1
|
Xu S, Wei X, Yang Q, Hu D, Zhang Y, Yuan X, Kang F, Wu Z, Yan Z, Luo X, Sun Y, Wang S, Feng Y, Xu Q, Zhang M, Yang Y. A KNOX Ⅱ transcription factor suppresses the NLR immune receptor BRG8-mediated immunity in rice. PLANT COMMUNICATIONS 2024; 5:101001. [PMID: 38863209 DOI: 10.1016/j.xplc.2024.101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/21/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Nucleotide-binding site and leucine-rich repeat (NLR) proteins are activated by detecting pathogen effectors, which in turn trigger host defenses and cell death. Although many NLRs have been identified, the mechanisms responsible for NLR-triggered defense responses are still poorly understood. In this study, through a genome-wide association study approach, we identified a novel NLR gene, Blast Resistance Gene 8 (BRG8), which confers resistance to rice blast and bacterial blight diseases. BRG8 overexpression and complementation lines exhibit enhanced resistance to both pathogens. Subcellular localization assays showed that BRG8 is localized in both the cytoplasm and the nucleus. Additional evidence revealed that nuclear-localized BRG8 can enhance rice immunity without a hypersensitive response (HR)-like phenotype. We also demonstrated that the coiled-coil domain of BRG8 not only physically interacts with itself but also interacts with the KNOX Ⅱ protein HOMEOBOX ORYZA SATIVA59 (HOS59). Knockout mutants of HOS59 in the BRG8 background show enhanced resistance to Magnaporthe oryzae strain CH171 and Xoo strain CR4, similar to that of the BRG8 background. By contrast, overexpression of HOS59 in the BRG8 background will compromise the HR-like phenotype and resistance response. Further analysis revealed that HOS59 promotes the degradation of BRG8 via the 26S proteasome pathway. Collectively, our study highlights HOS59 as an NLR immune regulator that fine-tunes BRG8-mediated immune responses against pathogens, providing new insights into NLR associations and functions in plant immunity.
Collapse
Affiliation(s)
- Siliang Xu
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Xinghua Wei
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Qinqin Yang
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Dongxiu Hu
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Yuanyuan Zhang
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiaoping Yuan
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Fengyu Kang
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhaozhong Wu
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhiqin Yan
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Xueqin Luo
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Yanfei Sun
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Shan Wang
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Yue Feng
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Qun Xu
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Mengchen Zhang
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| | - Yaolong Yang
- China National Center for Rice Improvement/State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China.
| |
Collapse
|
2
|
Szelenyi ER, Navarrete JS, Murry AD, Zhang Y, Girven KS, Kuo L, Cline MM, Bernstein MX, Burdyniuk M, Bowler B, Goodwin NL, Juarez B, Zweifel LS, Golden SA. An arginine-rich nuclear localization signal (ArgiNLS) strategy for streamlined image segmentation of single cells. Proc Natl Acad Sci U S A 2024; 121:e2320250121. [PMID: 39074275 PMCID: PMC11317604 DOI: 10.1073/pnas.2320250121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
High-throughput volumetric fluorescent microscopy pipelines can spatially integrate whole-brain structure and function at the foundational level of single cells. However, conventional fluorescent protein (FP) modifications used to discriminate single cells possess limited efficacy or are detrimental to cellular health. Here, we introduce a synthetic and nondeleterious nuclear localization signal (NLS) tag strategy, called "Arginine-rich NLS" (ArgiNLS), that optimizes genetic labeling and downstream image segmentation of single cells by restricting FP localization near-exclusively in the nucleus through a poly-arginine mechanism. A single N-terminal ArgiNLS tag provides modular nuclear restriction consistently across spectrally separate FP variants. ArgiNLS performance in vivo displays functional conservation across major cortical cell classes and in response to both local and systemic brain-wide AAV administration. Crucially, the high signal-to-noise ratio afforded by ArgiNLS enhances machine learning-automated segmentation of single cells due to rapid classifier training and enrichment of labeled cell detection within 2D brain sections or 3D volumetric whole-brain image datasets, derived from both staining-amplified and native signal. This genetic strategy provides a simple and flexible basis for precise image segmentation of genetically labeled single cells at scale and paired with behavioral procedures.
Collapse
Affiliation(s)
- Eric R. Szelenyi
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA98195
- Department of Biological Structure, University of Washington, Seattle, WA98195
| | - Jovana S. Navarrete
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA98195
- Department of Biological Structure, University of Washington, Seattle, WA98195
- Graduate Program in Neuroscience, University of Washington, Seattle, WA98195
| | - Alexandria D. Murry
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA98195
- Department of Biological Structure, University of Washington, Seattle, WA98195
| | - Yizhe Zhang
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA98195
- Department of Biological Structure, University of Washington, Seattle, WA98195
| | - Kasey S. Girven
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195
| | - Lauren Kuo
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA98195
- Undergraduate Program in Biochemistry, University of Washington, Seattle, WA98195
| | - Marcella M. Cline
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA98195
- Department of Pharmacology, University of Washington, Seattle, WA98195
| | - Mollie X. Bernstein
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA98195
- Department of Pharmacology, University of Washington, Seattle, WA98195
| | | | - Bryce Bowler
- Department of Biological Structure, University of Washington, Seattle, WA98195
| | - Nastacia L. Goodwin
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA98195
- Department of Biological Structure, University of Washington, Seattle, WA98195
- Graduate Program in Neuroscience, University of Washington, Seattle, WA98195
| | - Barbara Juarez
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA98195
- Department of Pharmacology, University of Washington, Seattle, WA98195
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA98195
| | - Larry S. Zweifel
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA98195
- Department of Pharmacology, University of Washington, Seattle, WA98195
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA98195
| | - Sam A. Golden
- Center of Excellence in Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA98195
- Department of Biological Structure, University of Washington, Seattle, WA98195
| |
Collapse
|
3
|
Lin HS, Li CH, Chen LW, Wang SS, Chen LY, Hung CH, Lin CL, Chang PJ. The varicella-zoster virus ORF16 protein promotes both the nuclear transport and the protein abundance of the viral DNA polymerase subunit ORF28. Virus Res 2024; 345:199379. [PMID: 38643859 PMCID: PMC11061344 DOI: 10.1016/j.virusres.2024.199379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/23/2024]
Abstract
Although all herpesviruses utilize a highly conserved replication machinery to amplify their viral genomes, different members may have unique strategies to modulate the assembly of their replication components. Herein, we characterize the subcellular localization of seven essential replication proteins of varicella-zoster virus (VZV) and show that several viral replication enzymes such as the DNA polymerase subunit ORF28, when expressed alone, are localized in the cytoplasm. The nuclear import of ORF28 can be mediated by the viral DNA polymerase processivity factor ORF16. Besides, ORF16 could markedly enhance the protein abundance of ORF28. Noteworthily, an ORF16 mutant that is defective in nuclear transport still retained the ability to enhance ORF28 abundance. The low abundance of ORF28 in transfected cells was due to its rapid degradation mediated by the ubiquitin-proteasome system. We additionally reveal that radicicol, an inhibitor of the chaperone Hsp90, could disrupt the interaction between ORF16 and ORF28, thereby affecting the nuclear entry and protein abundance of ORF28. Collectively, our findings imply that the cytoplasmic retention and rapid degradation of ORF28 may be a key regulatory mechanism for VZV to prevent untimely viral DNA replication, and suggest that Hsp90 is required for the interaction between ORF16 and ORF28.
Collapse
Affiliation(s)
- Huang-Shen Lin
- Department of Internal Medicine, Division of Infectious Diseases, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Cheng-Han Li
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Lee-Wen Chen
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan; Department of Pediatric Surgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Shie-Shan Wang
- Department of Pediatric Surgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Li-Yu Chen
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chun-Liang Lin
- Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.
| |
Collapse
|
4
|
Cross EM, Akbari N, Ghassabian H, Hoad M, Pavan S, Ariawan D, Donnelly CM, Lavezzo E, Petersen GF, Forwood JK, Alvisi G. A functional and structural comparative analysis of large tumor antigens reveals evolution of different importin α-dependent nuclear localization signals. Protein Sci 2024; 33:e4876. [PMID: 38108201 PMCID: PMC10807245 DOI: 10.1002/pro.4876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Nucleocytoplasmic transport regulates the passage of proteins between the nucleus and cytoplasm. In the best characterized pathway, importin (IMP) α bridges cargoes bearing basic, classical nuclear localization signals (cNLSs) to IMPβ1, which mediates transport through the nuclear pore complex. IMPα recognizes three types of cNLSs via two binding sites: the major binding site accommodates monopartite cNLSs, the minor binding site recognizes atypical cNLSs, while bipartite cNLSs simultaneously interact with both major and minor sites. Despite the growing knowledge regarding IMPα-cNLS interactions, our understanding of the evolution of cNLSs is limited. We combined bioinformatic, biochemical, functional, and structural approaches to study this phenomenon, using polyomaviruses (PyVs) large tumor antigens (LTAs) as a model. We characterized functional cNLSs from all human (H)PyV LTAs, located between the LXCXE motif and origin binding domain. Surprisingly, the prototypical SV40 monopartite NLS is not well conserved; HPyV LTA NLSs are extremely heterogenous in terms of structural organization, IMPα isoform binding, and nuclear targeting abilities, thus influencing the nuclear accumulation properties of full-length proteins. While several LTAs possess bipartite cNLSs, merkel cell PyV contains a hybrid bipartite cNLS whose upstream stretch of basic amino acids can function as an atypical cNLS, specifically binding to the IMPα minor site upon deletion of the downstream amino acids after viral integration in the host genome. Therefore, duplication of a monopartite cNLS and subsequent accumulation of point mutations, optimizing interaction with distinct IMPα binding sites, led to the evolution of bipartite and atypical NLSs binding at the minor site.
Collapse
Affiliation(s)
- Emily M. Cross
- School of Dentistry and Medical SciencesCharles Sturt UniversityWagga WaggaAustralia
- Diamond Light SourceHarwell Science and Innovation CampusDidcotUnited Kingdom
| | - Nasim Akbari
- Department of Molecular MedicineUniversity of PadovaPadovaItaly
| | | | - Mikayla Hoad
- School of Dentistry and Medical SciencesCharles Sturt UniversityWagga WaggaAustralia
| | - Silvia Pavan
- Department of Molecular MedicineUniversity of PadovaPadovaItaly
| | - Daryl Ariawan
- Dementia Research CentreMacquarie UniversitySydneyAustralia
| | - Camilla M. Donnelly
- School of Dentistry and Medical SciencesCharles Sturt UniversityWagga WaggaAustralia
| | - Enrico Lavezzo
- Department of Molecular MedicineUniversity of PadovaPadovaItaly
| | | | - Jade K. Forwood
- School of Dentistry and Medical SciencesCharles Sturt UniversityWagga WaggaAustralia
- Gulbali InstituteCharles Sturt UniversityWagga WaggaAustralia
| | | |
Collapse
|
5
|
Goswami R, Gupta A, Bednova O, Coulombe G, Patel D, Rotello VM, Leyton JV. Nuclear localization signal-tagged systems: relevant nuclear import principles in the context of current therapeutic design. Chem Soc Rev 2024; 53:204-226. [PMID: 38031452 PMCID: PMC10798298 DOI: 10.1039/d1cs00269d] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Nuclear targeting of therapeutics provides a strategy for enhancing efficacy of molecules active in the nucleus and minimizing off-target effects. 'Active' nuclear-directed transport and efficient translocations across nuclear pore complexes provide the most effective means of maximizing nuclear localization. Nuclear-targeting systems based on nuclear localization signal (NLS) motifs have progressed significantly since the beginning of the current millennium. Here, we offer a roadmap for understanding the basic mechanisms of nuclear import in the context of actionable therapeutic design for developing NLS-therapeutics with improved treatment efficacy.
