1
|
Scarsella L, Ehrke-Schulz E, Paulussen M, Thal SC, Ehrhardt A, Aydin M. Advances of Recombinant Adenoviral Vectors in Preclinical and Clinical Applications. Viruses 2024; 16:377. [PMID: 38543743 PMCID: PMC10974029 DOI: 10.3390/v16030377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 05/23/2024] Open
Abstract
Adenoviruses (Ad) have the potential to induce severe infections in vulnerable patient groups. Therefore, understanding Ad biology and antiviral processes is important to comprehend the signaling cascades during an infection and to initiate appropriate diagnostic and therapeutic interventions. In addition, Ad vector-based vaccines have revealed significant potential in generating robust immune protection and recombinant Ad vectors facilitate efficient gene transfer to treat genetic diseases and are used as oncolytic viruses to treat cancer. Continuous improvements in gene delivery capacity, coupled with advancements in production methods, have enabled widespread application in cancer therapy, vaccine development, and gene therapy on a large scale. This review provides a comprehensive overview of the virus biology, and several aspects of recombinant Ad vectors, as well as the development of Ad vector, are discussed. Moreover, we focus on those Ads that were used in preclinical and clinical applications including regenerative medicine, vaccine development, genome engineering, treatment of genetic diseases, and virotherapy in tumor treatment.
Collapse
Affiliation(s)
- Luca Scarsella
- Department of Anesthesiology, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Science (ZBAF), Department of Human Medicine, Faculty of Medicine, Witten/Herdecke University, 58453 Witten, Germany
| | - Eric Ehrke-Schulz
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
| | - Michael Paulussen
- Chair of Pediatrics, University Children’s Hospital, Vestische Kinder- und Jugendklinik Datteln, Witten/Herdecke University, 45711 Datteln, Germany;
| | - Serge C. Thal
- Department of Anesthesiology, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany;
| | - Anja Ehrhardt
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
| | - Malik Aydin
- Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Department Human Medicine, Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany; (E.E.-S.); (A.E.)
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Science (ZBAF), Department of Human Medicine, Faculty of Medicine, Witten/Herdecke University, 58453 Witten, Germany
- Chair of Pediatrics, University Children’s Hospital, Vestische Kinder- und Jugendklinik Datteln, Witten/Herdecke University, 45711 Datteln, Germany;
- Institute for Medical Laboratory Diagnostics, Center for Clinical and Translational Research, Helios University Hospital Wuppertal, Witten/Herdecke University, 42283 Wuppertal, Germany
| |
Collapse
|
2
|
Schwartz U, Komatsu T, Huber C, Lagadec F, Baumgartl C, Silberhorn E, Nuetzel M, Rayne F, Basyuk E, Bertrand E, Rehli M, Wodrich H, Laengst G. Changes in adenoviral chromatin organization precede early gene activation upon infection. EMBO J 2023; 42:e114162. [PMID: 37641864 PMCID: PMC10548178 DOI: 10.15252/embj.2023114162] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/10/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
Within the virion, adenovirus DNA associates with the virus-encoded, protamine-like structural protein pVII. Whether this association is organized, and how genome packaging changes during infection and subsequent transcriptional activation is currently unclear. Here, we combined RNA-seq, MNase-seq, ChIP-seq, and single genome imaging during early adenovirus infection to unveil the structure- and time-resolved dynamics of viral chromatin changes as well as their correlation with gene transcription. Our MNase mapping data indicates that the adenoviral genome is arranged in precisely positioned nucleoprotein particles with nucleosome-like characteristics, that we term adenosomes. We identified 238 adenosomes that are positioned by a DNA sequence code and protect about 60-70 bp of DNA. The incoming adenoviral genome is more accessible at early gene loci that undergo additional chromatin de-condensation upon infection. Histone H3.3 containing nucleosomes specifically replaces pVII at distinct genomic sites and at the transcription start sites of early genes. Acetylation of H3.3 is predominant at the transcription start sites and precedes transcriptional activation. Based on our results, we propose a central role for the viral pVII nucleoprotein architecture, which is required for the dynamic structural changes during early infection, including the regulation of nucleosome assembly prior to transcription initiation. Our study thus may aid the rational development of recombinant adenoviral vectors exhibiting sustained expression in gene therapy.
Collapse
Affiliation(s)
- Uwe Schwartz
- Biochemie Zentrum RegensburgUniversity of RegensburgRegensburgGermany
| | - Tetsuro Komatsu
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular RegulationGunma UniversityGunmaJapan
- CNRS UMR 5234, Microbiologie Fondamentale et PathogénicitéUniversité de BordeauxBordeauxFrance
| | - Claudia Huber
- Biochemie Zentrum RegensburgUniversity of RegensburgRegensburgGermany
| | - Floriane Lagadec
- CNRS UMR 5234, Microbiologie Fondamentale et PathogénicitéUniversité de BordeauxBordeauxFrance
- Department of Molecular Biology, Faculty of Medicine, Göttingen Center of Biosciences (GZMB)Georg‐August‐University GöttingenGöttingenGermany
| | | | | | - Margit Nuetzel
- Department of Internal Medicine IIIUniversity Hospital RegensburgRegensburgGermany
| | - Fabienne Rayne
- CNRS UMR 5234, Microbiologie Fondamentale et PathogénicitéUniversité de BordeauxBordeauxFrance
| | - Eugenia Basyuk
- CNRS UMR 5234, Microbiologie Fondamentale et PathogénicitéUniversité de BordeauxBordeauxFrance
| | - Edouard Bertrand
- CNRS UMR 5355Institut de Généthique Moléculaire de MontpellierMontpellierFrance
| | - Michael Rehli
- Department of Internal Medicine IIIUniversity Hospital RegensburgRegensburgGermany
- Leibniz Institute for ImmunotherapyRegensburgGermany
- University Hospital RegensburgRegensburgGermany
| | - Harald Wodrich
- CNRS UMR 5234, Microbiologie Fondamentale et PathogénicitéUniversité de BordeauxBordeauxFrance
| | - Gernot Laengst
- Biochemie Zentrum RegensburgUniversity of RegensburgRegensburgGermany
| |
Collapse
|
3
|
Condezo GN, San Martín C. Localization of adenovirus morphogenesis players, together with visualization of assembly intermediates and failed products, favor a model where assembly and packaging occur concurrently at the periphery of the replication center. PLoS Pathog 2017; 13:e1006320. [PMID: 28448571 PMCID: PMC5409498 DOI: 10.1371/journal.ppat.1006320] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
Adenovirus (AdV) morphogenesis is a complex process, many aspects of which remain unclear. In particular, it is not settled where in the nucleus assembly and packaging occur, and whether these processes occur in a sequential or a concerted manner. Here we use immunofluorescence and immunoelectron microscopy (immunoEM) to trace packaging factors and structural proteins at late times post infection by either wildtype virus or a delayed packaging mutant. We show that representatives of all assembly factors are present in the previously recognized peripheral replicative zone, which therefore is the AdV assembly factory. Assembly intermediates and abortive products observed in this region favor a concurrent assembly and packaging model comprising two pathways, one for capsid proteins and another one for core components. Only when both pathways are coupled by correct interaction between packaging proteins and the genome is the viral particle produced. Decoupling generates accumulation of empty capsids and unpackaged cores.
Collapse
Affiliation(s)
- Gabriela N. Condezo
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Carmen San Martín
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
4
|
Ahi YS, Mittal SK. Components of Adenovirus Genome Packaging. Front Microbiol 2016; 7:1503. [PMID: 27721809 PMCID: PMC5033970 DOI: 10.3389/fmicb.2016.01503] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/08/2016] [Indexed: 12/29/2022] Open
Abstract
Adenoviruses (AdVs) are icosahedral viruses with double-stranded DNA (dsDNA) genomes. Genome packaging in AdV is thought to be similar to that seen in dsDNA containing icosahedral bacteriophages and herpesviruses. Specific recognition of the AdV genome is mediated by a packaging domain located close to the left end of the viral genome and is mediated by the viral packaging machinery. Our understanding of the role of various components of the viral packaging machinery in AdV genome packaging has greatly advanced in recent years. Characterization of empty capsids assembled in the absence of one or more components involved in packaging, identification of the unique vertex, and demonstration of the role of IVa2, the putative packaging ATPase, in genome packaging have provided compelling evidence that AdVs follow a sequential assembly pathway. This review provides a detailed discussion on the functions of the various viral and cellular factors involved in AdV genome packaging. We conclude by briefly discussing the roles of the empty capsids, assembly intermediates, scaffolding proteins, portal vertex and DNA encapsidating enzymes in AdV assembly and packaging.
