1
|
Wu B, Cox MP. Greater genetic and regulatory plasticity of retained duplicates in Epichloë endophytic fungi. Mol Ecol 2019; 28:5103-5114. [PMID: 31614039 PMCID: PMC7004115 DOI: 10.1111/mec.15275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022]
Abstract
Gene duplicates can act as a source of genetic material from which new functions arise. Most duplicated genes revert to single copy genes and only a small proportion are retained. However, it remains unclear why some duplicate genes persist in the genome for an extended time. We investigate this question by analysing retained gene duplicates in the fungal genus Epichloë, ascomycete fungi that form close endophytic symbioses with their host grasses. Retained duplicates within this genus have two independent origins, but both long pre-date the origin and diversification of the genus Epichloë. We find that loss of retained duplicates within the genus is frequent and often associated with speciation. Retained duplicates have faster evolutionary rates (Ka) and show relaxed selection (Ka/Ks) compared to single copy genes. Both features are time-dependent. Through comparison of conspecific strains, we find greater evolutionary rates in coding regions and sequence divergence in regulatory regions of retained duplicates than single copy genes, with this pattern more pronounced for strains adapted to different grass host species. Consistent with this sequence divergence in regulatory regions, transcriptome analyses show greater expression variation of retained duplicates than single copy genes. This suggest that cis-regulatory changes make important contributions to the expression patterns of retained duplicates. Coupled with supporting observations from the model yeast Saccharomyces cerevisiae, these data suggest that genetic robustness and regulatory plasticity are common drivers behind the retention of duplicated genes in fungi.
Collapse
Affiliation(s)
- Baojun Wu
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| | - Murray P Cox
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| |
Collapse
|
2
|
Fujiwara D, Tamai Y. Aeration Prior to Pitching Increases Intracellular Enzymatic and Transcriptional Responses under Nonnutritional Conditions. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-61-0099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Daisuke Fujiwara
- Central Laboratories for Key Technology, Kirin Brewery Co., Ltd., 1-13-5, Fukuura, Kanazawa, Yokohama-shi, Kanagawa, Japan
| | - Yukio Tamai
- Central Laboratories for Key Technology, Kirin Brewery Co., Ltd., 1-13-5, Fukuura, Kanazawa, Yokohama-shi, Kanagawa, Japan
| |
Collapse
|
3
|
Okimoto Y, Yoshimoto H, Shima H, Akada R, Niimi O, Yamashita I. Genes Required for Transcription of STA1 encoding an Extracellular Glucoamylase in the Yeast Saccharomyces. ACTA ACUST UNITED AC 2014. [DOI: 10.1080/00021369.1989.10869727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yutaka Okimoto
- Center for Gene Science, Hiroshima University, Saijo-cho, Higashi-Hiroshima 724, Japan
| | - Hiroyuki Yoshimoto
- Center for Gene Science, Hiroshima University, Saijo-cho, Higashi-Hiroshima 724, Japan
| | - Harumasa Shima
- Center for Gene Science, Hiroshima University, Saijo-cho, Higashi-Hiroshima 724, Japan
| | - Rinji Akada
- Center for Gene Science, Hiroshima University, Saijo-cho, Higashi-Hiroshima 724, Japan
| | - Osamu Niimi
- Center for Gene Science, Hiroshima University, Saijo-cho, Higashi-Hiroshima 724, Japan
| | - Ichiro Yamashita
- Center for Gene Science, Hiroshima University, Saijo-cho, Higashi-Hiroshima 724, Japan
| |
Collapse
|
4
|