Collapse
Affiliation(s)
- Ritabrita Goswami
- Department of Chemistry, University of Massachusetts, Massachusetts, USA.
| | - Aarohi Gupta
- Department of Chemistry, University of Massachusetts, Massachusetts, USA.
| | - Olga Bednova
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Québec, Canada
| | - Gaël Coulombe
- Service des stages et du développement professionnel, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Dipika Patel
- Service des stages et du développement professionnel, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, Massachusetts, USA.
| | - Jeffrey V Leyton
- École des sciences pharmaceutiques, Université d'Ottawa, Ottawa, Ontario, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Szelenyi ER, Navarrete JS, Murry AD, Zhang Y, Girven KS, Kuo L, Cline MM, Bernstein MX, Burdyniuk M, Bowler B, Goodwin NL, Juarez B, Zweifel LS, Golden SA. An arginine-rich nuclear localization signal (ArgiNLS) strategy for streamlined image segmentation of single-cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568319. [PMID: 38045271 PMCID: PMC10690249 DOI: 10.1101/2023.11.22.568319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
High-throughput volumetric fluorescent microscopy pipelines can spatially integrate whole-brain structure and function at the foundational level of single-cells. However, conventional fluorescent protein (FP) modifications used to discriminate single-cells possess limited efficacy or are detrimental to cellular health. Here, we introduce a synthetic and non-deleterious nuclear localization signal (NLS) tag strategy, called 'Arginine-rich NLS' (ArgiNLS), that optimizes genetic labeling and downstream image segmentation of single-cells by restricting FP localization near-exclusively in the nucleus through a poly-arginine mechanism. A single N-terminal ArgiNLS tag provides modular nuclear restriction consistently across spectrally separate FP variants. ArgiNLS performance in vivo displays functional conservation across major cortical cell classes, and in response to both local and systemic brain wide AAV administration. Crucially, the high signal-to-noise ratio afforded by ArgiNLS enhances ML-automated segmentation of single-cells due to rapid classifier training and enrichment of labeled cell detection within 2D brain sections or 3D volumetric whole-brain image datasets, derived from both staining-amplified and native signal. This genetic strategy provides a simple and flexible basis for precise image segmentation of genetically labeled single-cells at scale and paired with behavioral procedures.
Collapse
Affiliation(s)
- Eric R. Szelenyi
- University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
- University of Washington, Department of Biological Structure, Seattle, WA, USA
| | - Jovana S. Navarrete
- University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
- University of Washington, Department of Biological Structure, Seattle, WA, USA
- University of Washington, Graduate Program in Neuroscience, Seattle, WA, USA
| | - Alexandria D. Murry
- University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
- University of Washington, Department of Biological Structure, Seattle, WA, USA
| | - Yizhe Zhang
- University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
- University of Washington, Department of Biological Structure, Seattle, WA, USA
| | - Kasey S. Girven
- University of Washington, Department of Anesthesiology and Pain Medicine
| | - Lauren Kuo
- University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
- University of Washington Undergraduate Program in Biochemistry
- Allen Institute for Cell Science, Seattle, WA, USA
| | - Marcella M. Cline
- University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
- University of Washington, Department of Pharmacology, Seattle, WA, USA
- Cajal Neuroscience, Seattle, WA, USA
| | - Mollie X. Bernstein
- University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
- University of Washington, Department of Pharmacology, Seattle, WA, USA
| | | | - Bryce Bowler
- University of Washington, Department of Biological Structure, Seattle, WA, USA
| | - Nastacia L. Goodwin
- University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
- University of Washington, Department of Biological Structure, Seattle, WA, USA
- University of Washington, Graduate Program in Neuroscience, Seattle, WA, USA
| | - Barbara Juarez
- University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
- University of Washington, Department of Psychiatry and Behavioral Sciences, Seattle, WA, USA
- University of Washington, Department of Pharmacology, Seattle, WA, USA
- University of Maryland School of Medicine, Department of Neurobiology, Baltimore, MD, USA
| | - Larry S. Zweifel
- University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
- University of Washington, Department of Psychiatry and Behavioral Sciences, Seattle, WA, USA
- University of Washington, Department of Pharmacology, Seattle, WA, USA
| | - Sam A. Golden
- University of Washington Center of Excellence in Neurobiology of Addiction, Pain, and Emotion (NAPE), Seattle, WA, USA
- University of Washington, Department of Biological Structure, Seattle, WA, USA
| |
Collapse
|
7
|
Pajenda S, Hevesi Z, Eder M, Gerges D, Aiad M, Koldyka O, Winnicki W, Wagner L, Eskandary F, Schmidt A. Lessons from Polyomavirus Immunofluorescence Staining of Urinary Decoy Cells. Life (Basel) 2023; 13:1526. [PMID: 37511901 PMCID: PMC10381542 DOI: 10.3390/life13071526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Decoy cells that can be detected in the urine sediment of immunosuppressed patients are often caused by the uncontrolled replication of polyomaviruses, such as BK-Virus (BKV) and John Cunningham (JC)-Virus (JCV), within the upper urinary tract. Due to the wide availability of highly sensitive BKV and JCV PCR, the diagnostic utility of screening for decoy cells in urine as an indicator of polyomavirus-associated nephropathy (PyVAN) has been questioned by some institutions. We hypothesize that specific staining of different infection time-dependent BKV-specific antigens in urine sediment could allow cell-specific mapping of antigen expression during decoy cell development. Urine sediment cells from six kidney transplant recipients (five males, one female) were stained for the presence of the early BKV gene transcript lTag and the major viral capsid protein VP1 using monospecific antibodies, monoclonal antibodies and confocal microscopy. For this purpose, cyto-preparations were prepared and the BK polyoma genotype was determined by sequencing the PCR-amplified coding region of the VP1 protein. lTag staining began at specific sites in the nucleus and spread across the nucleus in a cobweb-like pattern as the size of the nucleus increased. It spread into the cytosol as soon as the nuclear membrane was fragmented or dissolved, as in apoptosis or in the metaphase of the cell cycle. In comparison, we observed that VP1 staining started in the nuclear region and accumulated at the nuclear edge in 6-32% of VP1+ cells. The staining traveled through the cytosol of the proximal tubule cell and reached high intensities at the cytosol before spreading to the surrounding area in the form of exosome-like particles. The spreading virus-containing particles adhered to surrounding cells, including erythrocytes. VP1-positive proximal tubule cells contain apoptotic bodies, with 68-94% of them losing parts of their DNA and exhibiting membrane damage, appearing as "ghost cells" but still VP1+. Specific polyoma staining of urine sediment cells can help determine and enumerate exfoliation of BKV-positive cells based on VP1 staining, which exceeds single-face decoy staining in terms of accuracy. Furthermore, our staining approaches might serve as an early readout in primary diagnostics and for the evaluation of treatment responses in the setting of reduced immunosuppression.
Collapse
Affiliation(s)
- Sahra Pajenda
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Zsofia Hevesi
- Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Eder
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniela Gerges
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Monika Aiad
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Oliver Koldyka
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Winnicki
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Ludwig Wagner
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Alice Schmidt
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
8
|
Alvisi G, Manaresi E, Cross EM, Hoad M, Akbari N, Pavan S, Ariawan D, Bua G, Petersen GF, Forwood J, Gallinella G. Importin α/β-dependent nuclear transport of human parvovirus B19 nonstructural protein 1 is essential for viral replication. Antiviral Res 2023; 213:105588. [PMID: 36990397 DOI: 10.1016/j.antiviral.2023.105588] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/08/2023] [Accepted: 03/25/2023] [Indexed: 03/30/2023]
Abstract
Human parvovirus B19 (B19V) is a major human pathogen causing a variety of diseases, characterized by a selective tropism to human progenitor cells in bone marrow. In similar fashion to all Parvoviridae members, the B19V ssDNA genome is replicated within the nucleus of infected cells through a process which involves both cellular and viral proteins. Among the latter, a crucial role is played by non-structural protein (NS)1, a multifunctional protein involved in genome replication and transcription, as well as modulation of host gene expression and function. Despite the localization of NS1 within the host cell nucleus during infection, little is known regarding the mechanism of its nuclear transport pathway. In this study we undertake structural, biophysical, and cellular approaches to characterize this process. Quantitative confocal laser scanning microscopy (CLSM), gel mobility shift, fluorescence polarization and crystallographic analysis identified a short sequence of amino acids (GACHAKKPRIT-182) as the classical nuclear localization signal (cNLS) responsible for nuclear import, mediated in an energy and importin (IMP) α/β-dependent fashion. Structure-guided mutagenesis of key residue K177 strongly impaired IMPα binding, nuclear import, and viral gene expression in a minigenome system. Further, treatment with ivermectin, an antiparasitic drug interfering with the IMPα/β dependent nuclear import pathway, inhibited NS1 nuclear accumulation and viral replication in infected UT7/Epo-S1 cells. Thus, NS1 nuclear transport is a potential target of therapeutic intervention against B19V induced disease.
Collapse
Affiliation(s)
- Gualtiero Alvisi
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy.
| | - Elisabetta Manaresi
- Department of Pharmacy and Biotechnology, University of Bologna, 40138, Bologna, Italy
| | - Emily M Cross
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Mikayla Hoad
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Nasim Akbari
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Silvia Pavan
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Daryl Ariawan
- Dementia Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Gloria Bua
- Department of Pharmacy and Biotechnology, University of Bologna, 40138, Bologna, Italy
| | - Gayle F Petersen
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Jade Forwood
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2650, Australia
| | - Giorgio Gallinella
- Department of Pharmacy and Biotechnology, University of Bologna, 40138, Bologna, Italy
| |
Collapse
|
9
|
Loke ASW, Lambert PF, Spurgeon ME. Current In Vitro and In Vivo Models to Study MCPyV-Associated MCC. Viruses 2022; 14:2204. [PMID: 36298759 PMCID: PMC9607385 DOI: 10.3390/v14102204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the only human polyomavirus currently known to cause human cancer. MCPyV is believed to be an etiological factor in at least 80% of cases of the rare but aggressive skin malignancy Merkel cell carcinoma (MCC). In these MCPyV+ MCC tumors, clonal integration of the viral genome results in the continued expression of two viral proteins: the viral small T antigen (ST) and a truncated form of the viral large T antigen. The oncogenic potential of MCPyV and the functional properties of the viral T antigens that contribute to neoplasia are becoming increasingly well-characterized with the recent development of model systems that recapitulate the biology of MCPyV+ MCC. In this review, we summarize our understanding of MCPyV and its role in MCC, followed by the current state of both in vitro and in vivo model systems used to study MCPyV and its contribution to carcinogenesis. We also highlight the remaining challenges within the field and the major considerations related to the ongoing development of in vitro and in vivo models of MCPyV+ MCC.