Collapse
Affiliation(s)
- Yadvinder S Ahi
- Department of Comparative Pathobiology, Purdue UniversityWest Lafayette, IN, USA; Purdue University Center for Cancer Research, Purdue UniversityWest Lafayette, IN, USA
| | - Suresh K Mittal
- Department of Comparative Pathobiology, Purdue UniversityWest Lafayette, IN, USA; Purdue University Center for Cancer Research, Purdue UniversityWest Lafayette, IN, USA; Purdue Institute for Immunology, Inflammation and Infectious Diseases, Purdue UniversityWest Lafayette, IN, USA
| |
Collapse
|
5
|
Mei YF, Wu H, Hultenby K, Silver J. Complete replication-competent adenovirus 11p vectors with E1 or E3 insertions show improved heat stability. Virology 2016; 497:198-210. [PMID: 27494367 DOI: 10.1016/j.virol.2016.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/16/2016] [Accepted: 07/26/2016] [Indexed: 11/25/2022]
Abstract
Conventional adenovirus vectors harboring E1 or E3 deletions followed by the insertion of an exogenous gene show considerably reduced virion stability. Here, we report strategies to generate complete replication-competent Ad11p(RCAd11p) vectors that overcome the above disadvantage. A GFP cassette was successfully introduced either upstream of E1A or in the E3A region. The resulting vectors showed high expression levels of the hexon and E1genes and also strongly induced the cytopathic effect in targeted cells. When harboring oversized genomes, the RCAd11pE1 and RCAd11pE3 vectors showed significantly improved heat stability in comparison to Ad11pwt;of the three, RCAd11pE3 was the most tolerant to heat treatment. Electron microscopy showed that RCAd11pE3, RCAd11pE1, Ad11pwt, and Ad11pE1 Delmanifested dominant, moderate, minimum, or no full virus particles after heat treatment at 47°C for 5h. Our results demonstrated that both genome size and the insertion site in the viral genome affect virion stability.
Collapse
Affiliation(s)
- Ya-Fang Mei
- Department of Clinical Microbiology and Virology, Umeå University, SE-901 85 Umeå, Sweden.
| | - Haidong Wu
- Department of Clinical Microbiology and Virology, Umeå University, SE-901 85 Umeå, Sweden.
| | - Kjell Hultenby
- Division of Clinical Research Centre, Department of Laboratory Medicine, Karolinska Institute, SE-14186 Stockholm, Sweden.
| | - Jim Silver
- Department of Clinical Microbiology and Virology, Umeå University, SE-901 85 Umeå, Sweden.
| |
Collapse
|
6
|
Baculovirus VP1054 is an acquired cellular PURα, a nucleic acid-binding protein specific for GGN repeats. J Virol 2013; 87:8465-80. [PMID: 23720732 DOI: 10.1128/jvi.00068-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Baculovirus VP1054 protein is a structural component of both of the virion types budded virus (BV) and occlusion-derived virus (ODV), but its exact role in virion morphogenesis is poorly defined. In this paper, we reveal sequence and functional similarity between the baculovirus protein VP1054 and the cellular purine-rich element binding protein PUR-alpha (PURα). The data strongly suggest that gene transfer has occurred from a host to an ancestral baculovirus. Deletion of the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) vp1054 gene completely prevented viral cell-to-cell spread. Electron microscopy data showed that assembly of progeny nucleocapsids is dramatically reduced in the absence of VP1054. More precisely, VP1054 is required for proper viral DNA encapsidation, as deduced from the formation of numerous electron-lucent capsid-like tubules. Complementary searching identified the presence of genetic elements composed of repeated GGN trinucleotide motifs in baculovirus genomes, the target sequence for PURα proteins. Interestingly, these GGN-rich sequences are disproportionally distributed in baculoviral genomes and mostly occurred in proximity to the gene for the major occlusion body protein polyhedrin. We further demonstrate that the VP1054 protein specifically recognizes these GGN-rich islands, which at the same time encode crucial proline-rich domains in p78/83, an essential gene adjacent to the polyhedrin gene in the AcMNPV genome. While some viruses, like human immunodeficiency virus type 1 (HIV-1) and human JC virus (JCV), utilize host PURα protein, baculoviruses encode the PURα-like protein VP1054, which is crucial for viral progeny production.
Collapse
|
7
|
Christensen JB, Ewing SG, Imperiale MJ. Identification and characterization of a DNA binding domain on the adenovirus IVa2 protein. Virology 2012; 433:124-30. [PMID: 22884292 DOI: 10.1016/j.virol.2012.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/19/2012] [Accepted: 07/12/2012] [Indexed: 01/08/2023]
Abstract
The adenovirus IVa2 protein has been implicated as a transcriptional activator of the viral major late promoter (MLP) and a key component in the packaging of the viral genome. IVa2 functions in packaging through its ability to form a complex with the viral L1 52/55kDa protein, which is required for encapsidation. IVa2, alone and in conjunction with another viral protein, the L4 22K protein, binds to the packaging sequence on the viral genome and to specific elements in the promoter. To define the DNA binding domain on IVa2 and determine its contribution to the viral life cycle, we created a mutant protein that lacks a putative helix-turn-helix motif at the extreme C-terminus. Characterization of this mutant protein showed that while MLP activity is relatively unaffected, it is unable to bind to and package DNA.
Collapse
Affiliation(s)
- Joan B Christensen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | | | | |
Collapse
|
8
|
Characterization of Empty adenovirus particles assembled in the absence of a functional adenovirus IVa2 protein. J Virol 2011; 85:5524-31. [PMID: 21450831 DOI: 10.1128/jvi.02538-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The molecular mechanism for packaging of the adenovirus (Ad) genome into the capsid is likely similar to that of DNA bacteriophages and herpesviruses-the insertion of viral DNA through a portal structure into a preformed prohead driven by an ATP-hydrolyzing molecular machine. It is speculated that the IVa2 protein of adenovirus is the ATPase providing the power stroke of the packaging machinery. Purified IVa2 binds ATP in vitro and, along with a second Ad protein, the L4 22-kilodalton protein (L4-22K), binds specifically to sequences in the Ad genome that are essential for packaging. The efficiency of binding of these proteins in vitro was correlated with the efficiency of packaging in vivo. By utilizing a virus unable to express IVa2, pm8002, it was reported that IVa2 plays a role in assembly of the empty virion. We wanted to address the question of whether the ATP binding, and hence the putative ATPase activity, of IVa2 was required for its role in virus assembly. Our results show that ATPase activity was not required for the assembly of empty virus particles. In addition, we present evidence that particles were assembled in the absence of IVa2 by using two viruses null for IVa2-a deletion mutant virus, ΔIVa2, and the previously described mutant virus, pm8002. Empty virus particles produced by these IVa2 mutant viruses did not contain detectable viral DNA. We conclude that the major role of IVa2 is in viral DNA packaging. A characterization of the empty particles obtained from the IVa2 mutant viruses compared to wild-type empty particles is presented.
Collapse
|
9
|
Abstract
IVa2 is an essential, multifunctional protein of adenovirus (Ad) supporting packaging of the viral genome into the capsid, assisting in assembly of the capsid, and activating Ad late transcription. A comparison of IVa2 protein sequences from different species of Adenoviridae shows conserved motifs associated with binding and hydrolysis of ATP (Walker A and B motifs). ATPases are essential proteins of bacteriophage packaging motors, and such activity may be required for Ad packaging. Results presented here show that the Ad2 IVa2 protein binds ATP in vitro and that sequences in the Walker A and B motifs are necessary for this activity.
Collapse
|
10
|
Abstract
The results of studies of Adenovirus have contributed to our basic understanding of the molecular biology of the cell. While a great body of knowledge has been developed concerning Ad gene expression, viral replication, and effects on the infected host, the molecular details of the assembly process of Adenovirus particles are largely unknown. In this article, we would like to propose a theoretical model for the packaging and assembly of Adenovirus and present an overview of the studies that have contributed to our present understanding. In particular, we will summarize the molecular details of the process for packaging of viral DNA into virus particles and highlight the events in packaging and assembly that require further study.
Collapse
Affiliation(s)
- Philomena Ostapchuk
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | | |
Collapse
|
11
|
Ewing SG, Byrd SA, Christensen JB, Tyler RE, Imperiale MJ. Ternary complex formation on the adenovirus packaging sequence by the IVa2 and L4 22-kilodalton proteins. J Virol 2007; 81:12450-7. [PMID: 17804492 PMCID: PMC2168966 DOI: 10.1128/jvi.01470-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Assembly of infectious adenovirus particles requires seven functionally redundant elements at the left end of the genome, termed A repeats, that direct packaging of the DNA. Previous studies revealed that the viral IVa2 protein alone interacts with specific sequences in the A repeats but that additional IVa2-containing complexes observed during infection require the viral L4 22-kDa protein. In this report, we purified a recombinant form of the 22-kDa protein to characterize its DNA binding properties. In electrophoretic mobility shift assay analyses, the 22-kDa protein alone did not interact with the A repeats but it did form complexes on them in the presence of the IVa2 protein. These complexes were identical to those seen in extracts from infected cells and had the same DNA sequence dependence. Furthermore, we provide data that the 22-kDa protein enhances binding of the IVa2 protein to the A repeats and that multiple binding sites in the packaging sequence augment this activity. These data support a cooperative role of the IVa2 and 22-kDa proteins in packaging and assembly.