Bishop AC, Ganguly S, Solis NV, Cooley BM, Jensen-Seaman MI, Filler SG, Mitchell AP, Patton-Vogt J. Glycerophosphocholine utilization by Candida albicans: role of the Git3 transporter in virulence. J Biol Chem 2013; 288:33939-33952. [PMID: 24114876 DOI: 10.1074/jbc.m113.505735] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Candida albicans contains four ORFs (GIT1,2,3,4) predicted to encode proteins involved in the transport of glycerophosphodiester metabolites. Previously, we reported that Git1, encoded by ORF 19.34, is responsible for the transport of intact glycerophosphoinositol but not glycerophosphocholine (GroPCho). Here, we report that a strain lacking both GIT3 (ORF 19.1979) and GIT4 (ORF 19.1980) is unable to transport [(3)H]GroPCho into the cell. In the absence of a GroPCho transporter, C. albicans can utilize GroPCho via a mechanism involving extracellular hydrolysis. Upon reintegration of either GIT3 or GIT4 into the genome, measurable uptake of [(3)H]GroPCho is observed. Transport assays and kinetic analyses indicate that Git3 has the greater transport velocity. We present evidence that GDE1 (ORF 19.3936) codes for an enzyme with glycerophosphodiesterase activity against GroPCho. Homozygous deletion of GDE1 results in a buildup of internal GroPCho that is restored to wild type levels by reintegration of GDE1 into the genome. The transcriptional regulator, Pho4, is shown to regulate the expression of GIT3, GIT4, and GDE1. Finally, Git3 is shown to be required for full virulence in a mouse model of disseminated candidiasis, and Git3 sequence orthologs are present in other pathogenic Candida species. In summary, we have characterized multiple aspects of GroPCho utilization by C. albicans and have demonstrated that GroPCho transport plays a key role in the growth of the organism in the host.
Collapse
Affiliation(s)
- Andrew C Bishop
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282
| | - Shantanu Ganguly
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Norma V Solis
- Division of Infectious Disease, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502
| | - Benjamin M Cooley
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282
| | | | - Scott G Filler
- Division of Infectious Disease, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California 90502; David Geffen School of Medicine at UCLA, Los Angeles, California 90024
| | - Aaron P Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282.
| |
Collapse
|
5
|
Németh A, Perez-Fernandez J, Merkl P, Hamperl S, Gerber J, Griesenbeck J, Tschochner H. RNA polymerase I termination: Where is the end? BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:306-17. [PMID: 23092677 DOI: 10.1016/j.bbagrm.2012.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/10/2012] [Accepted: 10/17/2012] [Indexed: 01/01/2023]
Abstract
The synthesis of ribosomal RNA (rRNA) precursor molecules by RNA polymerase I (Pol I) terminates with the dissociation of the protein-DNA-RNA ternary complex. Based on in vitro results the mechanism of Pol I termination appeared initially to be rather conserved and simple until this process was more thoroughly re-investigated in vivo. A picture emerged that Pol I termination seems to be connected to co-transcriptional processing, re-initiation of transcription and, possibly, other processes downstream of Pol I transcription units. In this article, our current understanding of the mechanism of Pol I termination and how this process might be implicated in other biological processes in yeast and mammals is summarized and discussed. This article is part of a Special Issue entitled: Transcription by Odd Pols.
