1
|
Jiang Y, Li Z, Yue R, Liu G, Yang M, Long C, Yan D. Evidential support for garlic supplements against diabetic kidney disease: a preclinical meta-analysis and systematic review. Food Funct 2024; 15:12-36. [PMID: 38051214 DOI: 10.1039/d3fo02407e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Garlic (Allium sativum L.) is a popular spice that is widely used for food and medicinal purposes and has shown potential effects on diabetic kidney disease (DKD). Nevertheless, systematic preclinical studies are still lacking. In this meta-analysis and systematic review, we evaluated the role and potential mechanisms of action of garlic and its derived components in animal models of DKD. We searched eight databases for relevant studies from the establishment of the databases to December 2022 and updated in April 2023 before the completion of this review. A total of 24 trials were included in the meta-analysis. It provided preliminary evidence that supplementing with garlic could improve the indicators of renal function (BUN, Scr, 24 h urine volume, proteinuria, and KI) and metabolic disorders (BG, insulin, and body weight). Meanwhile, the beneficial effects of garlic and its components in DKD could be related to alleviating oxidative stress, suppressing inflammatory reactions, delaying renal fibrosis, and improving glucose metabolism. Furthermore, time-dose interval analysis exhibited relatively greater effectiveness when garlic products were supplied at doses of 500 mg kg-1 with interventions lasting 8-10 weeks, and garlic components were administered at doses of 45-150 mg kg-1 with interventions lasting 4-10 weeks. This meta-analysis and systematic review highlights for the first time the therapeutic potential of garlic supplementation in animal models of DKD and offers a more thorough evaluation of its effects and mechanisms to establish an evidence-based basis for designing future clinical trials.
Collapse
Affiliation(s)
- Yayi Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Zihan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Guojie Liu
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Maoyi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Caiyi Long
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Dawei Yan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Ansari IA, Ahmad A, Imran MA, Saeed M, Ahmad I. Organosulphur Compounds Induce Apoptosis and Cell Cycle Arrest in Cervical Cancer Cells via Downregulation of HPV E6 and E7 Oncogenes. Anticancer Agents Med Chem 2021; 21:393-405. [PMID: 32819236 DOI: 10.2174/1871520620999200818154456] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The quest for strong, safe and cost-effective natural antiproliferative agents that could reduce cancer has been the focus now a days. In this regard, the organosulfur compounds from garlic (Allium sativum L.), like Diallyl Sulfide (DAS) and Diallyl Disulfide (DADS), have been shown to exhibit potent antiproliferative and anticancer properties in many studies. However, the potential of these compounds against viral oncoproteins in cervical cancer has not been fully elucidated yet. OBJECTIVE The objective of this study was to analyze the antiproliferative and apoptotic properties of DADS and DAS in HPV16+ human cervical cancer Caski cell line. METHODS Caski (cervical cancer cells) were cultured and followed by the treatment of various concentrations of organosulphur compounds (DADS and DAS), cell viability was measured by MTT assay. The apoptotic assay was performed by DAPI and Hoechst3342 staining. Reactive Oxygen Species (ROS) was estimated by DCFDA staining protocol. The distributions of cell cycle and apoptosis (FITC-Annexin V assay) were analyzed by flow cytometry. Finally, gene expression analysis was performed via quantitative real time PCR. RESULTS Our results showed that DAS and DADS exerted a significant antiproliferative effect on Caski cells by reducing the cell viability and inducing a dose-related increment in intracellular ROS production along with apoptosis in Caski cells. DAS and DADS also induced cell cycle arrest in G0/G1 phase, which was supported by the downregulation of cyclin D1 and CDK4 and upregulation of CDK inhibitors p21WAF1/CIP1 and p27KIP1 in Caski cells. Additionally, DAS and DADS lead to the downregulation of viral oncogene E6 and E7 and restoration of p53 function. CONCLUSION Thus, this study confirms the efficacy of both the organosulfur compounds DADS and DAS against cervical cancer cells.
Collapse
Affiliation(s)
- Irfan A Ansari
- Department of Biosciences, Integral University, Dasauli, Kursi Road, Lucknow, 226026, India
| | - Afza Ahmad
- Department of Biosciences, Integral University, Dasauli, Kursi Road, Lucknow, 226026, India
| | - Mohammad A Imran
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh-202002, India
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
3
|
Zhang Y, Bai C, Shi W, Alvarez-Manzo H, Zhang Y. Identification of Essential Oils Including Garlic Oil and Black Pepper Oil with High Activity against Babesia duncani. Pathogens 2020; 9:pathogens9060466. [PMID: 32545549 PMCID: PMC7350376 DOI: 10.3390/pathogens9060466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
Some evidence indicated that human babesiosis caused by Babesia duncani has spread widely in North America. However, current therapeutic regimens (atovaquone + azithromycin) for human babesiosis are suboptimal with frequent recrudescence and side effects, and furthermore, there is no specific treatment for human babesiosis caused by B. duncani. Here, we screened 97 essential oils and identified 10 essential oils (garlic, black pepper, tarragon, palo santo, coconut, pine, meditation, cajeput, moringa, and stress relief) at a low concentration (0.001%; v/v) that showed good inhibitory activity against B. duncani in the hamster red blood cell culture model. Among them, garlic oil and black pepper oil performed best, as well as their potential active ingredients diallyl disulfide (DADS) and β-caryophyllene (BCP), respectively. Interestingly, further subculture study indicated that B. duncani could relapse after treatment with current therapeutic drugs atovaquone or azithromycin even at high concentrations. In contrast, the combination of garlic oil or DADS and azithromycin showed eradication of B. duncani at low concentrations without regrowth. These results are encouraging and suggest that the garlic-derived sulfur compound DADS and β-caryophyllene (BCP) may be promising drug candidates for evaluation of their ability to cure persistent B. duncani infections in the future.
Collapse
|
4
|
Cacciotti I, Ciocci M, Di Giovanni E, Nanni F, Melino S. Hydrogen Sulfide-Releasing Fibrous Membranes: Potential Patches for Stimulating Human Stem Cells Proliferation and Viability under Oxidative Stress. Int J Mol Sci 2018; 19:E2368. [PMID: 30103516 PMCID: PMC6121677 DOI: 10.3390/ijms19082368] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 01/04/2023] Open
Abstract
The design of biomaterial platforms able to release bioactive molecules is mandatory in tissue repair and regenerative medicine. In this context, electrospinning is a user-friendly, versatile and low-cost technique, able to process different kinds of materials in micro- and nano-fibers with a large surface area-to-volume ratio for an optimal release of gaseous signaling molecules. Recently, the antioxidant and anti-inflammatory properties of the endogenous gasotramsmitter hydrogen sulfide (H₂S), as well as its ability to stimulate relevant biochemical processes on the growth of mesenchymal stem cells (MSC), have been investigated. Therefore, in this work, new poly(lactic) acid fibrous membranes (PFM), doped and functionalized with H₂S slow-releasing donors extracted from garlic, were synthetized. These innovative H₂S-releasing mats were characterized for their morphological, thermal, mechanical, and biological properties. Their antimicrobial activity and effects on the in vitro human cardiac MSC growth, either in the presence or in the absence of oxidative stress, were here assessed. On the basis of the results here presented, these new H₂S-releasing PFM could represent promising and low-cost scaffolds or patches for biomedical applications in tissue repair.
Collapse
Affiliation(s)
- Ilaria Cacciotti
- Department of Engineering, University of Rome "Niccolò Cusano", via Don Carlo Gnocchi 3, 00166 Rome, Italy.
- Italian Interuniversity Consortium on Materials Science and Technology (INSTM), 50121 Florence, Italy.
- CIMER Center for Regenerative Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy.
| | - Matteo Ciocci
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", via della Ricerca Scientifica1, 00133 Rome, Italy.
| | - Emilia Di Giovanni
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", via della Ricerca Scientifica1, 00133 Rome, Italy.
| | - Francesca Nanni
- Italian Interuniversity Consortium on Materials Science and Technology (INSTM), 50121 Florence, Italy.
- Enterprise Engineering Department, University of Rome "Tor Vergata", via del Politecnico 1, 00133 Rome, Italy.
| | - Sonia Melino
- CIMER Center for Regenerative Medicine, University of Rome Tor Vergata, via Montpellier 1, 00133 Rome, Italy.