Collapse
Affiliation(s)
- Sean G Ewing
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
12
|
Perez-Romero P, Gustin KE, Imperiale MJ. Dependence of the encapsidation function of the adenovirus L1 52/55-kilodalton protein on its ability to bind the packaging sequence. J Virol 2006; 80:1965-71. [PMID: 16439552 PMCID: PMC1367168 DOI: 10.1128/jvi.80.4.1965-1971.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The adenovirus IVa2 and L1 52/55-kDa proteins are involved in the assembly of new virus particles. Both proteins bind to the packaging sequence of the viral chromosome, and the lack of expression of either protein results in no virus progeny: the absence of the L1 52/55-kDa protein leads to formation of only empty capsids, and the absence of the IVa2 protein results in no capsid assembly. Furthermore, the IVa2 and L1 52/55-kDa proteins interact with each other during adenovirus infection. However, what is not yet clear is when and how this interaction occurs during the course of the viral infection. We defined the domains of the L1 52/55-kDa protein required for interaction with the IVa2 protein, DNA binding, and virus replication by constructing L1 52/55-kDa protein truncations. We found that the N-terminal 173 amino acids of the L1 52/55-kDa protein are essential for interaction with the IVa2 protein. However, for both DNA binding and complementation of the pm8001 mutant virus, which does not express the L1 52/55-kDa protein, the amino-terminal 331 amino acids of the L1 52/55-kDa protein are necessary. These results suggest that the production of infectious virus particles depends on the ability of the L1 52/55-kDa protein to bind to DNA.
Collapse
Affiliation(s)
- Pilar Perez-Romero
- University of Michigan Medical School, 6304 Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, MI 48109-0942, USA.
| | | | | |
Collapse
|
13
|
Perez-Romero P, Tyler RE, Abend JR, Dus M, Imperiale MJ. Analysis of the interaction of the adenovirus L1 52/55-kilodalton and IVa2 proteins with the packaging sequence in vivo and in vitro. J Virol 2005; 79:2366-74. [PMID: 15681437 PMCID: PMC546600 DOI: 10.1128/jvi.79.4.2366-2374.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We previously showed that the adenovirus IVa2 and L1 52/55-kDa proteins interact in infected cells and the IVa2 protein is part of two virus-specific complexes (x and y) formed in vitro with repeated elements of the packaging sequence called the A1-A2 repeats. Here we demonstrate that both the IVa2 and L1 52/55-kDa proteins bind in vivo to the packaging sequence and that each protein-DNA interaction is independent of the other. There is a strong and direct interaction of the IVa2 protein with DNA in vitro. This interaction is observed when probes containing the A1-A2 or A4-A5 repeats are used, but it is not found by using an A5-A6 probe. Furthermore, we show that complex x is likely a heterodimer of IVa2 and an unknown viral protein, while complex y is a monomer or multimer of IVa2. No in vitro interaction of purified L1 52/55-kDa protein with the packaging sequence was found, suggesting that the L1 52/55-kDa protein-DNA interaction may be mediated by an intermediate protein. Results support roles for both the L1 52/55-kDa and IVa2 proteins in DNA encapsidation.
Collapse
Affiliation(s)
- Pilar Perez-Romero
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan Medical School, 1500 E. Medical Center Dr., Ann Arbor, MI 48109-0942, USA
| | | | | | | | | |
Collapse
|
14
|
Zhang W, Arcos R. Interaction of the adenovirus major core protein precursor, pVII, with the viral DNA packaging machinery. Virology 2005; 334:194-202. [PMID: 15780869 DOI: 10.1016/j.virol.2005.01.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 12/20/2004] [Accepted: 01/28/2005] [Indexed: 10/25/2022]
Abstract
Adenovirus is one of the well-studied double-stranded DNA viruses. However, the mechanisms of its DNA packaging and virion assembly are still not fully understood. One of the unique features of adenovirus is that the unpackaged viral DNA is associated with core protein pVII. Packaging of viral DNA bound with proteins has not been reported from other viruses. To characterize how viral DNA bound with protein pVII is packaged, we performed experiments to see if protein pVII interacts with the known DNA packaging proteins or the packaging sequence. Our results demonstrated that protein pVII interacted with the viral IVa2 and L1 52/55 kDa proteins, which are the known viral DNA packaging proteins. Furthermore, our protein-DNA binding experiments demonstrated that the IVa2 protein mediates the specific interaction with the packaging sequence, whereas protein pVII and the L1 52/55 kDa protein bind to DNA non-specifically. Although the non-specific binding of protein pVII and the L1 52/55 kDa protein do not appear to affect the specific binding of the IVa2 protein to the packaging sequence, and the specific binding of the IVa2 protein does not appear to block the bindings of protein pVII and the L1 52/55 kDa protein to the packaging sequence, the possibility of a cooperative binding among the IVa2 protein, the L1 52/55 kDa protein and protein pVII on the packaging sequence needs to be further determined. In summary, the results indicate that the assembly of the DNA packaging initiation complex may be mediated by the specific interaction of the IVa2 protein with the packaging sequence and other viral proteins, such as protein pVII and the L1 52/55 kDa protein.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| | | |
Collapse
|
15
|
Ostapchuk P, Yang J, Auffarth E, Hearing P. Functional interaction of the adenovirus IVa2 protein with adenovirus type 5 packaging sequences. J Virol 2005; 79:2831-8. [PMID: 15709002 PMCID: PMC548476 DOI: 10.1128/jvi.79.5.2831-2838.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Adenovirus type 5 (Ad5) DNA packaging is initiated in a polar fashion from the left end of the genome. The packaging process is dependent on the cis-acting packaging domain located between nucleotides 230 and 380. Seven AT-rich repeats that direct packaging have been identified within this domain. A1, A2, A5, and A6 are the most important repeats functionally and share a bipartite sequence motif. Several lines of evidence suggest that there is a limiting trans-acting factor(s) that plays a role in packaging. Both cellular and viral proteins that interact with adenovirus packaging elements in vitro have been identified. In this study, we characterized a group of recombinant viruses that carry site-specific point mutations within a minimal packaging domain. The mutants were analyzed for growth properties in vivo and for the ability to bind cellular and viral proteins in vitro. Our results are consistent with a requirement of the viral IVa2 protein for DNA packaging via a direct interaction with packaging sequences. Our results also indicate that higher-order IVa2-containing complexes that form on adjacent packaging repeats in vitro are the complexes required for the packaging activity of these sites in vivo. Chromatin immunoprecipitation was used to study proteins that bind directly to the packaging sequences. These results demonstrate site-specific interaction of the viral IVa2 and L1 52/55K proteins with the Ad5 packaging domain in vivo. These results confirm and extend those previously reported and provide a framework on which to model the adenovirus assembly process.
Collapse
Affiliation(s)
- Philomena Ostapchuk
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
16
|
Abstract
The use of adenovirus as a gene transfer vehicle arose from early reports of recombinant viruses carrying heterologous DNA fragments. Adenovirus vectors offer many advantages for gene delivery: they are easy to propagate to high titers, they can infect most cell types regardless of their growth state, and in their most recent embodiments they can accommodate large DNA inserts. In this chapter, the development of adenovirus vectors is reviewed, from the use of so-called first-generation, E1-deleted viruses to the latest generation high-capacity, helper-dependent vectors. Examples of their use in the clinic are described, as are the current areas in which improvements to these vectors are being explored.
Collapse
Affiliation(s)
- M J Imperiale
- Department of Microbiology and Immunology, Center for Gene Therapy, University of Michigan Medical School, 1500 E. Medical Center Drive, 6304 Cancer Center, Ann Arbor, MI 48109-0942, USA
| | | |
Collapse
|
17
|
Xing L, Zhang L, Kessel JV, Tikoo SK. Identification of cis-acting sequences required for selective packaging of bovine adenovirus type 3 DNA. J Gen Virol 2003; 84:2947-2956. [PMID: 14573799 DOI: 10.1099/vir.0.19418-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The assembly of adenovirus particles is a multistep process, in which viral genomic DNA is selected and subsequently inserted into preformed empty capsids. The selective encapsidation of the adenovirus genome is directed by cis-acting packaging motifs, termed A repeats due to their AT-rich character in DNA sequence. A repeats are usually located at the left end of the viral genome. In this report, the construction and analysis of bovine adenovirus type 3 (BAdV-3) mutants containing deletion mutations introduced into the AT-rich regions are described. The main cis-acting packaging domains of BAdV-3 were localized between nt 224 and 540 relative to the left end of the viral genome. They displayed a functional redundancy and followed a hierarchy of importance. In addition, the results demonstrated that not all of the AT-rich units functioned as cis-acting packaging motifs.