Collapse
Affiliation(s)
- Attila Németh
- Universität Regensburg, Biochemie-Zentrum Regensburg (BZR), Lehrstuhl Biochemie III, 93053 Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
6
|
Robust utilization of phospholipase-generated metabolites, glycerophosphodiesters, by Candida albicans: role of the CaGit1 permease. EUKARYOTIC CELL 2011; 10:1618-27. [PMID: 21984707 DOI: 10.1128/ec.05160-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glycerophosphodiesters are the products of phospholipase-mediated deacylation of phospholipids. In Saccharomyces cerevisiae, a single gene, GIT1, encodes a permease responsible for importing glycerophosphodiesters, such as glycerophosphoinositol and glycerophosphocholine, into the cell. In contrast, the Candida albicans genome contains four open reading frames (ORFs) with a high degree of similarity to S. cerevisiae GIT1 (ScGIT1) Here, we report that C. albicans utilizes glycerophosphoinositol (GroPIns) and glycerophosphocholine (GroPCho) as sources of phosphate at both mildly acidic and physiological pHs. Insertional mutagenesis of C. albicans GIT1 (CaGIT1) (orf19.34), the ORF most similar to ScGit1, abolished the ability of cells to use GroPIns as a phosphate source at acidic pH and to transport [(3)H]GroPIns at acidic and physiological pHs, while reintegration of a GIT1 allele into the genome restored those functions. Several lines of evidence, including the detection of internal [(3)H]GroPIns, indicated that GroPIns is transported intact through CaGit1. GroPIns transport was shown to conform to Michaelis-Menten kinetics, with an apparent K(m) of 28 ± 6 μM. Notably, uptake of label from [(3)H]GroPCho was found to be roughly 50-fold greater than uptake of label from [(3)H]GroPIns and roughly 500-fold greater than the equivalent activity in S. cerevisiae. Insertional mutagenesis of CaGIT1 had no effect on the utilization of GroPCho as a phosphate source or on the uptake of label from [(3)H]GroPCho. Growth under low-phosphate conditions was shown to increase label uptake from both [(3)H]GroPIns and [(3)H]GroPCho. Screening of a transcription factor deletion set identified CaPHO4 as required for the utilization of GroPIns, but not GroPCho, as a phosphate source.
Collapse
|
7
|
Chen L, Lopes JM. Multiple bHLH proteins regulate CIT2 expression in Saccharomyces cerevisiae. Yeast 2010; 27:345-59. [PMID: 20162531 DOI: 10.1002/yea.1757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The basic helix-loop-helix (bHLH) proteins comprise a eukaryotic transcription factor family involved in multiple biological processes. They have the ability to form multiple dimer combinations and most of them also bind a 6 bp site (E-box) with limited specificity. These properties make them ideal for combinatorial regulation of gene expression. The Saccharomyces cerevisiae CIT2 gene, which encodes citrate synthase, was previously known to be induced by the bHLH proteins Rtg1p and Rtg3p in response to mitochondrial damage. Rtg1p-Rtg3p dimers bind two R-boxes (modified E-boxes) in the CIT2 promoter. The current study tested the ability of all nine S. cerevisiae bHLH proteins to regulate the CIT2 gene. The results showed that expression of CIT2-lacZ reporter was induced in a rho(0) strain by the presence of inositol via the Ino2p and Ino4p bHLH proteins, which are known regulators of phospholipid synthesis. Promoter mutations revealed that inositol induction required a distal E-box in the CIT2 promoter. Interestingly, deleting the INO2, INO4 genes or the cognate E-box revealed phosphate induction of CIT2 expression. This layer of expression required the two R-boxes and the Pho4p bHLH protein, which is known to be required for phosphate-specific regulation. Lastly, the data show that the Hms1p and Sgc1p bHLH proteins also play important roles in repression of CIT2-lacZ expression. Collectively, these results support the model that yeast bHLH proteins coordinate different biological pathways.
Collapse
Affiliation(s)
- Linan Chen
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
8
|
Ding D, Shi Y, Shaltiel G, Azab AN, Pullumbi E, Campbell A, Mehta DV, Agam G, Greenberg ML. Yeast bioassay for identification of inositol depleting compounds. World J Biol Psychiatry 2010; 10:893-9. [PMID: 18979283 DOI: 10.1080/15622970802485276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Bipolar affective disorder is a chronic, severe, debilitating illness affecting 1-2% of the population. Valproate, along with lithium and carbamazepine, are the only drugs for which long-term efficacy has been established. However, these drugs are ineffective for, and not well tolerated by, a large number of patients and are also associated with teratogenicity and reproductive defects. Therefore, there is a substantial need to develop more effective anti-bipolar drugs. We have previously shown that valproate, like lithium, decreases intracellular inositol, which supports the inositol depletion hypothesis. We employed inositol depletion in yeast as a screening tool to identify potential new anti-bipolar medications. We show here that hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, ethylhexanoate, and methyloctanoate decrease intracellular inositol levels and increase the expression of INO1, the gene encoding myo-inositol-3-phosphate synthase (MIPS). Similar to valproate, these inositol-depleting carboxylic acids inhibited MIPS indirectly. A correlation was shown between cell growth inhibition and the increase in INO1 expression by the carboxylic acids, factors that were reversed in the presence of inositol. Inositol depletion in yeast may be exploited as an easy and inexpensive screening test for potential new inositol depleting anti-bipolar drugs.
