1
|
Izzo D, Ascione L, Guidi L, Marsicano RM, Koukoutzeli C, Trapani D, Curigliano G. Innovative payloads for ADCs in cancer treatment: moving beyond the selective delivery of chemotherapy. Ther Adv Med Oncol 2025; 17:17588359241309461. [PMID: 39759830 PMCID: PMC11694294 DOI: 10.1177/17588359241309461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/09/2024] [Indexed: 01/07/2025] Open
Abstract
Antibody-drug conjugates (ADCs) have emerged as a transformative approach in cancer therapy by enhancing tumor targeting and minimizing systemic toxicity compared to traditional chemotherapy. Initially developed with chemotherapy agents as payloads, ADCs have now incorporated alternative payloads, such as immune-stimulating agents, natural toxins, and radionuclides, to improve therapeutic efficacy and specificity. A significant advancement in ADC technology is the integration of Proteolysis Targeting Chimeras (PROTACs), which enable the precise degradation of cellular targets involved in tumorigenesis. This strategy enhances the specificity and precision of cancer therapies, addressing key mechanisms in cancer cell survival. Moreover, incorporating radioactive isotopes into ADCs is an emerging strategy aimed at further improving therapeutic outcomes. By delivering localized radiation, this approach offers the potential to enhance the efficacy of treatment and expand the therapeutic arsenal. Despite these innovations, challenges remain, including dysregulated immune activation, severe adverse effects, and intrinsic immunogenicity of some agents. These emerging issues highlight the ongoing need for optimization in ADC therapy. This review summarizes the latest developments in ADC technology, focusing on novel payloads, PROTAC integration, and the potential for combining ADCs with other therapeutic modalities to refine cancer treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Davide Izzo
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy
| | - Liliana Ascione
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy
| | - Lorenzo Guidi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy
| | - Renato Maria Marsicano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy
| | - Chrysanthi Koukoutzeli
- Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy
| | - Dario Trapani
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology, IRCCS, Via Giuseppe Ripamonti 435, Milan 20141, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Sánchez-Guardado L, Razavi P, Wang B, Callejas-Marín A, Lois C. Projection neurons are necessary for the maintenance of the mouse olfactory circuit. eLife 2024; 13:RP90296. [PMID: 39671236 PMCID: PMC11643621 DOI: 10.7554/elife.90296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
The assembly and maintenance of neural circuits is crucial for proper brain function. Although the assembly of brain circuits has been extensively studied, much less is understood about the mechanisms controlling their maintenance as animals mature. In the olfactory system, the axons of olfactory sensory neurons (OSNs) expressing the same odor receptor converge into discrete synaptic structures of the olfactory bulb (OB) called glomeruli, forming a stereotypic odor map. The OB projection neurons, called mitral and tufted cells (M/Ts), have a single dendrite that branches into a single glomerulus, where they make synapses with OSNs. We used a genetic method to progressively eliminate the vast majority of M/T cells in early postnatal mice, and observed that the assembly of the OB bulb circuits proceeded normally. However, as the animals became adults the apical dendrite of remaining M/Ts grew multiple branches that innervated several glomeruli, and OSNs expressing single odor receptors projected their axons into multiple glomeruli, disrupting the olfactory sensory map. Moreover, ablating the M/Ts in adult animals also resulted in similar structural changes in the projections of remaining M/Ts and axons from OSNs. Interestingly, the ability of these mice to detect odors was relatively preserved despite only having 1-5% of projection neurons transmitting odorant information to the brain, and having highly disrupted circuits in the OB. These results indicate that a reduced number of projection neurons does not affect the normal assembly of the olfactory circuit, but induces structural instability of the olfactory circuitry of adult animals.
Collapse
Affiliation(s)
- Luis Sánchez-Guardado
- Department of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Department of Cell Biology, School of Science, University of ExtremaduraBadajozSpain
| | - Peyman Razavi
- Department of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Bo Wang
- Department of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Antuca Callejas-Marín
- Department of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Department of Cell Biology, School of Science, University of ExtremaduraBadajozSpain
| | - Carlos Lois
- Department of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
3
|
Ismeurt-Walmsley C, Kremer EJ. Can viral proteins be retooled for chimeric toxin development? Arch Virol 2024; 169:252. [PMID: 39565421 DOI: 10.1007/s00705-024-06173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/21/2024]
Affiliation(s)
- Caroline Ismeurt-Walmsley
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France.
| | - Eric J Kremer
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
4
|
Osanai Y, Xing YL, Mochizuki S, Kobayashi K, Homman-Ludiye J, Cooray A, Poh J, Inutsuka A, Ohno N, Merson TD. 5' Transgenes drive leaky expression of 3' transgenes in Cre-inducible bi-cistronic vectors. Mol Ther Methods Clin Dev 2024; 32:101288. [PMID: 39104576 PMCID: PMC11298883 DOI: 10.1016/j.omtm.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/21/2024] [Indexed: 08/07/2024]
Abstract
Molecular cloning techniques enabling contemporaneous expression of two or more protein-coding sequences provide an invaluable tool for understanding the molecular regulation of cellular functions. The Cre-lox system is used for inducing the expression of recombinant proteins encoded within a bi-/poly-cistronic cassette. However, leak expression of transgenes is often observed in the absence of Cre recombinase activity, compromising the utility of this approach. To investigate the mechanism of leak expression, we generated Cre-inducible bi-cistronic vectors to monitor the expression of transgenes positioned either 5' or 3' of a 2A peptide or internal ribosomal entry site (IRES) sequence. Cells transfected with these bi-cistronic vectors exhibited Cre-independent leak expression specifically of transgenes positioned 3' of the 2A peptide or IRES sequence. Similarly, AAV-FLEX vectors encoding bi-cistronic cassettes or fusion proteins revealed the selective Cre-independent leak expression of transgenes positioned at the 3' end of the open reading frame. Our data demonstrate that 5' transgenes confer promoter-like activity that drives the expression of 3' transgenes. An additional lox-STOP-lox cassette between the 2A sequence and 3' transgene dramatically decreased Cre-independent transgene expression. Our findings highlight the need for appropriate experimental controls when using Cre-inducible bi-/poly-cistronic constructs and inform improved design of vectors for more tightly regulated inducible transgene expression.
Collapse
Affiliation(s)
- Yasuyuki Osanai
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0431, Japan
| | - Yao Lulu Xing
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Shinya Mochizuki
- Department of Anatomy, Bioimaging and Neuro-cell Science, Jichi Medical University, Shimotsuke, Tochigi 329-0431, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa 240-0193, Japan
| | - Jihane Homman-Ludiye
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Amali Cooray
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Jasmine Poh
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
| | - Ayumu Inutsuka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, Tochigi 329-0431, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0431, Japan
- Division of Ultrastructure Research, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan
| | - Tobias D. Merson
- Australian Regenerative Medicine Institute, Monash University, 15 Innovation Walk, Clayton, VIC 3800, Australia
- Oligodendroglial Interactions Group, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Fattahi AS, Jafari M, Farahavar G, Abolmaali SS, Tamaddon AM. Expanding horizons in cancer therapy by immunoconjugates targeting tumor microenvironments. Crit Rev Oncol Hematol 2024; 201:104437. [PMID: 38977144 DOI: 10.1016/j.critrevonc.2024.104437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Immunoconjugates are promising molecules combining antibodies with different agents, such as toxins, drugs, radionuclides, or cytokines that primarily aim to target tumor cells. However, tumor microenvironment (TME), which comprises a complex network of various cells and molecular cues guiding tumor growth and progression, remains a major challenge for effective cancer therapy. Our review underscores the pivotal role of TME in cancer therapy with immunoconjugates, examining the intricate interactions with TME and recent advancements in TME-targeted immunoconjugates. We explore strategies for targeting TME components, utilizing diverse antibodies such as neutralizing, immunomodulatory, immune checkpoint inhibitors, immunostimulatory, and bispecific antibodies. Additionally, we discuss different immunoconjugates, elucidating their mechanisms of action, advantages, limitations, and applications in cancer immunotherapy. Furthermore, we highlight emerging technologies enhancing the safety and efficacy of immunoconjugates, such as antibody engineering, combination therapies, and nanotechnology. Finally, we summarize current advancements, perspectives, and future developments of TME-targeted immunoconjugates.
Collapse
Affiliation(s)
- Amir Saamaan Fattahi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahboobeh Jafari
- Center for Nanotechnology in Drug Delivery School of Pharmacy, Shiraz University of Medical Sciences, Iran.
| | - Ghazal Farahavar
- Center for Nanotechnology in Drug Delivery School of Pharmacy, Shiraz University of Medical Sciences, Iran.
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery School of Pharmacy, Shiraz University of Medical Sciences, Iran.
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery School of Pharmacy, Shiraz University of Medical Sciences, Iran.
| |
Collapse
|
6
|
Rodrigo MB, De Min A, Jorch SK, Martin-Higueras C, Baumgart AK, Goldyn B, Becker S, Garbi N, Lemmermann NA, Kurts C. Dual fluorescence reporter mice for Ccl3 transcription, translation, and intercellular communication. J Exp Med 2024; 221:e20231814. [PMID: 38661718 PMCID: PMC11044946 DOI: 10.1084/jem.20231814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/21/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Chemokines guide immune cells during their response against pathogens and tumors. Various techniques exist to determine chemokine production, but none to identify cells that directly sense chemokines in vivo. We have generated CCL3-EASER (ErAse, SEnd, Receive) mice that simultaneously report for Ccl3 transcription and translation, allow identifying Ccl3-sensing cells, and permit inducible deletion of Ccl3-producing cells. We infected these mice with murine cytomegalovirus (mCMV), where Ccl3 and NK cells are critical defense mediators. We found that NK cells transcribed Ccl3 already in homeostasis, but Ccl3 translation required type I interferon signaling in infected organs during early infection. NK cells were both the principal Ccl3 producers and sensors of Ccl3, indicating auto/paracrine communication that amplified NK cell response, and this was essential for the early defense against mCMV. CCL3-EASER mice represent the prototype of a new class of dual fluorescence reporter mice for analyzing cellular communication via chemokines, which may be applied also to other chemokines and disease models.
Collapse
Affiliation(s)
- Maria Belen Rodrigo
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Anna De Min
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Selina Kathleen Jorch
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Cristina Martin-Higueras
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Ann-Kathrin Baumgart
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Beata Goldyn
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Sara Becker
- Institute of Virology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| | - Niels A. Lemmermann
- Institute of Virology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
- Institute for Virology, University Medical Center Mainz, Mainz, Germany
| | - Christian Kurts
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University Hospital of Bonn University, Bonn, Germany
| |
Collapse
|
7
|
Prygiel M, Mosiej E, Polak M, Krysztopa-Grzybowska K, Wdowiak K, Formińska K, Zasada AA. Challenges of Diphtheria Toxin Detection. Toxins (Basel) 2024; 16:245. [PMID: 38922140 PMCID: PMC11209151 DOI: 10.3390/toxins16060245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Diphtheria toxin (DT) is the main virulence factor of Corynebacterium diphtheriae, C. ulcerans and C. pseudotuberculosis. Moreover, new Corynebacterium species with the potential to produce diphtheria toxin have also been described. Therefore, the detection of the toxin is the most important test in the microbiological diagnosis of diphtheria and other corynebacteria infections. Since the first demonstration in 1888 that DT is a major virulence factor of C. diphtheriae, responsible for the systemic manifestation of the disease, various methods for DT detection have been developed, but the diagnostic usefulness of most of them has not been confirmed on a sufficiently large group of samples. Despite substantial progress in the science and diagnostics of infectious diseases, the Elek test is still the basic recommended diagnostic test for DT detection. The challenge here is the poor availability of an antitoxin and declining experience even in reference laboratories due to the low prevalence of diphtheria in developed countries. However, recent and very promising assays have been developed with the potential for use as rapid point-of-care testing (POCT), such as ICS and LFIA for toxin detection, LAMP for tox gene detection, and biosensors for both.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aleksandra A. Zasada
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH—National Research Institute, Chocimska 24, 00-791 Warsaw, Poland; (M.P.); (E.M.); (M.P.); (K.K.-G.); (K.W.); (K.F.)
| |
Collapse
|
8
|
Hamada M, Varkoly KS, Riyadh O, Beladi R, Munuswamy-Ramanujam G, Rawls A, Wilson-Rawls J, Chen H, McFadden G, Lucas AR. Urokinase-Type Plasminogen Activator Receptor (uPAR) in Inflammation and Disease: A Unique Inflammatory Pathway Activator. Biomedicines 2024; 12:1167. [PMID: 38927374 PMCID: PMC11201033 DOI: 10.3390/biomedicines12061167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 06/28/2024] Open
Abstract
The urokinase-type plasminogen activator receptor (uPAR) is a unique protease binding receptor, now recognized as a key regulator of inflammation. Initially, uPA/uPAR was considered thrombolytic (clot-dissolving); however, recent studies have demonstrated its predominant immunomodulatory functions in inflammation and cancer. The uPA/uPAR complex has a multifaceted central role in both normal physiological and also pathological responses. uPAR is expressed as a glycophosphatidylinositol (GPI)-linked receptor interacting with vitronectin, integrins, G protein-coupled receptors, and growth factor receptors within a large lipid raft. Through protein-to-protein interactions, cell surface uPAR modulates intracellular signaling, altering cellular adhesion and migration. The uPA/uPAR also modifies extracellular activity, activating plasminogen to form plasmin, which breaks down fibrin, dissolving clots and activating matrix metalloproteinases that lyse connective tissue, allowing immune and cancer cell invasion and releasing growth factors. uPAR is now recognized as a biomarker for inflammatory diseases and cancer; uPAR and soluble uPAR fragments (suPAR) are increased in viral sepsis (COVID-19), inflammatory bowel disease, and metastasis. Here, we provide a comprehensive overview of the structure, function, and current studies examining uPAR and suPAR as diagnostic markers and therapeutic targets. Understanding uPAR is central to developing diagnostic markers and the ongoing development of antibody, small-molecule, nanogel, and virus-derived immune-modulating treatments that target uPAR.