Collapse
Affiliation(s)
- Li Xing
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120-Veterinary Road, Saskatoon, SK, Canada S7N 5E3
| | - Linong Zhang
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120-Veterinary Road, Saskatoon, SK, Canada S7N 5E3
| | - Jill Van Kessel
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120-Veterinary Road, Saskatoon, SK, Canada S7N 5E3
| | - Suresh Kumar Tikoo
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120-Veterinary Road, Saskatoon, SK, Canada S7N 5E3
| |
Collapse
|
18
|
Xing L, Tikoo SK. Characterization of cis-acting sequences involved in packaging porcine adenovirus type 311Published as VIDO Journal article no. 340. Virology 2003; 314:650-61. [PMID: 14554092 DOI: 10.1016/s0042-6822(03)00493-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Encapsidation of adenovirus DNA involves specific interactions between cis-acting genomic DNA sequences and trans-acting proteins. The cis-acting packaging domain located near the left inverted terminal repeat is composed of a series of redundant but not functionally equivalent motifs. Such motifs are made up of the consensus sequence 5'-TTTGN(8)CG-3' and 5'-TTTG/A-3' in human adenovirus 5 (HAV-5) and canine adenovirus-2 (CAV-2), respectively. To gain comparative insight into adenovirus encapsidation, we examined the packaging domain of porcine adenovirus-3 (PAV-3). Using deletion mutants, we localized the PAV-3 packaging domain to 319 bp (nt 212 to 531), which contains six cis-acting elements. However, this domain does not contain the consensus motifs identified in HAV-5. In addition, consensus motif found in CAV-2 is present only once in PAV-3. Instead, PAV-3 packaging domain appears to contain AT/GC-rich sequences. The packaging motifs of PAV-3, which are functionally redundant but not equivalent, are located at the left end of the genome.
Collapse
Affiliation(s)
- Li Xing
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | | |
Collapse
|
19
|
Abstract
The application of fundamental concepts about the packaging of the adenovirus genome has contributed significantly to the development of therapeutic viral vectors for gene therapy. The packaging of adenovirus DNA into virus particles requires a cis-acting domain at the left end of the genome. This region contains a series of repeated sequences, termed A repeats due to their AT-rich character, that direct the packaging process. A repeats are believed to represent the binding sites for viral and cellular factors that mediate viral DNA packaging. This review will focus on fundamental aspects of adenovirus DNA packaging as well as how this information has been used and may be used to augment the selectivity of viral DNA packaging in applications pertaining to gene therapy vectors.
Collapse
Affiliation(s)
- P Ostapchuk
- Department of Molecular Genetics and Microbiology, Health Sciences Center, Stony Brook University, Stony Brook, NY 11794, USA
| | | |
Collapse
|
20
|
Erturk E, Ostapchuk P, Wells SI, Yang J, Gregg K, Nepveu A, Dudley JP, Hearing P. Binding of CCAAT displacement protein CDP to adenovirus packaging sequences. J Virol 2003; 77:6255-64. [PMID: 12743282 PMCID: PMC154998 DOI: 10.1128/jvi.77.11.6255-6264.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Adenovirus (Ad) type 5 DNA packaging is initiated in a polar fashion from the left end of the genome. The packaging process is dependent upon the cis-acting packaging domain located between nucleotides 194 and 380. Seven A/T-rich repeats have been identified within this domain that direct packaging. A1, A2, A5, and A6 are the most important repeats functionally and share a bipartite sequence motif. Several lines of evidence suggest that there is a limiting trans-acting factor(s) that plays a role in packaging. Two cellular activities that bind to minimal packaging domains in vitro have been previously identified. These binding activities are P complex, an uncharacterized protein(s), and chicken ovalbumin upstream promoter transcription factor (COUP-TF). In this work, we report that a third cellular protein, octamer-1 protein (Oct-1), binds to minimal packaging domains. In vitro binding analyses and in vivo packaging assays were used to examine the relevance of these DNA binding activities to Ad DNA packaging. The results of these experiments reveal that COUP-TF and Oct-1 binding does not play a functional role in Ad packaging, whereas P-complex binding directly correlates with packaging function. We demonstrate that P complex contains the cellular protein CCAAT displacement protein (CDP) and that full-length CDP is found in purified virus particles. In addition to cellular factors, previous evidence indicates that viral factors play a role in the initiation of viral DNA packaging. We propose that CDP, in conjunction with one or more viral proteins, binds to the packaging sequences of Ad to initiate the encapsidation process.
Collapse
Affiliation(s)
- Ece Erturk
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, New York 11794, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Maeda Y, Kimura E, Uchida Y, Nishida Y, Yamashita S, Arima T, Uchino M. Cre/loxP-mediated adenovirus type 5 packaging signal excision demonstrates that core element VI is sufficient for virus packaging. Virology 2003; 309:330-8. [PMID: 12758179 DOI: 10.1016/s0042-6822(02)00137-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous analyses have demonstrated that packaging of the adenovirus type 5 (Ad5) genome is dependent on at least seven cis-acting elements, called AI to AVII, which are located in the left-end region of the genome. These elements have different packaging efficiencies, and without AI through AV, viral DNA cannot be packaged. Here we report the identification of the cis-acting Ad5 packaging domain in vivo by using the Cre/loxP system. We found that an adenoviral DNA fragment (nt 192 to nt 358), which includes elements AI to AV, is excised by Cre recombinase and packaged into capsids. Furthermore, this mutant adenovirus replicated so efficiently by repetitive propagation that its purification by CsCI equilibrium gradient was possible. This study clarified that the region from nt 358 to nt 454 on the viral genome is sufficient for packaging. Recently, the helper-dependent adenoviral vector (HDAd) construction system has been developed for the purpose of gene therapy. This system uses a helper virus with two parallel loxP sites flanking the packaging signal. This region is eliminated by Cre-mediated excision, which prevents helper virus packaging. Our data provide useful information regarding factors affecting efficient elimination.
Collapse
Affiliation(s)
- Yasushi Maeda
- Department of Neurology, Kumamoto University, School of Medicine, 1-1-1 Honjo, Kumamoto, Kumamoto 860-0811, Japan.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The adenovirus L1 52/55-kDa protein is required for viral DNA packaging and interacts with the viral IVa2 protein, which binds to the viral packaging sequence. Previous reports suggest that the IVa2 protein plays a role in viral DNA packaging and that this function of the IVa2 protein is serotype specific. To further examine the function of the IVa2 protein in viral DNA packaging, a mutant virus that does not express the IVa2 protein was constructed by introducing two stop codons at the beginning of the IVa2 open reading frame in a full-length bacterial clone of adenovirus type 5. The mutant virus, pm8002, was defective for growth in 293 cells, although it replicated its DNA and produced early and late viral proteins. Electron microscopic and gradient analyses revealed that the mutant virus did not assemble any viral particles in 293 cells. In 293-IVa2 cells, which express the IVa2 protein, infectious viruses were produced, although the titer of the mutant virus was lower than that of the wild-type virus, indicating that these cells may not fully complement the mutation. The mutant viral particles produced in 293-IVa2 cells were heterogeneous in size and shape, less stable, and did not traffic efficiently to the nucleus. Marker rescue experiments with a wild-type IVa2 DNA fragment confirmed that the only mutations present in pm8002 were in the IVa2 gene. The results indicate that the IVa2 protein is required for adenovirus assembly and suggest that virus particles may be assembled around the DNA rather than DNA being packaged into preformed capsids.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Microbiology and Immunology, Center for Gene Therapy and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109-0942, USA
| | | |
Collapse
|
23
|
Zhang W, Low JA, Christensen JB, Imperiale MJ. Role for the adenovirus IVa2 protein in packaging of viral DNA. J Virol 2001; 75:10446-54. [PMID: 11581412 PMCID: PMC114618 DOI: 10.1128/jvi.75.21.10446-10454.2001] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although it has been demonstrated that the adenovirus IVa2 protein binds to the packaging domains on the viral chromosome and interacts with the viral L1 52/55-kDa protein, which is required for viral DNA packaging, there has been no direct evidence demonstrating that the IVa2 protein is involved in DNA packaging. To understand in greater detail the DNA packaging mechanisms of adenovirus, we have asked whether DNA packaging is serotype or subgroup specific. We found that Ad7 (subgroup B), Ad12 (subgroup A), and Ad17 (subgroup D) cannot complement the defect of an Ad5 (subgroup C) mutant, pm8001, which does not package its DNA due to a mutation in the L1 52/55-kDa gene. This indicates that the DNA packaging systems of different serotypes cannot interact productively with Ad5 DNA. Based on this, a chimeric virus containing the Ad7 genome except for the inverted terminal repeats and packaging sequence from Ad5 was constructed. This chimeric virus replicates its DNA and synthesizes Ad7 proteins, but it cannot package its DNA in 293 cells or 293 cells expressing the Ad5 L1 52/55-kDa protein. However, this chimeric virus packages its DNA in 293 cells expressing the Ad5 IVa2 protein. These results indicate that the IVa2 protein plays a role in viral DNA packaging and that its function is serotype specific. Since this chimeric virus cannot package its own DNA, but produces all the components for packaging Ad7 DNA, it may be a more suitable helper virus for the growth of Ad7 gutted vectors for gene transfer.