Collapse
Affiliation(s)
- Daobin Ding
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nabavi S, Nazar RN. Fail‐safe termination elements: a common feature of the eukaryotic genome? FASEB J 2009; 24:684-8. [DOI: 10.1096/fj.09-142745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sadeq Nabavi
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| | - Ross N. Nazar
- Department of Molecular and Cellular BiologyUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
10
|
Minato T, Yoshida S, Ishiguro T, Shimada E, Mizutani S, Kobayashi O, Yoshimoto H. Expression profiling of the bottom fermenting yeastSaccharomyces pastorianusorthologous genes using oligonucleotide microarrays. Yeast 2009; 26:147-65. [DOI: 10.1002/yea.1654] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
11
|
Jani NM, Lopes JM. Transcription regulation of the Saccharomyces cerevisiae PIS1 gene by inositol and the pleiotropic regulator, Ume6p. Mol Microbiol 2008; 70:1529-39. [PMID: 19019152 DOI: 10.1111/j.1365-2958.2008.06506.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Saccharomyces cerevisiae, transcription of most of the phospholipid biosynthetic genes (e.g. INO1, CHO1, CHO2 and OPI3) is repressed by growth in the presence of inositol and choline and derepressed in their absence. This regulation requires the Ino2p and Ino4p activators and the Opi1p repressor. The PIS1 structural gene is required for the synthesis of the essential lipid phosphatidylinositol. Previous reports show that PIS1 expression is uncoupled from inositol/choline regulation, but is regulated by carbon source, hypoxia and zinc. However, in this study we found that the expression of PIS1 is induced twofold by inositol. This regulation did not require Ino2p and Ino4p, although Ino4p was required for full expression. Ino4p is a basic helix-loop-helix protein that requires a binding partner. Curiously, none of the other basic helix-loop-helix proteins affected PIS1 expression. Inositol induction did require another general regulator of phospholipid biosynthesis, Ume6p. Ume6p was found to be a positive regulator of PIS1 gene expression. Ume6p, and several associated factors, were required for inositol-mediated induction and chromatin immunoprecipitation analysis showed that Ume6p directly regulates PIS1 expression. Thus, we demonstrate novel regulation of the PIS1 gene by Ume6p.
Collapse
Affiliation(s)
- Niketa M Jani
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
12
|
Merz K, Hondele M, Goetze H, Gmelch K, Stoeckl U, Griesenbeck J. Actively transcribed rRNA genes in S. cerevisiae are organized in a specialized chromatin associated with the high-mobility group protein Hmo1 and are largely devoid of histone molecules. Genes Dev 2008; 22:1190-204. [PMID: 18451108 DOI: 10.1101/gad.466908] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Synthesis of ribosomal RNAs (rRNAs) is the major transcriptional event in proliferating cells. In eukaryotes, ribosomal DNA (rDNA) is transcribed by RNA polymerase I from a multicopy locus coexisting in at least two different chromatin states. This heterogeneity of rDNA chromatin has been an obstacle to defining its molecular composition. We developed an approach to analyze differential protein association with each of the two rDNA chromatin states in vivo in the yeast Saccharomyces cerevisiae. We demonstrate that actively transcribed rRNA genes are largely devoid of histone molecules, but instead associate with the high-mobility group protein Hmo1.