Collapse
Affiliation(s)
- Mostafa Hamada
- College of Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (M.H.); (O.R.)
| | - Kyle Steven Varkoly
- Department of Internal Medicine, McLaren Macomb Hospital, Michigan State University College of Human Medicine, 1000 Harrington St., Mt Clemens, MI 48043, USA
| | - Omer Riyadh
- College of Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (M.H.); (O.R.)
| | - Roxana Beladi
- Department of Neurosurgery, Ascension Providence Hospital, Michigan State University College of Human Medicine, 16001 W Nine Mile Rd, Southfield, MI 48075, USA;
| | - Ganesh Munuswamy-Ramanujam
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603203, India;
| | - Alan Rawls
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA; (A.R.); (J.W.-R.)
| | - Jeanne Wilson-Rawls
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85281, USA; (A.R.); (J.W.-R.)
| | - Hao Chen
- Department of Tumor Center, Lanzhou University Second Hospital, Lanzhou 730030, China;
| | - Grant McFadden
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 727 E Tyler St., Tempe, AZ 85287, USA;
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, 727 E Tyler St., Tempe, AZ 85287, USA;
| |
Collapse
|
9
|
Eghtedari S, Behdani M, Kazemi-Lomedasht F. Neuropilin-1 Binding Peptide as Fusion to Diphtheria Toxin Induces Apoptosis in Non-small Cell Lung Cancer Cell Line. Curr Pharm Des 2024; 30:1317-1325. [PMID: 38584554 DOI: 10.2174/0113816128292382240325074032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/21/2024] [Accepted: 03/04/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Targeted cancer therapy can be considered as a new strategy to overcome the side effects of current cancer treatments. Neuropilin-1 (NRP-1) is a transmembrane glycoprotein that is expressed in endothelial cells and tumor vessels to stimulate angiogenesis progression. Targeted diphtheria toxin (DT)- based therapeutics are promising tools for cancer treatment. This study aimed to construct a novel NRP-1 binding peptide (as three repeats) (CRGDK) as a fusion to truncated DT (DTA) (DTA-triCRGDK) for targeted delivery of DT into NRP-1 expressing cells. METHODS The concept of DTA-triCRGDK was designed, synthesized and cloned into the bacterial host. Expression of DTA-triCRGDK was induced by Isopropyl ß-D-1-thiogalactopyranoside (IPTG) and purification was performed using Ni-NTA chromatography. Biological activity of DTA-triCRGDK was evaluated using MTT, apoptosis, and wound healing assays. In addition, expression levels of apoptotic Bax, Bcl2, and Casp3 genes were determined by Real-time PCR. RESULTS Cytotoxicity analysis showed the IC50 values of DTA-triCRGDK for A549 and MRC5 were 0.43 nM and 4.12 nM after 24 h, respectively. Bcl2 expression levels decreased 0.4 and 0.72 fold in A549 and MRC5, respectively. However, Bax and Casp3 expression level increased by 6.75 and 8.19 in A549 and 2.51 and 3.6 in MRC5 cells. CONCLUSION Taken together, DTA-triCRGDK is a promising tool for targeted therapy of NRP-1 overexpressing cancer cells.
Collapse
Affiliation(s)
- Sara Eghtedari
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
10
|
Feng X, Chang R, Zhu H, Yang Y, Ji Y, Liu D, Qin H, Yin J, Rong H. Engineering Proteins for Cell Entry. Mol Pharm 2023; 20:4868-4882. [PMID: 37708383 DOI: 10.1021/acs.molpharmaceut.3c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Proteins are essential for life, as they participate in all vital processes in the body. In the past decade, delivery of active proteins to specific cells and organs has attracted increasing interest. However, most proteins cannot enter the cytoplasm due to the cell membrane acting as a natural barrier. To overcome this challenge, various proteins have been engineered to acquire cell-penetrating capacity by mimicking or modifying natural shuttling proteins. In this review, we provide an overview of the different types of engineered cell-penetrating proteins such as cell-penetrating peptides, supercharged proteins, receptor-binding proteins, and bacterial toxins. We also discuss some strategies for improving endosomal escape such as pore formation, the proton sponge effect, and hijacking intracellular trafficking pathways. Finally, we introduce some novel methods and technologies for designing and detecting engineered cell-penetrating proteins.
Collapse
Affiliation(s)
- Xiaoyu Feng
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Ruilong Chang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Haichao Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yifan Yang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, No. 206, Sixian Street, Baiyun District, Guiyang, Guizhou 550014, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Haibo Rong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| |
Collapse
|
11
|
Carignon S, De Moura Rodrigues D, Gosset D, Culerier E, Huot-Marchand S, Savigny F, Kaya E, Quesniaux V, Gombault A, Couillin I, Ryffel B, Le Bert M, Riteau N. Lung inflammation and interstitial fibrosis by targeted alveolar epithelial type I cell death. Front Immunol 2023; 14:1261483. [PMID: 37841243 PMCID: PMC10568624 DOI: 10.3389/fimmu.2023.1261483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction The pathogenesis of chronic lung diseases is multifaceted with a major role of recurrent micro-injuries of the epithelium. While several reports clearly indicated a prominent role for surfactant-producing alveolar epithelial type 2 (AT2) cells, the contribution of gas exchange-permissive alveolar epithelial type 1 (AT1) cells has not been addressed yet. Here, we investigated whether repeated injury of AT1 cells leads to inflammation and interstitial fibrosis. Methods We chose an inducible model of AT1 cell depletion following local diphtheria toxin (DT) administration using an iDTR flox/flox (idTRfl/fl) X Aquaporin 5CRE (Aqp5CRE) transgenic mouse strain. Results We investigated repeated doses and intervals of DT to induce cell death of AT1 cells causing inflammation and interstitial fibrosis. We found that repeated DT administrations at 1ng in iDTRfl/fl X Aqp5CRE mice cause AT1 cell death leading to inflammation, increased tissue repair markers and interstitial pulmonary fibrosis. Discussion Together, we demonstrate that depletion of AT1 cells using repeated injury represents a novel approach to investigate chronic lung inflammatory diseases and to identify new therapeutic targets.
Collapse
Affiliation(s)
- Sandra Carignon
- University of Orleans and CNRS, Immunologie et Neurogénétique Expérimentales et Moléculaires -UMR7355, Orleans, France
| | - Dorian De Moura Rodrigues
- University of Orleans and CNRS, Immunologie et Neurogénétique Expérimentales et Moléculaires -UMR7355, Orleans, France
| | - David Gosset
- Center for Molecular Biophysics, CNRS Unité propre de recherche 4301, Orleans, France
| | - Elodie Culerier
- University of Orleans and CNRS, Immunologie et Neurogénétique Expérimentales et Moléculaires -UMR7355, Orleans, France
| | - Sarah Huot-Marchand
- University of Orleans and CNRS, Immunologie et Neurogénétique Expérimentales et Moléculaires -UMR7355, Orleans, France
| | - Florence Savigny
- University of Orleans and CNRS, Immunologie et Neurogénétique Expérimentales et Moléculaires -UMR7355, Orleans, France
| | - Eric Kaya
- University of Orleans and CNRS, Immunologie et Neurogénétique Expérimentales et Moléculaires -UMR7355, Orleans, France
| | - Valerie Quesniaux
- University of Orleans and CNRS, Immunologie et Neurogénétique Expérimentales et Moléculaires -UMR7355, Orleans, France
| | - Aurélie Gombault
- University of Orleans and CNRS, Immunologie et Neurogénétique Expérimentales et Moléculaires -UMR7355, Orleans, France
| | - Isabelle Couillin
- University of Orleans and CNRS, Immunologie et Neurogénétique Expérimentales et Moléculaires -UMR7355, Orleans, France
| | - Bernhard Ryffel
- University of Orleans and CNRS, Immunologie et Neurogénétique Expérimentales et Moléculaires -UMR7355, Orleans, France
| | - Marc Le Bert
- University of Orleans and CNRS, Immunologie et Neurogénétique Expérimentales et Moléculaires -UMR7355, Orleans, France
| | - Nicolas Riteau
- University of Orleans and CNRS, Immunologie et Neurogénétique Expérimentales et Moléculaires -UMR7355, Orleans, France
| |
Collapse
|
12
|
Liao Y, Xiang Y, Zheng M, Wang J. DeepMiceTL: a deep transfer learning based prediction of mice cardiac conduction diseases using early electrocardiograms. Brief Bioinform 2023; 24:bbad109. [PMID: 36935112 PMCID: PMC10422927 DOI: 10.1093/bib/bbad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/10/2023] [Accepted: 03/01/2023] [Indexed: 03/21/2023] Open
Abstract
Cardiac conduction disease is a major cause of morbidity and mortality worldwide. There is considerable clinical significance and an emerging need of early detection of these diseases for preventive treatment success before more severe arrhythmias occur. However, developing such early screening tools is challenging due to the lack of early electrocardiograms (ECGs) before symptoms occur in patients. Mouse models are widely used in cardiac arrhythmia research. The goal of this paper is to develop deep learning models to predict cardiac conduction diseases in mice using their early ECGs. We hypothesize that mutant mice present subtle abnormalities in their early ECGs before severe arrhythmias present. These subtle patterns can be detected by deep learning though they are hard to be identified by human eyes. We propose a deep transfer learning model, DeepMiceTL, which leverages knowledge from human ECGs to learn mouse ECG patterns. We further apply the Bayesian optimization and $k$-fold cross validation methods to tune the hyperparameters of the DeepMiceTL. Our results show that DeepMiceTL achieves a promising performance (F1-score: 83.8%, accuracy: 84.8%) in predicting the occurrence of cardiac conduction diseases using early mouse ECGs. This study is among the first efforts that use state-of-the-art deep transfer learning to identify ECG patterns during the early course of cardiac conduction disease in mice. Our approach not only could help in cardiac conduction disease research in mice, but also suggest a feasibility for early clinical diagnosis of human cardiac conduction diseases and other types of cardiac arrythmias using deep transfer learning in the future.