Collapse
Affiliation(s)
- W Zhang
- Department of Microbiology and Immunology, Center for Gene Therapy and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109-0942, USA
| | | | | | | |
Collapse
|
24
|
Finnen RL, Biddle JF, Flint J. Truncation of the human adenovirus type 5 L4 33-kDa protein: evidence for an essential role of the carboxy-terminus in the viral infectious cycle. Virology 2001; 289:388-99. [PMID: 11689060 DOI: 10.1006/viro.2001.1130] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The subgroup C human adenovirus L4 33-kDa protein is a nuclear phosphoprotein that plays a direct, but dispensable, role in virion assembly. The r-strand open reading frame (ORF) for this protein lies opposite to the 5' end of the l-strand E2 early (E2E) transcription units. To facilitate studies of regulation of E2E transcription, we wished to construct a mutant virus in which the 33-kDa ORF was truncated to serve as a background into which specific E2E mutations could be introduced without also altering the 33-kDa protein. We constructed viral DNA (vDNA) containing within the 33-kDa ORF two tandem, premature stop codons that should prevent translation of the C-terminal 47 amino acids of the protein (Delta47). We report here the unanticipated lethality of such truncation of the L4 33-kDa protein. Viral DNA harboring the Delta47 mutations did not produce infectious virus when transfected into cultured cells. In contrast, infectious virus was recovered upon transfection of revertant vDNA, indicating that the Delta47 mutations were responsible for the observed phenotype. The Delta47 mutations did not affect E2E transcription or production of the E2 DNA-binding protein. Transfected Delta47 vDNA was replicated and directed the production of early and late viral proteins, including hexon protein in the trimer conformation. However, no virus particles of any kind were produced. We propose that truncation of the adenovirus 33-kDa protein results in a lethal, late block in the infectious cycle during the assembly of progeny virions and discuss the implications of this phenotype for the mechanism of virion assembly.
Collapse
Affiliation(s)
- R L Finnen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | | | |
Collapse
|
25
|
Soudais C, Boutin S, Kremer EJ. Characterization of cis-acting sequences involved in canine adenovirus packaging. Mol Ther 2001; 3:631-40. [PMID: 11319926 DOI: 10.1006/mthe.2001.0263] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The cis-acting packaging domain in adenovirus serotype 5 (Ad5) is a series of redundant, albeit not functionally equivalent, "A-repeats" made up of the consensus sequence 5'-TTTGN(8)CG-3'. A-repeats may bind trans-acting factors that direct packaging of the adenovirus genome into the preformed capsid. To try to understand this basic mechanism, we examined the packaging domain from a nonhuman adenovirus. We delimited the canine adenovirus type 2 (CAV-2) packaging domain to within 156 bp via a conditional mutation based on the Cre/loxP excision. Using an insertion, deletion, and substitution strategy, we generated packaging-defective CAV-2 vectors. Our results demonstrate that, like Ad5, CAV-2 cis-acting packaging sequences are located near the left inverted terminal repeat and are redundant, but not functionally equivalent. However, the bipartite motif found in Ad5 is present only once in CAV-2 and deletion of it caused only a minor variation in the packaging efficiency. We have identified at least four functional cis-acting packaging sequences in CAV-2. The CAV-2 vectors that we generated were not replication-defective in an E1-transcomplementing cell line and as heat stable as the parental vectors that did not contain mutations.
Collapse
Affiliation(s)
- C Soudais
- Généthon III and CNRS URA 1923, Evry, France
| | | | | |
Collapse
|
26
|
Abstract
We have demonstrated previously that the adenovirus L1 52/55-kDa protein binds to the viral IVa2 protein in infected cells. The significance of this interaction was unclear, however, based on the known functions of these two proteins: the 52/55-kDa protein is required for viral DNA packaging, while the IVa2 protein is a transactivator of the major late promoter (MLP). In this report, we have attempted to elucidate a role for each of the two proteins in the other's known function. There is no apparent effect of the 52/55-kDa protein on the interaction of the IVa2 protein with the MLP. Surprisingly, however, we found that the IVa2 protein can interact with the adenoviral packaging signal and that this interaction involves DNA sequences that have previously been demonstrated to be required for packaging.
Collapse
Affiliation(s)
- W Zhang
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan 48109-0942, USA
| | | |
Collapse
|
27
|
McVoy MA, Nixon DE, Hur JK, Adler SP. The ends on herpesvirus DNA replicative concatemers contain pac2 cis cleavage/packaging elements and their formation is controlled by terminal cis sequences. J Virol 2000; 74:1587-92. [PMID: 10627574 PMCID: PMC111498 DOI: 10.1128/jvi.74.3.1587-1592.2000] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/1999] [Accepted: 10/25/1999] [Indexed: 11/20/2022] Open
Abstract
Herpesviruses have large double-stranded linear DNA genomes that are formed by site-specific cleavage from complex concatemeric intermediates. In this process, only one of the two genomic ends are formed on the concatemer. Although the mechanism underlying this asymmetry is not known, one explanation is that single genomes are cleaved off of concatemer ends in a preferred direction. This implies that cis elements control the direction of packaging. Two highly conserved cis elements named pac1 and pac2 lie near opposite ends of herpesvirus genomes and are important for cleavage and packaging. By comparison of published reports and by analysis of two additional herpesviruses, we found that pac2 elements lie near the ends formed on replicative concatemers of four herpesviruses: herpes simplex virus type 1, equine herpesvirus 1, guinea pig cytomegalovirus, and murine cytomegalovirus. Formation of pac2 ends on concatemers depended on terminal cis sequences, since ectopic cleavage sites engineered into the murine cytomegalovirus genome mediated formation of pac2 ends on concatemers regardless of the orientation of their insertion. These findings are consistent with a model in which pac2 elements at concatemer ends impart a directionality to concatemer packaging by binding proteins that initiate insertion of concatemer ends into empty capsids.
Collapse
Affiliation(s)
- M A McVoy
- Department of Pediatrics, Medical College of Virginia Campus of Virginia Commonwealth University, Richmond, Virginia 23298-0163, USA.
| | | | | | | |
Collapse
|
28
|
Nicolás AL, Munz PL, Falck-Pedersen E, Young CS. Creation and repair of specific DNA double-strand breaks in vivo following infection with adenovirus vectors expressing Saccharomyces cerevisiae HO endonuclease. Virology 2000; 266:211-24. [PMID: 10612676 DOI: 10.1006/viro.1999.0062] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To study DNA double-strand break (DSB) repair in mammalian cells, the Saccharomyces cerevisiae HO endonuclease gene, or its recognition site, was cloned into the adenovirus E3 or E1 regions. Analysis of DNA from human A549 cells coinfected with the E3::HO gene and site viruses showed that HO endonuclease was active and that broken viral genomes were detectable 12 h postinfection, increasing with time up to approximately 30% of the available HO site genomes. Leftward fragments of approximately 30 kbp, which contain the packaging signal, but not rightward fragments of approximately 6 kbp, were incorporated into virions, suggesting that broken genomes were not held together tightly after cleavage. There was no evidence for DSB repair in E3::HO virus coinfections. In contrast, such evidence was obtained in E1::HO virus coinfections of nonpermissive cells, suggesting that adenovirus proteins expressed in the permissive E3::HO coinfection can inhibit mammalian DSB repair. To test the inhibitory role of E4 proteins, known to suppress genome concatemer formation late in infection (Weiden and Ginsberg, 1994), A549 cells were coinfected with E3::HO viruses lacking the E4 region. The results strongly suggest that the E4 protein(s) inhibits DSB repair.
Collapse
Affiliation(s)
- A L Nicolás
- Department of Microbiology, Columbia University, New York, New York, 10032, USA
| | | | | | | |
Collapse
|
29
|
Abstract
The availability of efficient and nontoxic gene delivery technologies is fundamental to the translation of therapeutic concepts into clinical practice by gene transfer. High-capacity adenoviral (HC-Ad) vectors are characterized by the ability to transduce cells in vitro and in vivo with more than 30 kb of nonviral DNA. This quality allows simultaneous gene transfer of several expression cassettes, large promoters, and some genes in their natural genomic context. Because all viral coding sequences are removed from these vectors, safety is considerably improved compared with previous-generation adenoviral vectors.