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", via della Ricerca Scientifica1, 00133 Rome, Italy.
| |
Collapse
|
5
|
Rescigno T, Tecce MF, Capasso A. Protective and Restorative Effects of Nutrients and Phytochemicals. Open Biochem J 2018; 12:46-64. [PMID: 29760813 PMCID: PMC5906970 DOI: 10.2174/1874091x01812010046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022] Open
Abstract
Intoroduction: Dietary intake fundamentally provides reintegration of energy and essential nutrients to human organisms. However, its qualitative and quantitative composition strongly affects individual’s health, possibly being either a preventive or a risk factor. It was shown that nutritional status resulting from long-term exposition to specific diet formulations can outstandingly reduce incidences of most common and most important diseases of the developed world, such as cardiovascular and neoplastic diseases. Diet formulations result from different food combinations which bring specific nutrient molecules. Numerous molecules, mostly but not exclusively from vegetal foods, have been characterized among nutritional components as being particularly responsible for diet capabilities to exert risk reduction. These “bioactive nutrients” are able to produce effects which go beyond basic reintegration tasks, i.e. energetic and/or structural, but are specifically pharmacologically active within pathophysiological pathways related to many diseases, being able to selectively affect processes such as cell proliferation, apoptosis, inflammation, differentiation, angiogenesis, DNA repair and carcinogens activation. Conclusion: The present review was aimed to know the molecular mechanisms and pathways of activity of bioactive molecules; which will firstly allow search for optimal food composition and intake, and then use them as possible therapeutical targets and/or diagnostics. Also, the present review discussed the therapeutic effect of both nutrients and phytochemicals.
Collapse
Affiliation(s)
- Tania Rescigno
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Mario F Tecce
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Anna Capasso
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| |
Collapse
|
6
|
Morihara N, Hino A, Yamaguchi T, Suzuki JI. Aged Garlic Extract Suppresses the Development of Atherosclerosis in Apolipoprotein E-Knockout Mice. J Nutr 2016; 146:460S-463S. [PMID: 26764329 DOI: 10.3945/jn.114.206953] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/06/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Aged garlic extract (AGE) has been shown to retard the progression of coronary calcification in patients with coronary artery disease. OBJECTIVE To clarify the mechanism of AGE's action to retard atherosclerosis, we investigated whether AGE suppresses the formation and progression of atherosclerosis in Apolipoprotein E (Apoe)-knockout (ApoE-KO) mice. METHODS Male C57BL/6J mice (control mice, 5 wk old) were fed a standard diet, whereas male ApoE-KO mice (5 wk old) were fed a standard diet with or without 3% AGE for 12 or 24 wk. After the treatment, blood samples, aortas, and spleens were collected from all mice. Concentrations of total cholesterol (TC), HDL cholesterol, and triglycerides (TGs) in serum were measured. The area of atherosclerotic lesion in the aorta was examined by Oil Red O staining. The relative abundances of monocytes plus macrophages (CD11b(+) cells) and interferon-γ-producing CD4(+) T cells in spleen were assessed by flow cytometric analysis. RESULTS The atherosclerotic lesion areas in the aortas of ApoE-KO mice were 87 and 114 times as great (P < 0.01) as those in control mice at 12 and 24 wk, respectively. AGE feeding significantly inhibited the progression of atherosclerotic lesion area in ApoE-KO mice by 22% (P < 0.05) at 12 wk. In addition, serum concentrations of TC and TGs in ApoE-KO mice were significantly higher than those in control mice at 12 and 24 wk. Treatment with AGE significantly suppressed the increases in serum concentrations of TC and TGs in ApoE-KO mice by 21% (P < 0.05) and 19% (P < 0.05) at 24 wk, respectively, and reduced the relative abundance of CD11b(+) cells in ApoE-KO mice by 24% (P < 0.05) at 12 wk. CONCLUSION These data suggest that the antiatherosclerotic activity of AGE is at least partly due to the suppression of inflammation and lipid deposition in the vessels during the early stage of atherosclerotic development in ApoE-KO mice.
Collapse
Affiliation(s)
| | - Atsuko Hino
- Healthcare Research and Development Division, Wakunaga Pharmaceutical Co., Ltd., Akitakata, Japan
| | | | | |
Collapse
|
7
|
Tsai DC, Liu MC, Lin YR, Huang MF, Liang SS. A novel reductive amination method with isotopic formaldehydes for the preparation of internal standard and standards for determining organosulfur compounds in garlic. Food Chem 2015; 197:692-8. [PMID: 26617005 DOI: 10.1016/j.foodchem.2015.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 09/24/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023]
Abstract
Garlic (Allium sativum) is a long-cultivated plant that is widely utilized in cooking and has been employed as a medicine for over 4000 years. In this study, we fabricated standards and internal standards (ISs) for absolute quantification via reductive amination with isotopic formaldehydes. Garlic has four abundant organosulfur compounds (OSCs): S-allylcysteine, S-allylcysteinine sulfoxide, S-methylcysteine, and S-ethylcysteine are abundant in garlic. OSCs with primary amine groups were reacted with isotopic formaldehydes to synthesize ISs and standards. Cooked and uncooked garlic samples were compared, and we utilized tandem mass spectrometry equipped with a selective reaction monitoring technique to absolutely quantify the four organosulfur compounds.
Collapse
Affiliation(s)
- De-Cheng Tsai
- Division of Urology, Ten Chan General Hospital, Taoyuan, Taiwan
| | - Meng-Chieh Liu
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Reng Lin
- Department of Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Mei-Fang Huang
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Shin Liang
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan; Center for Research, Resources and Development, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
8
|
Hiramatsu K, Tsuneyoshi T, Ogawa T, Morihara N. Aged garlic extract enhances heme oxygenase-1 and glutamate-cysteine ligase modifier subunit expression via the nuclear factor erythroid 2-related factor 2-antioxidant response element signaling pathway in human endothelial cells. Nutr Res 2015; 36:143-9. [PMID: 26507778 DOI: 10.1016/j.nutres.2015.09.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/30/2022]
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway defends cells against oxidative stress and regulates the cellular redox balance. Activation of this pathway induces a variety of antioxidant enzymes, resulting in the protection of our bodies against oxidative damage. It has been reported that aged garlic extract (AGE), a garlic preparation that is rich in water-soluble cysteinyl moieties, reduces oxidative stress and helps to ameliorate of cardiovascular, renal and hepatic diseases. We hypothesized that AGE enhances the expression of antioxidant enzymes via the Nrf2-ARE pathway in human umbilical vein endothelial cells in culture. Gene expression of antioxidant enzymes was measured using real-time polymerase chain reaction. Nuclear accumulation of Nrf2 and antioxidant enzymes expression were evaluated using western blotting analyses. We found that AGE promoted the accumulation of Nrf2 into the nucleus in a time- and dose-dependent manner and increased the gene expression and polypeptide level of heme oxygenase-1 (HO-1) and glutamate-cysteine ligase modifier subunit (GCLM). Moreover, the effect of AGE in elevating the gene expression of HO-1 and GCLM was found to be mediated via Nrf2 activation in human umbilical vein endothelial cells. Taken together, these observations suggest that AGE induces the expression of HO-1 and GCLM, which are antioxidant enzymes, via activation of the Nrf2-ARE signaling pathway.
Collapse
Affiliation(s)
- Kei Hiramatsu
- Central Research Institute, Wakunaga Pharmaceutical Co. Ltd., 1624 Shimokotachi, Kodacho, Akitakata, Hiroshima 739-1195, Japan
| | - Tadamitsu Tsuneyoshi
- Central Research Institute, Wakunaga Pharmaceutical Co. Ltd., 1624 Shimokotachi, Kodacho, Akitakata, Hiroshima 739-1195, Japan
| | - Takahiro Ogawa
- Central Research Institute, Wakunaga Pharmaceutical Co. Ltd., 1624 Shimokotachi, Kodacho, Akitakata, Hiroshima 739-1195, Japan
| | - Naoaki Morihara
- Central Research Institute, Wakunaga Pharmaceutical Co. Ltd., 1624 Shimokotachi, Kodacho, Akitakata, Hiroshima 739-1195, Japan.
| |
Collapse
|
9
|
Hahm ER, Singh SV. Diallyl trisulfide inhibits estrogen receptor-α activity in human breast cancer cells. Breast Cancer Res Treat 2014; 144:47-57. [PMID: 24487688 DOI: 10.1007/s10549-014-2841-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/15/2014] [Indexed: 11/26/2022]
Abstract
Organosulfur compounds from garlic effectively inhibit growth of transplanted as well as spontaneous cancers in preclinical animal models without any adverse side effects. However, the mechanisms underlying anticancer effect of this class of compounds are not fully understood. This study reports, for the first time, that garlic organosulfide diallyl trisulfide (DATS) inhibits estrogen receptor-α (ER-α) activity in human breast cancer cells. Exposure of MCF-7 and T47D cells to DATS resulted in downregulation of ER-α protein, which peaked between 12- and 24-h post-treatment. DATS was relatively more effective in suppressing ER-α protein expression compared with its mono and disulfide analogs. The 17β-estradiol (E2)-induced expression of pS2 and cyclin D1, ER-α target gene products, was also decreased in the presence of DATS. Downregulation of ER-α protein expression resulting from DATS treatment was accompanied by a decrease in nuclear levels of ER-α protein, ER-α mRNA suppression, and inhibition of ERE2e1b-luciferase reporter activity. DATS-mediated inhibition of cell viability and apoptosis induction were not affected in the presence of E2. In agreement with these results, ectopic expression of ER-α in MDA-MB-231 cell line failed to confer any protection against cell proliferation inhibition or apoptosis induction resulting from DATS exposure. DATS treatment caused a decrease in protein levels of peptidyl-prolyl cis-trans isomerase (Pin1), and overexpression of Pin1 partially attenuated ER-α downregulation by DATS. DATS-induced apoptosis was modestly but significantly augmented by overexpression of Pin1. In conclusion, this study identifies ER-α as a novel target of DATS in mammary cancer cells.