Collapse
Affiliation(s)
| | | | - Megan E. Spurgeon
- McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine & Public Health, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
10
|
Small DNA tumor viruses and human cancer: Preclinical models of virus infection and disease. Tumour Virus Res 2022; 14:200239. [PMID: 35636683 PMCID: PMC9194455 DOI: 10.1016/j.tvr.2022.200239] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/05/2022] [Accepted: 05/25/2022] [Indexed: 01/13/2023] Open
Abstract
Human tumor viruses cause various human cancers that account for at least 15% of the global cancer burden. Among the currently identified human tumor viruses, two are small DNA tumor viruses: human papillomaviruses (HPVs) and Merkel cell polyomavirus (MCPyV). The study of small DNA tumor viruses (adenoviruses, polyomaviruses, and papillomaviruses) has facilitated several significant biological discoveries and established some of the first animal models of virus-associated cancers. The development and use of preclinical in vivo models to study HPVs and MCPyV and their role in human cancer is the focus of this review. Important considerations in the design of animal models of small DNA tumor virus infection and disease, including host range, cell tropism, choice of virus isolates, and the ability to recapitulate human disease, are presented. The types of infection-based and transgenic model strategies that are used to study HPVs and MCPyV, including their strengths and limitations, are also discussed. An overview of the current models that exist to study HPV and MCPyV infection and neoplastic disease are highlighted. These comparative models provide valuable platforms to study various aspects of virus-associated human disease and will continue to expand knowledge of human tumor viruses and their relationship with their hosts.
Collapse
|
11
|
Kasatkina LA, Verkhusha VV. Transgenic mice encoding modern imaging probes: Properties and applications. Cell Rep 2022; 39:110845. [PMID: 35613592 PMCID: PMC9183799 DOI: 10.1016/j.celrep.2022.110845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Modern biology is increasingly reliant on optical technologies, including visualization and longitudinal monitoring of cellular processes. The major limitation here is the availability of animal models to track the molecules and cells in their natural environment in vivo. Owing to the integrity of the studied tissue and the high stability of transgene expression throughout life, transgenic mice encoding fluorescent proteins and biosensors represent unique tools for in vivo studies in norm and pathology. We review the strategies for targeting probe expression in specific tissues, cell subtypes, or cellular compartments. We describe the application of transgenic mice expressing fluorescent proteins for tracking protein expression patterns, apoptotic events, tissue differentiation and regeneration, neurogenesis, tumorigenesis, and cell fate mapping. We overview the possibilities of functional imaging of secondary messengers, neurotransmitters, and ion fluxes. Finally, we provide the rationale and perspectives for the use of transgenic imaging probes in translational research and drug discovery.
Collapse
Affiliation(s)
- Ludmila A Kasatkina
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Vladislav V Verkhusha
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland.
| |
Collapse
|
12
|
Mo L, Meng L, Huang Z, Yi L, Yang N, Li G. An analysis of the role of HnRNP C dysregulation in cancers. Biomark Res 2022; 10:19. [PMID: 35395937 PMCID: PMC8994388 DOI: 10.1186/s40364-022-00366-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/20/2022] [Indexed: 12/21/2022] Open
Abstract
Heterogeneous nuclear ribonucleoproteins C (HnRNP C) is part of the hnRNP family of RNA-binding proteins. The relationship between hnRNP C and cancers has been extensively studied, and dysregulation of hnRNP C has been found in many cancers. According to existing public data, hnRNP C could promote the maturation of new heterogeneous nuclear RNAs (hnRNA s, also referred to as pre-mRNAs) into mRNAs and could stabilize mRNAs, controlling their translation. This paper reviews the regulation and dysregulation of hnRNP C in cancers. It interacts with some cancer genes and other biological molecules, such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and double-stranded RNAs (dsRNAs). Even directly binds to them. The effects of hnRNP C on biological processes such as alternative cleavage and polyadenylation (APA) and N6-methyladenosine (m6A) modification differ among cancers. Its main function is regulating stability and level of translation of cancer genes, and the hnRNP C is regarded as a candidate biomarker and might be valuable for prognosis evaluation.
Collapse
Affiliation(s)
- Liyi Mo
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lijuan Meng
- Department of Ultrasonography, Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, China
| | - Zhicheng Huang
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Lan Yi
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Nanyang Yang
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Guoqing Li
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
13
|
Ingram Z, Fischer DK, Ambrose Z. Disassembling the Nature of Capsid: Biochemical, Genetic, and Imaging Approaches to Assess HIV-1 Capsid Functions. Viruses 2021; 13:v13112237. [PMID: 34835043 PMCID: PMC8618418 DOI: 10.3390/v13112237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) capsid and its disassembly, or capsid uncoating, has remained an active area of study over the past several decades. Our understanding of the HIV-1 capsid as solely a protective shell has since shifted with discoveries linking it to other complex replication events. The interplay of the HIV-1 capsid with reverse transcription, nuclear import, and integration has led to an expansion of knowledge of capsid functionality. Coincident with advances in microscopy, cell, and biochemistry assays, several models of capsid disassembly have been proposed, in which it occurs in either the cytoplasmic, nuclear envelope, or nuclear regions of the cell. Here, we discuss how the understanding of the HIV-1 capsid has evolved and the key methods that made these discoveries possible.
Collapse
Affiliation(s)
- Zachary Ingram
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; (Z.I.); (D.K.F.)
- Pittsburgh Center for HIV Protein Interactions, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Douglas K. Fischer
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; (Z.I.); (D.K.F.)
- Pittsburgh Center for HIV Protein Interactions, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; (Z.I.); (D.K.F.)
- Pittsburgh Center for HIV Protein Interactions, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Correspondence:
| |
Collapse
|
14
|
Chen H, Qian X, Chen X, Yang T, Feng M, Chen J, Cheng R, Hong H, Zheng Y, Mei Y, Shen D, Xu Y, Zhu M, Ding XS, Tao X. Cytoplasmic and nuclear Sw-5b NLR act both independently and synergistically to confer full host defense against tospovirus infection. THE NEW PHYTOLOGIST 2021; 231:2262-2281. [PMID: 34096619 DOI: 10.1111/nph.17535] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Plant intracellular nucleotide-binding leucine-rich repeat (NLR) receptors play critical roles in mediating host immunity to pathogen attack. We use tomato Sw-5b::tospovirus as a model system to study the specific role of the compartmentalized plant NLR in dictating host defenses against the virus at different infection steps. We demonstrated here that tomato NLR Sw-5b distributes to the cytoplasm and nucleus, respectively, to play different roles in inducing host resistances against tomato spotted wilt orthotospovirus (TSWV) infection. The cytoplasmic-enriched Sw-5b induces a strong cell death response to inhibit TSWV replication. This host response is, however, insufficient to block viral intercellular and long-distance movement. The nuclear-enriched Sw-5b triggers a host defense that weakly inhibits viral replication but strongly impedes virus intercellular and systemic movement. Furthermore, the cytoplasmic and nuclear Sw-5b act synergistically to dictate a full host defense of TSWV infection. We further demonstrated that the extended N-terminal Solanaceae domain (SD) of Sw-5b plays critical roles in cytoplasm/nucleus partitioning. Sw-5b NLR controls its cytoplasm localization. Strikingly, the SD but not coil-coil domain is crucial for Sw-5b receptor to import into the nucleus to trigger the immunity. The SD was found to interact with importins. Silencing both importin α and β expression disrupted Sw-5b nucleus import and host immunity against TSWV systemic infection. Collectively, our findings suggest that Sw-5b bifurcates disease resistances by cytoplasm/nucleus partitioning to block different infection steps of TSWV. The findings also identified a new regulatory role of extra domain of a plant NLR in mediating host innate immunity.
Collapse
Affiliation(s)
- Hongyu Chen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Qian
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huaian, Jiangsu, 223001, China
| | - Xiaojiao Chen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Tongqing Yang
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingfeng Feng
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Chen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruixiang Cheng
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Hong
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Zheng
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuzhen Mei
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hanghzou, 310029, China
| | - Danyu Shen
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi Xu
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Zhu
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Shun Ding
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaorong Tao
- Key Laboratory of Plant Immunity, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
15
|
Lacasse V, Beaudoin S, Jean S, Leyton JV. A Novel Proteomic Method Reveals NLS Tagging of T-DM1 Contravenes Classical Nuclear Transport in a Model of HER2-Positive Breast Cancer. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:99-119. [PMID: 33024794 PMCID: PMC7522293 DOI: 10.1016/j.omtm.2020.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 08/27/2020] [Indexed: 11/01/2022]
Abstract
The next breakthrough for protein therapeutics is effective intracellular delivery and accumulation within target cells. Nuclear localization signal (NLS)-tagged therapeutics have been hindered by the lack of efficient nuclear localization due to endosome entrapment. Although development of strategies for tagging therapeutics with technologies capable of increased membrane penetration has resulted in proportional increased potency, nonspecific membrane penetration limits target specificity and, hence, widespread clinical success. There is a long-standing idea that nuclear localization of NLS-tagged agents occurs exclusively via classical nuclear transport. In the present study, we modified the antibody-drug conjugate trastuzumab-emtansine (T-DM1) with a classical NLS linked to cholic acid (cell accumulator [Accum]) that enables modified antibodies to escape endosome entrapment and increase nuclear localization efficiency without abrogating receptor targeting. In parallel, we developed a proteomics-based method to evaluate nuclear transport. Accum-modified T-DM1 significantly enhanced cytotoxic efficacy in the human epidermal growth factor receptor 2 (HER2)-positive SKBR3 breast cancer system. We discovered that efficacy was dependent on the nonclassical importin-7. Our evaluation reveals that when multiple classical NLS tagging occurs, cationic charge build-up as opposed to sequence dominates and becomes a substrate for importin-7. This study results in an effective target cell-specific NLS therapeutic and a general approach to guide future NLS-based development initiatives.
Collapse
Affiliation(s)
- Vincent Lacasse
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke (UdeS), Sherbrooke, QC J1H 5N4, Canada
| | - Simon Beaudoin
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke (UdeS), Sherbrooke, QC J1H 5N4, Canada
| | - Steve Jean
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, CHUS, UdeS, Sherbrooke, QC J1H 5N4, Canada
| | - Jeffrey V Leyton
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Centre Hospitalier Universitaire de Sherbrooke (CHUS), Université de Sherbrooke (UdeS), Sherbrooke, QC J1H 5N4, Canada.,Sherbrooke Molecular Imaging Centre (CIMS), Centre de Recherche du CHUS, UdeS, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
16
|
Elhodaky M, Hong LK, Kadkol S, Diamond AM. Selenium-binding protein 1 alters energy metabolism in prostate cancer cells. Prostate 2020; 80:962-976. [PMID: 32511787 PMCID: PMC7473137 DOI: 10.1002/pros.24028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/30/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The broad goal of the research described in this study was to investigate the contributions of selenium-binding protein 1 (SBP1) loss in prostate cancer development and outcome. METHODS SBP1 levels were altered in prostate cancer cell lines and the consequences on oxygen consumption, expression of proteins associated with energy metabolism, and cellular transformation and migration were investigated. The effects of exposing cells to the SBP1 reaction products, H2 O2 and H2 S were also assessed. In silico analyses identified potential HNF4α binding sites within the SBP1 promoter region and this was investigated using an inhibitor specific for that transcription factor. RESULTS Using in silico analyses, it was determined that the promoter region of SBP1 contains putative binding sites for the HNF4α transcription factor. The potential for HNF4α to regulate SBP1 expression was supported by data indicating that HNF4α inhibition resulted in a dose-response increase in the levels of SBP1 messenger RNA and protein, identifying HNF4α as a novel negative regulator of SBP1 expression in prostate cancer cells. The consequences of altering the levels of SBP1 were investigated by ectopically expressing SBP1 in PC-3 prostate cancer cells, where SBP1 expression attenuated anchorage-independent cellular growth and migration in culture, both properties associated with transformation. SBP1 overexpression reduced oxygen consumption in these cells and increased the activation of AMP-activated protein kinase (AMPK), a major regulator of energy homeostasis. In addition, the reaction products of SBP1, H2 O2 , and H2 S also activated AMPK. CONCLUSIONS Based on the obtained data, it is hypothesized that SBP1 negatively regulates oxidative phosphorylation (OXPHOS) in the healthy prostate cells by the production of H2 O2 and H2 S and consequential activation of AMPK. The reduction of SBP1 levels in prostate cancer can occur due to increased binding of HNF4α, acting as a transcriptional inhibitor to the SBP1 promoter. Consequently, there is a reduction in H2 O2 and H2 S-mediated signaling, inhibition of AMPK, and stimulation of OXPHOS and building blocks of biomolecules needed for tumor growth and progression. Other effects of SBP1 loss in tumor cells remain to be discovered.