Collapse
Affiliation(s)
- S Kochanek
- Center for Molecular Medicine (ZMMK), University of Cologne, Germany.
| |
Collapse
|
30
|
Abstract
Genome and pre-genome replication in all animal DNA viruses except poxviruses occurs in the cell nucleus (Table 1). In order to reproduce, an infecting virion enters the cell and traverses through the cytoplasm toward the nucleus. Using the cell's own nuclear import machinery, the viral genome then enters the nucleus through the nuclear pore complex. Targeting of the infecting virion or viral genome to the multiplication site is therefore an essential process in productive viral infection as well as in latent infection and transformation. Yet little is known about how infecting genomes of animal DNA viruses reach the nucleus in order to reproduce. Moreover, this nuclear locus for viral multiplication is remarkable in that the sizes and composition of the infectious particles vary enormously. In this article, we discuss virion structure, life cycle to reproduce infectious particles, viral protein's nuclear import signal, and viral genome nuclear targeting.
Collapse
Affiliation(s)
- H Kasamatsu
- Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California at Los Angeles 90095, USA
| | | |
Collapse
|
31
|
Morsy MA, Caskey CT. Expanded-capacity adenoviral vectors--the helper-dependent vectors. MOLECULAR MEDICINE TODAY 1999; 5:18-24. [PMID: 10088128 DOI: 10.1016/s1357-4310(98)01376-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Significant advances have recently been made in the development of vectors and gene-delivery systems for gene therapy. Experiments performed over the past decade have revealed how vectors will have to be modified to make them a clinically viable treatment option. In the case of adenovirus (Ad) vectors, which have been particularly useful as gene delivery vehicles, the main drawback associated with their use is vector-mediated immunogenicity. Recent modifications of the Ad backbone have led to the development of helper-dependent (HD) Ad vectors, which are completely devoid of all viral protein-coding sequences. These modifications have significantly reduced the immunogenicity of Ad vectors and have enhanced their safety. It is expected that HD vectors will become important tools for future clinical gene therapy.
Collapse
Affiliation(s)
- M A Morsy
- Dept of Human Genetics, Merck & Co., Inc., West Point, PA 19486, USA.
| | | |
Collapse
|
32
|
Abstract
Adenovirus type 5 DNA packaging is initiated from the left end of the viral genome and depends on the presence of a cis-acting packaging domain located between nucleotides 194 and 380. Multiple redundant packaging elements (termed A repeats I through VII [AI through AVII]) are contained within this domain and display differential abilities to support DNA packaging in vivo. The functionally most important repeats, AI, AII, AV, and AVI, follow a bipartite consensus motif exhibiting AT-rich and CG-rich core sequences. Results from previous mutational analyses defined a fragment containing AV, AVI, and AVII as a minimal packaging domain in vivo, which supports a functional independence of the respective cis-acting sequences. Here we describe multimeric versions of individual packaging elements as minimal packaging domains that can confer viability and packaging activity to viruses carrying gross truncations within their left end. These mutant viruses directly rate the functional role that different packaging elements play relative to each other. The A repeats are likely to be binding sites for limiting, trans-acting packaging factors of cellular and/or viral origin. We report here the characterization of two cellular binding activities interacting with all of the minimal packaging domains in vitro, an unknown binding activity termed P-complex, and the transcription factor chicken ovalbumin upstream promoter transcription factor. The binding of both activities is dependent on the integrity of the AT-rich, but not the CG-rich, consensus half site. In the case of P-complex, binding affinity for different minimal packaging domains in vitro correlates well with their abilities to support DNA packaging in vivo. Interestingly, P-complex interacts not only with packaging elements but also with the left terminus of the viral genome, the core origin of replication. Our data implicate cellular factors as components of the viral packaging machinery. The dual binding specificity of P-complex for packaging and replication sequences may further suggest a direct involvement of left-end replication sequences in viral DNA encapsidation.
Collapse
Affiliation(s)
- S I Schmid
- Department of Molecular Genetics and Microbiology, Health Sciences Center, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | |
Collapse
|
33
|
Schmid SI, Hearing P. Bipartite structure and functional independence of adenovirus type 5 packaging elements. J Virol 1997; 71:3375-84. [PMID: 9094606 PMCID: PMC191481 DOI: 10.1128/jvi.71.5.3375-3384.1997] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Selectivity and polarity of adenovirus type 5 DNA packaging are believed to be directed by an interaction of putative packaging factors with the cis-acting adenovirus packaging domain located within the genomic left end (nucleotides 194 to 380). In previous studies, this packaging domain was mutationally dissected into at least seven functional elements called A repeats. These elements, albeit redundant in function, exhibit differences in the ability to support viral packaging, with elements I, II, V, and VI as the most critical repeats. Viral packaging was shown to be sensitive to spatial changes between individual A repeats. To study the importance of spatial constraints in more detail, we performed site-directed mutagenesis of the 21-bp linker regions separating A repeats I and II, as well as A repeats V and VI. The results of our mutational analysis reveal previously unrecognized sequences that are critical for DNA encapsidation in vivo. On the basis of these results, we present a more complex consensus motif for the adenovirus packaging elements which is bipartite in structure. DNA encapsidation is compromised by changes in spacing between the two conserved parts of the consensus motif, rather than between different A repeats. Genetic evidence implicating packaging elements as independent units in viral DNA packaging is derived from the selection of revertants from a packaging-deficient adenovirus: multimerization of packaging repeats is sufficient for the evolution of packaging-competent viruses. Finally, we identify minimally sized segments of the adenovirus packaging domain that can confer viability and packaging activity to viruses carrying gross truncations within their left-end sequences. Coinfection experiments using the revertant as well as the minimal-packaging-domain mutant viruses strengthen existing arguments for the involvement of limiting, trans-acting components in viral DNA packaging.
Collapse
Affiliation(s)
- S I Schmid
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook, 11794, USA
| | | |
Collapse
|
34
|
Tang Q, Lundholm-Beauchamp U, Ginsberg HS. Spontaneous occurrence of early region 1A reiteration mutants of type 5 adenovirus in persistently infected human T-lymphocytes. Virology 1997; 230:281-91. [PMID: 9143284 DOI: 10.1006/viro.1997.8482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mutants of type 5 adenovirus (Ad5) with reiterated DNA sequences in the E1a region appeared in a human T-lymphocyte cell line, Molt-4, persistently infected with H5sub304, a deletion/substitution mutant that has a wild-type phenotype in viral replication. Endonuclease analyses and DNA sequencing revealed DNA reiteration in each mutant. In the four representative mutants investigated, the DNA reiterations all started within a six-base-pair consensus sequence, G(or C)CTGTG, located in the second exon of the E1a region (at nt 1333, 1367, or 1419). There was not any DNA homology between the breakpoints in the second exon and the inserting sequences (starting at nt 532, 710, or 792). Northern analyses suggested that the reiterated splicing sites of the representative mutants were all used in RNA splicing, and the closest donor and recipient joints were used most frequently. These observations imply that during persistent infection Ad5 underwent spontaneous mutations by sequence-specific breakage and nonhomologous end-end joining recombination events. These E1a reiteration mutants could be propagated in HeLa, A549, and KB cells; they were genetically stable; and they killed CREF cells at a strikingly high frequency. Preliminary observations tend to correlate this CREF cell killing with the accumulation of the early viral proteins and/or viral DNA in the infected cells. This degree of cell damage was not observed in Ad5wt or H5sub304 infection of CREF cells. The observed E1a reiterations provide a model to gain insight into understanding the evolutionary events of some, if not all, adenovirus types during many years of symbiotic, persistent relationship in human tonsils and adenoids and possibly other lymphoid organs.
Collapse
Affiliation(s)
- Q Tang
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
35
|
Doerfler W. A new concept in (adenoviral) oncogenesis: integration of foreign DNA and its consequences. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1288:F79-99. [PMID: 8876634 DOI: 10.1016/0304-419x(96)00024-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new concept for viral oncogenesis is presented which is based on experimental work on the chromosomal integration of adenovirus DNA into mammalian genomes. The mechanism of adenovirus DNA integration is akin to non-sequence-specific insertional recombination in which patch homologies between the recombination partners are frequently observed. This reaction has been imitated in a cell-free system by using nuclear extracts from hamster cells and partly purified fractions derived from them. As a consequence of foreign DNA insertion into the mammalian genome, the foreign DNA is extensively de novo methylated in specific patterns, presumably as part of a mammalian host cell defense mechanism against inserted foreign DNA which can be permanently silenced in this way. A further corollary of foreign (adenovirus or bacteriophage lambda) DNA integration is seen in extensive changes in cellular DNA methylation patterns at sites far remote from the locus of insertional recombination. Repetitive cellular, retrotransposon-like sequences are particularly, but not exclusively, prone to these increases in DNA methylation. It is conceivable that these changes in DNA methylation are a reflection of a profound overall reorganization process in the affected genomes. Could these alterations significantly contribute to the transformation events during viral or other types of oncogenesis? These sequelae of foreign DNA integration into established mammalian genomes will have to be critically considered when interpreting results obtained with transgenic, knock-out, and knock-in animals and when devising schemes for human somatic gene therapy. The interpretation of de novo methylation as a cellular defense mechanism has prompted investigations on the fate of food-ingested foreign DNA. The gastrointestinal (GI) tract provides a large surface for the entry of foreign DNA into any organism. As a tracer molecule, bacteriophage M13 DNA has been fed to mice. Fragments of this DNA can be found in small amounts (about 1% of the administered DNA) in all parts of the intestinal tract and in the feces. Furthermore, M13 DNA can be traced in the columnar epithelia of the intestine, in Peyer's plaque leukocytes, in peripheral white blood cells, in spleen, and liver. Authentic M13 DNA has been recloned from total spleen DNA. If integrated, this DNA might elicit some of the described consequences of foreign DNA insertion into the mammalian genome. Food-ingested DNA will likely infiltrate the organism more frequently than viral DNA.