Collapse
Affiliation(s)
- Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 2.32A Hillman Cancer Center Research Pavilion, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
10
|
Kalayarasan S, Sriram N, Soumyakrishnan S, Sudhandiran G. Diallylsulfide attenuates excessive collagen production and apoptosis in a rat model of bleomycin induced pulmonary fibrosis through the involvement of protease activated receptor-2. Toxicol Appl Pharmacol 2013; 271:184-95. [PMID: 23656969 DOI: 10.1016/j.taap.2013.04.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/04/2013] [Accepted: 04/28/2013] [Indexed: 02/04/2023]
Abstract
Pulmonary fibrosis (PF) can be a devastating lung disease. It is primarily caused by inflammation leading to severe damage of the alveolar epithelial cells. The pathophysiology of PF is not yet been clearly defined, but studying lung parenchymal injury by involving reactive oxygen species (ROS) through the activation of protease activated receptor-2 (PAR-2) may provide promising results. PAR-2 is a G-protein coupled receptor is known to play an important role in the development of PF. In this study, we investigated the inhibitory role of diallylsulfide (DAS) against ROS mediated activation of PAR-2 and collagen production accompanied by epithelial cell apoptosis. Bleomycin induced ROS levels may prompt to induce the expression of PAR-2 as well as extracellular matrix proteins (ECM), such as MMP 2 and 9, collagen specific proteins HSP-47, α-SMA, and cytokines IL-6, and IL-8RA. Importantly DAS treatment effectively decreased the expression of all these proteins. The inhibitory effect of DAS on profibrotic molecules is mediated by blocking the ROS level. To identify apoptotic signaling as a mediator of PF induction, we performed apoptotic protein expression, DNA fragmentation analysis and ultrastructural details of the lung tissue were performed. DAS treatment restored all these changes to near normalcy. In conclusion, treatment of PF bearing rats with DAS results in amelioration of the ROS production, PAR-2 activation, ECM production, collagen synthesis and alveolar epithelial cell apoptosis during bleomycin induction. We attained the first evidence that treatment of DAS decreases the ROS levels and may provide a potential therapeutic effect attenuating bleomycin induced PF.
Collapse
Affiliation(s)
- Srinivasan Kalayarasan
- University of Madras, Department of Biochemistry, Cell Biology Laboratory, Guindy Campus, Chennai 600 025, Tamil Nadu, India.
| | | | | | | |
Collapse
|
11
|
Morihara N, Ide N, Sumioka I, Kyo E. Aged garlic extract inhibits peroxynitrite-induced hemolysis. Redox Rep 2013; 10:159-65. [PMID: 16156955 DOI: 10.1179/135100005x57364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Nitric oxide (NO), which is synthesized by constitutive NO synthase (cNOS), plays important roles in physiological functions of the cardiovascular system. However, NO, which is synthesized by inducible NOS, is detrimental when it reacts with superoxide to form peroxynitrite. Peroxynitrite is recognized as a powerful oxidant, and results in vascular or tissue damage. We have previously reported that aged garlic extract (AGE) enhances NO production through cNOS stimulation. In the present study, we determined the effect of AGE, its fractions or constituents on peroxynitrite-induced hemolysis using rat erythrocytes. Incubation of rat erythrocytes with peroxynitrite (300 microM) for 30 min at 37 degrees C caused 4-fold hemolysis. AGE (0.14-0.57 %w/v) added to an erythrocyte suspension was found to reduce peroxynitrite-induced hemolysis in a concentration-dependent manner. Of the AGE fractions, a polar fraction and a low-molecular-weight fraction both suppressed the hemolysis to the same degree as that seen with AGE. S-allylcysteine, one of the major compounds in AGE, also reduced hemolysis at 1-10 mM dose-dependently. These data indicate that AGE and its compounds protect erythrocytes from membrane damage induced by peroxynitrite, suggesting that AGE could be useful for prevention of cardiovascular diseases associated with oxidative stress or dysfunction of NO production.
Collapse
Affiliation(s)
- Naoaki Morihara
- Healthcare Research Institute, Wakunaga Pharmaceutical Co. Ltd, Hiroshima, Japan.
| | | | | | | |
Collapse
|
12
|
Kohda K, Goda H, Itoh K, Samejima K, Fukuuchi T. Aged Garlic Extract Reduces ROS Production and Cell Death Induced by 6-Hydroxydopamine through Activation of the Nrf2-ARE Pathway in SH-SY5Y Cells. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/pp.2013.41004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Altonsy MO, Habib TN, Andrews SC. Diallyl Disulfide-Induced Apoptosis in a Breast-Cancer Cell Line (MCF-7) May Be Caused by Inhibition of Histone Deacetylation. Nutr Cancer 2012; 64:1251-60. [DOI: 10.1080/01635581.2012.721156] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Ota N, Takano F, Muroga S, Kawabata T, Ishigaki Y, Yahagi N, Ohta T. Garlic extract and its selected organosulphur constituents promote ileal immune responses ex vivo. J Funct Foods 2012. [DOI: 10.1016/j.jff.2011.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
15
|
Herb-drug interactions: Focus on metabolic enzymes and transporters. Arch Pharm Res 2011; 34:1843-63. [DOI: 10.1007/s12272-011-1106-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/06/2011] [Accepted: 09/08/2011] [Indexed: 11/26/2022]
|
16
|
Shukla Y, George J. Combinatorial strategies employing nutraceuticals for cancer development. Ann N Y Acad Sci 2011; 1229:162-75. [PMID: 21793852 DOI: 10.1111/j.1749-6632.2011.06104.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer is the second leading cause of death worldwide. Therefore, the fight against cancer is one of the most important areas of research in medicine, and one that possibly contributes to the increased interest in chemoprevention as an alternative approach to the control of cancer. Cancer prevention by nutraceuticals present in fruits and vegetables has received considerable attention because of their low cost and wide safety margin. A substantial amount of evidence from human, animal, and cell culture studies has shown cancer chemopreventive effects from these natural products. However, single-agent intervention has failed to produce the expected outcome in clinical trials; therefore, combinations of nutraceuticals are gaining increasing popularity. Thus, combinations of nutraceuticals that mimic real-life situations and are competent in targeting multiple targets with very little or virtually no toxicity are needed. In this review, we summarize the results of those studies that report combinatorial cancer chemopreventive action of various nutraceuticals and their combinations with anticancer drugs.
Collapse
Affiliation(s)
- Yogeshwer Shukla
- Proteomics Laboratory, Indian Institute of Toxicology Research (CSIR), Lucknow, Uttar Pradesh, India.
| | | |
Collapse
|
17
|
George J, Singh M, Srivastava AK, Bhui K, Shukla Y. Synergistic growth inhibition of mouse skin tumors by pomegranate fruit extract and diallyl sulfide: evidence for inhibition of activated MAPKs/NF-κB and reduced cell proliferation. Food Chem Toxicol 2011; 49:1511-20. [PMID: 21443920 DOI: 10.1016/j.fct.2011.03.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/18/2011] [Accepted: 03/19/2011] [Indexed: 11/30/2022]
Abstract
Limited outcomes from earlier chemopreventive studies have necessitated that some modifications be made to get better efficacy. It is proposed that cancer prevention is more feasible than treatment, and this could be achieved effortlessly with use of multiple agents competent of targeting multiple targets. This study was initiated to examine the chemopreventive efficacy of pomegranate fruit extract (PFE) and diallyl sulfide (DAS), alone and in combination, using 2-stage mouse skin tumorigenesis model. PFE and DAS alone delayed onset and tumor incidence by ∼55% and ∼45%, respectively, while their combination at low doses synergistically decreased tumor incidence more potentially (∼84%, p<0.01). In addition, regression in tumor volume was seen with continuous combinatorial treatment (p<0.01). Mechanistic studies revealed that this inhibition was associated with decreased expression of phosphorylated ERK1/2, JNK1 and activated NF-κB/p65, IKKα, IκBα phosphorylation and degradation in skin tissue/tumor. Histological and cell death analysis also confirmed that combined PFE and DAS inhibit cellular proliferation and markedly induce apoptosis than the single agents. Altogether, our results suggest that PFE and DAS in combination impart better suppressive activity than either of these agents alone and provide support that development of novel combination therapies/chemoprevention using dietary agents will be more beneficial against cancer.