Collapse
Affiliation(s)
- Katharina Merz
- Universitaet Regensburg, Institut für Biochemie, Genetik und Mikrobiologie, 93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Oakes ML, Johzuka K, Vu L, Eliason K, Nomura M. Expression of rRNA genes and nucleolus formation at ectopic chromosomal sites in the yeast Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:6223-38. [PMID: 16880531 PMCID: PMC1592796 DOI: 10.1128/mcb.02324-05] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We constructed yeast strains in which rRNA gene repeats are integrated at ectopic sites in the presence or absence of the native nucleolus. At all three ectopic sites analyzed, near centromere CEN5, near the telomere of chromosome VI-R, and in middle of chromosome V-R (mid-V-R), a functional nucleolus was formed, and no difference in the expression of rRNA genes was observed. When two ribosomal DNA (rDNA) arrays are present, one native and the other ectopic, there is codominance in polymerase I (Pol I) transcription. We also examined the expression of a single rDNA repeat integrated into ectopic loci in strains with or without the native RDN1 locus. In a strain with reduced rRNA gene copies at RDN1 (approximately 40 copies), the expression of a single rRNA gene copy near the telomere was significantly reduced relative to the other ectopic sites, suggesting a less-efficient recruitment of the Pol I machinery from the RDN1 locus. In addition, we found a single rRNA gene at mid-V-R was as active as that within the 40-copy RDN1. Combined with the results of activity analysis of a single versus two tandem copies at CEN5, we conclude that tandem repetition is not required for efficient rRNA gene transcription.
Collapse
Affiliation(s)
- Melanie L Oakes
- Department of Biological Chemistry, University of California at Irvine, 240D Medical Sciences I, Irvine, CA 92697-1700, USA
| | | | | | | | | |
Collapse
|
14
|
Hepfer CE, Arnold-Croop S, Fogell H, Steudel KG, Moon M, Roff A, Zaikoski S, Rickman A, Komsisky K, Harbaugh DL, Lang GI, Keil RL. DEG1, encoding the tRNA:pseudouridine synthase Pus3p, impacts HOT1-stimulated recombination in Saccharomyces cerevisiae. Mol Genet Genomics 2005; 274:528-38. [PMID: 16231152 DOI: 10.1007/s00438-005-0042-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 08/06/2005] [Indexed: 11/28/2022]
Abstract
In Saccharomyces cerevisiae, HOT1-stimulated recombination has been implicated in maintaining homology between repeated ribosomal RNA genes. The ability of HOT1 to stimulate genetic exchange requires RNA polymerase I transcription across the recombining sequences. The trans-acting nuclear mutation hrm3-1 specifically reduces HOT1-dependent recombination and prevents cell growth at 37 degrees . The HRM3 gene is identical to DEG1. Excisive, but not gene replacement, recombination is reduced in HOT1-adjacent sequences in deg1Delta mutants. Excisive recombination within the genomic rDNA repeats is also decreased. The hypo-recombination and temperature-sensitive phenotypes of deg1Delta mutants are recessive. Deletion of DEG1 did not affect the rate of transcription from HOT1 or rDNA suggesting that while transcription is necessary it is not sufficient for HOT1 activity. Pseudouridine synthase 3 (Pus3p), the DEG1 gene product, modifies the anticodon arm of transfer RNA at positions 38 and 39 by catalyzing the conversion of uridine to pseudouridine. Cells deficient in pseudouridine synthases encoded by PUS1, PUS2 or PUS4 displayed no recombination defects, indicating that Pus3p plays a specific role in HOT1 activity. Pus3p is unique in its ability to modulate frameshifting and readthrough events during translation, and this aspect of its activity may be responsible for HOT1 recombination phenotypes observed in deg1 mutants.