Collapse
Affiliation(s)
- W Doerfler
- Institut für Genetik, Universität zu Köln, Germany.
| |
Collapse
|
36
|
Kochanek S, Clemens PR, Mitani K, Chen HH, Chan S, Caskey CT. A new adenoviral vector: Replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and beta-galactosidase. Proc Natl Acad Sci U S A 1996; 93:5731-6. [PMID: 8650161 PMCID: PMC39129 DOI: 10.1073/pnas.93.12.5731] [Citation(s) in RCA: 414] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Adenoviral vector-mediated gene transfer offers significant potential for gene therapy of many human diseases. However, progress has been slowed by several limitations. First, the insert capacity of currently available adenoviral vectors is limited to 8 kb of foreign DNA. Second, the expression of viral proteins in infected cells is believed to trigger a cellular immune response that results in inflammation and in only transient expression of the transferred gene. We report the development of a new adenoviral vector that has all viral coding sequences removed. Thus, large inserts are accommodated and expression of all viral proteins is eliminated. The first application of this vector system carries a dual expression cassette comprising 28.2 kb of nonviral DNA that includes the full-length murine dystrophin cDNA under control of a large muscle-specific promoter and a lacZ reporter construct. Using this vector, we demonstrate independent expression of both genes in primary mdx (dystrophin-deficient) muscle cells.
Collapse
Affiliation(s)
- S Kochanek
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
37
|
McCoy RD, Davidson BL, Roessler BJ, Huffnagle GB, Janich SL, Laing TJ, Simon RH. Pulmonary inflammation induced by incomplete or inactivated adenoviral particles. Hum Gene Ther 1995; 6:1553-60. [PMID: 8664380 DOI: 10.1089/hum.1995.6.12-1553] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
One of the major obstacles to pulmonary-directed gene therapy using adenoviral vectors is the induction of inflammation. We investigated whether the adenoviral particles that constitute the initial inoculum can serve as an inflammatory stimulus, independent of their ability to express genes that they contain. Viral particles were prepared that are defective in gene expression by (i) isolating particles that have incomplete genomes by selecting those that have buoyant densities on CsCl density gradients lighter than complete viruses; and (ii) cross-linking viral DNA by exposure to ultraviolet light in the presence of 8-methoxypsoralen. The defective particles retained their icosahedral appearance when viewed by electron microscopy but lost their plaque-forming ability on 293 cells. High doses of intact, incomplete, or inactivated viral particles were instilled intratracheally into CBA/J mice, and after 6 days the amount of inflammation was quantified by counting inflammatory cells contained within lung tissue. We found that the inflammatory responses induced by the incomplete or inactivated viral vectors were quantitatively similar to those caused by intact, competent viral vectors. We conclude that high doses of adenoviral vectors that are used for gene therapy can induce pulmonary inflammation, independent of expressing the genes they contain.
Collapse
Affiliation(s)
- R D McCoy
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, 48109-0360
| | | | | | | | | | | | | |
Collapse
|
38
|
Imler JL, Bout A, Dreyer D, Dieterlé A, Schultz H, Valerio D, Mehtali M, Pavirani A. Trans-complementation of E1-deleted adenovirus: a new vector to reduce the possibility of codissemination of wild-type and recombinant adenoviruses. Hum Gene Ther 1995; 6:711-21. [PMID: 7548271 DOI: 10.1089/hum.1995.6.6-711] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Treatment of cystic fibrosis by gene therapy will require the development of vectors capable of efficient and safe transfer of a functional cystic fibrosis transmembrane conductance regulator (CFTR) cDNA to airway epithelia. To achieve this goal, replication-deficient (E1-) adenoviruses (Ad) are promising vectors. We have previously demonstrated efficient CFTR gene delivery to the airways of cotton rats and rhesus monkeys using a replication-deficient adenovirus, Ad-CFTR. Here, we have investigated an important safety issue, the interaction between the vector and wild-type virus which can provide the missing E1 function in trans. We show that Ad5 can mobilize the defective Ad-CFTR genome in vitro and in cotton rats. However, the extent of the complementation in vivo by wild-type virus is limited because no additional spreading or shedding of Ad-CFTR to trachea, lungs, and stools is elicited. To attenuate Ad-CFTR further, a mutation was introduced in the cis-acting regulatory sequences that control the encapsidation of the viral genome. We demonstrate that when cells are coinfected with wild-type virus and the new attenuated vector, the viral DNA containing the natural encapsidation sequences is preferentially packaged, leading to a rapid dilution of the recombinant virus.
Collapse
|
39
|
Mitani K, Graham FL, Caskey CT, Kochanek S. Rescue, propagation, and partial purification of a helper virus-dependent adenovirus vector. Proc Natl Acad Sci U S A 1995; 92:3854-8. [PMID: 7731995 PMCID: PMC42060 DOI: 10.1073/pnas.92.9.3854] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Adenoviral vectors are widely used as highly efficient gene transfer vehicles in a variety of biological research strategies including human gene therapy. One of the limitations of the currently available adenoviral vector system is the presence of the majority of the viral genome in the vector, resulting in leaky expression of viral genes particularly at high multiplicity of infection and limited cloning capacity of exogenous sequences. As a first step to overcome this problem, we attempted to rescue a defective human adenovirus serotype 5 DNA, which had an essential region of the viral genome (L1, L2, VAI + II, pTP) deleted and replaced with an indicator gene. In the presence of wild-type adenovirus as a helper, this DNA was packaged and propagated as transducing viral particles. After several rounds of amplification, the titer of the recombinant virus reached at least 4 x 10(6) transducing particles per ml. The recombinant virus could be partially purified from the helper virus by CsCl equilibrium density-gradient centrifugation. The structure of the recombinant virus around the marker gene remained intact after serial propagation, while the pBR sequence inserted in the E1 region was deleted from the recombinant virus. Our results suggest that it should be possible to develop a helper-dependent adenoviral vector, which does not encode any viral proteins, as an alternative to the currently available adenoviral vector systems.
Collapse
Affiliation(s)
- K Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
40
|
Affiliation(s)
- L A Lucher
- Department of Biological Sciences, Illinois State, University, Normal 61761, USA
| |
Collapse
|
41
|
Affiliation(s)
- S I Schmid
- Department of Molecular Genetics and Microbiology, Stat University of New York, Stony Brook 11794, USA
| | | |
Collapse
|
42
|
|
43
|
Bett AJ, Haddara W, Prevec L, Graham FL. An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci U S A 1994; 91:8802-6. [PMID: 8090727 PMCID: PMC44694 DOI: 10.1073/pnas.91.19.8802] [Citation(s) in RCA: 577] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Human adenoviruses (Ads) are attracting considerable attention because of their potential utility for gene transfer and gene therapy, for development of live viral vectored vaccines, and for protein expression in mammalian cells. Engineering Ad vectors for these applications requires a variety of reagents in the form of Ads and bacterial plasmids containing viral DNA sequences and requires different strategies for construction of vectors for different purposes. To simplify Ad vector construction and develop a procedure with maximum flexibility, efficiency, and cloning capacity, we have developed a vector system based on use of Ad5 DNA sequences cloned in bacterial plasmids. Expanded deletions in early region 1 (3180 bp) and early region 3 (2690 or 3132 bp) can be combined in a single vector that should have a capacity for inserts of up to 8.3 kb, enough to accommodate the majority of cDNAs encoding proteins with regulatory elements. Genes can be inserted into either early region 1 or 3 or both and mutations or deletions can be readily introduced elsewhere in the viral genome. To illustrate the flexibility of the system, we have introduced a wild-type early region 3 into the vectors, and to illustrate the high capacity for inserts, we have isolated a vector with two genes totaling 7.8 kb.