Collapse
Affiliation(s)
- Jasmine George
- Proteomics Laboratory, Indian Institute of Toxicology Research, Council of Scientific and Industrial Research, P.O. Box 80, M.G. Marg, Lucknow 226001, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
18
|
Morihara N, Hayama M, Fujii H. Aged garlic extract scavenges superoxide radicals. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2011; 66:17-21. [PMID: 21318303 DOI: 10.1007/s11130-011-0216-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
There is increasing evidence to suggest that many degenerative or pathological processes, such as aging, cancer, and coronary heart disease, are related to reactive oxygen species and radical-mediated reactions. We examined the effectiveness of aged garlic extract (AGE), a garlic preparation rich in water-soluble cysteinyl moieties, and its component for scavenging of superoxide by using the hypoxanthine-xanthine oxidase and human neutrophils. In the hypoxanthine-xanthine oxidase system, electron spin resonance showed that aged garlic extract scavenged superoxide radicals in a dose-dependent manner up to 54%. The EC(50) value of aged garlic extract for the superoxide radical scavenging effect was 0.80 mg/ml. N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (25.9%) and (1S, 3S)-1-methyl-1,2,3,4-tetrahydro-β-carboline-1,3-dicarboxylic acid (20.8%), water-soluble moieties of AGE, also exerted superoxide scavenging effects. Phorbol 12-myristate 13-acetate-activated human neutrophils produced superoxide radical of 56.6 ± 9.27 nmol/min/10(7) cells. Aged garlic extract (3 mg/ml) significantly inhibited superoxide production in comparison to the control. These data suggest that aged garlic extract may be useful for preventing diseases associated with reactive oxygen species.
Collapse
Affiliation(s)
- Naoaki Morihara
- Healthcare Research Institute, Wakunaga Pharmaceutical Co. Ltd., Akitakata, Hiroshima, Japan.
| | | | | |
Collapse
|
19
|
Nagaraj NS, Anilakumar KR, Singh OV. Diallyl disulfide causes caspase-dependent apoptosis in human cancer cells through a Bax-triggered mitochondrial pathway. J Nutr Biochem 2010; 21:405-12. [DOI: 10.1016/j.jnutbio.2009.01.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 01/19/2009] [Accepted: 01/20/2009] [Indexed: 10/20/2022]
|
20
|
Jang HD, Lee JH, Hong SM, Jung JH, Kim IH. Effects of Supplemental Medicinal Plants (Artemisia, Acanthopanax and Garlic) on Productive Performance of Sows and on Growth and Carcass Traits in Finishing Pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2010. [DOI: 10.5187/jast.2010.52.2.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Ling H, Wen L, Ji X, Tang Y, He J, Tan H, Xia H, Zhou J, Su Q. Growth inhibitory effect and Chk1-dependent signaling involved in G2/M arrest on human gastric cancer cells induced by diallyl disulfide. Braz J Med Biol Res 2010; 43:271-8. [DOI: 10.1590/s0100-879x2010007500004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 01/19/2010] [Indexed: 11/22/2022] Open
Affiliation(s)
- H. Ling
- University of South China, China
| | - L. Wen
- University of South China, China
| | - X.X. Ji
- University of South China, China
| | | | - J. He
- University of South China, China
| | - H. Tan
- University of South China, China
| | - H. Xia
- University of South China, China
| | | | - Q. Su
- University of South China, China
| |
Collapse
|
22
|
Zhou JQ, Wang JW. Immobilization of alliinase with a water soluble–insoluble reversible N-succinyl-chitosan for allicin production. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.07.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Diallyl sulfide enhances antioxidants and inhibits inflammation through the activation of Nrf2 against gentamicin-induced nephrotoxicity in Wistar rats. Eur J Pharmacol 2009; 606:162-71. [PMID: 19374873 DOI: 10.1016/j.ejphar.2008.12.055] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 11/28/2008] [Accepted: 12/09/2008] [Indexed: 12/13/2022]
Abstract
The protective role of diallyl sulfide (DAS) in attenuating gentamicin-induced nephrotoxicity has been reported earlier. However, the mechanism of induction of antioxidants by DAS in nephrotoxicity remains elusive. This study is aimed to elucidate the role of a transcription factor, Nuclear factor E2-related factor 2 (Nrf2) in inducing antioxidants and phase II enzymes during gentamicin toxicity in Wistar rats. DAS was administered intraperitoneally at a dosage of 150 mg/kg body weight once daily for 6 days. Gentamicin was administered intraperitoneally at a dosage of 100 mg/kg body weight, once daily for 6 days. Gentamicin-induced rats showed a significant increase in the levels of kidney markers and the activities of urinary marker enzymes, which was reversed upon treatment with DAS. A significant increase in kidney myeloperoxidase (MPO) and lipid peroxidation (LPO) levels was observed in gentamicin-induced rats, which was reduced upon treatment with DAS. Gentamicin-induced rats also showed a significant decrease in the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST) and quinone reductase (QR) in rat kidney, which was increased upon treatment with DAS. Immunohistochemical studies in gentamicin-induced rats demonstrated a marked increase in the immunoreactivity of inducible nitric oxide synthase (iNOS), nuclear transcription factor (NF-kappaB) and tumor necrosis factor alpha (TNF-alpha) that were reduced after treatment with DAS. Further, the involvement of Nrf2 in antioxidant induction was analyzed by Western blot and immunofluorescence. To conclude, DAS enhances antioxidants and suppresses inflammatory cytokines through the activation of Nrf2, thereby protecting the cell against oxidative stress induced by gentamicin.
Collapse
|
24
|
Allium vegetable intake and risk of acute myocardial infarction in Italy. Eur J Nutr 2009; 48:120-3. [PMID: 19142565 DOI: 10.1007/s00394-008-0771-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 12/11/2008] [Indexed: 12/12/2022]
Abstract
BACKGROUND Interest in potential benefits of allium vegetables has its origin in antiquity, but the details of these benefits are still open to discussion. Only two epidemiological studies considered the relation between dietary intake of allium vegetables and cardiovascular diseases. AIM OF THE STUDY To provide further information we analysed the relationship between onion and garlic intake and acute myocardial infarction (AMI). METHODS We used data from a case-control study of 760 patients with a first episode of non-fatal AMI and 682 controls admitted to the same hospitals. Information was collected by trained interviewers using a validated and reproducible food-frequency questionnaire. Multivariate odds ratios (ORs) and 95% confidence intervals (CIs) were obtained after allowance for recognized confounding factors. RESULTS Compared with non-users, the ORs of AMI for subsequent categories of onion intake were 0.90 (95% CI: 0.69-1.21) for <1 portion of onion per week and 0.78 (95% CI: 0.56-0.99) for > or = 1 portion per week. For garlic, the ORs were 0.84 (95% CI: 0.66-1.09) for intermediate and 0.94 (95% CI: 0.68-1.32) for high use, compared with no or low use. CONCLUSION The current study, the first from Mediterranean countries, suggests that a diet rich in onions may have a favourable effect on the risk of AMI.
Collapse
|
25
|
Chiarandini Fiore JP, Fanelli SL, de Ferreyra EC, Castro JA. Diallyl Disulfide Prevention of Cis-Diammine Dichloroplatinum–Induced Nephrotoxicity and Leukopenia in Rats: Potential Adjuvant Effects. Nutr Cancer 2008; 60:784-91. [DOI: 10.1080/01635580802100869] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Diallyl sulfide induces apoptosis in Colo 320 DM human colon cancer cells: involvement of caspase-3, NF-kappaB, and ERK-2. Mol Cell Biochem 2008; 311:157-65. [PMID: 18256791 DOI: 10.1007/s11010-008-9706-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 01/10/2008] [Indexed: 02/05/2023]
Abstract
Chemoprevention is regarded as one of the most promising and realistic approaches in the prevention of human cancer. Diallyl sulfide (DAS), an organosulfur component of garlic has been known for its chemopreventive activities against various cancers and also in recent years, numerous investigations have shown that sulfur-containing compounds induce apoptosis in multiple cell lines and experimental animals. Thus the present study was focused to elucidate the anticancerous effect and the mode of action of DAS against Colo 320 DM colon cancer cells. DAS induced apoptosis in Colo 320 DM cells was revealed by flow cytometer analysis and phosphatidyl serine exposure. DAS also promoted cell cycle arrest substantially at G2/M phase in Colo 320 DM cells. The production of reactive oxygen intermediates, which were examined by 2,7-dichlorodihydrofluorescein diacetate (H2DCF-DA), increased with time, after treatment with DAS. The activities of alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) were decreased upon DAS treatment, which shows the antiproliferative and the cytotoxic effects, respectively. The expression of NF-kappaB was upregulated in DAS treated cells, compared to normal cells. Further, DAS promoted the expression of caspase-3 and suppression of Extracellular Regulatory Kinase-2 (ERK-2) activity in Colo 320 DM cells that was determined by Western blot analysis. In conclusion, DAS increased the production of ROS, caused cell cycle arrest, decreased cell proliferation and induced apoptosis in Colo 320 DM cells. Thus, this study put forward DAS as a drug that can possibly be used to treat cancers.
