms of reversibility and the use of the appropriate parameters. In addition to drug-drug interactions, issues have involved interactions of drugs with foods and natural products related to P450 enzymes. Predicting drug-drug interactions is a major effort in drug development in the pharmaceutical industry and regulatory agencies. With appropriate in vitro experiments, it is possible to stratify clinical drug-drug interaction studies. A better understanding of drug interactions and training of physicians and pharmacists has developed. Finally, some P450s have been the targets of drugs in some cancers and other disease states.
Collapse
Affiliation(s)
- F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| |
Collapse
|
35
|
Mellott DM, Torres D, Krieger IV, Cameron SA, Moghadamchargari Z, Laganowsky A, Sacchettini JC, Meek TD, Harris LD. Mechanism-Based Inactivation of Mycobacterium tuberculosis Isocitrate Lyase 1 by (2 R,3 S)-2-Hydroxy-3-(nitromethyl)succinic acid. J Am Chem Soc 2021; 143:17666-17676. [PMID: 34664502 DOI: 10.1021/jacs.1c07970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The isocitrate lyase paralogs of Mycobacterium tuberculosis (ICL1 and 2) are essential for mycobacterial persistence and constitute targets for the development of antituberculosis agents. We report that (2R,3S)-2-hydroxy-3-(nitromethyl)succinic acid (5-NIC) undergoes apparent retro-aldol cleavage as catalyzed by ICL1 to produce glyoxylate and 3-nitropropionic acid (3-NP), the latter of which is a covalent-inactivating agent of ICL1. Kinetic analysis of this reaction identified that 5-NIC serves as a robust and efficient mechanism-based inactivator of ICL1 (kinact/KI = (1.3 ± 0.1) × 103 M-1 s-1) with a partition ratio <1. Using enzyme kinetics, mass spectrometry, and X-ray crystallography, we identified that the reaction of the 5-NIC-derived 3-NP with the Cys191 thiolate of ICL1 results in formation of an ICL1-thiohydroxamate adduct as predicted. One aspect of the design of 5-NIC was to lower its overall charge compared to isocitrate to assist with cell permeability. Accordingly, the absence of the third carboxylate group will simplify the synthesis of pro-drug forms of 5-NIC for characterization in cell-infection models of M. tuberculosis.
Collapse
Affiliation(s)
- Drake M Mellott
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Dan Torres
- The Ferrier Research Institute, Victoria University of Wellington, Wellington 5046, New Zealand
| | - Inna V Krieger
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Scott A Cameron
- The Ferrier Research Institute, Victoria University of Wellington, Wellington 5046, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| | - Zahra Moghadamchargari
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Thomas D Meek
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Lawrence D Harris
- The Ferrier Research Institute, Victoria University of Wellington, Wellington 5046, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
36
|
Tang LWT, Teng JW, Verma RK, Koh SK, Zhou L, Go ML, Fan H, Chan ECY. Infigratinib is a Reversible Inhibitor and Mechanism-based Inactivator of Cytochrome P450 3A4. Drug Metab Dispos 2021; 49:856-868. [PMID: 34326139 DOI: 10.1124/dmd.121.000508] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/08/2021] [Indexed: 11/22/2022] Open
Abstract
Infigratinib (INF) is a promising selective inhibitor of fibroblast growth factor receptors 1-3 that has recently been accorded both orphan drug designation and priority review status by the U.S Food and Drug Administration for the treatment of advanced cholangiocarcinoma. Its propensity to undergo bioactivation to electrophilic species was recently expounded upon. However, other than causing aberrant idiosyncratic toxicities, these reactive intermediates may elicit mechanism-based inactivation (MBI) of cytochrome P450 enzymes (CYP450). In this study, we investigated the interactions between INF and the most abundant hepatic cytochrome P450 3A4 (CYP3A4). Our findings revealed that apart from being a potent noncompetitive reversible inhibitor of CYP3A4, INF inactivated CYP3A4 in a time-, concentration- and NADPH-dependent manner with K I, k inact and partition ratio of 2.45 µM, 0.053 min-1 and 41 respectively when rivaroxaban was employed as the probe substrate. Co-incubation with testosterone (alternative CYP3A substrate) or ketoconazole (direct CYP3A inhibitor) attenuated the rate of inactivation whereas the inclusion of glutathione and catalase did not confer such protection. The lack of enzyme activity recovery following dialysis for 4 hours and oxidation with potassium ferricyanide, coupled with the absence of the characteristic Soret peak signature collectively substantiated that inactivation of CYP3A4 by INF was not mediated by the formation of quasi-irreversible metabolite-intermediate complexes but rather through irreversible covalent adduction to the prosthetic heme and/or apoprotein. Finally, glutathione trapping and high-resolution mass spectrometry experimental results unravelled two plausible bioactivation mechanisms of INF arising from the generation of a p-benzoquinone diimine and epoxide reactive intermediate. Significance Statement The potential of infigratinib (INF) to cause mechanism-based inactivation (MBI) of CYP3A4 was unknown. We report the reversible noncompetitive inhibition and irreversible covalent MBI of CYP3A4 by INF and proposed two potential bioactivation pathways implicating p-benzoquinone diimine and epoxide reactive intermediates. Findings from this study lay the groundwork for future investigation of clinically-relevant drug-drug interactions between INF and concomitant substrates of CYP3A4.