Collapse
Affiliation(s)
- Ying Liao
- Department of Industrial, Manufacturing & Systems Engineering, Texas Tech University, Lubbock, Texas, USA
| | - Yisha Xiang
- Department of Industrial Engineering, University of Houston, Houston, Texas, USA
| | - Mingjie Zheng
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
13
|
Sun Y, Zabihi M, Li Q, Li X, Kim BJ, Ubogu EE, Raja SN, Wesselmann U, Zhao C. Drug Permeability: From the Blood-Brain Barrier to the Peripheral Nerve Barriers. ADVANCED THERAPEUTICS 2023; 6:2200150. [PMID: 37649593 PMCID: PMC10465108 DOI: 10.1002/adtp.202200150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 01/20/2023]
Abstract
Drug delivery into the peripheral nerves and nerve roots has important implications for effective local anesthesia and treatment of peripheral neuropathies and chronic neuropathic pain. Similar to drugs that need to cross the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) to gain access to the central nervous system (CNS), drugs must cross the peripheral nerve barriers (PNB), formed by the perineurium and blood-nerve barrier (BNB) to modulate peripheral axons. Despite significant progress made to develop effective strategies to enhance BBB permeability in therapeutic drug design, efforts to enhance drug permeability and retention in peripheral nerves and nerve roots are relatively understudied. Guided by knowledge describing structural, molecular and functional similarities between restrictive neural barriers in the CNS and peripheral nervous system (PNS), we hypothesize that certain CNS drug delivery strategies are adaptable for peripheral nerve drug delivery. In this review, we describe the molecular, structural and functional similarities and differences between the BBB and PNB, summarize and compare existing CNS and peripheral nerve drug delivery strategies, and discuss the potential application of selected CNS delivery strategies to improve efficacious drug entry for peripheral nerve disorders.
Collapse
Affiliation(s)
- Yifei Sun
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Mahmood Zabihi
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Qi Li
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Xiaosi Li
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Brandon J. Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa AL 35487, USA
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham AL 35294, USA
- Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa AL 35487, USA
- Alabama Life Research Institute, University of Alabama, Tuscaloosa AL 35487, USA
| | - Eroboghene E. Ubogu
- Division of Neuromuscular Disease, Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Srinivasa N. Raja
- Division of Pain Medicine, Department of Anesthesiology & Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Ursula Wesselmann
- Department of Anesthesiology and Perioperative Medicine, Division of Pain Medicine, and Department of Neurology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Consortium for Neuroengineering and Brain-Computer Interfaces, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chao Zhao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA
- Center for Convergent Biosciences and Medicine, University of Alabama, Tuscaloosa AL 35487, USA
- Alabama Life Research Institute, University of Alabama, Tuscaloosa AL 35487, USA
| |
Collapse
|
14
|
Bui S, Dancourt J, Lavieu G. Virus-Free Method to Control and Enhance Extracellular Vesicle Cargo Loading and Delivery. ACS APPLIED BIO MATERIALS 2023; 6:1081-1091. [PMID: 36781171 PMCID: PMC10031566 DOI: 10.1021/acsabm.2c00955] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Extracellular vesicles (EVs)─including exosomes and microvesicles─are involved in cell-cell communication. EVs encapsulate different types of molecules such as proteins or nucleotides and are long-lasting contenders for the establishment of personalized drug delivery systems. Recent studies suggest that the intrinsic capacities for uptake and cargo delivery of basic EVs might be too limited to serve as a potent delivery system. Here, we develop two synergistic methods to, respectively, control EV cargo loading and enhance EV cargo delivery through fusion without requirement for any viral fusogenic protein. Briefly, cargo loading is enabled through a reversible drug-inducible system that triggers the interaction between a cargo of interest and CD63, a well-established transmembrane EV marker. Enhanced cargo delivery is promoted by overexpressing Syncytin-1, an endogenous retrovirus envelop protein with fusogenic properties encoded by the human genome. We validate our bioengineered EVs in a qualitative and quantitative manner. Finally, we utilize this method to develop highly potent killer EVs, which contain a lethal toxin responsible for protein translation arrest and acceptor cell death. These advanced methods and future downstream applications may open promising doors in the manufacture of virus-free and EV-based delivery systems.
Collapse
Affiliation(s)
- Sheryl Bui
- INSERM U1316, CNRS UMR 7057, Université Paris Cité, 75006 Paris, France
| | - Julia Dancourt
- INSERM U1316, CNRS UMR 7057, Université Paris Cité, 75006 Paris, France
| | - Gregory Lavieu
- INSERM U1316, CNRS UMR 7057, Université Paris Cité, 75006 Paris, France
| |
Collapse
|
15
|
Stockdale JN, Millwood RJ. Transgene Bioconfinement: Don't Flow There. PLANTS (BASEL, SWITZERLAND) 2023; 12:1099. [PMID: 36903958 PMCID: PMC10005267 DOI: 10.3390/plants12051099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The adoption of genetically engineered (GE) crops has led to economic and environmental benefits. However, there are regulatory and environmental concerns regarding the potential movement of transgenes beyond cultivation. These concerns are greater for GE crops with high outcrossing frequencies to sexually compatible wild relatives and those grown in their native region. Newer GE crops may also confer traits that enhance fitness, and introgression of these traits could negatively impact natural populations. Transgene flow could be lessened or prevented altogether through the addition of a bioconfinement system during transgenic plant production. Several bioconfinement approaches have been designed and tested and a few show promise for transgene flow prevention. However, no system has been widely adopted despite nearly three decades of GE crop cultivation. Nonetheless, it may be necessary to implement a bioconfinement system in new GE crops or in those where the potential of transgene flow is high. Here, we survey such systems that focus on male and seed sterility, transgene excision, delayed flowering, as well as the potential of CRISPR/Cas9 to reduce or eliminate transgene flow. We discuss system utility and efficacy, as well as necessary features for commercial adoption.
Collapse
|
16
|
Targeting the Inside of Cells with Biologicals: Toxin Routes in a Therapeutic Context. BioDrugs 2023; 37:181-203. [PMID: 36729328 PMCID: PMC9893211 DOI: 10.1007/s40259-023-00580-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Numerous toxins translocate to the cytosol in order to fulfil their function. This demonstrates the existence of routes for proteins from the extracellular space to the cytosol. Understanding these routes is relevant to multiple aspects related to therapeutic applications. These include the development of anti-toxin treatments, the potential use of toxins as shuttles for delivering macromolecular cargo to the cytosol or the use of drugs based on toxins. Compared with other strategies for delivery, such as chemicals as carriers for macromolecular delivery or physical methods like electroporation, toxin routes present paths into the cell that potentially cause less damage and can be specifically targeted. The efficiency of delivery via toxin routes is limited. However, low-delivery efficiencies can be entirely sufficient, if delivered cargoes possess an amplification effect or if very few molecules are sufficient for inducing the desired effects. This is known for example from RNA-based vaccines that have been developed during the coronavirus disease 2019 pandemic as well as for other approved RNA-based drugs, which elicited the desired effect despite their typically low delivery efficiencies. The different mechanisms by which toxins enter cells may have implications for their technological utility. We review the mechanistic principles of the translocation pathway of toxins from the extracellular space to the cytosol, the delivery efficiencies, and therapeutic strategies or applications that exploit toxin routes for intracellular delivery.
Collapse
|
17
|
Sun C, Ye Y, Tan Z, Liu Y, Li Y, Hu W, Liang K, Egranov SD, Huang LA, Zhang Z, Zhang Y, Yao J, Nguyen TK, Zhao Z, Wu A, Marks JR, Caudle AS, Sahin AA, Gao J, Gammon ST, Piwnica-Worms D, Hu J, Chiao PJ, Yu D, Hung MC, Curran MA, Calin GA, Ying H, Han L, Lin C, Yang L. Tumor-associated nonmyelinating Schwann cell-expressed PVT1 promotes pancreatic cancer kynurenine pathway and tumor immune exclusion. SCIENCE ADVANCES 2023; 9:eadd6995. [PMID: 36724291 PMCID: PMC9891701 DOI: 10.1126/sciadv.add6995] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/03/2023] [Indexed: 05/16/2023]
Abstract
One of the major obstacles to treating pancreatic ductal adenocarcinoma (PDAC) is its immunoresistant microenvironment. The functional importance and molecular mechanisms of Schwann cells in PDAC remains largely elusive. We characterized the gene signature of tumor-associated nonmyelinating Schwann cells (TASc) in PDAC and indicated that the abundance of TASc was correlated with immune suppressive tumor microenvironment and the unfavorable outcome of patients with PDAC. Depletion of pancreatic-specific TASc promoted the tumorigenesis of PDAC tumors. TASc-expressed long noncoding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) was triggered by the tumor cell-produced interleukin-6. Mechanistically, PVT1 modulated RAF proto-oncogene serine/threonine protein kinase-mediated phosphorylation of tryptophan 2,3-dioxygenase in TASc, facilitating its enzymatic activities in catalysis of tryptophan to kynurenine. Depletion of TASc-expressed PVT1 suppressed PDAC tumor growth. Furthermore, depletion of TASc using a small-molecule inhibitor effectively sensitized PDAC to immunotherapy, signifying the important roles of TASc in PDAC immune resistance.
Collapse
Affiliation(s)
- Chengcao Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Zhi Tan
- Center for Drug Discovery, Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuan Liu
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yajuan Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Hu
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ke Liang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sergey D. Egranov
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lisa Angela Huang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
| | - Yaohua Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tina K. Nguyen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zilong Zhao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Wu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey R. Marks
- Division of Surgical Science, Department of Surgery, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Abigail S. Caudle
- Department of Breast Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Aysegul A. Sahin
- Department of Pathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Seth T. Gammon
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Hu
- Department of Cancer Biology, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Paul J. Chiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - Michael A. Curran
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Haoqiang Ying
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
18
|
Rocha BGS, Picoli CC, Gonçalves BOP, Silva WN, Costa AC, Moraes MM, Costa PAC, Santos GSP, Almeida MR, Silva LM, Singh Y, Falchetti M, Guardia GDA, Guimarães PPG, Russo RC, Resende RR, Pinto MCX, Amorim JH, Azevedo VAC, Kanashiro A, Nakaya HI, Rocha EL, Galante PAF, Mintz A, Frenette PS, Birbrair A. Tissue-resident glial cells associate with tumoral vasculature and promote cancer progression. Angiogenesis 2023; 26:129-166. [PMID: 36183032 DOI: 10.1007/s10456-022-09858-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
Abstract
Cancer cells are embedded within the tissue and interact dynamically with its components during cancer progression. Understanding the contribution of cellular components within the tumor microenvironment is crucial for the success of therapeutic applications. Here, we reveal the presence of perivascular GFAP+/Plp1+ cells within the tumor microenvironment. Using in vivo inducible Cre/loxP mediated systems, we demonstrated that these cells derive from tissue-resident Schwann cells. Genetic ablation of endogenous Schwann cells slowed down tumor growth and angiogenesis. Schwann cell-specific depletion also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of tumor biopsies revealed that increased expression of Schwann cell-related genes within melanoma was associated with improved survival. Collectively, our study suggests that Schwann cells regulate tumor progression, indicating that manipulation of Schwann cells may provide a valuable tool to improve cancer patients' outcomes.
Collapse
Affiliation(s)
- Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bryan O P Gonçalves
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Walison N Silva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Michele M Moraes
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro A C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Milla R Almeida
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana M Silva
- Department of Cell Biology, Ezequiel Dias Foundation, Belo Horizonte, MG, Brazil
| | - Youvika Singh
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Marcelo Falchetti
- Department of Microbiology and Immunology, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Pedro P G Guimarães
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Remo C Russo
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro C X Pinto
- Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO, Brazil
| | - Jaime H Amorim
- Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras, BA, Brazil
| | - Vasco A C Azevedo
- Department of Genetics, Ecology and Evolution, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexandre Kanashiro
- Department of Dermatology, University of Wisconsin-Madison, Medical Sciences Center, Rm 4385, 1300 University Avenue, Madison, WI, 53706, USA
| | | | - Edroaldo L Rocha
- Department of Microbiology and Immunology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sirio-Libanes, Sao Paulo, SP, Brazil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Paul S Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
- Department of Dermatology, University of Wisconsin-Madison, Medical Sciences Center, Rm 4385, 1300 University Avenue, Madison, WI, 53706, USA.
- Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
19
|
Dancourt J, Piovesana E, Lavieu G. Efficient cell death mediated by bioengineered killer extracellular vesicles. Sci Rep 2023; 13:1086. [PMID: 36658184 PMCID: PMC9852484 DOI: 10.1038/s41598-023-28306-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Extracellular vesicles (EVs) are biological vehicles that are thought to mediate cell-cell communication via the transfer of biomolecules from donor to acceptor cells. Repurposing those natural vesicles into therapeutics delivery vectors is a high priority challenge for translational science. Here we engineer donor cells to produce copious amount of fusogenic EVs loaded with the catalytic domain of the Diphteria Toxin, known to trigger cell death through protein synthesis inhibition. We show that, when incubated with cancer acceptor cells, these Killer EVs block protein synthesis and lead to cell death. This proof of concept establishes the efficacy of Killer EVs in vitro, and suggests that further development may lead to tumor ablation in vivo, expanding the existing cancer therapeutics arsenal.