Collapse
|
27
|
Diallyl sulfides: Selective inhibitors of family X DNA polymerases from garlic (Allium sativum L.). Food Chem 2007; 108:551-60. [PMID: 26059133 DOI: 10.1016/j.foodchem.2007.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 10/01/2007] [Accepted: 11/06/2007] [Indexed: 11/22/2022]
Abstract
Diallyl sulfides, organosulfur compounds isolated from garlic (Allium sativum L.), selectively inhibit the activities of mammalian family X DNA polymerases (pols), such as pol β, pol λ and terminal deoxynucleotidyl transferase (TdT), in vitro. The purified fraction (i.e., Sample-A) consisted of diallyl trisulfide, diallyl tetrasulfide and diallyl pentasulfide (molecular ratio: 5.3:3:1). Commercially purchased diallyl sulfides also inhibited the activities of family X pols, and the order of their effect was as follows: Sample-A>diallyl trisulfide>diallyl disulfide>diallyl monosulfide, suggesting that the number of sulfur atoms in the compounds might play an important structural role in enzyme inhibition. The suppression of human cancer cell (promyelocytic leukaemia cell line, HL-60) growth had the same tendency as the inhibition of pol X family among the compounds. Diallyl sulfides were suggested to bind to the pol β-like region of family X pols.
Collapse
|
28
|
Nigam N, Shukla Y. Preventive effects of diallyl sulfide on 7,12-dimethylbenz[a]anthracene induced DNA alkylation damage in mouse skin. Mol Nutr Food Res 2007; 51:1324-8. [DOI: 10.1002/mnfr.200700140] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Effects of garlic and black grape extracts on the activity of adenosine deaminase from cancerous and noncancerous human urinary bladder tissues. Med Chem Res 2007. [DOI: 10.1007/s00044-007-9027-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Iciek M, Marcinek J, Mleczko U, Włodek L. Selective effects of diallyl disulfide, a sulfane sulfur precursor, in the liver and Ehrlich ascites tumor cells. Eur J Pharmacol 2007; 569:1-7. [PMID: 17560567 DOI: 10.1016/j.ejphar.2007.04.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 03/06/2007] [Accepted: 04/26/2007] [Indexed: 11/17/2022]
Abstract
The present in vivo studies demonstrated that diallyl disulfide (DADS), occurring in garlic, elevated hepatic sulfane sulfur level and activities of gamma-cystathionase and 3-mercaptopyruvate sulfotransferase in healthy mice but did not affect the hepatic glutathione level. DADS efficiently corrected the concentrations of glutathione and sulfane sulfur, and ameliorated gamma-cystathionase activity that had been lowered in the livers of Ehrlich ascites tumor-bearing mice. In Ehrlich ascites tumor cells, diallyl disulfide did not alter bound sulfane sulfur level, sulfotransferases activity or glutathione level. These data indicate that this compound is capable of acting efficiently and selectively only in the liver and can be used for hepatoprotection during chemotherapy.
Collapse
Affiliation(s)
- Małgorzata Iciek
- Chair of Medical Biochemistry, Collegium Medicum, Jagiellonian University, Kopernika 7, PL 31-034 Kraków, Poland
| | | | | | | |
Collapse
|
31
|
Abstract
Tributyltin (TBT) can be transported to the human body by contaminated seafood. Presently, there is no known effective strategy to eliminate TBT's toxic effects from contaminated food. The present study was conducted to investigate the ability of garlic oil (GO) to prevent TBT-induced oxidative damage in vivo as well as in vitro. The results follow: both reactive oxygen species (ROS) production and malondialdehyde content decreased in mice pretreated with GO, the number of cells with damaged DNA in unprotected mice increased significantly compared with that in GO-protected mice (comet assay), and the alleviation of the depletion of cortical thymocytes and damage to nucleoli and mitochondria in GO-protected mice was observed. In human FL (human amniotic cells; American Type Culture Collection) cell studies, TBT-induced intracellular ROS generation was significantly inhibited after FL cells were pretreated with GO, and the TBT-induced cytotoxic effects were also prevented by GO. The results led to the first observation that GO was effective in reducing TBT-induced oxidative damage both in vivo and in vitro. The possible protective mechanism may stem from the considerable ability of GO to scavenge ROS. We conclude that GO could be an effective agent or food supplement in reducing the toxicity of TBT.
Collapse
Affiliation(s)
- Hui-Gang Liu
- Department of Biochemistry and Molecular Biology, School of Medicine, Zhejiang University, Hangzhou 310031, China
| | | |
Collapse
|
32
|
Arunkumar A, Vijayababu MR, Gunadharini N, Krishnamoorthy G, Arunakaran J. Induction of apoptosis and histone hyperacetylation by diallyl disulfide in prostate cancer cell line PC-3. Cancer Lett 2006; 251:59-67. [PMID: 17150304 DOI: 10.1016/j.canlet.2006.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Revised: 10/11/2006] [Accepted: 11/01/2006] [Indexed: 11/24/2022]
Abstract
Prostate cancer is the most invasive and frequently occurred cancer in men. In the initial stages, it is androgen dependent and the androgen ablation therapy is effective at this stage. In the final stages, it becomes androgen-independent and is unresponsive to androgen ablation therapy. At this stage, induction of apoptosis is considered as a better strategy to control cancer. Histone acetylation and deacetylation are involved in transcriptional activation and transcriptional repression, respectively. Diallyl disulfide (DADS) induced histone hyperacetylation can be correlated with the expression of antiproliferative genes. Induction of apoptosis by DADS has been correlated with histone acetylation. In the present study, DADS, oil soluble organosulfur compound of garlic, has been studied for its effect on histone acetylation and induction of apoptosis in prostate cancer cells in vitro. The induction of apoptosis has been demonstrated by annexin V-FITC binding assay. Extent of apoptosis has been assessed measuring the activity of caspase-3. The results have shown that DADS induced apoptosis in prostate cancer cells in a dose dependent manner. At both 25 and 40 microM concentrations, DADS increased the number of both early and late apoptotic cells. Histone hyperacetylation was also observed in DADS treated cells. It is concluded that DADS, induces apoptosis by influencing histone acetylation in prostate cancer cells.
Collapse
Affiliation(s)
- Arumugam Arunkumar
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, Tamil Nadu 600 113, India
| | | | | | | | | |
Collapse
|
33
|
Thejass P, Kuttan G. Antiangiogenic activity of Diallyl Sulfide (DAS). Int Immunopharmacol 2006; 7:295-305. [PMID: 17276887 DOI: 10.1016/j.intimp.2006.10.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 10/21/2006] [Accepted: 10/26/2006] [Indexed: 11/18/2022]
Abstract
Antiangiogenic activity of Diallyl sulfide (DAS) was studied using in vivo as well as in vitro models. In vivo antiangiogenic activity was studied using B16F-10 melanoma cell induced capillary formation in C57BL/6 mice. DAS significantly inhibited tumour directed capillary formation. Studies of serum cytokine profile of angiogenesis induced animals clearly showed that DAS significantly reduced the production of proinflammatory cytokines such as IL-1beta, IL-6, TNF-alpha and GM-CSF which are known proangiogenic factors. The serum level of VEGF, an important proangiogenic factor, in angiogenesis induced animals was found to be significantly reduced upon treatment with DAS which may be due to its efficacy in the down regulation of VEGF mRNA expression. Administration of DAS significantly enhanced the production of antiangiogenic factors such as IL-2 and TIMP. In vitro studies using rat aortic ring assay showed that administration of DAS at no n-toxic concentrations significantly inhibited microvessel sprouting. Studies using Human umbilical vein endothelial cells (HUVECs) clearly demonstrated that administration of DAS significantly retarded endothelial cell proliferation, migration, invasion and tube formation. These data clearly suggests that antiangiogenic activity of DAS can be related to its negative regulation of proangiogenic factors such as VEGF and proinflammatory cytokines and positive regulation of antiangiogenic factors such as IL-2 and TIMP.
Collapse
Affiliation(s)
- P Thejass
- Department Immunology, Amala Cancer Research Centre, Amala Nagar, Thrissur, Kerala State 680 555, India
| | | |
Collapse
|
34
|
Thejass P, Kuttan G. Inhibition of angiogenic differentiation of human umbilical vein endothelial cells by diallyl disulfide (DADS). Life Sci 2006; 80:515-21. [PMID: 17196623 DOI: 10.1016/j.lfs.2006.09.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 08/21/2006] [Accepted: 09/27/2006] [Indexed: 12/29/2022]
Abstract
Angiogenesis is a crucial step in the growth and metastasis of cancers. The activation of endothelial cells and their further behaviour are very critical during angiogenesis. We analyzed the effect of diallyl disulfide (DADS) on angiogenesis in in vitro models using human umbilical vein endothelial cells (HUVECs). DADS significantly inhibited endothelial cell migration, invasion and tube formation. (3)H-thymidine proliferation assay clearly showed the inhibitory effect of DADS on the proliferation of HUVECs in vitro. The role of metalloproteinases has been shown to be important in angiogenesis; therefore, zymography was performed to determine whether DADS affected protease activity. Gelatin zymographic analysis showed the inhibitory effect of DADS on the activation of matrix metalloproteinases-MMP-2 and MMP-9. These findings suggest that DADS acts as an angiogenesis inhibitor by inhibiting the activation of matrix metalloproteinases during endothelial morphogenesis.