Collapse
Affiliation(s)
- Mostafa Elhodaky
- Department of Pathology, College of MedicineUniversity of Illinois at ChicagoChicagoIllinois
| | - Lenny K. Hong
- Department of Pathology, College of MedicineUniversity of Illinois at ChicagoChicagoIllinois
| | - Shrinidhi Kadkol
- Department of Pathology, College of MedicineUniversity of Illinois at ChicagoChicagoIllinois
| | - Alan M. Diamond
- Department of Pathology, College of MedicineUniversity of Illinois at ChicagoChicagoIllinois
| |
Collapse
|
17
|
Han X, Zhang L, Zhao L, Xue P, Qi T, Zhang C, Yuan H, Zhou L, Wang D, Qiu J, Shen QH. SnRK1 Phosphorylates and Destabilizes WRKY3 to Enhance Barley Immunity to Powdery Mildew. PLANT COMMUNICATIONS 2020; 1:100083. [PMID: 33367247 PMCID: PMC7747994 DOI: 10.1016/j.xplc.2020.100083] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 05/19/2023]
Abstract
Plants recognize pathogens and activate immune responses, which usually involve massive transcriptional reprogramming. The evolutionarily conserved kinase, Sucrose non-fermenting-related kinase 1 (SnRK1), functions as a metabolic regulator that is essential for plant growth and stress responses. Here, we identify barley SnRK1 and a WRKY3 transcription factor by screening a cDNA library. SnRK1 interacts with WRKY3 in yeast, as confirmed by pull-down and luciferase complementation assays. Förster resonance energy transfer combined with noninvasive fluorescence lifetime imaging analysis indicates that the interaction occurs in the barley nucleus. Transient expression and virus-induced gene silencing analyses indicate that WRKY3 acts as a repressor of disease resistance to the Bgh fungus. Barley plants overexpressing WRKY3 have enhanced fungal microcolony formation and sporulation. Phosphorylation assays show that SnRK1 phosphorylates WRKY3 mainly at Ser83 and Ser112 to destabilize the repressor, and WRKY3 non-phosphorylation-null mutants at these two sites are more stable than the wild-type protein. SnRK1-overexpressing barley plants display enhanced disease resistance to Bgh. Transient expression of SnRK1 reduces fungal haustorium formation in barley cells, which probably requires SnRK1 nuclear localization and kinase activity. Together, these findings suggest that SnRK1 is directly involved in plant immunity through phosphorylation and destabilization of the WRKY3 repressor, revealing a new regulatory mechanism of immune derepression in plants.
Collapse
Affiliation(s)
- Xinyun Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
| | - Lifang Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengya Xue
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Qi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
| | - Chunlei Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongbo Yuan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixun Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
| | - Daowen Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
| | - Jinlong Qiu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Innovation Academy for Seed Design, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author
| |
Collapse
|
18
|
Cheraghi R, Nazari M, Alipour M, Hosseinkhani S. Stepwise Development of Biomimetic Chimeric Peptides for Gene Delivery. Protein Pept Lett 2020; 27:698-710. [PMID: 32026767 DOI: 10.2174/0929866527666200206153328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/23/2019] [Accepted: 11/07/2019] [Indexed: 11/22/2022]
Abstract
Gene-based therapy largely relies on the vector type that allows a selective and efficient transfection into the target cells with maximum efficacy and minimal toxicity. Although, genes delivered utilizing modified viruses transfect efficiently and precisely, these vectors can cause severe immunological responses and are potentially carcinogenic. A promising method of overcoming this limitation is the use of non-viral vectors, including cationic lipids, polymers, dendrimers, and peptides, which offer potential routes for compacting DNA for targeted delivery. Although non-viral vectors exhibit reduced transfection efficiency compared to their viral counterpart, their superior biocompatibility, non-immunogenicity and potential for large-scale production make them increasingly attractive for modern therapy. There has been a great deal of interest in the development of biomimetic chimeric peptides. Biomimetic chimeric peptides contain different motifs for gene translocation into the nucleus of the desired cells. They have motifs for gene targeting into the desired cell, condense DNA into nanosize particles, translocate the gene into the nucleus and enhance the release of the particle into the cytoplasm. These carriers were developed in recent years. This review highlights the stepwise development of the biomimetic chimeric peptides currently being used in gene delivery.
Collapse
Affiliation(s)
- Roya Cheraghi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahboobeh Nazari
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohsen Alipour
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
19
|
Read C, Schauflinger M, Nikolaenko D, Walther P, von Einem J. Regulation of Human Cytomegalovirus Secondary Envelopment by a C-Terminal Tetralysine Motif in pUL71. J Virol 2019; 93:e02244-18. [PMID: 30996102 PMCID: PMC6580969 DOI: 10.1128/jvi.02244-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
Human cytomegalovirus (HCMV) secondary envelopment requires the viral tegument protein pUL71. The lack of pUL71 results in a complex ultrastructural phenotype with increased numbers of viral capsids undergoing envelopment at the cytoplasmic virus assembly complex. Here, we report a role of the pUL71 C terminus in secondary envelopment. Mutant viruses expressing C-terminally truncated pUL71 (TB71del327-361 and TB71del348-351) exhibited an impaired secondary envelopment in transmission electron microscopy (TEM) studies. Further mutational analyses of the C terminus revealed a tetralysine motif whose mutation (TB71mutK348-351A) resulted in an envelopment defect that was undistinguishable from the defect caused by truncation of the pUL71 C terminus. Interestingly, not all morphological alterations that define the ultrastructural phenotype of a TB71stop virus were found in cells infected with the C-terminally mutated viruses. This suggests that pUL71 provides additional functions that modulate HCMV morphogenesis and are harbored elsewhere in pUL71. This is also reflected by an intermediate growth defect of the C-terminally mutated viruses compared to the growth of the TB71stop virus. Electron tomography and three-dimensional visualization of different stages of secondary envelopment in TB71mutK348-351A-infected cells showed unambiguously the formation of a bud neck. Furthermore, we provide evidence for progressive tegument formation linked to advancing grades of capsid envelopment, suggesting that tegumentation and envelopment are intertwined processes. Altogether, we identified the importance of the pUL71 C terminus and, specifically, of a positively charged tetralysine motif for HCMV secondary envelopment.IMPORTANCE Human cytomegalovirus (HCMV) is an important human pathogen that causes severe symptoms, especially in immunocompromised hosts. Furthermore, congenital HCMV infection is the leading viral cause of severe birth defects. Development of antiviral drugs to prevent the production of infectious virus progeny is challenging due to a complex and multistep virion morphogenesis. The mechanism of secondary envelopment is still not fully understood; nevertheless, it represents a potential target for antiviral drugs. Our identification of the role of a positively charged motif in the pUL71 C terminus for efficient HCMV secondary envelopment underlines the importance of pUL71 and, especially, its C terminus for this process. It furthermore shows how cell-associated spread and virion release depend on secondary envelopment. Ultrastructural analyses of different stages of envelopment contribute to a better understanding of the mechanisms underlying the process of secondary envelopment. This may bring us closer to the development of novel concepts to treat HCMV infections.
Collapse
Affiliation(s)
- Clarissa Read
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Martin Schauflinger
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | | | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Jens von Einem
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
20
|
DiMaio D. Small size, big impact: how studies of small DNA tumour viruses revolutionized biology. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180300. [PMID: 30955494 PMCID: PMC6501907 DOI: 10.1098/rstb.2018.0300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2018] [Indexed: 01/19/2023] Open
Abstract
Intense study of three families of small tumour viruses with double-stranded DNA genomes, carried out over 50 years, has had a profound impact on biology. The polyomaviruses and papillomaviruses have circular DNA genomes of approximately 5000 and approximately 8000 base-pairs, respectively, and thus encode only a handful of proteins. Adenoviruses have a 32 000-base-pair linear DNA genome, still far smaller than the three billion-base-pair human genome. Members of all three virus families can transform cultured cells to tumorigenicity and cause tumours in experimental animals. Several human papillomaviruses (HPV) and at least one polyomavirus are oncogenic in humans. Early analysis of these viruses, particularly the polyomavirus SV40, led to the development of many powerful experimental tools, including restriction mapping, site-directed mutagenesis, gene transfer, genome-wide sequencing and recombinant DNA. These tools have since been refined and used to study cellular genes, revolutionizing our understanding of biology. These tools were also applied to the viruses themselves. Analysis of the virus life cycle and the effect of these viruses on cells yielded important new insights into many aspects of gene expression, DNA replication, cell biology and carcinogenesis. These studies have also led to vaccination strategies to prevent infection and cancer in humans. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Daniel DiMaio
- Department of Genetics, Yale School of Medicine, PO Box 208005, New Haven, CT 06520-8005, USA
- Yale Cancer Center, PO Box 208028, New Haven, CT 06520-8028, USA
| |
Collapse
|
21
|
DNA Tumor Viruses and Their Contributions to Molecular Biology. J Virol 2019; 93:JVI.01524-18. [PMID: 30814278 DOI: 10.1128/jvi.01524-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 02/16/2019] [Indexed: 12/16/2022] Open
Abstract
This summer marks the 51st anniversary of the DNA tumor virus meetings. Scientists from around the world will gather in Trieste, Italy, to report their latest results and to agree or disagree on the current concepts that define our understanding of this diverse class of viruses. This article offers a brief history of the impact the study of these viruses has had on molecular and cancer biology and discusses obstacles and opportunities for future progress.
Collapse
|
22
|
Abstract
Gene therapy as a strategy for disease treatment requires safe and efficient gene delivery systems that encapsulate nucleic acids and deliver them to effective sites in the cell.
Collapse
Affiliation(s)
- Ziyao Kang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| |
Collapse
|
23
|
A downy mildew effector evades recognition by polymorphism of expression and subcellular localization. Nat Commun 2018; 9:5192. [PMID: 30518923 PMCID: PMC6281644 DOI: 10.1038/s41467-018-07469-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 10/31/2018] [Indexed: 01/06/2023] Open
Abstract
Pathogen co-evolution with plants involves selection for evasion of host surveillance systems. The oomycete Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on Arabidopsis, and race-specific interactions between Arabidopsis accessions and Hpa isolates fit the gene-for-gene model in which host resistance or susceptibility are determined by matching pairs of plant Resistance (R) genes and pathogen Avirulence (AVR) genes. Arabidopsis Col-0 carries R gene RPP4 that confers resistance to Hpa isolates Emoy2 and Emwa1, but its cognate recognized effector(s) were unknown. We report here the identification of the Emoy2 AVR effector gene recognized by RPP4 and show resistance-breaking isolates of Hpa on RPP4-containing Arabidopsis carry the alleles that either are not expressed, or show cytoplasmic instead of nuclear subcellular localization. Plant pathogens have evolved to evade detection by their hosts. Here, Asai et al. show that virulent isolates of the oomycete Hyaloperonospora arabidopsidis can break resistance conferred by the Arabidopsis RPP4 resistance gene via variation in effector expression or subcellular localization.