Collapse
Affiliation(s)
| | | | - Ravi Kumar Verma
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore
| | | | - Lei Zhou
- Singapore Eye Research Institute, Singapore
| | - Mei Lin Go
- National University of Singapore, Singapore
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore
| | | |
Collapse
|
37
|
Sun C, Zhao H, Li W, Jia Y, Yang Y, Peng Y, Zheng J. Icotinib induces mechanism-based inactivation of r hCYP3A4/5 possibly via heme destruction by ketene intermediate. Drug Metab Dispos 2021; 49:892-901. [PMID: 34312304 DOI: 10.1124/dmd.121.000369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/07/2021] [Indexed: 11/22/2022] Open
Abstract
Icotinib (ICT) is an anti-tumor drug approved by China National Medical Products Administration and is found to be effective to conquer non-small cell lung cancer. The present study aimed at the interaction of ICT with CYP3A. ICT exhibited time-, concentration- and NADPH-dependent inhibitory effect on recombinant human CYP3A4/5 (rhCYP3A4/5). About 60% of CYP3A activity was suppressed by ICT at 50 μM after 30 min. The observed enzyme inhibition could not be recovered by dialysis. Nifedipine protected CYP3A from the inactivation by ICT. The inhibitory effects of ICT on CYP3A were neither influenced by GSH/NAL nor by SOD/catalase. Incubation of ICT with human hepatic microsomes produced a ketene reactive intermediate trapped by 4-bromobenzylamine. CYP3A4 dominated the metabolic activation of ICT to the ketene intermediate. Ethyl and vinyl analogs of ICT did not induce inactivation of rhCYP3A4/5, which indicates that acetylenic bioactivation of ICT contributed to the enzyme inactivation. Moreover, the metabolic activation of ICT resulted in heme destruction. In conclusion, this study demonstrated that ICT was a mechanism-based inactivator of rhCYP3A4/5, and heme destruction by the ketene metabolite may be responsible for the observed CYP3A inactivation. Significance Statement Cytochrome P450 enzymes play an important role in drug-drug interactions. The present study demonstrated icotinib (ICT), an inhibitor of epidermal growth factor receptor (EGFR) for the treatment of non-small cell lung cancer, is a mechanism-based inactivator of rhCYP3A4/5. The study provided solid evidence for the involvement of acetylene moiety in the metabolic activation as well as the inactivation of the enzyme. Furthermore, the resulting ketene intermediate was found to destruct heme, which is possibly responsible for the observed enzyme inactivation.
Collapse
Affiliation(s)
- Chen Sun
- Shenyang Pharmaceutical University, China
| | | | - Wei Li
- Shenyang Pharmaceutical University, China
| | - Yudi Jia
- Shenyang Pharmaceutical University, China
| | - Yi Yang
- Shenyang Pharmaceutical University, China
| | - Ying Peng
- Shenyang Pharmaceutical University, China
| | - Jiang Zheng
- Center for Developmental Pharmacol & Toxicol, Shenyang Pharmaceutical University, China
| |
Collapse
|
38
|
Guengerich FP, McCarty KD, Chapman JG, Tateishi Y. Stepwise binding of inhibitors to human cytochrome P450 17A1 and rapid kinetics of inhibition of androgen biosynthesis. J Biol Chem 2021; 297:100969. [PMID: 34273352 PMCID: PMC8350020 DOI: 10.1016/j.jbc.2021.100969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 11/28/2022] Open
Abstract
Cytochrome P450 (P450) 17A1 catalyzes the 17α-hydroxylation of progesterone and pregnenolone as well as the subsequent lyase cleavage of both products to generate androgens. However, the selective inhibition of the lyase reactions, particularly with 17α-hydroxy pregnenolone, remains a challenge for the treatment of prostate cancer. Here, we considered the mechanisms of inhibition of drugs that have been developed to inhibit P450 17A1, including ketoconazole, seviteronel, orteronel, and abiraterone, the only approved inhibitor used for prostate cancer therapy, as well as clotrimazole, known to inhibit P450 17A1. All five compounds bound to P450 17A1 in a multistep process, as observed spectrally, over a period of 10 to 30 s. However, no lags were observed for the onset of inhibition in rapid-quench experiments with any of these five compounds. Furthermore, the addition of substrate to inhibitor–P450 17A1 complexes led to an immediate formation of product, without a lag that could be attributed to conformational changes. Although abiraterone has been previously described as showing slow-onset inhibition (t1/2 = 30 min), we observed rapid and strong inhibition. These results are in contrast to inhibitors of P450 3A4, an enzyme with a larger active site in which complete inhibition is not observed with ketoconazole and clotrimazole until the changes are completed. Overall, our results indicate that both P450 17A1 reactions—17α-hydroxylation and lyase activity—are inhibited by the initial binding of any of these inhibitors, even though subsequent conformational changes occur.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Kevin D McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jesse G Chapman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
39
|