Collapse
Affiliation(s)
- A J Bett
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | | | | |
Collapse
|
44
|
Fredman JN, Engler JA. Adenovirus precursor to terminal protein interacts with the nuclear matrix in vivo and in vitro. J Virol 1993; 67:3384-95. [PMID: 8497057 PMCID: PMC237682 DOI: 10.1128/jvi.67.6.3384-3395.1993] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The adenovirus precursor to the terminal protein (pTP), expressed in a vaccinia virus expression system or in native adenovirus, was assayed for its ability to interact with the nuclear matrix. Biochemical function was measured by determining the relative amount of pTP protein or of adenovirus DNA that remained associated with the nuclear matrix after extensive washing. pTP was retained on the matrix whereas beta-galactosidase was not, as assayed by quantitative immunoblot analysis. Nuclear matrix isolated from adenovirus-infected HeLa cells retained bound adenovirus DNA even when washed with 1 M guanidine hydrochloride; this interaction could be inhibited by added purified pTP protein. Analogous experiments with matrix isolated from HeLa cells infected with a recombinant vaccinia virus that expressed pTP showed a similar retention of pTP protein; this association could also be inhibited by added pTP protein. Binding of pTP to nuclear matrix isolated from uninfected cells was saturable, with an apparent Kd of 250 nM and an estimated 2.8 x 10(6) sites for pTP binding per cell nucleus. The association of pTP with matrix is postulated to help direct adenovirus replication complexes to the appropriate locale within the nucleus.
Collapse
Affiliation(s)
- J N Fredman
- Department of Biochemistry, University of Alabama, Birmingham 35294-0005
| | | |
Collapse
|
45
|
Doerfler W. Patterns of de novo DNA methylation and promoter inhibition: studies on the adenovirus and the human genomes. EXS 1993; 64:262-99. [PMID: 8418951 DOI: 10.1007/978-3-0348-9118-9_12] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- W Doerfler
- Institut für Genetik, Universität zu Köln, Germany
| |
Collapse
|
46
|
Hasson TB, Ornelles DA, Shenk T. Adenovirus L1 52- and 55-kilodalton proteins are present within assembling virions and colocalize with nuclear structures distinct from replication centers. J Virol 1992; 66:6133-42. [PMID: 1527852 PMCID: PMC241491 DOI: 10.1128/jvi.66.10.6133-6142.1992] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Analysis of a temperature-sensitive mutant, Ad5ts369, had indicated that the adenovirus L1 52- and 55-kDa proteins (52/55-kDa proteins) are required for the assembly of infectious virions. By using monoclonal antibodies directed against bacterially produced L1 52-kDa protein, the L1 52/55-kDa proteins were found to be differentially phosphorylated forms of a single 48-kDa polypeptide. Both phosphoforms were shown to be present within all suspected virus assembly intermediates (empty capsids, 50 to 100 molecules; young virions, 1 to 2 molecules) but not within mature virions. The mobilities of these proteins in polyacrylamide gels were affected by reducing agents, indicating that the 52/55-kDa proteins may exist as homodimers within the cell and within assembling particles. Immunofluorescence analysis revealed that the 52/55-kDa proteins localize to regions within the infected nucleus that are distinct from viral DNA replication centers, indicating that replication and assembly of viral components likely occur in separate nuclear compartments. Immunoelectron microscopic studies determined that the 52/55-kDa proteins are found in close association with structures that appear to contain assembling virions. These results are consistent with an active but transient role for the L1 products in assembly of the adenovirus particle, perhaps as scaffolding proteins.
Collapse
Affiliation(s)
- T B Hasson
- Department of Molecular Biology, Howard Hughes Medical Institute, Princeton University, New Jersey 08544-1014
| | | | | |
Collapse
|
47
|
Abstract
Polar packaging of adenovirus DNA into virions is dependent on the presence of cis-acting sequences at the left end of the viral genome. Our previous analyses demonstrated that the adenovirus type 5 (Ad5) packaging domain (nucleotides 194 to 358) is composed of at least five elements that are functionally redundant. A repeated sequence, termed the A repeat, was associated with packaging function. Here we report a more detailed analysis of the requirements for the selective packaging of Ad5 DNA. By introducing site-directed point mutations into specific A repeat sequences, we demonstrate that the A repeats represent cis-acting functional components of the packaging signal. Additional elements, located outside the originally defined packaging domain boundaries and that resemble the A repeat consensus sequence, also are capable of promoting the packaging of viral DNA. The cis-acting components of the packaging signal appear to be subject to certain spatial constraints for function, possibly reflecting a necessity for the coordinate binding of packaging proteins to these sites. In agreement with this idea, we present evidence that the interaction of a limiting trans-acting factor(s) with the packaging domain in vivo is required for efficient encapsidation of the Ad5 genome.
Collapse
Affiliation(s)
- M Gräble
- Department of Microbiology, State University of New York, Stony Brook 11794-7621
| | | |
Collapse
|
48
|
Hatfield L, Hearing P. Redundant elements in the adenovirus type 5 inverted terminal repeat promote bidirectional transcription in vitro and are important for virus growth in vivo. Virology 1991; 184:265-76. [PMID: 1871971 DOI: 10.1016/0042-6822(91)90843-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The adenovirus inverted terminal repeat (ITR) contains a number of cis-acting elements that are involved in the initiation of viral DNA replication, as well as multiple binding motifs for the cellular transcription factors SP1 and ATF. In this study, we utilized a Hela cell transcription extract to demonstrate that the adenovirus type 5 ITR promotes bidirectional transcription in vitro. Primer extension analyses demonstrated that the ITR directed transcription at initiation sites both within the terminal repeat and at fixed distances outside of the ITR. The ITR also strongly stimulated transcription at the early region 1A (E1A) initiation site when it was situated immediately upstream of the E1A TATA box region. Deletion and point mutational analyses demonstrated that two distinct cis-acting elements were involved in these ITR-dependent transcriptional activities in vitro. Cellular transcription factors SP1 and ATF were previously shown to bind to these two regions. Analysis of viral mutants in vivo demonstrated that the NFIII/OCT-1 binding site and a conserved ATF motif were important for efficient viral growth. Regulatory elements in the ITR flanking region were found to functionally substitute for these sites.
Collapse
Affiliation(s)
- L Hatfield
- Department of Microbiology, State University of New York, Stony Brook 11794
| | | |
Collapse
|
49
|
Chen M, Horwitz MS. Replication of an adenovirus type 34 mutant DNA containing tandem reiterations of the inverted terminal repeat. Virology 1990; 179:567-75. [PMID: 2238462 DOI: 10.1016/0042-6822(90)90123-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A mutant of human adenovirus type 34 (Ad34) has been isolated which contains DNA molecules with tandem reiterations of from two to eight copies of a 131-bp sequence within the right-sided inverted terminal repetition. Terminal heterogeneity was not eliminated by repeated plaque purifications indicating that the population of DNA molecules with various numbers of reiterations could rapidly evolve from the DNA of a single virus particle. These enlarged DNA molecules were capable of replication both in vivo and in vitro. The nucleotide sequence of the mutant Ad34 inverted terminal repetitions contained most of the essential features of the Ad origin of DNA replication. These features include the ATAATATACC sequence which is present between the highly conserved bases 9-18 in all human adenoviruses, as well as the consensus sequences for the binding of nuclear factor I and nuclear factor III. However, the reiterated sequences lacked a dG appropriately placed on the template strand to serve as a potential site for internal initiation. It appears that the rapid amplification of two to eight copies of the reiterated terminal sequences does not arise from internal initiation during replication but probably from homologous recombination.
Collapse
Affiliation(s)
- M Chen
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461
| | | |
Collapse
|
50
|
Gräble M, Hearing P. Adenovirus type 5 packaging domain is composed of a repeated element that is functionally redundant. J Virol 1990; 64:2047-56. [PMID: 2325200 PMCID: PMC249360 DOI: 10.1128/jvi.64.5.2047-2056.1990] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Previous analyses have demonstrated that adenovirus DNA is packaged into virions in vivo in a polar, left-to-right fashion. The packaging of viral DNA is dependent on cis-acting elements at the left end of the genome. In this report, we describe a genetic analysis of the sequences that are required for efficient packaging of adenovirus type 5 (Ad5) DNA. Our results demonstrate that the Ad5 packaging domain (nucleotides 194 to 358) is composed of at least five distinct elements that are functionally redundant. An AT-rich repeated sequence motif, the A repeat, is located in four of five of these regions; the fifth region is also AT rich. The efficiency of viral packaging depends on the number of individual A repeats that are present in the viral genome. The deletion of the entire packaging domain resulted in the loss of virus viability. A virus that contains a multimerized oligonucleotide corresponding to A repeat II in place of the packaging domain could package viral DNA, although with reduced efficiency compared with that of the wild-type virus. Our results also suggest that the spacing of specific sequences at the left end of the Ad5 genome are important for enhancer region function in vivo.
Collapse
Affiliation(s)
- M Gräble
- Department of Microbiology, University of New York, Stony Brook 11794
| | | |
Collapse
|