Collapse
Affiliation(s)
- Julia Dancourt
- Université Paris Cité, INSERM U1316, UMR 7057/CNRS, Paris, France.
| | - Ester Piovesana
- Laboratory for Aging Disorders, Laboratories for Translational Research, EOC Bellinzona (Bios+), Bellinzona, Switzerland
| | - Gregory Lavieu
- Université Paris Cité, INSERM U1316, UMR 7057/CNRS, Paris, France.
| |
Collapse
|
20
|
Bader C, Taylor M, Banerjee T, Teter K. The cytopathic activity of cholera toxin requires a threshold quantity of cytosolic toxin. Cell Signal 2023; 101:110520. [PMID: 36371029 PMCID: PMC9722578 DOI: 10.1016/j.cellsig.2022.110520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
After binding to the surface of a target cell, cholera toxin (CT) moves to the endoplasmic reticulum (ER) by retrograde transport. In the ER, the catalytic CTA1 subunit dissociates from the rest of the toxin and is transferred to the cytosol where it is degraded by a ubiquitin-independent proteasomal mechanism. However, CTA1 persists long enough to induce excessive cAMP production through the activation of Gsα. It is generally believed that only one or a few molecules of cytosolic CTA1 are necessary to elicit a cytopathic effect, yet no study has directly correlated the levels of cytosolic toxin to the extent of intoxication. Here, we used the technology of surface plasmon resonance to quantify the cytosolic pool of CTA1. Our data demonstrate that only 4% of surface-bound CTA1 is found in the cytosol after 2 h of intoxication. This represented around 2600 molecules of cytosolic toxin per cell, and it was sufficient to produce a robust cAMP response. However, we did not detect elevated cAMP levels in cells containing less than 700 molecules of cytosolic toxin. Thus, a threshold quantity of cytosolic CTA1 is required to elicit a cytopathic effect. When translocation to the cytosol was blocked soon after toxin exposure, the pool of CTA1 already in the cytosol was degraded and was not replenished. The cytosolic pool of CTA1 thus remained below its functional threshold, preventing the initiation of a cAMP response. These observations challenge the paradigm that extremely low levels of cytosolic toxin are sufficient for toxicity, and they provide experimental support for the development of post-intoxication therapeutic strategies.
Collapse
Affiliation(s)
- Carly Bader
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA
| | - Michael Taylor
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA
| | - Tuhina Banerjee
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| | - Ken Teter
- Burnett School of Biomedical Sciences, 12722 Research Parkway, University of Central Florida, Orlando, FL 32826, USA.
| |
Collapse
|
21
|
Recent advances in microbial toxin-related strategies to combat cancer. Semin Cancer Biol 2022; 86:753-768. [PMID: 34271147 DOI: 10.1016/j.semcancer.2021.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023]
Abstract
It is a major concern to treat cancer successfully, due to the distinctive pathophysiology of cancer cells and the gradual manifestation of resistance. Specific action, adverse effects and development of resistance has prompted the urgent requirement of exploring alternative anti-tumour treatment therapies. The naturally derived microbial toxins as a therapy against cancer cells are a promisingly new dimension. Various important microbial toxins such as Diphtheria toxin, Vibrio cholera toxin, Aflatoxin, Patulin, Cryptophycin-55, Chlorella are derived from several bacterial, fungal and algal species. These agents act on different biotargets such as inhibition of protein synthesis, reduction in cell growth, regulation of cell cycle and many cellular processes. Bacterial toxins produce actions primarily by targeting protein moieties and some immunomodulation and few acts through DNA. Fungal toxins appear to have more DNA damaging activity and affect the cell cycle. Algal toxins produce alteration in mitochondrial phosphorylation. In conclusion, microbial toxins and their metabolites appear to have a great potential to provide a promising option for the treatment and management to combat cancer.
Collapse
|
22
|
Prygiel M, Polak M, Mosiej E, Wdowiak K, Formińska K, Zasada AA. New Corynebacterium Species with the Potential to Produce Diphtheria Toxin. Pathogens 2022; 11:1264. [PMID: 36365015 PMCID: PMC9693595 DOI: 10.3390/pathogens11111264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Only three Corynebacterium species are known to produce a lethal exotoxin called diphtheria toxin. These are C. diphtheriae, C. ulcerans and C. pseudotuberculosis. The diphtheria toxin gene (tox) is carried in a family of closely related corynebacteriophages and therefore the toxin can be produced only through lysogenisation, in which the corynephage encoding tox is stably inserted into the chromosome. However, 'nontoxigenic tox gene-bearing' (NTTB) strains, which are genotypically tox-positive but do not express the protein, have been described. The emergence of NTTB strains was first observed during the 1990s diphtheria epidemic in Eastern Europe and nowadays such isolates have been detected in many countries in the world. Recently, novel species of Corynebacterium genus have been described which might have the potential of producing the diphtheria toxin due to the possession of the diphtheria toxin gene but it has not produced toxin in laboratory tests. The circulation of NTTB strains could be related to the increased risk for diphtheria disease arising from the risk of re-emerging toxin expression. The article presents the mechanism of diphtheria toxin expression and action, recently described novel species of NTTB corynebacteria as well as the taxonomic changes within the C. diphtheriae group.
Collapse
|
23
|
Kim S, Shukla RK, Yu H, Baek A, Cressman SG, Golconda S, Lee GE, Choi H, Reneau JC, Wang Z, Huang CA, Liyanage NPM, Kim S. CD3e-immunotoxin spares CD62L lo Tregs and reshapes organ-specific T-cell composition by preferentially depleting CD3e hi T cells. Front Immunol 2022; 13:1011190. [PMID: 36389741 PMCID: PMC9643874 DOI: 10.3389/fimmu.2022.1011190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/04/2022] [Indexed: 02/03/2023] Open
Abstract
CD3-epsilon(CD3e) immunotoxins (IT), a promising precision reagent for various clinical conditions requiring effective depletion of T cells, often shows limited treatment efficacy for largely unknown reasons. Tissue-resident T cells that persist in peripheral tissues have been shown to play pivotal roles in local and systemic immunity, as well as transplant rejection, autoimmunity and cancers. The impact of CD3e-IT treatment on these local cells, however, remains poorly understood. Here, using a new murine testing model, we demonstrate a substantial enrichment of tissue-resident Foxp3+ Tregs following CD3e-IT treatment. Differential surface expression of CD3e among T-cell subsets appears to be a main driver of Treg enrichment in CD3e-IT treatment. The surviving Tregs in CD3e-IT-treated mice were mostly the CD3edimCD62Llo effector phenotype, but the levels of this phenotype markedly varied among different lymphoid and nonlymphoid organs. We also found notable variations in surface CD3e levels among tissue-resident T cells of different organs, and these variations drive CD3e-IT to uniquely reshape T-cell compositions in local organs. The functions of organs and anatomic locations (lymph nodes) also affected the efficacy of CD3e-IT. The multi-organ pharmacodynamics of CD3e-IT and potential treatment resistance mechanisms identified in this study may generate new opportunities to further improve this promising treatment.
Collapse
Affiliation(s)
- Shihyoung Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Rajni Kant Shukla
- Department of Microbial Immunity and Infection, The Ohio State University, Columbus, OH, United States
| | - Hannah Yu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Alice Baek
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Sophie G. Cressman
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Sarah Golconda
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Ga-Eun Lee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - Hyewon Choi
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States
| | - John C. Reneau
- Division of Hematology, The Ohio State University, Columbus, OH, United States
| | - Zhirui Wang
- Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Christene A. Huang
- Department of Surgery, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Namal P. M. Liyanage
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States,Department of Microbial Immunity and Infection, The Ohio State University, Columbus, OH, United States,Infectious Disease Institute, The Ohio State University, Columbus, OH, United States,*Correspondence: Namal P. M. Liyanage, ; Sanggu Kim,
| | - Sanggu Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, United States,Infectious Disease Institute, The Ohio State University, Columbus, OH, United States,*Correspondence: Namal P. M. Liyanage, ; Sanggu Kim,
| |
Collapse
|
24
|
Nazari M, Emamzadeh R, Jahanpanah M, Yazdani E, Radmanesh R. A recombinant affitoxin derived from a HER3 affibody and diphteria-toxin has potent and selective antitumor activity. Int J Biol Macromol 2022; 219:1122-1134. [PMID: 36041577 DOI: 10.1016/j.ijbiomac.2022.08.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022]
Abstract
High expression of receptor tyrosine-protein kinase erbB-3 (HER3) has been found in several malignancies such as breast cancer. In this study, we designed, produced and evaluated a new affitoxin consisting of a truncated form of diphtheria toxin and a HER3-binding affibody domains. The new affitoxin was expressed in Escherichia coli and purified by affinity chromatography. We evaluated the suitability of affitoxin to kill HER3 positive breast cancer cells with MTT and apoptosis assays. The protein synthesis inhibition was also evaluated. The IC50 value in HER3 negative cells is about 10 times more than HER3 positive cells in new design of affitoxin. The specificity of affitoxin for binding to HER3 positive cells was also investigated with binding assay with flow cytometry. The results show that, the new affitoxin is an anti-cancer molecule with specific binding to HER3 positive cells and may open a new window for the treatment of HER3-positive cancers.
Collapse
Affiliation(s)
- Mahboobeh Nazari
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran; Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran.
| | - Rahman Emamzadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Maryam Jahanpanah
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Elnaz Yazdani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ramin Radmanesh
- Department of Pharmacoeconomics and Pharmaceutical Management, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
25
|
Treatment of ovarian cancer with modified anthrax toxin. Proc Natl Acad Sci U S A 2022; 119:e2210179119. [PMID: 35917343 PMCID: PMC9371659 DOI: 10.1073/pnas.2210179119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
26
|
Motor deficits seen in microglial ablation mice could be due to non-specific damage from high dose diphtheria toxin treatment. Nat Commun 2022; 13:3874. [PMID: 35790742 PMCID: PMC9256727 DOI: 10.1038/s41467-022-31562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
|
27
|
Roberts R, Wall MJ, Braren I, Dhillon K, Evans A, Dunne J, Nyakupinda S, Huckstepp RTR. An Improved Model of Moderate Sleep Apnoea for Investigating Its Effect as a Comorbidity on Neurodegenerative Disease. Front Aging Neurosci 2022; 14:861344. [PMID: 35847678 PMCID: PMC9278434 DOI: 10.3389/fnagi.2022.861344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
Sleep apnoea is a highly prevalent disease that often goes undetected and is associated with poor clinical prognosis, especially as it exacerbates many different disease states. However, most animal models of sleep apnoea (e.g., intermittent hypoxia) have recently been dispelled as physiologically unrealistic and are often unduly severe. Owing to a lack of appropriate models, little is known about the causative link between sleep apnoea and its comorbidities. To overcome these problems, we have created a more realistic animal model of moderate sleep apnoea by reducing the excitability of the respiratory network. This has been achieved through controlled genetically mediated lesions of the preBötzinger complex (preBötC), the inspiratory oscillator. This novel model shows increases in sleep disordered breathing with alterations in breathing during wakefulness (decreased frequency and increased tidal volume) as observed clinically. The increase in dyspnoeic episodes leads to reduction in REM sleep, with all lost active sleep being spent in the awake state. The increase in hypoxic and hypercapnic insults induces both systemic and neural inflammation. Alterations in neurophysiology, an inhibition of hippocampal long-term potentiation (LTP), is reflected in deficits in both long- and short-term spatial memory. This improved model of moderate sleep apnoea may be the key to understanding why this disorder has such far-reaching and often fatal effects on end-organ function.