Collapse
|
24
|
Li Z, Zhang Y, Jiang Z, Jin X, Zhang K, Wang X, Han C, Yu J, Li D. Hijacking of the nucleolar protein fibrillarin by TGB1 is required for cell-to-cell movement of Barley stripe mosaic virus. MOLECULAR PLANT PATHOLOGY 2018; 19:1222-1237. [PMID: 28872759 PMCID: PMC6638131 DOI: 10.1111/mpp.12612] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 05/18/2023]
Abstract
Barley stripe mosaic virus (BSMV) Triple Gene Block1 (TGB1) is a multifunctional movement protein with RNA-binding, ATPase and helicase activities which mainly localizes to the plasmodesmata (PD) in infected cells. Here, we show that TGB1 localizes to the nucleus and the nucleolus, as well as the cytoplasm, and that TGB1 nuclear-cytoplasmic trafficking is required for BSMV cell-to-cell movement. Prediction analyses and laser scanning confocal microscopy (LSCM) experiments verified that TGB1 possesses a nucleolar localization signal (NoLS) (amino acids 95-104) and a nuclear localization signal (NLS) (amino acids 227-238). NoLS mutations reduced BSMV cell-to-cell movement significantly, whereas NLS mutations almost completely abolished movement. Furthermore, neither the NoLS nor NLS mutant viruses could infect Nicotiana benthamiana systemically, although the NoLS mutant virus was able to establish systemic infections of barley. Protein interaction experiments demonstrated that TGB1 interacts directly with the glycine-arginine-rich (GAR) domain of the nucleolar protein fibrillarin (Fib2). Moreover, in BSMV-infected cells, Fib2 accumulation increased by about 60%-70% and co-localized with TGB1 in the plasmodesmata. In addition, BSMV cell-to-cell movement in fib2 knockdown transgenic plants was reduced to less than one-third of that of non-transgenic plants. Fib2 also co-localized with both TGB1 and BSMV RNA, which are the main components of the ribonucleoprotein (RNP) movement complex. Collectively, these results show that TGB1-Fib2 interactions play a direct role in cell-to-cell movement, and we propose that Fib2 is hijacked by BSMV TGB1 to form a BSMV RNP which functions in cell-to-cell movement.
Collapse
Affiliation(s)
- Zhenggang Li
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Yongliang Zhang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Zhihao Jiang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Xuejiao Jin
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Kun Zhang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Xianbing Wang
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Chenggui Han
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Jialin Yu
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| | - Dawei Li
- State Key Laboratory of Agro‐Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological SciencesChina Agricultural UniversityBeijing 100193China
| |
Collapse
|
25
|
Cutler AA, Jackson JB, Corbett AH, Pavlath GK. Non-equivalence of nuclear import among nuclei in multinucleated skeletal muscle cells. J Cell Sci 2018; 131:jcs.207670. [PMID: 29361530 DOI: 10.1242/jcs.207670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/21/2017] [Indexed: 01/01/2023] Open
Abstract
Skeletal muscle is primarily composed of large myofibers containing thousands of post-mitotic nuclei distributed throughout a common cytoplasm. Protein production and localization in specialized myofiber regions is crucial for muscle function. Myonuclei differ in transcriptional activity and protein accumulation, but how these differences among nuclei sharing a cytoplasm are achieved is unknown. Regulated nuclear import of proteins is one potential mechanism for regulating transcription spatially and temporally in individual myonuclei. The best-characterized nuclear localization signal (NLS) in proteins is the classical NLS (cNLS), but many other NLS motifs exist. We examined cNLS and non-cNLS reporter protein import using multinucleated muscle cells generated in vitro, revealing that cNLS and non-cNLS nuclear import differs among nuclei in the same cell. Investigation of cNLS nuclear import rates in isolated myofibers ex vivo confirmed differences in nuclear import rates among myonuclei. Analyzing nuclear import throughout myogenesis revealed that cNLS and non-cNLS import varies during differentiation. Taken together, our results suggest that both spatial and temporal regulation of nuclear import pathways are important in muscle cell differentiation and protein regionalization in myofibers.
Collapse
Affiliation(s)
- Alicia A Cutler
- Department of Pharmacology, Emory University, Atlanta, GA 30322, USA.,Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Grace K Pavlath
- Department of Pharmacology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
26
|
OKA M, YONEDA Y. Importin α: functions as a nuclear transport factor and beyond. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2018; 94:259-274. [PMID: 30078827 PMCID: PMC6117492 DOI: 10.2183/pjab.94.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Nucleocytoplasmic transport is an essential process in eukaryotes. The molecular mechanisms underlying nuclear transport that involve the nuclear transport receptor, small GTPase Ran, and the nuclear pore complex are highly conserved from yeast to humans. On the other hand, it has become clear that the nuclear transport system diverged during evolution to achieve various physiological functions in multicellular eukaryotes. In this review, we first summarize the molecular mechanisms of nuclear transport and how these were elucidated. Then, we focus on the diverse functions of importin α, which acts not merely an import factor but also as a multi-functional protein contributing to a variety of cellular functions in higher eukaryotes.
Collapse
Affiliation(s)
- Masahiro OKA
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Yoshihiro YONEDA
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
- Correspondence should be addressed: Y. Yoneda, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan (e-mail: )
| |
Collapse
|
27
|
Abstract
In the present chapter, we present the protocols and guidelines to facilitate implementation of CRISPR-Cas9 technology in fungi where few or no genetic tools are in place. Hence, we firstly explain how to identify dominant markers for genetic transformation. Secondly, we provide a guide for construction of Cas9/sgRNA episomal expression vectors. Thirdly, we present how to mutagenize reporter genes to explore the efficiency of CRISPR-Cas9 in the relevant fungus and to ease subsequent CRISPR-mediated genetic engineering. Lastly, we describe how to make CRISPR-mediated marker-dependent and marker-free gene targeting.
Collapse
Affiliation(s)
- Jakob B Hoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs.Lyngby, Denmark
| | - Christina S Nødvig
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs.Lyngby, Denmark
| | - Uffe H Mortensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs.Lyngby, Denmark.
| |
Collapse
|
28
|
Liu CM, Hsu WH, Lin WY, Chen HC. Adducin family proteins possess different nuclear export potentials. J Biomed Sci 2017; 24:30. [PMID: 28490361 PMCID: PMC5424492 DOI: 10.1186/s12929-017-0333-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/03/2017] [Indexed: 11/18/2022] Open
Abstract
Background The adducin (ADD) family proteins, namely ADD1, ADD2, and ADD3, are actin-binding proteins that play important roles in the stabilization of membrane cytoskeleton and cell-cell junctions. All the ADD proteins contain a highly conserved bipartite nuclear localization signal (NLS) at the carboxyl termini, but only ADD1 can localize to the nucleus. The reason for this discrepancy is not clear. Methods To avoid the potential effect of cell-cell junctions on the distribution of ADD proteins, HA epitope-tagged ADD proteins and mutants were transiently expressed in NIH3T3 fibroblasts and their distribution in the cytoplasm and nucleus was examined by immunofluorescence staining. Several nuclear proteins were identified to interact with ADD1 by mass spectrometry, which were further verified by co-immunoprecipitation. Results In this study, we found that ADD1 was detectable both in the cytoplasm and nucleus, whereas ADD2 and ADD3 were detected only in the cytoplasm. However, ADD2 and ADD3 were partially (~40%) sequestered in the nucleus by leptomycin B, a CRM1/exportin1 inhibitor. Upon the removal of leptomycin B, ADD2 and ADD3 re-distributed to the cytoplasm. These results indicate that ADD2 and ADD3 possess functional NLS and are quickly transported to the cytoplasm upon entering the nucleus. Indeed, we found that ADD2 and ADD3 possess much higher potential to counteract the activity of the NLS derived from Simian virus 40 large T-antigen than ADD1. All the ADD proteins appear to contain multiple nuclear export signals mainly in their head and neck domains. However, except for the leucine-rich motif (377FEALMRMLDWLGYRT391) in the neck domain of ADD1, no other classic nuclear export signal was identified in the ADD proteins. In addition, the nuclear retention of ADD1 facilitates its interaction with RNA polymerase II and zinc-finger protein 331. Conclusions Our results suggest that ADD2 and ADD3 possess functional NLS and shuttle between the cytoplasm and nucleus. The discrepancy in the subcellular localization of the ADD isoforms arises due to their different nuclear export capabilities. In addition, the interaction of ADD1 with RNA polymerase II and zinc-finger protein 331 implicates a potential role for ADD1 in the regulation of transcription.
Collapse
Affiliation(s)
- Chia-Mei Liu
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Hsin Hsu
- Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Wan-Yi Lin
- Institue of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Hong-Chen Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan. .,Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan. .,Institue of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan. .,Rong-Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan. .,Institute of Biochemistry and Molecular Biology, National Yang Ming University, No. 155, Sec. 2, Li-Nong St, Taipei, 11221, Taiwan.
| |
Collapse
|
29
|
Nuclear Import of Hepatitis B Virus Capsids and Genome. Viruses 2017; 9:v9010021. [PMID: 28117723 PMCID: PMC5294990 DOI: 10.3390/v9010021] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is an enveloped pararetrovirus with a DNA genome, which is found in an up to 36 nm-measuring capsid. Replication of the genome occurs via an RNA intermediate, which is synthesized in the nucleus. The virus must have thus ways of transporting its DNA genome into this compartment. This review summarizes the data on hepatitis B virus genome transport and correlates the finding to those from other viruses.
Collapse
|
30
|
Cesari S, Moore J, Chen C, Webb D, Periyannan S, Mago R, Bernoux M, Lagudah ES, Dodds PN. Cytosolic activation of cell death and stem rust resistance by cereal MLA-family CC-NLR proteins. Proc Natl Acad Sci U S A 2016; 113:10204-9. [PMID: 27555587 PMCID: PMC5018743 DOI: 10.1073/pnas.1605483113] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Plants possess intracellular immune receptors designated "nucleotide-binding domain and leucine-rich repeat" (NLR) proteins that translate pathogen-specific recognition into disease-resistance signaling. The wheat immune receptors Sr33 and Sr50 belong to the class of coiled-coil (CC) NLRs. They confer resistance against a broad spectrum of field isolates of Puccinia graminis f. sp. tritici, including the Ug99 lineage, and are homologs of the barley powdery mildew-resistance protein MLA10. Here, we show that, similarly to MLA10, the Sr33 and Sr50 CC domains are sufficient to induce cell death in Nicotiana benthamiana Autoactive CC domains and full-length Sr33 and Sr50 proteins self-associate in planta In contrast, truncated CC domains equivalent in size to an MLA10 fragment for which a crystal structure was previously determined fail to induce cell death and do not self-associate. Mutations in the truncated region also abolish self-association and cell-death signaling. Analysis of Sr33 and Sr50 CC domains fused to YFP and either nuclear localization or nuclear export signals in N benthamiana showed that cell-death induction occurs in the cytosol. In stable transgenic wheat plants, full-length Sr33 proteins targeted to the cytosol provided rust resistance, whereas nuclear-targeted Sr33 was not functional. These data are consistent with CC-mediated induction of both cell-death signaling and stem rust resistance in the cytosolic compartment, whereas previous research had suggested that MLA10-mediated cell-death and disease resistance signaling occur independently, in the cytosol and nucleus, respectively.