Shackleford DM, Chiu FCK, Katneni K, Blundell S, McLaren J, Wang X, Zhou L, Sriraghavan K, Alker AM, Hunziker D, Scheurer C, Zhao Q, Dong Y, Möhrle JJ, Abla N, Matile H, Wittlin S, Vennerstrom JL, Charman SA. Cytochrome P450-Mediated Metabolism and CYP Inhibition for the Synthetic Peroxide Antimalarial OZ439. ACS Infect Dis 2021; 7:1885-1893. [PMID: 34101429 PMCID: PMC8802618 DOI: 10.1021/acsinfecdis.1c00225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OZ439 is a potent synthetic ozonide evaluated for the treatment of uncomplicated malaria. The metabolite profile of OZ439 was characterized in vitro using human liver microsomes combined with LC/MS-MS, chemical derivatization, and metabolite synthesis. The primary biotransformations were monohydroxylation at the three distal carbon atoms of the spiroadamantane substructure, with minor contributions from N-oxidation of the morpholine nitrogen and deethylation cleavage of the morpholine ring. Secondary transformations resulted in the formation of dihydroxylation metabolites and metabolites containing both monohydroxylation and morpholine N-oxidation. With the exception of two minor metabolites, none of the other metabolites had appreciable antimalarial activity. Reaction phenotyping indicated that CYP3A4 is the enzyme responsible for the metabolism of OZ439, and it was found to inhibit CYP3A via both direct and mechanism-based inhibition. Elucidation of the metabolic pathways and kinetics will assist with efforts to predict potential metabolic drug-drug interactions and support physiologically based pharmacokinetic (PBPK) modeling.
Collapse
Affiliation(s)
- David M Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Francis C K Chiu
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Kasiram Katneni
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Scott Blundell
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jenna McLaren
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Xiaofang Wang
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Lin Zhou
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Kamaraj Sriraghavan
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - André M Alker
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Daniel Hunziker
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Christian Scheurer
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Qingjie Zhao
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Yuxiang Dong
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Jörg J Möhrle
- Medicines for Malaria Venture, 20 Route de Pré-Bois, CH-1215 Geneva 15, Switzerland
| | - Nada Abla
- Medicines for Malaria Venture, 20 Route de Pré-Bois, CH-1215 Geneva 15, Switzerland
| | - Hugues Matile
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland
- University of Basel, CH-4003 Basel, Switzerland
| | - Jonathan L Vennerstrom
- College of Pharmacy, University of Nebraska Medical Center, 986125 Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
40
|
Kahma H, Aurinsalo L, Neuvonen M, Katajamäki J, Paludetto MN, Viinamäki J, Launiainen T, Filppula AM, Tornio A, Niemi M, Backman JT. An automated cocktail method for in vitro assessment of direct and time-dependent inhibition of nine major cytochrome P450 enzymes - application to establishing CYP2C8 inhibitor selectivity. Eur J Pharm Sci 2021; 162:105810. [PMID: 33753217 DOI: 10.1016/j.ejps.2021.105810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
We developed an in vitro high-throughput cocktail assay with nine major drug-metabolizing CYP enzymes, optimized for screening of time-dependent inhibition. The method was applied to determine the selectivity of the time-dependent CYP2C8 inhibitors gemfibrozil 1-O-β-glucuronide and clopidogrel acyl-β-D-glucuronide. In vitro incubations with CYP selective probe substrates and pooled human liver microsomes were conducted in 96-well plates with automated liquid handler techniques and metabolite concentrations were measured with quantitative UHPLC-MS/MS analysis. After determination of inter-substrate interactions and Km values for each reaction, probe substrates were divided into cocktails I (tacrine/CYP1A2, bupropion/CYP2B6, amodiaquine/CYP2C8, tolbutamide/CYP2C9 and midazolam/CYP3A4/5) and II (coumarin/CYP2A6, S-mephenytoin/CYP2C19, dextromethorphan/CYP2D6 and astemizole/CYP2J2). Time-dependent inhibitors (furafylline/CYP1A2, selegiline/CYP2A6, clopidogrel/CYP2B6, gemfibrozil 1-O-β-glucuronide/CYP2C8, tienilic acid/CYP2C9, ticlopidine/CYP2C19, paroxetine/CYP2D6 and ritonavir/CYP3A) and direct inhibitor (terfenadine/CYP2J2) showed similar inhibition with single substrate and cocktail methods. Established time-dependent inhibitors caused IC50 fold shifts ranging from 2.2 to 30 with the cocktail method. Under time-dependent inhibition conditions, gemfibrozil 1-O-β-glucuronide was a strong (>90% inhibition) and selective (<< 20% inhibition of other CYPs) inhibitor of CYP2C8 at concentrations ranging from 60 to 300 μM, while the selectivity of clopidogrel acyl-β-D-glucuronide was limited at concentrations above its IC80 for CYP2C8. The time-dependent IC50 values of these glucuronides for CYP2C8 were 8.1 and 38 µM, respectively. In conclusion, a reliable cocktail method including the nine most important drug-metabolizing CYP enzymes was developed, optimized and validated for detecting time-dependent inhibition. Moreover, gemfibrozil 1-O-β-glucuronide was established as a selective inhibitor of CYP2C8 for use as a diagnostic inhibitor in in vitro studies.