Collapse
Affiliation(s)
- Reno Roberts
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Mark J. Wall
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Ingke Braren
- University Medical Center Eppendorf, Vector Facility, Institute for Experimental Pharmacology and Toxikology, Hamburg, Germany
| | - Karendeep Dhillon
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Amy Evans
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jack Dunne
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | | - Robert T. R. Huckstepp
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- *Correspondence: Robert T. R. Huckstepp
| |
Collapse
|
28
|
Li M, Mei S, Yang Y, Shen Y, Chen L. Strategies to mitigate the on- and off-target toxicities of recombinant immunotoxins: an antibody engineering perspective. Antib Ther 2022; 5:164-176. [PMID: 35928456 PMCID: PMC9344849 DOI: 10.1093/abt/tbac014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/14/2021] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Targeted cancer therapies using immunotoxins has achieved remarkable efficacies in hematological malignancies. However, the clinical development of immunotoxins is also faced with many challenges like anti-drug antibodies and dose-limiting toxicity issues. Such a poor efficacy/safety ratio is also the major hurdle in the research and development of antibody-drug conjugates. From an antibody engineering perspective, various strategies were summarized/proposed to tackle the notorious on target off tumor toxicity issues, including passive strategy (XTENylation of immunotoxins) and active strategies (modulating the affinity and valency of the targeting moiety of immunotoxins, conditionally activating immunotoxins in the tumor microenvironments and reconstituting split toxin to reduce systemic toxicity etc.). By modulating the functional characteristics of the targeting moiety and the toxic moiety of immunotoxins, selective tumor targeting can be augmented while sparing the healthy cells in normal tissues expressing the same target of interest. If successful, the improved therapeutic index will likely help to address the dose-limiting toxicities commonly observed in the clinical trials of various immunotoxins.
Collapse
Affiliation(s)
- Mengyu Li
- Department of Postgraduate , Jiangxi University of Traditional Chinese Medicine, Nanchang, P.R. China
- Joint Graduate School , Yangtze Delta Drug Advanced Research Institute, Nantong, P.R. China
- Joint Graduate School , Yangtze Delta Pharmaceutical College, Nantong, P.R. China
| | - Sen Mei
- Biotherapeutics , Biocytogen Jiangsu Co. Ltd, Nantong, P.R. China
| | - Yi Yang
- Joint Graduate School , Yangtze Delta Drug Advanced Research Institute, Nantong, P.R. China
- Joint Graduate School , Yangtze Delta Pharmaceutical College, Nantong, P.R. China
- Institute of Innovative Medicine , Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, P.R. China
| | - Yuelei Shen
- Joint Graduate School , Yangtze Delta Drug Advanced Research Institute, Nantong, P.R. China
- Joint Graduate School , Yangtze Delta Pharmaceutical College, Nantong, P.R. China
- Biotherapeutics , Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, P.R. China
- Institute of Innovative Medicine , Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, P.R. China
| | - Lei Chen
- Biotherapeutics , Biocytogen Jiangsu Co. Ltd, Nantong, P.R. China
- Biotherapeutics , Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, P.R. China
| |
Collapse
|
29
|
Rodriguez Y Baena A, Rajendiran S, Manso BA, Krietsch J, Boyer SW, Kirschmann J, Forsberg EC. New transgenic mouse models enabling pan-hematopoietic or selective hematopoietic stem cell depletion in vivo. Sci Rep 2022; 12:3156. [PMID: 35210475 PMCID: PMC8873235 DOI: 10.1038/s41598-022-07041-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/07/2022] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cell (HSC) multipotency and self-renewal are typically defined through serial transplantation experiments. Host conditioning is necessary for robust HSC engraftment, likely by reducing immune-mediated rejection and by clearing limited HSC niche space. Because irradiation of the recipient mouse is non-specific and broadly damaging, there is a need to develop alternative models to study HSC performance at steady-state and in the absence of radiation-induced stress. We have generated and characterized two new mouse models where either all hematopoietic cells or only HSCs can be specifically induced to die in vivo or in vitro. Hematopoietic-specific Vav1-mediated expression of a loxP-flanked diphtheria-toxin receptor (DTR) renders all hematopoietic cells sensitive to diphtheria toxin (DT) in “Vav-DTR” mice. Crossing these mice to Flk2-Cre mice results in “HSC-DTR” mice which exhibit HSC-selective DT sensitivity. We demonstrate robust, rapid, and highly selective cell ablation in these models. These new mouse models provide a platform to test whether HSCs are required for long-term hematopoiesis in vivo, for understanding the mechanisms regulating HSC engraftment, and interrogating in vivo hematopoietic differentiation pathways and mechanisms regulating hematopoietic homeostasis.
Collapse
Affiliation(s)
- Alessandra Rodriguez Y Baena
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA.,Program in Biomedical Sciences and Engineering, Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Smrithi Rajendiran
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA.,Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Bryce A Manso
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA.,Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Jana Krietsch
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA.,Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Scott W Boyer
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA.,Program in Biomedical Sciences and Engineering, Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Jessica Kirschmann
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA. .,Biomolecular Engineering, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA.
| |
Collapse
|
30
|
Evaluating a Targeted Cancer Therapy Approach Mediated by RNA trans-Splicing In Vitro and in a Xenograft Model for Epidermolysis Bullosa-Associated Skin Cancer. Int J Mol Sci 2022; 23:ijms23010575. [PMID: 35008999 PMCID: PMC8745581 DOI: 10.3390/ijms23010575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 02/04/2023] Open
Abstract
Conventional anti-cancer therapies based on chemo- and/or radiotherapy represent highly effective means to kill cancer cells but lack tumor specificity and, therefore, result in a wide range of iatrogenic effects. A promising approach to overcome this obstacle is spliceosome-mediated RNA trans-splicing (SMaRT), which can be leveraged to target tumor cells while leaving normal cells unharmed. Notably, a previously established RNA trans-splicing molecule (RTM44) showed efficacy and specificity in exchanging the coding sequence of a cancer target gene (Ct-SLCO1B3) with the suicide gene HSV1-thymidine kinase in a colorectal cancer model, thereby rendering tumor cells sensitive to the prodrug ganciclovir (GCV). In the present work, we expand the application of this approach, using the same RTM44 in aggressive skin cancer arising in the rare genetic skin disease recessive dystrophic epidermolysis bullosa (RDEB). Stable expression of RTM44, but not a splicing-deficient control (NC), in RDEB-SCC cells resulted in expression of the expected fusion product at the mRNA and protein level. Importantly, systemic GCV treatment of mice bearing RTM44-expressing cancer cells resulted in a significant reduction in tumor volume and weight compared with controls. Thus, our results demonstrate the applicability of RTM44-mediated targeting of the cancer gene Ct-SLCO1B3 in a different malignancy.
Collapse
|
31
|
Hosseininejad-Chafi M, Alirahimi E, Ramezani B, Oghalaie A, Sotoudeh N, Ghaderi H, Kazemi-Lomedasht F, Habibi-Anbouhi M, Moazzami R, Behdani M. In vivo solid tumor targeting with recombinant VEGF-diphtheria immunotoxin. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:27-31. [PMID: 35656448 PMCID: PMC9118281 DOI: 10.22038/ijbms.2021.54293.12195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 10/31/2021] [Indexed: 12/14/2022]
Abstract
Objectives A variety of signaling molecules have been identified that play a role in angiogenesis, of prime importance, vascular endothelial growth factor (VEGF) and its resceptor (VEGFR), which is highly expressed in most human solid tumors. Targeting VEGF or/and VEGFR with immunotoxin may be a promising approach to directly affect cancer cells. Immunotoxins are for targeted treatment comprising two functional moieties, an antibody that binds to target cells along with toxin that kills molecules. Materials and Methods In this study, an immunotoxin comprising domain of diphtheria toxin subunit A (DT386) genetically fused to mouse VEGF (mVEGF-DT) was developed. The second construct, which contains the DT386 domain, was made to investigate the action of the DT386 domain on tumor cells. Both gene constructs were cloned, expressed, and were further purified. The biological activity of mVEGF-DT and DT386 proteins was assessed on the TC1 cell line bearing mouse model. Proteins were injected intra-tumoral in mice, in separate groups. Results Tumors in the mVEGF-DT group started to dwindle after six injections, but tumor size in both control groups (DT386 and PBS), continued to grow. Conclusion Successful targeting of solid tumor cells by mVEGF-DT immunotoxin demonstrates the therapeutic potential utility of these conjugates for tumor targeting.
Collapse
Affiliation(s)
| | - Ehsan Alirahimi
- Biotechnology Research Center, Venom & Biotherapeutics Molecules Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Behzad Ramezani
- Biotechnology Research Center, Venom & Biotherapeutics Molecules Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Akbar Oghalaie
- Biotechnology Research Center, Venom & Biotherapeutics Molecules Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Nazli Sotoudeh
- Biotechnology Research Center, Venom & Biotherapeutics Molecules Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Hajarsadat Ghaderi
- Biotechnology Research Center, Venom & Biotherapeutics Molecules Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Kazemi-Lomedasht
- Biotechnology Research Center, Venom & Biotherapeutics Molecules Lab, Pasteur Institute of Iran, Tehran, Iran
| | | | - Reza Moazzami
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Behdani
- Biotechnology Research Center, Venom & Biotherapeutics Molecules Lab, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
32
|
Watanabe J, Takayanagi Y, Yoshida M, Hattori T, Saito M, Kohno K, Kobayashi E, Onaka T. Conditional ablation of vasopressin-synthesizing neurons in transgenic rats. J Neuroendocrinol 2021; 33:e13057. [PMID: 34748241 PMCID: PMC9285515 DOI: 10.1111/jne.13057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 12/04/2022]
Abstract
Vasopressin-synthesizing neurons are located in several brain regions, including the hypothalamic paraventricular nucleus (PVN), supraoptic nucleus (SON) and suprachiasmatic nucleus (SCN). Vasopressin has been shown to have various functions in the brain, including social recognition memory, stress responses, emotional behaviors and circadian rhythms. The precise physiological functions of vasopressin-synthesizing neurons in specific brain regions remain to be clarified. Conditional ablation of local vasopressin-synthesizing neurons may be a useful tool for investigation of the functions of vasopressin neurons in the regions. In the present study, we characterized a transgenic rat line that expresses a mutated human diphtheria toxin receptor under control of the vasopressin gene promoter. Under a condition of salt loading, which activates the vasopressin gene in the hypothalamic PVN and SON, transgenic rats were i.c.v. injected with diphtheria toxin. Intracerebroventricular administration of diphtheria toxin after salt loading depleted vasopressin-immunoreactive cells in the hypothalamic PVN and SON, but not in the SCN. The number of oxytocin-immunoreactive cells in the hypothalamus was not significantly changed. The rats that received i.c.v. diphtheria toxin after salt loading showed polydipsia and polyuria, which were rescued by peripheral administration of 1-deamino-8-d-arginine vasopressin via an osmotic mini-pump. Intrahypothalamic administration of diphtheria toxin in transgenic rats under a normal hydration condition reduced the number of vasopressin-immunoreactive neurons, but not the number of oxytocin-immunoreactive neurons. The transgenic rat model can be used for selective ablation of vasopressin-synthesizing neurons and may be useful for clarifying roles of vasopressin neurons at least in the hypothalamic PVN and SON in the rat.
Collapse
Affiliation(s)
- Jun Watanabe
- Department of PhysiologyJichi Medical UniversityShimotsukeTochigiJapan
| | - Yuki Takayanagi
- Department of PhysiologyJichi Medical UniversityShimotsukeTochigiJapan
| | - Masahide Yoshida
- Department of PhysiologyJichi Medical UniversityShimotsukeTochigiJapan
| | - Tatsuya Hattori
- Department of PhysiologyJichi Medical UniversityShimotsukeTochigiJapan
| | - Michiko Saito
- Institute for Research InitiativesNara Institute of Science and TechnologyIkomaNaraJapan
- Present address:
Bio‐science Research CenterKyoto Pharmaceutical UniversityKyotoJapan
| | - Kenji Kohno
- Institute for Research InitiativesNara Institute of Science and TechnologyIkomaNaraJapan
| | - Eiji Kobayashi
- Department of Organ FabricationKeio University School of MedicineTokyoJapan
- Present address:
Department of Kidney Regenerative MedicineThe Jikei University School of MedicineTokyoJapan
| | - Tatsushi Onaka
- Department of PhysiologyJichi Medical UniversityShimotsukeTochigiJapan
| |
Collapse
|
33
|
Robles-Oteiza C, Ayeni D, Levy S, Homer RJ, Kaech SM, Politi K. Elevated murine HB-EGF confers sensitivity to diphtheria toxin in EGFR-mutant lung adenocarcinoma. Dis Model Mech 2021; 14:272093. [PMID: 34494649 PMCID: PMC8617309 DOI: 10.1242/dmm.049072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Conditional ablation of defined cell populations in vivo can be achieved using genetically engineered mice in which the human diphtheria toxin (DT) receptor (DTR) is placed under control of a murine tissue-specific promotor, such that delivery of DT selectively ablates cells expressing this high-affinity human DTR; cells expressing only the endogenous low-affinity mouse DTR are assumed to be unaffected. Surprisingly, we found that systemic administration of DT induced rapid regression of murine lung adenocarcinomas that express human mutant EGFR in the absence of a transgenic allele containing human DTR. DT enzymatic activity was required for tumor regression, and mutant EGFR-expressing tumor cells were the primary target of DT toxicity. In FVB mice, EGFR-mutant tumors upregulated expression of HBEGF, which is the DTR in mice and humans. HBEGF blockade with the enzymatically inactive DT mutant CRM197 partially abrogated tumor regression induced by DT. These results suggest that elevated expression of murine HBEGF, i.e. the low-affinity DTR, confers sensitivity to DT in EGFR-mutant tumors, demonstrating a biological effect of DT in mice lacking transgenic DTR alleles and highlighting a unique vulnerability of EGFR-mutant lung cancers.