Collapse
Affiliation(s)
- Stella Cesari
- Commonwealth Scientific and Industrial Research Organization Agriculture, Canberra, ACT 2601, Australia
| | - John Moore
- Commonwealth Scientific and Industrial Research Organization Agriculture, Canberra, ACT 2601, Australia
| | - Chunhong Chen
- Commonwealth Scientific and Industrial Research Organization Agriculture, Canberra, ACT 2601, Australia
| | - Daryl Webb
- Centre for Advanced Microscopy, Australian National University, Canberra, ACT 0200, Australia
| | - Sambasivam Periyannan
- Commonwealth Scientific and Industrial Research Organization Agriculture, Canberra, ACT 2601, Australia
| | - Rohit Mago
- Commonwealth Scientific and Industrial Research Organization Agriculture, Canberra, ACT 2601, Australia
| | - Maud Bernoux
- Commonwealth Scientific and Industrial Research Organization Agriculture, Canberra, ACT 2601, Australia
| | - Evans S Lagudah
- Commonwealth Scientific and Industrial Research Organization Agriculture, Canberra, ACT 2601, Australia
| | - Peter N Dodds
- Commonwealth Scientific and Industrial Research Organization Agriculture, Canberra, ACT 2601, Australia;
| |
Collapse
|
31
|
Soniat M, Cağatay T, Chook YM. Recognition Elements in the Histone H3 and H4 Tails for Seven Different Importins. J Biol Chem 2016; 291:21171-21183. [PMID: 27528606 DOI: 10.1074/jbc.m116.730218] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Indexed: 12/12/2022] Open
Abstract
N-terminal tails of histones H3 and H4 are known to bind several different Importins to import the histones into the cell nucleus. However, it is not known what binding elements in the histone tails are recognized by the individual Importins. Biochemical studies of H3 and H4 tails binding to seven Importins, Impβ, Kapβ2, Imp4, Imp5, Imp7, Imp9, and Impα, show the H3 tail binding more tightly than the H4 tail. The H3 tail binds Kapβ2 and Imp5 with KD values of 77 and 57 nm, respectively, and binds the other five Importins more weakly. Mutagenic analysis shows H3 tail residues 11-27 to be the sole binding segment for Impβ, Kapβ2, and Imp4. However, Imp5, Imp7, Imp9, and Impα bind two separate elements in the H3 tail: the segment at residues 11-27 and an isoleucine-lysine nuclear localization signal (IK-NLS) motif at residues 35-40. The H4 tail also uses either one or two basic segments to bind the same set of Importins with a similar trend of relative affinities as the H3 tail, albeit at least 10-fold weaker. Of the many lysine residues in the H3 and H4 tails, only acetylation of the H3 Lys14 substantially decreased binding to several Importins. Lastly, we show that, in addition to the N-terminal tails, the histone fold domains of H3 and H4 and/or the histone chaperone Asf1b are important for Importin-histone recognition.
Collapse
Affiliation(s)
- Michael Soniat
- From the Department of Pharmacology, University of Texas Southwestern, Dallas, Texas 75390
| | - Tolga Cağatay
- From the Department of Pharmacology, University of Texas Southwestern, Dallas, Texas 75390
| | - Yuh Min Chook
- From the Department of Pharmacology, University of Texas Southwestern, Dallas, Texas 75390
| |
Collapse
|
32
|
Enayati S, Azizi M, Aminollahi E, Ranjvar Shahrivar M, Khalaj V. T7-RNA polymerase dependent RNAi system in Aspergillus fumigatus: a proof of concept study. FEMS Microbiol Lett 2016; 363:fnw029. [PMID: 26850443 DOI: 10.1093/femsle/fnw029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2016] [Indexed: 11/12/2022] Open
Abstract
An RNAi system based on T7 RNA polymerase (TRNAP) was designed and examined in Aspergillus fumigatus. This system consists of two elements; an inducible T7RNAP expressing cassette and an AMA1-based episomal RNAi plasmid. These constructs were transformed into the A. fumigatus protoplasts and the efficiency of this system was tested in downregulation of alb1 gene. Upon the induction of T7RNAP expression, the recombinant T7RNAP was able to recognize T7 promoters, which were located on the episomal plasmid and in opposite direction. As a result, the bidirectional transcription of alb1 fragment led to the silencing of the target gene. However, our results demonstrated that this silencing system is unstable and may not be applicable in preparation of RNAi libraries.
Collapse
Affiliation(s)
- Somayeh Enayati
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur Ave, 1316943551 Tehran, Iran
| | - Mohammad Azizi
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur Ave, 1316943551 Tehran, Iran
| | - Elahe Aminollahi
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur Ave, 1316943551 Tehran, Iran
| | - Mona Ranjvar Shahrivar
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur Ave, 1316943551 Tehran, Iran
| | - Vahid Khalaj
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Pasteur Ave, 1316943551 Tehran, Iran
| |
Collapse
|
33
|
Sobhy H. A Review of Functional Motifs Utilized by Viruses. Proteomes 2016; 4:proteomes4010003. [PMID: 28248213 PMCID: PMC5217368 DOI: 10.3390/proteomes4010003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/07/2016] [Accepted: 01/13/2016] [Indexed: 01/05/2023] Open
Abstract
Short linear motifs (SLiM) are short peptides that facilitate protein function and protein-protein interactions. Viruses utilize these motifs to enter into the host, interact with cellular proteins, or egress from host cells. Studying functional motifs may help to predict protein characteristics, interactions, or the putative cellular role of a protein. In virology, it may reveal aspects of the virus tropism and help find antiviral therapeutics. This review highlights the recent understanding of functional motifs utilized by viruses. Special attention was paid to the function of proteins harboring these motifs, and viruses encoding these proteins. The review highlights motifs involved in (i) immune response and post-translational modifications (e.g., ubiquitylation, SUMOylation or ISGylation); (ii) virus-host cell interactions, including virus attachment, entry, fusion, egress and nuclear trafficking; (iii) virulence and antiviral activities; (iv) virion structure; and (v) low-complexity regions (LCRs) or motifs enriched with residues (Xaa-rich motifs).
Collapse
Affiliation(s)
- Haitham Sobhy
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
34
|
Zessin PJM, Sporbert A, Heilemann M. PCNA appears in two populations of slow and fast diffusion with a constant ratio throughout S-phase in replicating mammalian cells. Sci Rep 2016; 6:18779. [PMID: 26758689 PMCID: PMC4725372 DOI: 10.1038/srep18779] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 11/26/2015] [Indexed: 01/14/2023] Open
Abstract
DNA replication is a fundamental cellular process that precedes cell division. Proliferating cell nuclear antigen (PCNA) is a central scaffold protein that orchestrates DNA replication by recruiting many factors essential for the replication machinery. We studied the mobility of PCNA in live mammalian cells using single-particle tracking in combination with photoactivated-localization microscopy (sptPALM) and found two populations. The first population which is only present in cells with active DNA replication, showed slow diffusion and was found to be located in replication foci. The second population showed fast diffusion, and represents the nucleoplasmic pool of unbound PCNA not involved in DNA replication. The ratio of these two populations remained constant throughout different stages of S-phase. A fraction of molecules in both populations showed spatially constrained mobility. We determined an exploration radius of ~100 nm for 13% of the slow-diffusing PCNA molecules, and of ~600 nm for 46% of the fast-diffusing PCNA molecules.
Collapse
Affiliation(s)
- Patrick J M Zessin
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Anje Sporbert
- Advanced Light Microscopy, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt/Main, Germany
| |
Collapse
|
35
|
Abstract
The Karyopherin-β family of proteins mediates nuclear transport of macromolecules. Nuclear versus cytoplasmic localization of proteins is often suggested by the presence of NLSs (nuclear localization signals) or NESs (nuclear export signals). Import-Karyopherin-βs or Importins bind to NLSs in their protein cargos to transport them through nuclear pore complexes into the nucleus. Until recently, only two classes of NLS had been biochemically and structurally characterized: the classical NLS, which is recognized by the Importin-α/β heterodimer and the PY-NLS (proline-tyrosine NLS), which is recognized by Karyopherin-β2 or Transportin-1. Structures of two other Karyopherin-βs, Kap121 and Transportin-SR2, in complex with their respective cargos were reported for the first time recently, revealing two new distinct classes of NLSs. The present paper briefly describes the classical NLS, reviews recent literature on the PY-NLS and provides in-depth reviews of the two newly discovered classes of NLSs that bind Kap121p and Transportin-SR respectively.
Collapse
|
36
|
Comparative molecular genetic analysis of simian and human HIV-1 integrase interactor INI1/SMARCB1/SNF5. Arch Virol 2015; 160:3085-91. [PMID: 26350979 DOI: 10.1007/s00705-015-2585-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/25/2015] [Indexed: 10/23/2022]
Abstract
Human integrase interactor 1 (INI1/SMARCB1/SNF5) is a chromatin-remodeling molecule that binds to HIV-1 integrase and enhances proviral DNA integration. INI1 is also known as a tumor suppressor gene and has been found to be mutated in several aggressive tumors such as rhabdoid and lymphoid tumors. To study the function of simian INI1, we screened and cloned simian INI1 cDNA from B lymphoma cells of rhesus monkeys using RT-PCR. Sequence analysis showed 23 single nucleotide differences compared to the human ortholog, which, however, did not result in amino acid changes, and the amino acid sequence is therefore 100% conserved between human and simian INI1. Two alternatively spliced isoforms, INI1a and INI1b, were also found in simian INI1. These two isoforms did not show any functional difference in HIV-1 proviral DNA integration and nuclear localization, suggesting that the specificity of simian INI1 would not be a factor preventing HIV-1 infection of a simian host. Nevertheless, INI1b is expressed only in established cancer cell lines such as Jurkat and COS-7 cells, and not in primary cells, suggesting that INIlb could be an indicator of cell transformation.
Collapse
|
37
|
Weninger A, Glieder A, Vogl T. A toolbox of endogenous and heterologous nuclear localization sequences for the methylotrophic yeast Pichia pastoris. FEMS Yeast Res 2015; 15:fov082. [PMID: 26347503 PMCID: PMC4629791 DOI: 10.1093/femsyr/fov082] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/02/2015] [Indexed: 12/16/2022] Open
Abstract
Nuclear localization sequences (NLSs) are required for the import of proteins in the nucleus of eukaryotes. However many proteins from bacteria or bacteriophages are used for basic studies in molecular biology, to generate synthetic genetic circuits or for genome editing applications. Prokaryotic recombinases, CRISPR-associated proteins such as Cas9 or bacterial and viral polymerases require efficient NLSs to function in eukaryotes. The yeast Pichia pastoris is a widely used expression platform for heterologous protein production, but molecular tools such as NLSs are limited. Here we have characterized a set of 10 NLSs for P. pastoris, including the first endogenous NLSs (derived from P. pastoris proteins) and commonly used heterologous NLSs. The NLSs were evaluated by fusing them in N- and C-terminal position to an enhanced green fluorescent protein showing pronounced differences in fluorescence levels and nuclear targeting. Thereby we provide a set of different NLSs that can be applied to optimize the nuclear import of heterologous proteins in P. pastoris, paving the way for the establishment of intricate synthetic biology applications.