Collapse
Affiliation(s)
- Helinä Kahma
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Laura Aurinsalo
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jani Katajamäki
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marie-Noëlle Paludetto
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jenni Viinamäki
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
| | - Terhi Launiainen
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland
| | - Anne M Filppula
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aleksi Tornio
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Janne T Backman
- Department of Clinical Pharmacology, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
41
|
Tang LWT, Teng JW, Koh SK, Zhou L, Go ML, Chan ECY. Mechanism-Based Inactivation of Cytochrome P450 3A4 and 3A5 by the Fibroblast Growth Factor Receptor Inhibitor Erdafitinib. Chem Res Toxicol 2021; 34:1800-1813. [PMID: 34189909 DOI: 10.1021/acs.chemrestox.1c00178] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Erdafitinib (ERD) is a first-in-class pan inhibitor of fibroblast growth factor receptor 1-4 that has garnered global regulatory approval for the treatment of advanced or metastatic urothelial carcinoma. Although it has been previously reported that ERD elicits time-dependent inhibition (TDI) of cytochrome P450 (P450) 3A4 (CYP3A4), the exact biochemical nature underpinning this observation remains obfuscated. Moreover, it is also uninterrogated if CYP3A5-its highly homologous counterpart-could be susceptible to such interactions. Mechanism-based inactivation (MBI) of P450 is a unique subset of TDI that hinges on prior bioactivation of the drug to a reactive intermediate and possesses profound clinical and toxicological implications due to its irreversible nature. Here, we investigated and confirmed that ERD inactivated both CYP3A isoforms in a time-, concentration-, and NADPH-dependent manner with KI, kinact, and partition ratio of 4.01 and 10.04 μM, 0.120 and 0.045 min-1, and 32 and 55 for both CYP3A4 and CYP3A5, respectively, when rivaroxaban was employed as the probe substrate. Co-incubation with an alternative substrate or direct inhibitor of CYP3A attenuated the rate of inactivation, whereas the addition of glutathione or catalase did not induce such protection. The lack of enzyme activity recovery following dialysis for 4 h and oxidation with potassium ferricyanide combined with the lack of a Soret peak in spectral scans collectively substantiated that ERD is an irreversible covalent MBI of CYP3A. Finally, glutathione trapping and high-resolution mass spectrometry experiments illuminated a plausible bioactivation mechanism of ERD by CYP3A arising from metabolic epoxidation of its quinoxaline ring.
Collapse
Affiliation(s)
- Lloyd Wei Tat Tang
- Department of Pharmacy, Faculty of Science, National University of Singapore, 169856 Singapore
| | - Jian Wei Teng
- Department of Pharmacy, Faculty of Science, National University of Singapore, 169856 Singapore
| | | | - Lei Zhou
- Singapore Eye Research Institute (SERI), Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore.,Ophthalmology and Visual Sciences Academia Clinical Program, Duke-National University of Singapore Medical School, 169857 Singapore
| | - Mei Lin Go
- Department of Pharmacy, Faculty of Science, National University of Singapore, 169856 Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 169856 Singapore
| |
Collapse
|
42
|
Zhu W, Doubleday PF, Butrin A, Weerawarna PM, Melani R, Catlin DS, Dwight TA, Liu D, Kelleher NL, Silverman RB. Remarkable and Unexpected Mechanism for ( S)-3-Amino-4-(difluoromethylenyl)cyclohex-1-ene-1-carboxylic Acid as a Selective Inactivator of Human Ornithine Aminotransferase. J Am Chem Soc 2021; 143:8193-8207. [PMID: 34014654 PMCID: PMC8369387 DOI: 10.1021/jacs.1c03572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Human ornithine aminotransferase (hOAT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that was recently found to play an important role in the metabolic reprogramming of hepatocellular carcinoma (HCC) via the proline and glutamine metabolic pathways. The selective inhibition of hOAT by compound 10 exhibited potent in vivo antitumor activity. Inspired by the discovery of the aminotransferase inactivator (1S,3S)-3-amino-4-(difluoromethylene)cyclopentane-1-carboxylic acid (5), we rationally designed, synthesized, and evaluated a series of six-membered-ring analogs. Among them, 14 was identified as a new selective hOAT inactivator, which demonstrated a potency 22× greater than that of 10. Three different types of protein mass spectrometry approaches and two crystallographic approaches were employed to identify the structure of hOAT-14 