Collapse
Affiliation(s)
| | - Deborah Ayeni
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Stellar Levy
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Robert J Homer
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Susan M Kaech
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA.,NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute, La Jolla, CA 92037, USA
| | - Katerina Politi
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA.,Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.,Department of Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
34
|
Marschall ALJ. Targeting the Inside of Cells with Biologicals: Chemicals as a Delivery Strategy. BioDrugs 2021; 35:643-671. [PMID: 34705260 PMCID: PMC8548996 DOI: 10.1007/s40259-021-00500-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Delivering macromolecules into the cytosol or nucleus is possible in vitro for DNA, RNA and proteins, but translation for clinical use has been limited. Therapeutic delivery of macromolecules into cells requires overcoming substantially higher barriers compared to the use of small molecule drugs or proteins in the extracellular space. Breakthroughs like DNA delivery for approved gene therapies and RNA delivery for silencing of genes (patisiran, ONPATTRO®, Alnylam Pharmaceuticals, Cambridge, MA, USA) or for vaccination such as the RNA-based coronavirus disease 2019 (COVID-19) vaccines demonstrated the feasibility of using macromolecules inside cells for therapy. Chemical carriers are part of the reason why these novel RNA-based therapeutics possess sufficient efficacy for their clinical application. A clear advantage of synthetic chemicals as carriers for macromolecule delivery is their favourable properties with respect to production and storage compared to more bioinspired vehicles like viral vectors or more complex drugs like cellular therapies. If biologicals can be applied to intracellular targets, the druggable space is substantially broadened by circumventing the limited utility of small molecules for blocking protein–protein interactions and the limitation of protein-based drugs to the extracellular space. An in depth understanding of the macromolecular cargo types, carrier types and the cell biology of delivery is crucial for optimal application and further development of biologicals inside cells. Basic mechanistic principles of the molecular and cell biological aspects of cytosolic/nuclear delivery of macromolecules, with particular consideration of protein delivery, are reviewed here. The efficiency of macromolecule delivery and applications in research and therapy are highlighted.
Collapse
Affiliation(s)
- Andrea L J Marschall
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Brunswick, Germany.
| |
Collapse
|
35
|
Metrangolo V, Ploug M, Engelholm LH. The Urokinase Receptor (uPAR) as a "Trojan Horse" in Targeted Cancer Therapy: Challenges and Opportunities. Cancers (Basel) 2021; 13:cancers13215376. [PMID: 34771541 PMCID: PMC8582577 DOI: 10.3390/cancers13215376] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Discovered more than three decades ago, the urokinase-type plasminogen activator receptor (uPAR) has now firmly established itself as a versatile molecular target holding promise for the treatment of aggressive malignancies. The copious abundance of uPAR in virtually all human cancerous tissues versus their healthy counterparts has fostered a gradual shift in the therapeutic landscape targeting this receptor from function inhibition to cytotoxic approaches to selectively eradicate the uPAR-expressing cells by delivering a targeted cytotoxic insult. Multiple avenues are being explored in a preclinical setting, including the more innovative immune- or stroma targeting therapies. This review discusses the current state of these strategies, their potentialities, and challenges, along with future directions in the field of uPAR targeting. Abstract One of the largest challenges to the implementation of precision oncology is identifying and validating selective tumor-driving targets to enhance the therapeutic efficacy while limiting off-target toxicity. In this context, the urokinase-type plasminogen activator receptor (uPAR) has progressively emerged as a promising therapeutic target in the management of aggressive malignancies. By focalizing the plasminogen activation cascade and subsequent extracellular proteolysis on the cell surface of migrating cells, uPAR endows malignant cells with a high proteolytic and migratory potential to dissolve the restraining extracellular matrix (ECM) barriers and metastasize to distant sites. uPAR is also assumed to choreograph multiple other neoplastic stages via a complex molecular interplay with distinct cancer-associated signaling pathways. Accordingly, high uPAR expression is observed in virtually all human cancers and is frequently associated with poor patient prognosis and survival. The promising therapeutic potential unveiled by the pleiotropic nature of this receptor has prompted the development of distinct targeted intervention strategies. The present review will focus on recently emerged cytotoxic approaches emphasizing the novel technologies and related limits hindering their application in the clinical setting. Finally, future research directions and emerging opportunities in the field of uPAR targeting are also discussed.
Collapse
Affiliation(s)
- Virginia Metrangolo
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark; (V.M.); (M.P.)
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Michael Ploug
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark; (V.M.); (M.P.)
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lars H. Engelholm
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark; (V.M.); (M.P.)
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-31-43-20-77
| |
Collapse
|
36
|
Immunotoxin IHP25-BT with low immunogenicity and off-target toxicity inhibits the growth and metastasis of trastuzumab-resistant tumor cells. Int J Pharm 2021; 608:121081. [PMID: 34506924 DOI: 10.1016/j.ijpharm.2021.121081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/22/2021] [Accepted: 09/04/2021] [Indexed: 12/30/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2) is overexpressed in some breast and gastric cancer patients. As the first HER2-targeteed therpeutic antibody, trastuzumab could significantly improve the prognosis of HER2-positive cancer patients. However, even responding patients inevitably get worse due to acquired resistance to trastuzumab after a period of treatment. Many HER2-targeted antibody drugs used wild-type tumor cells to conduct their corresponding preclinical experiments in vitro and in vivo. However, it is impossible to determine whether these newly developed drugs have antitumor effective to trastuzumab-resistant tumor cells. In the study, two trastuzumab-resistant HER2-positive tumor cell populations NCI-N87-TR and BT474-TR were generated. Then, we examined the anti-tumor effects of newly constructed immunotoxins with low immunogenicity and off-target toxicity based on the trastuzumab-resistant tumor cells both in vitro and in vivo. Results demonstrated that the immunotoxin IHP25-BT could not only effectively inhibit tumor growth but also inhibit liver metastasis of tumor cells in a mouse xenograft model. Furthermore, tumor tissue transcriptome sequencing was performed to clarify the potential mechanisms of inhibiting tumor cell distant metastasis by immunotoxin. In conclusion, this work describes a series of attractive therapeutic immunotoxins, the low immunogenicity and off-target toxicity making them promising for trastuzumab-resistant cancer therapy.
Collapse
|
37
|
Park S, Nguyen MQ, Ta HKK, Nguyen MT, Lee G, Kim CJ, Jang YJ, Choe H. Soluble Cytoplasmic Expression and Purification of Immunotoxin HER2(scFv)-PE24B as a Maltose Binding Protein Fusion. Int J Mol Sci 2021; 22:6483. [PMID: 34204265 PMCID: PMC8234717 DOI: 10.3390/ijms22126483] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 01/30/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER-2) is overexpressed in many malignant tumors. The anti-HER2 antibody trastuzumab has been approved for treating HER2-positive early and metastatic breast cancers. Pseudomonas exotoxin A (PE), a bacterial toxin of Pseudomonas aeruginosa, consists of an A-domain with enzymatic activity and a B-domain with cell binding activity. Recombinant immunotoxins comprising the HER2(scFv) single-chain Fv from trastuzumab and the PE24B catalytic fragment of PE display promising cytotoxic effects, but immunotoxins are typically insoluble when expressed in the cytoplasm of Escherichia coli, and thus they require solubilization and refolding. Herein, a recombinant immunotoxin gene was fused with maltose binding protein (MBP) and overexpressed in a soluble form in E. coli. Removal of the MBP yielded stable HER2(scFv)-PE24B at 91% purity; 0.25 mg of pure HER2(scFv)-PE24B was obtained from a 500 mL flask culture. Purified HER2(scFv)-PE24B was tested against four breast cancer cell lines differing in their surface HER2 level. The immunotoxin showed stronger cytotoxicity than HER2(scFv) or PE24B alone. The IC50 values for HER2(scFv)-PE24B were 28.1 ± 2.5 pM (n = 9) and 19 ± 1.4 pM (n = 9) for high HER2-positive cell lines SKBR3 and BT-474, respectively, but its cytotoxicity was lower against MDA-MB-231 and MCF7. Thus, fusion with MBP can facilitate the soluble expression and purification of scFv immunotoxins.
Collapse
Affiliation(s)
- Sangsu Park
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (S.P.); (M.Q.N.); (H.K.K.T.); (M.T.N.); (Y.J.J.)
| | - Minh Quan Nguyen
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (S.P.); (M.Q.N.); (H.K.K.T.); (M.T.N.); (Y.J.J.)
| | - Huynh Kim Khanh Ta
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (S.P.); (M.Q.N.); (H.K.K.T.); (M.T.N.); (Y.J.J.)
| | - Minh Tan Nguyen
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (S.P.); (M.Q.N.); (H.K.K.T.); (M.T.N.); (Y.J.J.)
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 70000, Vietnam
| | - Gunsup Lee
- R&D Center, Fatiabgen Co., Ltd., Seoul 05855, Korea;
| | - Chong Jai Kim
- Department of Pathology, Asan-Minnesota Institute for Innovating Transplantation, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea;
| | - Yeon Jin Jang
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (S.P.); (M.Q.N.); (H.K.K.T.); (M.T.N.); (Y.J.J.)
| | - Han Choe
- Department of Physiology, Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505, Korea; (S.P.); (M.Q.N.); (H.K.K.T.); (M.T.N.); (Y.J.J.)
| |
Collapse
|
38
|
Mousavi A, Sabouri A, Hassanzadeh Eskafi A, Alirahimi E, Kazemi-Lomedasht F, Ghaderi H, Behdani M. In Vivo Tumor Therapy with Novel Immunotoxin Containing Programmed Cell Death Protein-1 and Diphtheria Toxin. Monoclon Antib Immunodiagn Immunother 2021; 40:113-117. [PMID: 34076502 DOI: 10.1089/mab.2020.0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Immunotoxins, as a class of antitumor agents, consist of tumor-selective ligands linked to highly toxic protein molecules. This type of modified antibody has been designed for the therapy of cancers and a few viral infections. In this study, we designed immunotoxin consisting of mouse programmed cell death protein-1 (PD1), which genetically fused to diphtheria toxin (DT) subunit A (DT386). DNA construct was cloned, expressed in a bacterial system, purified, and confirmed by western blotting. The immunotoxin potency in the treatment of tumorous C57BL/6 mice was evaluated. Immunotoxin was injected intratumoral to mice, and through eight injections, 67% of the tumor volume of the test group started shrinking dramatically. On the contrary, the tumor size of the control group, treated with phosphate-buffered saline, continued its growth. The successful targeting of solid tumor cells by PD1-DT immunotoxin demonstrates the potential therapeutic utility of these conjugates.