Collapse
Affiliation(s)
- Astrid Weninger
- Institute for Molecular Biotechnology, Graz University of Technology, Petersgasse 14/2, 8010 Graz, Austria
| | - Anton Glieder
- Institute for Molecular Biotechnology, Graz University of Technology, Petersgasse 14/2, 8010 Graz, Austria
| | - Thomas Vogl
- Institute for Molecular Biotechnology, Graz University of Technology, Petersgasse 14/2, 8010 Graz, Austria Queensland University of Technology, 2 George St., Brisbane QLD 4000, Australia
| |
Collapse
|
38
|
Yang CP, Chiang CW, Chen CH, Lee YC, Wu MH, Tsou YH, Yang YS, Chang WC, Lin DY. Identification and characterization of nuclear and nucleolar localization signals in 58-kDa microspherule protein (MSP58). J Biomed Sci 2015; 22:33. [PMID: 25981436 PMCID: PMC4434885 DOI: 10.1186/s12929-015-0136-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/21/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND MSP58 is a nucleolar protein associated with rRNA transcription and cell proliferation. Its mechanism of translocation into the nucleus or the nucleolus, however, is not entirely known. In order to address this lack, the present study aims to determine a crucial part of this mechanism: the nuclear localization signal (NLS) and the nucleolar localization signal (NoLS) associated with the MSP58 protein. RESULTS We have identified and characterized two NLSs in MSP58. The first is located between residues 32 and 56 (NLS1) and constitutes three clusters of basic amino acids (KRASSQALGTIPKRRSSSRFIKRKK); the second is situated between residues 113 and 123 (NLS2) and harbors a monopartite signal (PGLTKRVKKSK). Both NLS1 and NLS2 are highly conserved among different vertebrate species. Notably, one bipartite motif within the NLS1 (residues 44-56) appears to be absolutely necessary for MSP58 nucleolar localization. By yeast two-hybrid, pull-down, and coimmunoprecipitation analysis, we show that MSP58 binds to importin α1 and α6, suggesting that nuclear targeting of MSP58 utilizes a receptor-mediated and energy-dependent import mechanism. Functionally, our data show that both nuclear and nucleolar localization of MSP58 are crucial for transcriptional regulation on p21 and ribosomal RNA genes, and context-dependent effects on cell proliferation. CONCLUSIONS Results suggest that MSP58 subnuclear localization is regulated by two nuclear import signals, and that proper subcellular localization of MSP58 is critical for its role in transcriptional regulation. Our study reveals a molecular mechanism that controls nuclear and nucleolar localization of MSP58, a finding that might help future researchers understand the MSP58 biological signaling pathway.
Collapse
Affiliation(s)
- Chuan-Pin Yang
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
| | - Chi-Wu Chiang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC. .,Infectious Diseases and Signaling Research Center, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
| | - Chang-Han Chen
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, ROC. .,Department of Applied Chemistry, National Chi Nan University, Puli, Nantou, 54561, Taiwan, ROC.
| | - Yi-Chao Lee
- Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, 11031, Taiwan, ROC. .,Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC.
| | - Mei-Hsiang Wu
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
| | - Yi-Huan Tsou
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
| | - Yu-San Yang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC.
| | - Wen-Chang Chang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC. .,Infectious Diseases and Signaling Research Center, National Cheng Kung University, Tainan, 70101, Taiwan, ROC. .,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan, ROC. .,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, 11031, Taiwan, ROC.
| | - Ding-Yen Lin
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 70101, Taiwan, ROC. .,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan, ROC. .,Infectious Diseases and Signaling Research Center, National Cheng Kung University, Tainan, 70101, Taiwan, ROC. .,Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC.
| |
Collapse
|
39
|
Di Girolamo M. Regulation of nucleocytoplasmic transport by ADP-ribosylation: the emerging role of karyopherin-β1 mono-ADP-ribosylation by ARTD15. Curr Top Microbiol Immunol 2015; 384:189-209. [PMID: 25037261 DOI: 10.1007/82_2014_421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Post-translational modifications of a cellular protein by mono- and poly-ADP-ribosylation involve the cleavage of NAD (+) , with the release of its nicotinamide moiety. This is accompanied by the transfer of a single (mono-) or several (poly-) ADP-ribose molecules from NAD (+) to a specific amino-acid residue of the protein. Recent reports have shed new light on the correlation between NAD (+) -dependent ADP-ribosylation reactions and the endoplasmic reticulum, in addition to the well-documented roles of these reactions in the nucleus and mitochondria. We have demonstrated that ARTD15/PARP16 is a novel mono-ADP-ribosyltransferase with a new intracellular location, as it is associated with the endoplasmic reticulum. The endoplasmic reticulum, which is a membranous network of interconnected tubules and cisternae, is responsible for specialised cellular functions, including protein folding and protein transport. Maintenance of specialised cellular functions requires the correct flow of information between separate organelles that is made possible through the nucleocytoplasmic trafficking of proteins. ARTD15 appears to have a role in nucleocytoplasmic shuttling, through karyopherin-β1 mono-ADP-ribosylation. This is in line with the emerging role of ADP-ribosylation in the regulation of intracellular trafficking of cellular proteins. Indeed, other, ADP-ribosyltransferases like ARTD1/PARP1, have been reported to regulate nucleocytoplasmic trafficking of crucial proteins, including p53 and NF-κB, and as a consequence, to modulate the subcellular localisation of these proteins under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Maria Di Girolamo
- G-Protein-Mediated Signalling Laboratory, Fondazione Mario Negri Sud, Via Nazionale 8/A, 66030, S. Maria Imbaro (CH), Italy,
| |
Collapse
|
40
|
Nuclear export of human hepatitis B virus core protein and pregenomic RNA depends on the cellular NXF1-p15 machinery. PLoS One 2014; 9:e106683. [PMID: 25360769 PMCID: PMC4215830 DOI: 10.1371/journal.pone.0106683] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/31/2014] [Indexed: 12/17/2022] Open
Abstract
Hepatitis B virus (HBV) core protein (HBc) can shuttle between nucleus and cytoplasm. Cytoplasm-predominant HBc is clinically associated with severe liver inflammation. Previously, we found that HBc arginine-rich domain (ARD) can associate with a host factor NXF1 (TAP) by coimmunoprecipitation. It is well known that NXF1-p15 heterodimer can serve as a major export receptor of nuclear mRNA as a ribonucleoprotein complex (RNP). In the NXF1-p15 pathway, TREX (transcription/export) complex plays an important role in coupling nuclear pre-mRNA processing with mRNA export in mammalian cells. Here, we tested the hypothesis whether HBc and HBV specific RNA can be exported via the TREX and NXF1-p15 mediated pathway. We demonstrated here that HBc can physically and specifically associate with TREX components, and the NXF1-p15 export receptor by coimmunoprecipitation. Accumulation of HBc protein in the nucleus can be induced by the interference with TREX and NXF1-p15 mediated RNA export machinery. HBV transcripts encodes a non-spliced 3.5 kb pregenomic RNA (pgRNA) which can serve as a template for reverse transcription. Cytoplasmic HBV pgRNA appeared to be reduced by siRNA treatment specific for the NXF1-p15 complex by quantitative RT-qPCR and Northern blot analyses. This result suggests that the pgRNA was also exported via the NXF1-p15 machinery. We entertain the hypothesis that HBc protein can be exported as an RNP cargo via the mRNA export pathway by hijacking the TREX and NXF1-p15 complex. In our current and previous studies, HBc is not required for pgRNA accumulation in the cytoplasm. Furthermore, HBc ARD can mediate nuclear export of a chimeric protein containing HBc ARD in a pgRNA-independent manner. Taken together, it suggests that while both pgRNA and HBc protein exports are dependent on NXF1-p15, they are using the same export machinery in a manner independent of each other.
Collapse
|
41
|
Zienkiewicz J, Armitage A, Hawiger J. Targeting nuclear import shuttles, importins/karyopherins alpha by a peptide mimicking the NFκB1/p50 nuclear localization sequence. J Am Heart Assoc 2013; 2:e000386. [PMID: 24042087 PMCID: PMC3835248 DOI: 10.1161/jaha.113.000386] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background We recently reported that a bifunctional nuclear transport modifier (NTM), cSN50.1 peptide, reduced atherosclerosis, plasma cholesterol, triglycerides, and glucose along with liver fat and inflammatory markers, in a murine model of familial hypercholesterolemia. We determined that cSN50.1 improved lipid homeostasis by modulating nuclear transport of sterol regulatory element‐binding proteins through interaction with importin β. Previous studies established that cSN50.1 and related NTMs also modulate nuclear transport of proinflammatory transcription factors mediated by binding of their nuclear localization sequences (NLSs) to importins/karyopherins α. However, selectivity and specificity of NTMs for importins/karyopherins α were undetermined. Methods and Results We analyzed interaction of the NTM hydrophilic module, N50 peptide, derived from the NLS of NFκB1/p50, with endogenous human importins/karyopherins α to determine the mechanism of NTM modulation of importin α‐mediated nuclear transport. We show that N50 peptide forms stable complexes with multiple importins/karyopherins α. However, only interaction with importin α5 (Imp α5) displayed specific, high‐affinity binding. The 2:1 stoichiometry of the N50‐Imp α5 interaction (KD1=73 nmol/L, KD2=140 nmol/L) indicated occupancy of both major and minor NLS binding pockets. Utilizing in silico 3‐dimensional (3‐D) docking models and comparative structural analysis, we identified a structural component of the Imp α5 major NLS binding pocket that may stabilize N50 binding. Imp α5 also displayed rapid stimulus‐induced turnover, which could influence its availability for nuclear transport during the inflammatory response. Conclusions These results provide direct evidence that N50 peptide selectively targets Imp α5, encouraging further refinement of NLS‐derived peptides as new tools to modulate inflammatory disorders.
Collapse
Affiliation(s)
- Jozef Zienkiewicz
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, 37232, TN
| | | | | |
Collapse
|
42
|
Thomas S, Rai J, John L, Schaefer S, Pützer BM, Herchenröder O. Chikungunya virus capsid protein contains nuclear import and export signals. Virol J 2013; 10:269. [PMID: 23984714 PMCID: PMC3765696 DOI: 10.1186/1743-422x-10-269] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 08/26/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) is an alphavirus of the Togaviridae family. After autoproteolytic cleavage, the CHIKV capsid protein (CP) is involved in RNA binding and assembly of the viral particle. The monomeric CP is approximately 30 kDa in size and is small enough for passive transport through nuclear pores. Some alphaviruses are found to harbor nuclear localization signals (NLS) and transport of these proteins between cellular compartments was shown to be energy dependent. The active nuclear import of cytoplasmic proteins is mediated by karyopherins and their export by exportins. As nuclear and cytoplasmic trafficking may play a role in the life cycle of CHIKV, we have sought to identify nuclear localization and nuclear export signals in CHIKV CP in a virus-free system. METHODS EGFP-fusion proteins of CHIKV CP and mutants thereof were created and used to monitor their intracellular localization. Binding of cellular proteins was confirmed in pull-down assays with purified CP using co-immuoprecipitation. Nuclear localization was demonstrated in a virus-free system using fluorescence microscopy. RESULTS Here we show that CHIKV CP is a nuclear-cytoplasmic shuttling protein with an active NLS that binds to karyopherin α (Karα) for its nuclear translocation. We also found that the Karα4 C-terminal NLS binding site is sufficient for this interaction. We further demonstrate that CHIKV CP interacts directly with the export receptor CRM1 to transport this viral protein out of the nucleus via a nuclear export signal (NES). The CHIKV CP NES was mapped between amino acids 143 and 155 of CP. Deduced from in silico analyses we found that the NES has a mode of binding similar to the snurportin-1 CRM1 complex. CONCLUSIONS We were able to show that in a virus-free system that the CHIKV capsid protein contains both, a NLS and a NES, and that it is actively transported between the cytoplasma and the nucleus. We conclude that CHIKV CP has the ability to shuttle via interaction with karyopherins for its nuclear import and, vice versa, by CRM1-dependent nuclear export.
Collapse
Affiliation(s)
- Saijo Thomas
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany.
| | | | | | | | | | | |
Collapse
|
43
|
Synthesis and in vitro evaluation of a PDT active BODIPY–NLS conjugate. Bioorg Med Chem Lett 2013; 23:3204-7. [DOI: 10.1016/j.bmcl.2013.03.128] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/27/2013] [Accepted: 03/30/2013] [Indexed: 11/23/2022]
|
44
|
Alhakamy NA, Nigatu AS, Berkland CJ, Ramsey JD. Noncovalently associated cell-penetrating peptides for gene delivery applications. Ther Deliv 2013; 4:741-57. [PMID: 23738670 PMCID: PMC4207642 DOI: 10.4155/tde.13.44] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The use of various cell-penetrating peptides (CPPs) to deliver genetic material for gene therapy applications has been a topic of interest for more than 20 years. The delivery of genetic material by using CPPs can be divided into two categories: covalently bound and electrostatically bound. Complexity of the synthesis procedure can be a significant barrier to translation when using a strategy requiring covalent binding of CPPs. In contrast, electrostatically complexing CPPs with genetic material or with a viral vector is relatively simple and has been demonstrated to improve gene delivery in both in vitro and in vivo studies. This review highlights gene therapy applications of complexes formed noncovalently between CPPs and genetic material or viruses.