and the formation of a remarkable final adduct (32') in the active site. These spectral studies reveal an enzyme complex heretofore not observed in a PLP-dependent enzyme, which has covalent bonds to two nearby residues. Crystal soaking experiments and molecular dynamics simulations were carried out to identify the structure of the active-site intermediate 27' and elucidate the order of the two covalent bonds that formed, leading to 32'. The initial covalent reaction of the activated warhead occurs with *Thr322 from the second subunit, followed by a subsequent nucleophilic attack by the catalytic residue Lys292. The turnover mechanism of 14 by hOAT was supported by a mass spectrometric analysis of metabolites and fluoride ion release experiments. This novel mechanism for hOAT with 14 will contribute to the further rational design of selective inactivators and an understanding of potential inactivation mechanisms by aminotransferases.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Chemistry, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Peter F. Doubleday
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Arseniy Butrin
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Pathum M. Weerawarna
- Department of Chemistry, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Rafael Melani
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Daniel S. Catlin
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Timothy A. Dwight
- Department of Chemistry, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States,Corresponding authors (R.B.S.) . Phone: +1-847-491-5653, (N.L.K.) . Phone: +1-847-467-4362. (D.L.) . Phone: +1-773-508-3093
| | - Neil L. Kelleher
- Department of Chemistry, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States,Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States,Corresponding authors (R.B.S.) . Phone: +1-847-491-5653, (N.L.K.) . Phone: +1-847-467-4362. (D.L.) . Phone: +1-773-508-3093
| | - Richard B. Silverman
- Department of Chemistry, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States,Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States,Department of Pharmacology, Northwestern University, Chicago, Illinois 60611, United States,Corresponding authors (R.B.S.) . Phone: +1-847-491-5653, (N.L.K.) . Phone: +1-847-467-4362. (D.L.) . Phone: +1-773-508-3093
| |
Collapse
|
43
|
Weerawarna PM, Moschitto MJ, Silverman RB. Theoretical and Mechanistic Validation of Global Kinetic Parameters of the Inactivation of GABA Aminotransferase by OV329 and CPP-115. ACS Chem Biol 2021; 16:615-630. [PMID: 33735567 DOI: 10.1021/acschembio.0c00784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
((S)-3-Amino-(difluoromethylenyl)cyclopent-1-ene-1-carboxylic acid (OV329) is a recently discovered inactivator of γ-aminobutyric acid aminotransferase (GABA-AT), which has 10 times better inactivation efficiency than its predecessor, CPP-115, despite the only structural difference being an endocyclic double bond in OV329. Both compounds are mechanism-based enzyme inactivators (MBEIs), which inactivate GABA-AT by a similar mechanism. Here, a combination of a variety of computational chemistry tools and experimental methods, including quantum mechanical (QM) calculations, molecular dynamic simulations, progress curve analysis, and deuterium kinetic isotope effect (KIE) experiments, are utilized to comprehensively study the mechanism of inactivation of GABA-AT by CPP-115 and OV329 and account for their experimentally obtained global kinetic parameters kinact and KI. Our first key finding is that the rate-limiting step of the inactivation mechanism is the deprotonation step, and according to QM calculations and the KIE experiments, kinact accurately represents the enhancement of the rate-limiting step for the given mechanism. Second, the present study shows that the widely used simple QM models do not accurately represent the geometric criteria that are present in the enzyme for the deprotonation step. In contrast, QM cluster models successfully represent both the ground state destabilization and the transition state stabilization, as revealed by natural bond orbital analysis. Furthermore, the globally derived KI values for both of the inactivators represent the inhibitor constants for the initial binding complexes (Kd) and indicate the inactivator competition with the substrate according to progress curve analysis and the observed binding isotope effect. The configurational entropy loss accounts for the difference in KI values between the inactivators. The approach we describe in this work can be employed to determine the validity of globally derived parameters in the process of MBEI optimization for given inactivation mechanisms.