Collapse
Affiliation(s)
- P Thejass
- Amala Cancer Research Centre, Amala Nagar, Thrissur, Kerala State 680555, India
| | | |
Collapse
|
35
|
Arunkumar A, Vijayababu MR, Srinivasan N, Aruldhas MM, Arunakaran J. Garlic Compound, Diallyl Disulfide Induces Cell Cycle Arrest in Prostate Cancer Cell Line PC-3. Mol Cell Biochem 2006; 288:107-13. [PMID: 16691315 DOI: 10.1007/s11010-006-9126-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 01/09/2006] [Indexed: 01/03/2023]
Abstract
Prostate cancer is the most predominant cancer in men and related death rate increases every year. Till date, there is no effective therapy for androgen independent prostate cancer. Previous studies reported that aged garlic extract suppresses cancer growth. In the present study, diallyl disulfide [DADS], oil soluble organosulfur compound of garlic, was studied for its antiproliferative and induction of cell cycle arrest on prostate cancer cells in vitro. The suppression of cell growth was assessed by MTT assay. Induction of cell cycle arrest was assessed and confirmed by propidium iodide staining in flowcytometric analysis and western blotting analysis of major cell cycle regulator proteins. The results showed that DADS inhibited the growth of prostate cancer cells in a dose dependent manner, compared to the control. At 25 microM and 40 microM concentrations, DADS induced cell cycle arrest at G2/M transition in PC-3 cells. Western blotting analysis of cyclin A, B(1) and cyclin dependent kinase 1 [CDK1] revealed that DADS inhibited the cell cycle by downregulating CDK1 expression. It is concluded that DADS, inhibits proliferation of prostate cancer cells through cell cycle arrest. Dose dependent effect of DADS on PC-3 cell line was observed in the present study.
Collapse
Affiliation(s)
- Arumugam Arunkumar
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India
| | | | | | | | | |
Collapse
|
36
|
. MNTA, . MAA. Hepatoprotective Activity of Allicin Against Carbon Tetrachloride Induced Hepatic Injury in Rats. ACTA ACUST UNITED AC 2006. [DOI: 10.3923/jbs.2006.457.468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
El-Bayoumy K, Sinha R, Pinto JT, Rivlin RS. Cancer chemoprevention by garlic and garlic-containing sulfur and selenium compounds. J Nutr 2006; 136:864S-869S. [PMID: 16484582 DOI: 10.1093/jn/136.3.864s] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
As early as 1550 B.C., Egyptians realized the benefits of garlic as a remedy for a variety of diseases. Many epidemiological studies support the protective role of garlic and related allium foods against the development of certain human cancers. Natural garlic and garlic cultivated with selenium fertilization have been shown in laboratory animals to have protective roles in cancer prevention. Certain organoselenium compounds and their sulfur analogs have been identified in plants. Organoselenium compounds synthesized in our laboratory were compared with their sulfur analogs for chemopreventive efficacy. Diallyl selenide was at least 300-fold more effective than diallyl sulfide in protecting against 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary adenocarcinomas in rats. In addition, benzyl selenocyanate inhibited the development of DMBA-induced mammary adenocarcinomas and azoxymethane-induced colon cancer in rats and benzo[a]pyrene-induced forestomach tumors in mice. The sulfur analog, benzyl thiocyanate, had no effect under the same experimental conditions. Furthermore, we showed that 1,4-phenylenebis(methylene)selenocyanate, but not its sulfur analog, significantly inhibited DMBA-DNA adduct formation and suppressed DMBA-induced mammary carcinogenesis. Collectively, these results indicate that structurally distinctive organoselenium compounds are superior to their corresponding sulfur analogs in cancer chemoprevention. Additionally, synthetic aromatic selenocyanates are more effective cancer chemopreventive agents than the naturally occurring selenoamino acids. Because plants are capable of utilizing selenium in a manner similar to that in sulfur assimilation pathways, future studies should aim at determining whether, under appropriate conditions, these potent cancer chemopreventive synthetic selenium compounds can be synthesized by garlic and related allium foods.
Collapse
Affiliation(s)
- Karam El-Bayoumy
- Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | | | | | | |
Collapse
|
38
|
Uda N, Kashimoto N, Sumioka I, Kyo E, Sumi SI, Fukushima S. Aged garlic extract inhibits development of putative preneoplastic lesions in rat hepatocarcinogenesis. J Nutr 2006; 136:855S-860S. [PMID: 16484580 DOI: 10.1093/jn/136.3.855s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A unique garlic preparation, aged garlic extract (AGE), was examined for its modifying effect on diethylnitrosamine (DEN)-induced neoplasia of the liver in male F344 rats, using the medium-term bioassay system based on the 2-step model of hepatocarcinogenesis. Carcinogenic potential was scored by comparing the numbers and areas of induced glutathione S-transferase placental form (GST-P)-positive hepatocellular foci. GST-P-positive foci were significantly decreased in rats treated with AGE at doses of 2, 5, and 10 mL/kg, i.g., 5 times per week during the promotion phase. In addition, to clarify the mechanism underlying the inhibitory effect of AGE, the effect of AGE on hepatocellular proliferation was evaluated using partially hepatectomized rats as a liver-regeneration model. The bromodeoxyuridine-labeling indices in the livers of the AGE group were significantly lower than those in the control group at 24 h, the maximum proliferation period after partial hepatectomy. These findings indicate that AGE inhibited the development of putative preneoplastic lesions in rat hepatocarcinogenesis, involving a slowing in the proliferation rate of liver cells after partial hepatectomy.
Collapse
Affiliation(s)
- Naoto Uda
- Healthcare Research Institute, Wakunaga Pharmaceutical Co., Ltd., Hiroshima, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Morihara N, Sumioka I, Ide N, Moriguchi T, Uda N, Kyo E. Aged garlic extract maintains cardiovascular homeostasis in mice and rats. J Nutr 2006; 136:777S-781S. [PMID: 16484562 DOI: 10.1093/jn/136.3.777s] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nitric oxide (NO) plays an important role in controlling the physiological functions of the cardiovascular system. However, toxic peroxynitrite is produced by the reaction of NO with superoxide. We investigated the effect of aged garlic extract (AGE) on NO production, and on oxidative stress induced by peroxynitrite. A single dose of AGE temporarily increased NO production by 30-40% between 15 and 60 min after administration to mice. The time course of the fluctuation in NO levels in the AGE-treated group clearly differed from that in a group treated with an inducible NO synthase (iNOS) inducer. A selective constitutive NOS (cNOS) inhibitor overcame the effect of AGE. These results indicate that AGE increases NO production by activating cNOS, but not iNOS. In another experiment, the addition of AGE to a rat erythrocyte suspension reduced the rate of peroxynitrite-induced hemolysis in a concentration-dependent manner, suggesting that AGE protects erythrocytes from membrane damage induced by peroxinitrite. Because an increase in NO derived from cNOS and protection against peroxynitrite are important factors in the prevention of cardiovascular disease, our data strongly suggest that AGE could be useful in preventing cardiovascular diseases associated with oxidative stress or dysfunctions of NO production.
Collapse
Affiliation(s)
- Naoaki Morihara
- Healthcare Research Institute, Wakunaga Pharmaceutical Co. Ltd, Hiroshima, 739-1195, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Yamada N, Hattori A, Nishikawa T, Fukuda H, Fujino T. Prophylactic Effects of Ajoene on Cerebral Injury in Stroke-Prone Spontaneously Hypertensive Rats (SHRSP). Biol Pharm Bull 2006; 29:619-22. [PMID: 16595890 DOI: 10.1248/bpb.29.619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As part of a basic study on the prevention of cerebral injury, ajoene (0.5 mg/d) and oil-macerated garlic extract (OMGE, containing 0.5 mg ajoene/d) were administrated to stroke-prone spontaneously hypertensive rats (SHRSP) among 8 weeks from 9 weeks of age. In the control group, 3 of 10 rats died (30%), whereas all SHRSP treated by ajoene or OMGE survived. Our results suggested that ajoene and OMGE-treatment reduced the mortality and cerebral injury in SHRSP. The levels of thiobarbituric acid reactive substance (TBARS) and the enzymatic activities of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) in the serum of stroke stage of SHRSP were measured. The results obtained were as follows; the TBARS level of the ajoene and OMGE-treated groups were lower than those of control groups. On the other hand, the GSH-Px and SOD activities of the ajoene and OMGE-treated groups were higher. Our results suggested that ajoene and OMGE were capable of having prophylactic effects on cerebral injury in SHRSP.