Collapse
Affiliation(s)
- Nabil A Alhakamy
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA 66047
| | - Adane S Nigatu
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA 74078
| | - Cory J Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA 66047
- Department of Chemical & Petroleum Engineering, University of Kansas, Lawrence, KS, USA 66047
| | - Joshua D Ramsey
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA 74078
| |
Collapse
|
45
|
Spurgeon ME, Lambert PF. Merkel cell polyomavirus: a newly discovered human virus with oncogenic potential. Virology 2013; 435:118-30. [PMID: 23217622 DOI: 10.1016/j.virol.2012.09.029] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 12/24/2022]
Abstract
A marked escalation in the rate of discovery of new types of human polyomavirus has occurred over the last five years largely owing to recent technological advances in their detection. Among the newly discovered viruses, Merkel Cell Polyomavirus (MCPyV or MCV) has gained the most attention due to its link with a rare human cancer. Infection with MCPyV is common in the human population, and the virus is detected in several anatomical locations, but most frequently in skin. Study of MCPyV molecular virology has been complicated by the lack of straightforward cell culture models, but recent in vitro studies are making strides towards understanding the virus life cycle, its cellular tropism, and mode of transmission. While MCPyV shares several traditional traits with other human polyomaviruses, the burst of research since its discovery reveals insight into a virus with many unique genetic and mechanistic features. The evidence for a causal link between MCPyV and the rare neuroendocrine cancer, Merkel Cell Carcinoma (MCC), is compelling. A majority of MCCs contain clonally integrated viral DNA, express viral T antigen transcripts and protein, and exhibit an addiction to the viral large T and small t antigen oncoproteins. The MCPyV large T antigen contains MCC tumor-specific mutations that ablate its replication capacity but preserve its oncogenic functions, and the small t antigen promotes an environment favorable for cap-dependent translation. The mechanisms of MCPyV-induced transformation have not been fully elucidated, but the likely etiological role of this new polyomavirus in human cancer provides a strong opportunity to expand knowledge of virus-host interactions and viral oncology.
Collapse
Affiliation(s)
- Megan E Spurgeon
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | | |
Collapse
|
46
|
Gao R, Liu P, Wong SM. Identification of a plant viral RNA genome in the nucleus. PLoS One 2012; 7:e48736. [PMID: 23155403 PMCID: PMC3498252 DOI: 10.1371/journal.pone.0048736] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/28/2012] [Indexed: 01/04/2023] Open
Abstract
Viruses contain either DNA or RNA as genomes. DNA viruses replicate within nucleus, while most RNA viruses, especially (+)-sense single-stranded RNA, replicate and are present within cytoplasm. We proposed a new thought that is contrary to the common notion that (+)-sense single-stranded RNA viruses are present only in the cytoplasm. In this study, we question whether the genome of a plant RNA virus (non-retroviral) is present in the nucleus of infected cells? Hibiscus chlorotic ringspot virus (HCRSV) RNA was detected in the nucleus of infected cells, as shown by fluorescent in situ hybridization. Western blot using anti-histone 3 and anti-phosphoenolpyruvate carboxylase showed that nuclei were highly purified from mock and HCRSV-infected kenaf (Hibiscus cannabilis L.) leaves, respectively. The p23 and HCRSV coat protein (CP) coding regions were both amplified from total RNA extracted from isolated nuclei. Viral RNA in the nucleus may be used to generate viral microRNAs (vir-miRNAs), as five putative vir-miRNAs were predicted from HCRSV using the vir-miRNAs prediction database. The vir-miRNA (hcrsv-miR-H1-5p) was detected using TaqMan® stem-loop real-time PCR, and by northern blot using DIG-end labeled probe in HCRSV-infected kenaf leaves. Finally, a novel nuclear localization signal (NLS) was discovered in p23 of HCRSV. The NLS interacts with importin α and facilitates viral RNA genome to enter nucleus. We demonstrate the presence of a (+)-sense single-stranded viral RNA within nucleus.
Collapse
Affiliation(s)
- Ruimin Gao
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Peng Liu
- Temasek Life Sciences Laboratory, Singapore
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, Singapore
- Temasek Life Sciences Laboratory, Singapore
- * E-mail:
| |
Collapse
|
47
|
Xu D, Farmer A, Collett G, Grishin NV, Chook YM. Sequence and structural analyses of nuclear export signals in the NESdb database. Mol Biol Cell 2012; 23:3677-93. [PMID: 22833565 PMCID: PMC3442415 DOI: 10.1091/mbc.e12-01-0046] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/29/2012] [Accepted: 07/16/2012] [Indexed: 12/23/2022] Open
Abstract
We compiled >200 nuclear export signal (NES)-containing CRM1 cargoes in a database named NESdb. We analyzed the sequences and three-dimensional structures of natural, experimentally identified NESs and of false-positive NESs that were generated from the database in order to identify properties that might distinguish the two groups of sequences. Analyses of amino acid frequencies, sequence logos, and agreement with existing NES consensus sequences revealed strong preferences for the Φ1-X(3)-Φ2-X(2)-Φ3-X-Φ4 pattern and for negatively charged amino acids in the nonhydrophobic positions of experimentally identified NESs but not of false positives. Strong preferences against certain hydrophobic amino acids in the hydrophobic positions were also revealed. These findings led to a new and more precise NES consensus. More important, three-dimensional structures are now available for 68 NESs within 56 different cargo proteins. Analyses of these structures showed that experimentally identified NESs are more likely than the false positives to adopt α-helical conformations that transition to loops at their C-termini and more likely to be surface accessible within their protein domains or be present in disordered or unobserved parts of the structures. Such distinguishing features for real NESs might be useful in future NES prediction efforts. Finally, we also tested CRM1-binding of 40 NESs that were found in the 56 structures. We found that 16 of the NES peptides did not bind CRM1, hence illustrating how NESs are easily misidentified.
Collapse
Affiliation(s)
- Darui Xu
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Alicia Farmer
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Garen Collett
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Nick V. Grishin
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390
| |
Collapse
|
48
|
Kim MJ, Kim J. Identification of nuclear localization signal in ASYMMETRIC LEAVES2-LIKE18/LATERAL ORGAN BOUNDARIES DOMAIN16 (ASL18/LBD16) from Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1221-6. [PMID: 22591857 DOI: 10.1016/j.jplph.2012.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/16/2012] [Accepted: 04/16/2012] [Indexed: 05/16/2023]
Abstract
The ASYMMETRIC LEAVES2-LIKE/LATERAL ORGAN BOUNDARIES DOMAIN (ASL/LBD) gene family encodes proteins harboring a conserved plant-specific LOB domain. The LOB domain contains a four-Cys motif, a Gly-Ala-Ser (GAS) block, and a Leu-zipper-like coiled-coil motif. The ASL/LBD proteins are a unique class of transcription factors that play roles in lateral organ development of plants. Although the ASL/LBD proteins are localized in the nucleus, no consensus sequence for the nuclear localization of the ASL/LBD proteins could be found. In the present study, we determined the motifs responsible for the nuclear localization of ASL18/LBD16 by using protoplast transfection assays with a variety N- or C-terminal deletion polypeptide fragments and the polypeptides harboring changes in basic amino acids that are fused to enhanced green fluorescent protein. The results demonstrated that ASL18/LBD16 harbors two distinct domains comprising an atypical nuclear localization signal (NLS) with basic amino acid residues in the coiled-coil motif and a monopartite-like NLS in the C-terminal region for nuclear targeting.
Collapse
Affiliation(s)
- Min-Jung Kim
- Department of Plant Biotechnology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | |
Collapse
|
49
|
Bai S, Liu J, Chang C, Zhang L, Maekawa T, Wang Q, Xiao W, Liu Y, Chai J, Takken FLW, Schulze-Lefert P, Shen QH. Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance. PLoS Pathog 2012; 8:e1002752. [PMID: 22685408 PMCID: PMC3369952 DOI: 10.1371/journal.ppat.1002752] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 04/30/2012] [Indexed: 11/18/2022] Open
Abstract
Plant intracellular immune receptors comprise a large number of multi-domain proteins resembling animal NOD-like receptors (NLRs). Plant NLRs typically recognize isolate-specific pathogen-derived effectors, encoded by avirulence (AVR) genes, and trigger defense responses often associated with localized host cell death. The barley MLA gene is polymorphic in nature and encodes NLRs of the coiled-coil (CC)-NB-LRR type that each detects a cognate isolate-specific effector of the barley powdery mildew fungus. We report the systematic analyses of MLA10 activity in disease resistance and cell death signaling in barley and Nicotiana benthamiana. MLA10 CC domain-triggered cell death is regulated by highly conserved motifs in the CC and the NB-ARC domains and by the C-terminal LRR of the receptor. Enforced MLA10 subcellular localization, by tagging with a nuclear localization sequence (NLS) or a nuclear export sequence (NES), shows that MLA10 activity in cell death signaling is suppressed in the nucleus but enhanced in the cytoplasm. By contrast, nuclear localized MLA10 is sufficient to mediate disease resistance against powdery mildew fungus. MLA10 retention in the cytoplasm was achieved through attachment of a glucocorticoid receptor hormone-binding domain (GR), by which we reinforced the role of cytoplasmic MLA10 in cell death signaling. Together with our data showing an essential and sufficient nuclear MLA10 activity in disease resistance, this suggests a bifurcation of MLA10-triggered cell death and disease resistance signaling in a compartment-dependent manner.
Collapse
Affiliation(s)
- Shiwei Bai
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Chang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Ling Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Takaki Maekawa
- Department of Plant Microbe Interactions, Max-Planck Institut Pflanzenzüchtungsforschung, Cologne, Germany
| | - Qiuyun Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenkai Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yule Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Jijie Chai
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Frank L. W. Takken
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Centre for BioSystem Genomics, Wageningen, The Netherlands
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max-Planck Institut Pflanzenzüchtungsforschung, Cologne, Germany
| | - Qian-Hua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
50
|
Wada J, Kamada R, Imagawa T, Chuman Y, Sakaguchi K. Inhibition of tumor suppressor protein p53-dependent transcription by a tetramerization domain peptide via hetero-oligomerization. Bioorg Med Chem Lett 2012; 22:2780-3. [PMID: 22429466 DOI: 10.1016/j.bmcl.2012.02.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 12/28/2022]
Abstract
Tumor suppressor protein p53 induces cell cycle arrest, apoptosis, and senescence in response to cellular stresses. The p53 tetramer formation is essential for its functions. Despite of these crucial functions of p53 for integrity of genome, activation of the p53 signal pathway causes low induced pluripotent stem (iPS) cell generation efficiency. In this study, we report transient inhibition of p53-dependent transcription using a p53 tetramerization domain peptide that contains cell penetrating and nuclear localization signals. The peptide was efficiently introduced into cells and inhibited p21 expression via hetero-tetramerization with endogenous p53 protein. This method can be applied towards safe and efficient iPS cell generation.
Collapse
Affiliation(s)
- Junya Wada
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-ku, Sapporo, Japan
| | | | | | | | | |
Collapse
|