Collapse
Affiliation(s)
- Pathum M. Weerawarna
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew J. Moschitto
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard B. Silverman
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, and Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
44
|
Tang LWT, Verma RK, Fan H, Chan ECY. Mechanism-Based Inactivation of Cytochrome P450 3A4 by Benzbromarone. Mol Pharmacol 2021; 99:266-276. [PMID: 33436520 DOI: 10.1124/molpharm.120.000086] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
Benzbromarone (BBR), a potent uricosuric agent for the management of gout, is known to cause fatal fulminant hepatitis. Although the mechanism of BBR-induced idiosyncratic hepatotoxicity remains unelucidated, cytochrome P450 enzyme-mediated bioactivation of BBR to electrophilic reactive metabolites is commonly regarded as a key molecular initiating event. However, apart from causing aberrant toxicities, reactive metabolites may result in mechanism-based inactivation (MBI) of cytochrome P450. Here, we investigated and confirmed that BBR inactivated CYP3A4 in a time-, concentration-, and NADPH-dependent manner with K I, k inact, and partition ratio of 11.61 µM, 0.10 minutes-1, and 110, respectively. Coincubation with ketoconazole, a competitive inhibitor of CYP3A4, attenuated the MBI of CYP3A4 by BBR, whereas the presence of glutathione and catalase did not confer such protection. The lack of substantial recovery of enzyme activity postdialysis and after oxidation with potassium ferricyanide, combined with the absence of a Soret peak in spectral difference scans, implied that MBI of CYP3A4 by BBR did not occur through the formation of quasi-irreversible metabolite-intermediate complexes. Analysis of the reduced CO-difference spectrum revealed an ∼44% reduction in ferrous-CO binding and hinted that inactivation is mediated via irreversible covalent adduction to both the prosthetic heme moiety and the apoprotein. Finally, our in silico covalent docking analysis further suggested the modulation of substrate binding to CYP3A4 via the covalent adduction of epoxide-derived reactive intermediates of BBR to two key cysteine residues (Cys239 and Cys58) vicinal to the entrance of the orthosteric binding site. SIGNIFICANCE STATEMENT: Although the bioactivation of benzbromarone (BBR) to reactive metabolites has been well characterized, its potential to cause mechanism-based inactivation (MBI) of cytochrome P450 has not been fully investigated. This study reports the MBI of CYP3A4 by BBR via irreversible covalent adduction and develops a unique covalent docking methodology to predict the structural molecular determinants underpinning the inactivation for the first time. These findings lay the groundwork for future investigation of clinically relevant drug-drug interactions implicating BBR and mechanisms of BBR-induced idiosyncratic hepatotoxicity.
Collapse
Affiliation(s)
- Lloyd Wei Tat Tang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore (L.W.T.T., E.C.Y.C.) and Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore (R.K.V., H.F.)
| | - Ravi Kumar Verma
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore (L.W.T.T., E.C.Y.C.) and Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore (R.K.V., H.F.)
| | - Hao Fan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore (L.W.T.T., E.C.Y.C.) and Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore (R.K.V., H.F.)
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore (L.W.T.T., E.C.Y.C.) and Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore (R.K.V., H.F.)
| |
Collapse
|
45
|
Guengerich FP, McCarty KD, Chapman JG. Kinetics of cytochrome P450 3A4 inhibition by heterocyclic drugs defines a general sequential multistep binding process. J Biol Chem 2021; 296:100223. [PMID: 33449875 PMCID: PMC7948456 DOI: 10.1074/jbc.ra120.016855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 11/21/2022] Open
Abstract
Cytochrome P450 (P450) 3A4 is the enzyme most involved in the metabolism of drugs and can also oxidize numerous steroids. This enzyme is also involved in one-half of pharmacokinetic drug-drug interactions, but details of the exact mechanisms of P450 3A4 inhibition are still unclear in many cases. Ketoconazole, clotrimazole, ritonavir, indinavir, and itraconazole are strong inhibitors; analysis of the kinetics of reversal of inhibition with the model substrate 7-benzoyl quinoline showed lag phases in several cases, consistent with multiple structures of P450 3A4 inhibitor complexes. Lags in the onset of inhibition were observed when inhibitors were added to P450 3A4 in 7-benzoyl quinoline O-debenzylation reactions, and similar patterns were observed for inhibition of testosterone 6β-hydroxylation by ritonavir and indinavir. Upon mixing with inhibitors, P450 3A4 showed rapid binding as judged by a spectral shift with at least partial high-spin iron character, followed by a slower conversion to a low-spin iron-nitrogen complex. The changes were best described by two intermediate complexes, one being a partial high-spin form and the second another intermediate, with half-lives of seconds. The kinetics could be modeled in a system involving initial loose binding of inhibitor, followed by a slow step leading to a tighter complex on a multisecond time scale. Although some more complex possibilities cannot be dismissed, these results describe a system in which conformationally distinct forms of P450 3A4 bind inhibitors rapidly and two distinct P450-inhibitor complexes exist en route to the final enzyme-inhibitor complex with full inhibitory activity.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| | - Kevin D McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jesse G Chapman