Collapse
Affiliation(s)
- Norihiko Yamada
- Biodevelopment Division, Central Institute, Nagoya Seiraku Co., Ltd, Aichi, Japan
| | | | | | | | | |
Collapse
|
41
|
Gunadharini DN, Arunkumar A, Krishnamoorthy G, Muthuvel R, Vijayababu MR, Kanagaraj P, Srinivasan N, Aruldhas MM, Arunakaran J. Antiproliferative effect of diallyl disulfide (DADS) on prostate cancer cell line LNCaP. Cell Biochem Funct 2006; 24:407-12. [PMID: 16142693 DOI: 10.1002/cbf.1262] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Garlic has been used throughout the world to treat coughs, toothache, earache, dandruff, hypertension, hysteria, diarrhoea, dysentery, diptheria, vaginitis and many other conditions. Garlic contains a complex mixture of oil and water-soluble organosulfur compounds. Diallyl disulfide (DADS), an oil-soluble constituent of garlic seems to be effective in reducing tumour cells originating from colon, lung and skin. Hence our present study focuses on the dose-dependent effect of DADS on an androgen-dependent prostate cancer cell line. Various concentrations of DADS ranging from 25 to 100 microM were given to LNCaP cells and the activity of lactate dehydrogenase (LDH) prostatic acid phosphatase (PAcP) and the level of prostate specific antigen were studied. DADS reduced the secretory activity of LNCaP cells with the gradual increase in dosage. DADS was found to act as a good antiproliferative agent, which was confirmed by proliferation assay. DADS also induced apoptosis and nuclear segmentation in the higher doses.
Collapse
Affiliation(s)
- D N Gunadharini
- Department of Endocrinology, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, India
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Xiao D, Herman-Antosiewicz A, Antosiewicz J, Xiao H, Brisson M, Lazo JS, Singh SV. Diallyl trisulfide-induced G(2)-M phase cell cycle arrest in human prostate cancer cells is caused by reactive oxygen species-dependent destruction and hyperphosphorylation of Cdc 25 C. Oncogene 2005; 24:6256-68. [PMID: 15940258 DOI: 10.1038/sj.onc.1208759] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Molecular mechanism of cell cycle arrest caused by diallyl trisulfide (DATS), a garlic-derived cancer chemopreventive agent, has been investigated using PC-3 and DU 145 human prostate cancer cells as a model. Treatment of PC-3 and DU 145 cells, but not a normal prostate epithelial cell line (PrEC), with growth suppressive concentrations of DATS caused enrichment of the G(2)-M fraction. The DATS-induced cell cycle arrest in PC-3 cells was associated with increased Tyr(15) phosphorylation of cyclin-dependent kinase 1 (Cdk 1) and inhibition of Cdk 1/cyclinB 1 kinase activity. The DATS-treated PC-3 and DU 145 cells also exhibited a decrease in the protein level of Cdc 25 C and an increase in its Ser(216) phosphorylation. The DATS-mediated decrease in protein level and Ser(216) phosphorylation of Cdc 25 C as well as G(2)-M phase cell cycle arrest were significantly attenuated in the presence of N-acetylcysteine implicating reactive oxygen species (ROS) in cell cycle arrest caused by DATS. ROS generation was observed in DATS-treated PC-3 and DU 145 cells. DATS treatment also caused an increase in the protein level of Cdk inhibitor p21, but DATS-induced G(2)-M phase arrest was not affected by antisense-mediated suppression of p21 protein level. In conclusion, the results of the present study indicate that DATS-induced G(2)-M phase cell cycle arrest in human prostate cancer cells is caused by ROS-mediated destruction and hyperphosphorylation of Cdc 25 C.
Collapse
Affiliation(s)
- Dong Xiao
- Department of Pharmacology and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Bhagyalakshmi N, Thimmaraju R, Venkatachalam L, Murthy KNC, Sreedhar RV. Nutraceutical Applications of Garlic and the Intervention of Biotechnology. Crit Rev Food Sci Nutr 2005; 45:607-21. [PMID: 16371330 DOI: 10.1080/10408390500455508] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Garlic (Allium sativum L.) is an important and widely cultivated plant with both culinary and medicinal uses stemming from its biological activities, which include antibiotic, anticancer, anti-thrombotic, and lipid-lowering cardiovascular effects. Though such medicinal use of garlic existed for centuries, there was little scientific support for its therapeutic and pharmacological properties. However, there has been a recent upsurge of research on garlic aiming to understand its exact mechanism of action in each case so that garlic and its products may have more judicious future applications. Since garlic is vegetatively propagated, its improvement for desired traits through conventional means is difficult. The intervention of biotechnological methods such as tissue culture and gene transfer protocols developed recently hold great promise for improving this crop. Due to new innovations in instrumentation and processing technologies coupled with more judicious experimental models, better products are foreseen in the market. The objective of this article was to review the recent developments made towards understanding the mechanism by which garlic imparts different therapeutic effects as well as to review what biotechnology can offer to improve this crop and its products.
Collapse
Affiliation(s)
- N Bhagyalakshmi
- Plant Cell Biotechnology Department, Central Food Technological Research Institute, Mysore 570 006, India.
| | | | | | | | | |
Collapse
|
44
|
Yu FS, Yu CS, Lin JP, Chen SC, Lai WW, Chung JG. Diallyl disulfide inhibits N-acetyltransferase activity and gene expression in human esophagus epidermoid carcinoma CE 81T/VGH cells. Food Chem Toxicol 2005; 43:1029-36. [PMID: 15833378 DOI: 10.1016/j.fct.2005.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 01/30/2005] [Accepted: 02/09/2005] [Indexed: 10/25/2022]
Abstract
Individuals can be classified into rapid or slow acetylators based on the N-acetyltransferase (NAT) activity which is believed to affect cancer risk that is related to environmental carcinogen exposure. Diallyl disulfide (DADS) is a naturally occurring organosulfur compound, from garlic (Allium sativum), which exerts anti-neoplasm activity. In this study, we investigated the inhibitory effects of DADS on NAT activity and gene expresseion (NAT mRNA) in human esophagus epidermoid carcinoma CE 81T/VGH cells. NAT activity was measured by the amounts of N-acetylation of 2-aminofluorene (AF) and non-acetylation of AF by high performance liquid chromatography on cells treated with or without DADS. The amounts of NAT enzymes were examined and analyzed by Western blot. NAT gene expression (NAT mRNA) was examined by polymerase chain reaction and cDNA microarray. DADS decreased the amount of N-acetylation of AF in human esophagus epidermoid carcinoma CE 81T/VGH cells in a dose-dependent manner. Western blot analysis indicated that DADS decreased the levels of NAT protein in CE 81T/VGH cells. PCR and cDNA microarray experiments showed that DADS affected NAT1 mRNA expression in CE 81T/VGH cells. DADS affect NAT activity due to the inhibition of gene expression (NAT1 mRNA) and the decreasing of the protein levels of NAT in CE 81T/VGH cells.
Collapse
MESH Headings
- Acetylation
- Acetyltransferases/antagonists & inhibitors
- Acetyltransferases/genetics
- Allyl Compounds/pharmacology
- Animals
- Anticarcinogenic Agents/pharmacology
- Carcinoma, Squamous Cell/enzymology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Disulfides/pharmacology
- Dose-Response Relationship, Drug
- Enzyme Inhibitors
- Esophageal Neoplasms/enzymology
- Esophageal Neoplasms/genetics
- Esophageal Neoplasms/pathology
- Female
- Flow Cytometry
- Humans
- Mice
- Mice, Inbred BALB C
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Fu-Shun Yu
- School of Dentistry, China Medical University, 91 Hsueh-Shih Road, Taichung, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
P-glycoprotein (Pgp) is a 170 kDa phosphorylated glycoprotein encoded by human MDR1 gene. It is responsible for the systemic disposition of numerous structurally and pharmacologically unrelated lipophilic and amphipathic drugs, carcinogens, toxins, and other xenobiotics in many organs, such as the intestine, liver, kidney, and brain. Like cytochrome P450s (CYP3A4), Pgp is vulnerable to inhibition, activation, or induction by herbal constituents. This was demonstrated by using an ATPase assay, purified Pgp protein or intact Pgp-expressing cells, and proper probe substrates and inhibitors. Curcumin, ginsenosides, piperine, some catechins from green tea, and silymarin from milk thistle were found to be inhibitors of Pgp, while some catechins from green tea increased Pgp-mediated drug transport by heterotropic allosteric mechanism, and St. John's wort induced the intestinal expression of Pgp in vitro and in vivo. Some components (e.g., bergamottin and quercetin) from grapefruit juice were reported to modulate Pgp activity. Many of these herbal constituents, in particular flavonoids, were reported to modulate Pgp by directly interacting with the vicinal ATP-binding site, the steroid-binding site, or the substrate-binding site. Some herbal constituents (e.g., hyperforin and kava) were shown to activate pregnane X receptor, an orphan nuclear receptor acting as a key regulator of MDR1 and many other genes. The inhibition of Pgp by herbal constituents may provide a novel approach for reversing multidrug resistance in tumor cells, whereas the stimulation of Pgp expression or activity has implication for chemoprotective enhancement by herbal medicines. Certain natural flavonols (e.g., kaempferol, quercetin, and galangin) are potent stimulators of the Pgp-mediated efflux of 7,12-dimethylbenz(a)-anthracene (a carcinogen). The modulation of Pgp activity and expression by these herb constituents may result in altered absorption and bioavailability of drugs that are Pgp substrates. This is exemplified by increased oral bioavailability of phenytoin and rifampin by piperine and decreased bioavailability of indinavir, tacrolimus, cyclosporine, digoxin, and fexofenadine by coadministered St. John's wort. However, many of these drugs are also substrates of CYP3A4. Thus, the modulation of intestinal Pgp and CYP3A4 represents an important mechanism for many clinically important herb-drug interactions. Further studies are needed to explore the relative role of Pgp and CYP3A4 modulation by herbs and the mechanism for the interplay of these two important proteins in herb-drug interactions.