Collapse
Affiliation(s)
- Abbas Mousavi
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran
| | - Alireza Sabouri
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran
| | - Ayda Hassanzadeh Eskafi
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran
| | - Ehsan Alirahimi
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran
| | - Hajarsadat Ghaderi
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran
| |
Collapse
|
39
|
Higuch K, Matsumura T, Akiyama H, Kanai Y, Ogawa T, Sato T. Sertoli cell replacement in explanted mouse testis tissue supporting host spermatogenesis. Biol Reprod 2021; 105:934-943. [PMID: 34057178 DOI: 10.1093/biolre/ioab104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/25/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Spermatogenesis takes place in the seminiferous tubules, starting from the spermatogonial stem cell and maturing into sperm through multiple stages of cell differentiation. Sertoli cells, the main somatic cell constituting the seminiferous tubule, are in close contact with every germ cell and play pivotal roles in the progression of spermatogenesis. In this study, we developed an in vitro Sertoli cell replacement method by combining an organ culture technique and a toxin receptor-mediated cell knockout (Treck) system. We used Amh- diphtheria toxin receptor (DTR) transgenic mice, whose Sertoli cells specifically express human DTR, which renders them sensitive to diphtheria toxin (DT). An immature Amh-DTR testis was transplanted with donor testis cells followed by culturing in a medium containing DT. This procedure successfully replaced the original Sertoli cells with the transplanted Sertoli cells, and spermatogenesis originating from resident germ cells was confirmed. In addition, Sertoli cells in the mouse testis tissues were replaced by transplanted rat Sertoli cells within culture conditions, without requiring immunosuppressive treatments. This method works as a functional assay system, making it possible to evaluate any cells that might function as Sertoli cells. It would also be possible to investigate interactions between Sertoli and germ cells more closely, providing a new platform for the study of spermatogenesis and its impairments.
Collapse
Affiliation(s)
- Kazusa Higuch
- Laboratory of Biopharmaceutical and Regenerative Sciences, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama 236-0004, Japan
| | - Takafumi Matsumura
- Laboratory of Biopharmaceutical and Regenerative Sciences, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama 236-0004, Japan
| | - Haruhiko Akiyama
- Department of Orthopedics, Gifu University School of Medicine, Gifu, Japan
| | - Yoshiakira Kanai
- Department of Veterinary Anatomy, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takehiko Ogawa
- Laboratory of Biopharmaceutical and Regenerative Sciences, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama 236-0004, Japan.,Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Takuya Sato
- Laboratory of Biopharmaceutical and Regenerative Sciences, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama 236-0004, Japan
| |
Collapse
|
40
|
A Single-Domain Antibody-Based Anti-PSMA Recombinant Immunotoxin Exhibits Specificity and Efficacy for Prostate Cancer Therapy. Int J Mol Sci 2021; 22:ijms22115501. [PMID: 34071152 PMCID: PMC8197099 DOI: 10.3390/ijms22115501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCa) is the second most common cancer in men, causing more than 300,000 deaths every year worldwide. Due to their superior cell-killing ability and the relative simplicity of their preparation, immunotoxin molecules have great potential in the clinical treatment of cancer, and several such molecules have been approved for clinical application. In this study, we adopted a relatively simple strategy based on a single-domain antibody (sdAb) and an improved Pseudomonas exotoxin A (PE) toxin (PE24X7) to prepare a safer immunotoxin against prostate-specific membrane antigen (PSMA) for PCa treatment. The designed anti-PSMA immunotoxin, JVM-PE24X7, was conveniently prepared in its soluble form in an Escherichia coli (E. coli) system, avoiding the complex renaturation process needed for immunotoxin preparation by the conventional strategy. The product was very stable and showed a very strong ability to bind the PSMA receptor. Cytotoxicity assays showed that this molecule at a very low concentration could kill PSMA-positive PCa cells, with an EC50 value (concentration at which the cell viability decreased by 50%) of 15.3 pM against PSMA-positive LNCaP cells. Moreover, this molecule showed very good killing selectivity between PSMA-positive and PSMA-negative cells, with a selection ratio of more than 300-fold. Animal studies showed that this molecule at a very low dosage (5 × 0.5 mg/kg once every three days) completely inhibited the growth of PCa tumors, and the maximum tolerable dose (MTD) was more than 15 mg/kg, indicating its very potent tumor-treatment ability and a wide therapeutic window. Use of the new PE toxin, PE24X7, as the effector moiety significantly reduced off-target toxicity and improved the therapeutic window of the immunotoxin. The above results demonstrate that the designed anti-PSMA immunotoxin, JVM-PE24X7, has good application value for the treatment of PCa.
Collapse
|
41
|
Shilova O, Shramova E, Proshkina G, Deyev S. Natural and Designed Toxins for Precise Therapy: Modern Approaches in Experimental Oncology. Int J Mol Sci 2021; 22:ijms22094975. [PMID: 34067057 PMCID: PMC8124712 DOI: 10.3390/ijms22094975] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer cells frequently overexpress specific surface receptors providing tumor growth and survival which can be used for precise therapy. Targeting cancer cell receptors with protein toxins is an attractive approach widely used in contemporary experimental oncology and preclinical studies. Methods of targeted delivery of toxins to cancer cells, different drug carriers based on nanosized materials (liposomes, nanoparticles, polymers), the most promising designed light-activated toxins, as well as mechanisms of the cytotoxic action of the main natural toxins used in modern experimental oncology, are discussed in this review. The prospects of the combined therapy of tumors based on multimodal nanostructures are also discussed.
Collapse
Affiliation(s)
- Olga Shilova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (E.S.); (G.P.)
- Correspondence: (O.S.); (S.D.)
| | - Elena Shramova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (E.S.); (G.P.)
| | - Galina Proshkina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (E.S.); (G.P.)
| | - Sergey Deyev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (E.S.); (G.P.)
- Center of Biomedical Engineering, Sechenov University, 119991 Moscow, Russia
- Research Centrum for Oncotheranostics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
- Correspondence: (O.S.); (S.D.)
| |
Collapse
|
42
|
Kawasaki R, Sasaki Y, Nishimura T, Katagiri K, Morita K, Sekine Y, Sawada S, Mukai S, Akiyoshi K. Magnetically Navigated Protein Transduction In Vivo using Iron Oxide-Nanogel Chaperone Hybrid. Adv Healthc Mater 2021; 10:e2001988. [PMID: 33694289 DOI: 10.1002/adhm.202001988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/02/2021] [Indexed: 10/22/2022]
Abstract
Systems for "protein transduction," intracellular delivery of functional proteins, are needed to address deliverability challenges of protein therapeutics. However, in vivo protein transduction remains challenging because of instability in serum, extracellular protease digestion and rapid excretion from the bloodstream. Here, a magnetically guided in vivo protein transduction using magnetic nanogel chaperone (MC) composed of iron oxide nanoparticles and a polysaccharide nanogel, a protein carrier inspired by "catch and release" mechanisms of molecular chaperones is demonstrated. The MC system enables efficient delivery of anti-cancer proteins, saporin and RNaseA, into cultured tumor lines and inhibits cell proliferation, mainly via apoptosis. Magnetic in vivo protein transduction via intravenous whole body administration is demonstrated in a fibrosarcoma model. By in vivo optical imaging, MC accumulated in tumor tissues under magnetic field three times more than without irradiation. With subcutaneous injection, saporin is delivered by MC to the cytoplasm in magnetically targeted tissues. In an oral cancer model, MC-delivered magnetically targeted saporin decreased tumor volume without significant body weight changes and no regrowth of tumor at 3 months after complete regression. Protein transduction with MC shows promise for cancer therapeutics and, potentially, for regenerative medicine and other biomedical applications.
Collapse
Affiliation(s)
- Riku Kawasaki
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura Nishikyo‐ku Kyoto 615‐8510 Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura Nishikyo‐ku Kyoto 615‐8510 Japan
| | - Tomoki Nishimura
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura Nishikyo‐ku Kyoto 615‐8510 Japan
| | - Kiyofumi Katagiri
- Department of Applied Chemistry Graduate School of Engineering Hiroshima University 1‐4‐1, Kagamiyama Higashi‐Hiroshima Hiroshima 739‐8527 Japan
| | - Kei‐ichi Morita
- Department of Maxillofacial Surgery Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University 1‐5‐45, Yushima Bunkyo‐ku Tokyo 113‐8510 Japan
- Bioresource Research Center Tokyo Medical and Dental University 1‐5‐45, Yushima Bunkyo‐ku Tokyo 113‐8510 Japan
| | - Yurina Sekine
- Materials Sciences Research Center Japan Atomic Energy Agency 2–4 Shirakata‐Shirane, Tokai Naka‐gun Ibaraki 319‐1195 Japan
| | - Shin‐ichi Sawada
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura Nishikyo‐ku Kyoto 615‐8510 Japan
| | - Sada‐atsu Mukai
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura Nishikyo‐ku Kyoto 615‐8510 Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura Nishikyo‐ku Kyoto 615‐8510 Japan
| |
Collapse
|
43
|
Parveen S, Siddharth S, Cheung LS, Kumar A, Shen J, Murphy JR, Sharma D, Bishai WR. Therapeutic targeting with DABIL-4 depletes myeloid suppressor cells in 4T1 triple-negative breast cancer model. Mol Oncol 2021; 15:1330-1344. [PMID: 33682324 PMCID: PMC8096791 DOI: 10.1002/1878-0261.12938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/10/2021] [Accepted: 03/05/2021] [Indexed: 12/19/2022] Open
Abstract
In many solid tumors including triple-negative breast cancer (TNBC), upregulation of the interleukin-4 receptor (IL-4R) has been shown to promote cancer cell proliferation, apoptotic resistance, metastatic potential, and a Th2 response in the tumor microenvironment (TME). Since immunosuppressive cells in the TME and spleen including myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) also express the IL-4R, we hypothesized that selective depletion of IL-4R-bearing cells in TNBC would result in the direct killing of tumor cells and the depletion of immunosuppressive cells and lead to an enhanced antitumor response. To selectively target IL-4R+ cells, we employed DABIL-4, a fusion protein toxin consisting of the catalytic and translocation domains of diphtheria toxin fused to murine IL-4. As anticipated, DABIL-4 has potent cytotoxic activity against TNBC cells both in vitro and in vivo. We demonstrate in the murine 4T1 TNBC model that DABIL-4 significantly reduces tumor growth, splenomegaly, and lung metastases. Importantly, we also show that the administration of DABIL-4 results in the selective depletion of MDSCs, TAMs, and regulatory T cells in treated mice, with a concomitant increase in IFN-γ+ CD8 effector T cells in the TME. Since the 4T1 antitumor activity of DABIL-4 was largely diminished in IL-4R knockout mice, we postulate that DABIL-4 functions primarily as an immunotherapeutic by the depletion of MDSCs, TAMs, and regulatory T cells. NanoString analysis of control and treated tumors confirmed and extended these observations by showing a marked decline of mRNA transcripts that are associated with tumorigenesis and metastasis. In conclusion, we demonstrate that DABIL-4 targeting of both tumor and immunosuppressive host cells likely represents a novel and effective treatment strategy for 4T1 TNBC and warrants further study.
Collapse
Affiliation(s)
- Sadiya Parveen
- Department of MedicineDivision of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Sumit Siddharth
- Department of OncologySidney Kimmel Comprehensive Cancer Center at Johns HopkinsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Laurene S. Cheung
- Department of MedicineDivision of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Alok Kumar
- Department of MedicineDivision of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Jessica Shen
- Department of MedicineDivision of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - John R. Murphy
- Department of MedicineDivision of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Dipali Sharma
- Department of OncologySidney Kimmel Comprehensive Cancer Center at Johns HopkinsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - William R. Bishai
- Department of MedicineDivision of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
44
|
Ilegems E, Berggren PO. The Eye as a Transplantation Site to Monitor Pancreatic Islet Cell Plasticity. Front Endocrinol (Lausanne) 2021; 12:652853. [PMID: 33967961 PMCID: PMC8104082 DOI: 10.3389/fendo.2021.652853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023] Open
Abstract
The endocrine cells confined in the islets of Langerhans are responsible for the maintenance of blood glucose homeostasis. In particular, beta cells produce and secrete insulin, an essential hormone regulating glucose uptake and metabolism. An insufficient amount of beta cells or defects in the molecular mechanisms leading to glucose-induced insulin secretion trigger the development of diabetes, a severe disease with epidemic spreading throughout the world. A comprehensive appreciation of the diverse adaptive procedures regulating beta cell mass and function is thus of paramount importance for the understanding of diabetes pathogenesis and for the development of effective therapeutic strategies. While significant findings were obtained by the use of islets isolated from the pancreas, in vitro studies are inherently limited since they lack the many factors influencing pancreatic islet cell function in vivo and do not allow for longitudinal monitoring of islet cell plasticity in the living organism. In this respect a number of imaging methodologies have been developed over the years for the study of islets in situ in the pancreas, a challenging task due to the relatively small size of the islets and their location, scattered throughout the organ. To increase imaging resolution and allow for longitudinal studies in individual islets, another strategy is based on the transplantation of islets into other sites that are more accessible for imaging. In this review we present the anterior chamber of the eye as a transplantation and imaging site for the study of pancreatic islet cell plasticity, and summarize the major research outcomes facilitated by this technological platform.