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
46
|
Espiritu MJ, Chen J, Yadav J, Larkin M, Pelletier RD, Chan JM, Gc JB, Natesan S, Harrelson JP. Mechanisms of Herb-Drug Interactions Involving Cinnamon and CYP2A6: Focus on Time-Dependent Inhibition by Cinnamaldehyde and 2-Methoxycinnamaldehyde. Drug Metab Dispos 2020; 48:1028-1043. [PMID: 32788161 PMCID: PMC7543486 DOI: 10.1124/dmd.120.000087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022] Open
Abstract
Information is scarce regarding pharmacokinetic-based herb-drug interactions (HDI) with trans-cinnamaldehyde (CA) and 2-methoxycinnamaldehyde (MCA), components of cinnamon. Given the presence of cinnamon in food and herbal treatments for various diseases, HDIs involving the CYP2A6 substrates nicotine and letrozole with MCA (KS = 1.58 µM; Hill slope = 1.16) and CA were investigated. The time-dependent inhibition (TDI) by MCA and CA of CYP2A6-mediated nicotine metabolism is a complex process involving multiple mechanisms. Molecular dynamic simulations showed that CYP2A6's active site accommodates two dynamic ligands. The preferred binding orientations for MCA and CA were consistent with the observed metabolism: epoxidation, O-demethylation, and aromatic hydroxylation of MCA and cinnamic acid formation from CA. The percent remaining activity plots for TDI by MCA and CA were curved, and they were analyzed with a numerical method using models of varying complexity. The best-fit models support multiple inactivator binding, inhibitor depletion, and partial inactivation. Deconvoluted mass spectra indicated that MCA and CA modified CYP2A6 apoprotein with mass additions of 156.79 (142.54-171.04) and 132.67 (123.37-141.98), respectively, and it was unaffected by glutathione. Heme degradation was observed in the presence of MCA (48.5% ± 13.4% loss; detected by liquid chromatography-tandem mass spectrometry). In the absence of clinical data, HDI predictions were made for nicotine and letrozole using inhibition parameters from the best-fit TDI models and parameters scaled from rats. Predicted area under the concentration-time curve fold changes were 4.29 (CA-nicotine), 4.92 (CA-letrozole), 4.35 (MCA-nicotine), and 5.00 (MCA-letrozole). These findings suggest that extensive exposure to cinnamon (corresponding to ≈ 275 mg CA) would lead to noteworthy interactions. SIGNIFICANCE STATEMENT: Human exposure to cinnamon is common because of its presence in food and cinnamon-based herbal treatments. Little is known about the risk for cinnamaldehyde and methoxycinnamaldehyde, two components of cinnamon, to interact with drugs that are eliminated by CYP2A6-mediated metabolism. The interactions with CYP2A6 are complex, involving multiple-ligand binding, time-dependent inhibition of nicotine metabolism, heme degradation, and apoprotein modification. An herb-drug interaction prediction suggests that extensive exposure to cinnamon would lead to noteworthy interactions with nicotine.
Collapse
Affiliation(s)
- Michael J Espiritu
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Justin Chen
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Jaydeep Yadav
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Michael Larkin
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Robert D Pelletier
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Jeannine M Chan
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Jeevan B Gc
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - Senthil Natesan
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| | - John P Harrelson
- School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (M.J.E., M.L., J.P.H.); College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (J.C., J.B.G., S.N.); Amgen, Cambridge, Massachusetts (J.Y.); Department of Medicinal Chemistry, University of Washington, Seattle, Washington (R.D.P.); and Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.M.C.)
| |
Collapse
|
47
|
Pham C, Nagar S, Korzekwa K. Numerical analysis of time-dependent inhibition kinetics: comparison between rat liver microsomes and rat hepatocyte data for mechanistic model fitting. Xenobiotica 2020. [PMID: 28644704 DOI: 10.1080/00498254.2017.1345020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Time-dependent inhibition (TDI) may confound drug interaction predictions. Recently, models were generated for an array of TDI kinetic schemes using numerical analysis of microsomal assays. Additionally, a distinct terminal inactivation step was identified for certain mechanism based inhibitors (MBI) following reversible metabolite intermediate complex (MIC) formation. Longer hepatocyte incubations potentially allow analysis of slow TDI and terminal inactivation. In the experiments presented here, we compared the quality of TDI parameterization by numerical analysis between hepatocyte and microsomal data. Rat liver microsomes (RLM), suspended rat hepatocytes (SRH) and sandwich-cultured rat hepatocytes (SCRH) were incubated with the prototypical CYP3A MBI troleandomycin and the substrate midazolam. Data from RLM provided a better model fit as compared to SRH. Increased CYP3A expression after dexamethasone (DEX) induction improved the fit for RLM and SRH. A novel sequential kinetic scheme, defining inhibitor metabolite production prior to MIC formation, improved the fit compared to direct MIC formation. Furthermore, terminal inactivation rate constants were parameterized for RLM and SRH samples with DEX-induced CYP3A. The low expression of CYP3A and experimental error in SCRH resulted in poor data for model fitting. Overall, RLM generated data better suited for elucidation of TDI mechanisms by numerical analysis.