Collapse
Affiliation(s)
- Shufeng Zhou
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | | | | |
Collapse
|
46
|
Chen C, Pung D, Leong V, Hebbar V, Shen G, Nair S, Li W, Kong ANT. Induction of detoxifying enzymes by garlic organosulfur compounds through transcription factor Nrf2: effect of chemical structure and stress signals. Free Radic Biol Med 2004; 37:1578-90. [PMID: 15477009 DOI: 10.1016/j.freeradbiomed.2004.07.021] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Revised: 06/22/2004] [Accepted: 07/15/2004] [Indexed: 12/24/2022]
Abstract
Garlic organosulfur compounds (OSCs) are recognized as a group of potential chemopreventive compounds. It is known that garlic OSCs can modulate drug metabolism systems, especially various phase II detoxifying enzymes, though the mechanism underlying their inductive effect on these enzymes remains largely unknown. In the present study, we investigated the transcriptional levels of NAD(P)H:quinone oxidoreductase 1 (NQO1) and heme oxygenase 1 (HO1) genes, the reporter activity mediated by antioxidant response element (ARE), and the protein level of transcription factor nuclear factor E2-related factor 2 (Nrf2), after administration of three major garlic OSCs--diallyl sulfide (DAS), diallyl disulfide (DADS), and diallyl trisulfide (DATS)--in human hepatoma HepG2 cells. Our results showed that ARE activation and Nrf2 protein accumulation were well correlated with phase II gene expression induction. The structure-activity relationship study indicated that the third sulfur in the structure of OSCs contributed substantially to their bioactivities, and that allyl-containing OSCs were more potent than propyl-containing OSCs. To better understand the signaling events involved in the upregulation of detoxifying enzymes by DATS, ARE activity and Nrf2 protein levels were examined after transient transfection of HepG2 cells with mutant Nrf2, cotreatment with antioxidants, and pretreatment with protein kinase inhibitors. DATS-induced ARE activity was inhibited by dominant-negative Nrf2 Kelch-like ECH-associating protein 1 and constructs. Cotreatment with thiol antioxidants decreased the ARE activity and Nrf2 protein level induced by DATS. Three major mitogen-activated protein kinases (MAPKs)--extracellular signal-regulated protein kinase, c-Jun N-terminal kinase, and p38--were activated by DATS treatment. However, the inhibition of these MAPKs did not affect DATS-induced ARE activity. Pretreatment with various upstream protein kinase inhibitors showed that the protein kinase C pathway was not directly involved in DATS-induced ARE activity, but instead the calcium-dependent signaling pathway appeared to play a role in the DATS-induced cytoprotective effect.
Collapse
Affiliation(s)
- Chi Chen
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ryu EK, Choe YS, Byun SS, Lee KH, Chi DY, Choi Y, Kim BT. Synthesis of radioiodine labeled dibenzyl disulfide for evaluation of tumor cell uptake. Bioorg Med Chem 2004; 12:859-64. [PMID: 14980597 DOI: 10.1016/j.bmc.2004.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Revised: 12/26/2003] [Accepted: 01/05/2004] [Indexed: 10/26/2022]
Abstract
Benzyl 4-halobenzyl and ally benzyl disulfide were synthesized as diallyl disulfide analogues and their tumor growth inhibitory effects on the cancer cells (SNU C5 and MCF-7) were comparable to that of diallyl disulfide, indicating that the disulfide functional group was responsible for the tumor growth inhibitory effects. Cu(I)-assisted radioiodination of benzyl 4-bromobenzyl disulfide gave benzyl 4-[123I/125I]iodobenzyl disulfide in 30-40% radiochemical yield. The radiolabeled disulfide was taken up by the cancer cells in a time-dependent manner, and the uptake was inhibited by the pretreatment of S-methyl methanethiosulfonate (MMTS), phorone and diallyl disulfide. This study suggested that the radiolabeled dibenzyl disulfide was taken up by the cancer cells via thiol-disulfide exchange and retained inside the cells.
Collapse
Affiliation(s)
- Eun Kyoung Ryu
- Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Kangnam-ku, Seoul 135-710, South Korea
| | | | | | | | | | | | | |
Collapse
|
48
|
Lu HF, Sue CC, Yu CS, Chen SC, Chen GW, Chung JG. Diallyl disulfide (DADS) induced apoptosis undergo caspase-3 activity in human bladder cancer T24 cells. Food Chem Toxicol 2004; 42:1543-52. [PMID: 15304301 DOI: 10.1016/j.fct.2003.06.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2003] [Accepted: 06/26/2003] [Indexed: 02/07/2023]
Abstract
Diallyl disulfide (DADS), one of the major components of garlic (Allium sativum), is well known to have chemopreventative activity against human cancer such as colon, lung and skin. But the exact mechanism of the action is still unclear. In this study, we investigated how DADS--induced cell cycle arrest and apoptosis in T24 human bladder cancer cells in vitro. Apoptosis induction, cell viability, cell cycle arrest, caspases-3, -9 activity and gene expression were measured to determine their variation by flow cytometric assay, western blot, and determination of caspase-3 activity, PCR and cDNA microarray. There are significant differences in cell death (decreased viable cells then increased the amounts of apoptosis) of T24 cells that were detected between DADS (5-75 microM) treated and untreated groups. A significant increase was found in apoptosis induction when cells were treated with DADS (50 microM) compared to without DADS treated groups. DADS also promoted caspase-3 activity after exposure for 1, 3, 6, 12, and 24 h, which led to induce apoptosis. DADS also increased the product of intracellular hydrogen peroxide. Furthermore, the DADS-induced apoptosis on T24 cells was blocked by the broad-spectrum caspase inhibitor, z-VAD-fmk and antioxidant (catalase). DADS also increased cyclin E and decreased CDK2 gene expression which may lead to the G2/M arrest of T24 cells.
Collapse
Affiliation(s)
- H F Lu
- Department of Clinical Pathology, Cheng-Hsin Rehabilitation Medical Center, Taipei 100, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Xiao D, Choi S, Johnson DE, Vogel VG, Johnson CS, Trump DL, Lee YJ, Singh SV. Diallyl trisulfide-induced apoptosis in human prostate cancer cells involves c-Jun N-terminal kinase and extracellular-signal regulated kinase-mediated phosphorylation of Bcl-2. Oncogene 2004; 23:5594-606. [PMID: 15184882 DOI: 10.1038/sj.onc.1207747] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Garlic-derived organosulfides (OSCs) including diallyl trisulfide (DATS) are highly effective in affording protection against chemically induced cancer in animals. Evidence is also mounting to indicate that some naturally occurring OSCs can suppress proliferation of cancer cells by causing apoptosis, but the sequence of events leading to proapoptotic effect of OSCs is poorly defined. Using PC-3 and DU145 human prostate cancer cells as a model, we now demonstrate that DATS is a significantly more potent apoptosis inducer than diallyl sulfide (DAS) or diallyl disulfide (DADS). DATS-induced apoptosis in PC-3 cells was associated with phosphorylation of Bcl-2, reduced Bcl-2 : Bax interaction, and cleavage of procaspase-9 and -3. Bcl-2 overexpressing PC-3 cells were significantly more resistant to apoptosis induction by DATS compared with vector-transfected control cells. DATS treatment resulted in activation of extracellular-signal regulated kinase 1/2 (ERK1/2) and c-jun N-terminal kinase 1 (JNK1) and/or JNK2, but not p38 mitogen-activated protein kinase. Phosphorylation of Bcl-2 in DATS-treated PC-3 cells was fully blocked in the presence of JNK-specific inhibitor SP600125. Moreover, JNK inhibitor afforded significant protection against DATS-induced apoptosis in both cells. DATS-induced Bcl-2 phosphorylation and apoptosis were partially attenuated by pharmacological inhibition of ERK1/2 using PD98059 or U0126. Overexpression of catalase inhibited DATS-mediated activation of JNK1/2, but not ERK1/2, and apoptosis induction in DU145 cells suggesting involvement of hydrogen peroxide as a second messenger in DATS-induced apoptosis. In conclusion, our data point towards important roles for Bcl-2, JNK and ERK in DATS-induced apoptosis in human prostate cancer cells.
Collapse
Affiliation(s)
- Dong Xiao
- Department of Pharmacology and Medicine, University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|