Collapse
Affiliation(s)
- Erwin Ilegems
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institute, Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institute, Stockholm, Sweden
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Center for Diabetes and Metabolism Research, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| |
Collapse
|
45
|
Naderi S, Roshan R, Behdani M, Kazemi-Lomedasht F. Inhibition of neovascularisation in human endothelial cells using anti NRP-1 nanobody fused to truncated form of diphtheria toxin as a novel immunotoxin. Immunopharmacol Immunotoxicol 2021; 43:230-238. [PMID: 33657977 DOI: 10.1080/08923973.2021.1888114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuropilin-1 (NRP-1) regulates a range of physiological and pathological processes, including angiogenesis. Targeting of NRP1 is considered a significant approach in cancer therapy. In the present study, a novel antiNRP1 immunotoxin (αNRP1 IT) was developed by genetic fusion of a single domain (VHH) anti-NRP-1 antibody fragment to a truncated diphtheria toxin. The αNRP1 IT was expressed into bacterial cells as an inclusion body (IB). Expression of αNRP1 IT was confirmed by SDS-PAGE and western blotting. Recombinant αNRP1 IT was purified using nickel affinity chromatography. Toxicity and antiangiogenesis effect of αNRP1 IT was investigated both in vitro and in vivo. Results showed that αNRP1 IT significantly reduced the viability of human umbilical vein endothelial cell line (HUVEC) (p < .05). The αNRP1 IT significantly inhibited tube formation of HUVEC cells (p < .001). Furthermore, αNRP1 IT inhibited angiogenesis in Chick Chorioallantoic Membrane (CAM) Assay. These data suggest the potential of αNRP1 IT as a novel therapeutic in targeted cancer therapy.
Collapse
Affiliation(s)
- Shamsi Naderi
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran
| | - Reyhaneh Roshan
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Islamic Republic of Iran
| |
Collapse
|
46
|
Dai L, Yu X, Huang S, Peng Y, Liu J, Chen T, Wang X, Liu Q, Zhu Y, Chen D, Li X, Ou Y, Zou Y, Pan Q, Cao K. The therapeutic potential of attenuated diphtheria toxin delivered by an adenovirus vector with survivin promoter on human lung cancer cells. Cancer Biol Ther 2020; 22:79-87. [PMID: 33377426 DOI: 10.1080/15384047.2020.1859870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adenoviral vectors are superior to plasmid vectors in their gene transport efficiency. The A subunit of the diphtheria toxin (DTA) gene is a popular suicide gene in cancer gene therapy. However, DTA is seldom used in adenoviral therapy due to its great toxicity. The toxicity of DTA is so great that even a single molecule of DTA is enough to kill one cell. To avoid this highly toxic effect on normal cells, DTA should be controlled by tumor-specific promoters. The survivin promoter is a widely used tumor-specific promoter. But genes driven by the survivin promoter show a low level of basal gene expression in non-cancer cells. DTA driven by the survivin promoter in adenoviral vectors may be highly toxic not only to cancer cells but also to normal cells. Therefore, DTA should be attenuated when it is used in adenoviral vectors driven by the survivin promoter. In this study, we compared the three kinds of recombinant adenoviruses that carry DTA or its attenuated forms (DTA176 and DTA197) in the treatment of human lung cancer. The results showed that in comparison with both DTA and DTA176, DTA197 is more suitable for adenoviral cancer therapy controlled by the survivin promoter. In addition, Adsur-DTA197 (DTA197 delivered by an adenoviral vector with the survivin promoter) sensitized human lung cancer cells to cisplatin both in vitro and in vivo. These results indicated that Adsur-DTA197 may be a potential chemosensitizer in cancer therapy.
Collapse
Affiliation(s)
- Lvxia Dai
- Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College , Chengdu, China.,Department of Experiment Teaching Center of Clinical Medicine,Chengdu Medical College , Chengdu, China
| | - Xiaoping Yu
- School of Public Health,Chengdu Medical College , Chengdu, China
| | - Sizhou Huang
- Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College , Chengdu, China
| | - Yanjuan Peng
- Department of Pharmacology,Chengdu Medical College , Chengdu, China
| | - Jianmin Liu
- Department of Neurosurgery, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine , Guangzhou, China
| | - Tian Chen
- Department of Pathogen Biology,Chengdu Medical College , Chengdu, China
| | - Xin Wang
- Department of Pathogen Biology,Chengdu Medical College , Chengdu, China
| | | | - Yanfeng Zhu
- School of Public Health,Chengdu Medical College , Chengdu, China
| | - Dengbang Chen
- Department of Experiment Teaching Center of Clinical Medicine,Chengdu Medical College , Chengdu, China
| | - Xiaohua Li
- Department of Emergency, Dongfeng Maojian Hospital, Sinopharm Group Corporation , Shiyan, China
| | - Yu Ou
- School of Public Health,Chengdu Medical College , Chengdu, China
| | - Yi Zou
- Department of certification and evaluation of drug safety, Center for certification and evaluation, Guangdong Drug Administration, Guangzhou , China
| | - Qu Pan
- Department of Pathogen Biology,Chengdu Medical College , Chengdu, China
| | - Kang Cao
- Development and Regeneration Key Laboratory of Sichuan Province, Chengdu Medical College , Chengdu, China.,Department of Pathogen Biology,Chengdu Medical College , Chengdu, China
| |
Collapse
|
47
|
Loftis AR, Santos MS, Truex NL, Biancucci M, Satchell KJF, Pentelute BL. Anthrax Protective Antigen Retargeted with Single-Chain Variable Fragments Delivers Enzymes to Pancreatic Cancer Cells. Chembiochem 2020; 21:2772-2776. [PMID: 32369652 PMCID: PMC7541672 DOI: 10.1002/cbic.202000201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Indexed: 12/15/2022]
Abstract
The nontoxic, anthrax protective antigen/lethal factor N-terminal domain (PA/LFN ) complex is an effective platform for translocating proteins into the cytosol of cells. Mutant PA (mPA) was recently fused to epidermal growth factor (EGF) to retarget delivery of LFN to cells bearing EGF receptors (EGFR), but the requirement for a known cognate ligand limits the applicability of this approach. Here, we render practical protective antigen retargeting to a variety of receptors with mPA single-chain variable fragment (scFv) fusion constructs. Our design enables the targeting of two pancreatic cancer-relevant receptors, EGFR and carcinoembryonic antigen. We demonstrate that fusion to scFvs does not disturb the basic functions of mPA. Moreover, mPA-scFv fusions enable cell-specific delivery of diphtheria toxin catalytic domain and Ras/Rap1-specific endopeptidase to pancreatic cancer cells. Importantly, mPA-scFv fusion-based treatments display potent cell-specific toxicity in vitro, opening fundamentally new routes toward engineered immunotoxins and providing a potential solution to the challenge of targeted protein delivery to the cytosol of cancer cells.
Collapse
Affiliation(s)
- Alexander R Loftis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Michael S Santos
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Nicholas L Truex
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Marco Biancucci
- Department of Microbiology-Immunology Feinberg School of Medicine, Northwestern University, 420 E Superior Street, Chicago, IL 60611, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology Feinberg School of Medicine, Northwestern University, 420 E Superior Street, Chicago, IL 60611, USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02142, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| |
Collapse
|
48
|
Wu W, Li Y, Wei Y, Bosco DB, Xie M, Zhao MG, Richardson JR, Wu LJ. Microglial depletion aggravates the severity of acute and chronic seizures in mice. Brain Behav Immun 2020; 89:245-255. [PMID: 32621847 PMCID: PMC7572576 DOI: 10.1016/j.bbi.2020.06.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/12/2020] [Accepted: 06/24/2020] [Indexed: 01/03/2023] Open
Abstract
Microglia are the resident immune cells of the center nervous system and participate in various neurological diseases. Here we determined the function of microglia in epileptogenesis using microglial ablation approaches. Three different microglia-specific genetic tools were used, CX3CR1CreER/+:R26iDTA/+, CX3CR1CreER/+:R26iDTR/+, and CX3CR1CreER/+:Csf1rFlox/Flox mice. We found that microglial depletion led to worse kainic acid (KA)-induced status epilepticus, higher mortality rate, and increased neuronal degeneration in the hippocampus. In KA-induced chronic spontaneous recurrent seizures, microglial depletion increased seizure frequency, interictal spiking, and seizure duration. Therefore, microglial depletion aggravates the severity of KA-induced acute and chronic seizures. Interestingly, microglial repopulation reversed the effects of depletion upon KA-induced status epilepticus. Our results demonstrate a beneficial role of microglia in suppressing both acute and chronic seizures, suggesting that microglia are a potential therapeutic target for the management of epilepsy.
Collapse
Affiliation(s)
- Wenning Wu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yujiao Li
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Yujia Wei
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ming-Gao Zhao
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Jason R Richardson
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Departments of Immunology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
49
|
Zhou J, Hou J, Liu Y, Rao J. Targeted delivery of β-glucosidase-loaded magnetic nanoparticles: effect of external magnetic field duration and intensity. Nanomedicine (Lond) 2020; 15:2029-2040. [PMID: 32885735 DOI: 10.2217/nnm-2020-0186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The effect of applied magnetic field duration and intensity on the delivery of β-glucosidase-loaded magnetic nanoparticles was evaluated. Materials & methods: The prepared β-glucosidase-loaded magnetic nanoparticles were targeted to subcutaneous tumors with an external magnetic field. Iron concentration and enzyme activity in tumor tissue were analyzed via electron spin resonance detection, Prussian blue staining and enzyme activity measurement. Results: The increase in magnetic nanoparticles quantity and enzyme activity in tumor tissue was not synchronous with the magnetic targeting duration. In addition, accumulation of magnetic nanoparticles and the increase in enzyme activity were not synchronous with the magnetic field intensity. Conclusion: The results suggested that appropriate magnetic field conditions should be considered for targeted delivery of bioactivity proteins based on magnetic nanoparticles.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Urology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, PR China.,Department of Urology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei, PR China
| | - Jing Hou
- Department of Urology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, PR China.,Department of Urology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei, PR China
| | - Yunlong Liu
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jun Rao
- Department of Urology, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei, PR China.,Clinical Laboratory, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei, PR China
| |
Collapse
|
50
|
Kreitman RJ, Pastan I. Development of Recombinant Immunotoxins for Hairy Cell Leukemia. Biomolecules 2020; 10:E1140. [PMID: 32756468 PMCID: PMC7464581 DOI: 10.3390/biom10081140] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 01/08/2023] Open
Abstract
Hairy cell leukemia (HCL) is an indolent B-cell malignancy with excellent initial response to purine analogs pentostatin or cladribine, but patients are rarely, if ever, cured. Younger patients will usually need repeat chemotherapy which has declining benefits and increasing toxicities with each course. Targeted therapies directed to the BRAF V600E mutation and Bruton's tyrosine kinase may be helpful, but rarely eradicate the minimal residual disease (MRD) which will eventually lead to relapse. Moxetumomab pasudotox (Moxe) is an anti-CD22 recombinant immunotoxin, which binds to CD22 on HCL cells and leads to apoptotic cell death after internalization and trafficking of the toxin to the cytosol. Phase I testing achieved a complete remission (CR) rate of 57% in relapsed/refractory HCL. Most CRs were without MRD and eradication of MRD correlated with prolonged CR duration. Patients were often MRD-free after five years. Important mild-moderate toxicities included capillary leak and hemolytic uremic syndromes which could be prevented and managed conservatively. A phase 3 trial met its endpoint of durable CR with acceptable toxicity, leading to FDA approval of Moxe for relapsed/refractory HCL, under the name Lumoxiti. Moxe combined with rituximab is currently being evaluated in relapsed/refractory HCL to improve the rate of MRD-free CR.
Collapse
Affiliation(s)
- Robert J. Kreitman
- Laboratory of Molecular Biology, Clinical Center, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
- National Institutes of Health, Building 37/5124b, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Ira Pastan
- Laboratory of Molecular Biology, Clinical Center, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|