Collapse
Affiliation(s)
- Chuong Pham
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, USA
| |
Collapse
|
48
|
Park JY, Lee Y, Lee HJ, Kwon YS, Chun W. In silico screening of GABA aminotransferase inhibitors from the constituents of Valeriana officinalis by molecular docking and molecular dynamics simulation study. J Mol Model 2020; 26:228. [PMID: 32780180 DOI: 10.1007/s00894-020-04495-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/30/2020] [Indexed: 12/28/2022]
Abstract
Modulation of γ-aminobutyric acid (GABA) levels has been required in various disorders. GABA itself cannot be directly introduced into central nervous system (CNS) because of the blood brain barrier; inhibition of GABA aminotransferase (GABA-AT), which degrades GABA in CNS, has been the target for the modulation of GABA levels in CNS. Given that root extract of valerian (Valeriana officinalis) has been used for millennia as anti-anxiolytic and sedative, in silico approach was carried out to investigate valerian compounds exhibiting GABA-AT inhibiting activity. The 3D structure of human GABA-AT was created from pig crystal structure via homology modeling. Inhibition of GABA-AT by 18 valerian compounds was analyzed using molecular docking and molecular dynamics simulations and compared with known GABA-AT inhibitors such as vigabatrin and valproic acid. Isovaleric acid and didrovaltrate exhibited GABA-AT inhibiting activity in computational analysis, albeit less potent compared with vigabatrin. However, multiple compounds with low activity may have additive effects when the total extract of valeriana root was used in traditional usage. In addition, isovaleric acid shares similar backbone structure to GABA, suggesting that isovaleric acid might be a valuable starting structure for the development of more efficient GABA-AT inhibitors for disorders related with low level of GABA in the CNS.
Collapse
Affiliation(s)
- Jin-Young Park
- Department of Pharmacology, College of Medicine, Kangwon National University, Hyoja-2, Chuncheon, Kangwon, 200-701, South Korea
| | - Yuno Lee
- Korea Chemical Bank, Korea Research Institute of Chemical Technology, Daejeon, 34114, South Korea
| | - Hee Jae Lee
- Department of Pharmacology, College of Medicine, Kangwon National University, Hyoja-2, Chuncheon, Kangwon, 200-701, South Korea
| | - Yong-Soo Kwon
- College of Pharmacy, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Hyoja-2, Chuncheon, Kangwon, 200-701, South Korea.
| |
Collapse
|
49
|
Knych HK, Finno CJ, Baden R, Arthur RM, McKemie DS. Identification and characterization of the enzymes responsible for the metabolism of the non-steroidal anti-inflammatory drugs, flunixin meglumine and phenylbutazone, in horses. J Vet Pharmacol Ther 2020; 44:36-46. [PMID: 32757313 DOI: 10.1111/jvp.12891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 11/29/2022]
Abstract
The in vivo metabolism and pharmacokinetics of flunixin meglumine and phenylbutazone have been extensively characterized; however, there are no published reports describing the in vitro metabolism, specifically the enzymes responsible for the biotransformation of these compounds in horses. Due to their widespread use and, therefore, increased potential for drug-drug interactions and widespread differences in drug disposition, this study aims to build on the limited current knowledge regarding P450-mediated metabolism in horses. Drugs were incubated with equine liver microsomes and a panel of recombinant equine P450s. Incubation of phenylbutazone in microsomes generated oxyphenbutazone and gamma-hydroxy phenylbutazone. Microsomal incubations with flunixin meglumine generated 5-OH flunixin, with a kinetic profile suggestive of substrate inhibition. In recombinant P450 assays, equine CYP3A97 was the only enzyme capable of generating oxyphenbutazone while several members of the equine CYP3A family and CYP1A1 were capable of catalyzing the biotransformation of flunixin to 5-OH flunixin. Flunixin meglumine metabolism by CYP1A1 and CYP3A93 showed a profile characteristic of biphasic kinetics, suggesting two substrate binding sites. The current study identifies specific enzymes responsible for the metabolism of two NSAIDs in horses and provides the basis for future study of drug-drug interactions and identification of reasons for varying pharmacokinetics between horses.
Collapse
Affiliation(s)
- Heather K Knych
- K.L. Maddy Equine Analytical Pharmacology Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA.,Department of Veterinary Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Russell Baden
- K.L. Maddy Equine Analytical Pharmacology Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Rick M Arthur
- School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Daniel S McKemie
- K.L. Maddy Equine Analytical Pharmacology Laboratory, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| |
Collapse
|
50
|
Jalalvand AR. Electrochemistry in combination with hard- and soft-modeling chemometric methods for investigation of the inhibitory effects of naringenine on cytochrome P450. SENSING AND BIO-SENSING RESEARCH 2020. [DOI: 10.1016/j.sbsr.2020.100360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|