Collapse
Affiliation(s)
- C E Hepfer
- Department of Biology, Millersville University, 50 East Frederick Street, PO Box 1002, Millersville, PA 17551, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ganley ARD, Hayashi K, Horiuchi T, Kobayashi T. Identifying gene-independent noncoding functional elements in the yeast ribosomal DNA by phylogenetic footprinting. Proc Natl Acad Sci U S A 2005; 102:11787-92. [PMID: 16081534 PMCID: PMC1182552 DOI: 10.1073/pnas.0504905102] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Indexed: 12/17/2022] Open
Abstract
Sequences involved in the regulation of genetic and genomic processes are primarily located in noncoding regions. Identifying such cis-acting sequences from sequence data is difficult because their patterns are not readily apparent, and, to date, identification has concentrated on regions associated with gene-coding functions. Here, we used phylogenetic footprinting to look for gene-independent noncoding elements in the ribosomal RNA gene repeats from several Saccharomyces species. Similarity plots of ribosomal intergenic spacer alignments from six closely related Saccharomyces species allowed the identification of previously characterized functional elements, such as the origin-of-replication and replication-fork barrier sites, demonstrating that this method is a powerful predictor of noncoding functional elements. Seventeen previously uncharacterized elements, showing high levels of conservation, were also discovered. The conservation of these elements suggests that they are functional, and we demonstrate the functionality of two classes of these elements, a putative bidirectional noncoding promoter and a series of conserved peaks with matches to the origin-of-replication core consensus. Our results paint a comprehensive picture of the functionality of the Saccharomyces ribosomal intergenic region and demonstrate that functional elements not involved in gene-coding function can be identified by using comparative genomics based on sequence conservation.
Collapse
Affiliation(s)
- Austen R D Ganley
- National Institute for Basic Biology, Graduate University for Advanced Studies, Sokendai, 38 Nishigonaka, Myodaijicho, Okazaki 444-8585, Japan
| | | | | | | |
Collapse
|
16
|
Shaltiel G, Shamir A, Shapiro J, Ding D, Dalton E, Bialer M, Harwood AJ, Belmaker RH, Greenberg ML, Agam G. Valproate decreases inositol biosynthesis. Biol Psychiatry 2004; 56:868-74. [PMID: 15576064 DOI: 10.1016/j.biopsych.2004.08.027] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 07/20/2004] [Accepted: 08/28/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Lithium and valproate (VPA) are used for treating bipolar disorder. The mechanism of mood stabilization has not been elucidated, but the role of inositol has gained substantial support. Lithium inhibition of inositol monophosphatase, an enzyme required for inositol recycling and de novo synthesis, suggested the hypothesis that lithium depletes brain inositol and attenuates phosphoinositide signaling. Valproate also depletes inositol in yeast, Dictyostelium, and rat neurons. This raised the possibility that the effect is the result of myo-inositol-1-phosphate (MIP) synthase inhibition. METHODS Inositol was measured by gas chromatography. Human prefrontal cortex MIP synthase activity was assayed in crude homogenate. INO1 was assessed by Northern blotting. Growth cones morphology was evaluated in cultured rat neurons. RESULTS We found a 20% in vivo reduction of inositol in mouse frontal cortex after acute VPA administration. As hypothesized, inositol reduction resulted from decreased MIP synthase activity: .21-.28 mmol/LVPA reduced the activity by 50%. Among psychotropic drugs, the effect is specific to VPA. Accordingly, only VPA upregulates the yeast INO1 gene coding for MIP synthase. The VPA derivative N-methyl-2,2,3,3,-tetramethyl-cyclopropane carboxamide reduces MIP synthase activity and has an affect similar to that of VPA on rat neurons, whereas another VPA derivative, valpromide, poorly affects the activity and has no affect on neurons. CONCLUSIONS The rate-limiting step of inositol biosynthesis, catalyzed by MIP synthase, is inhibited by VPA; inositol depletion is a first event shown to be common to lithium and VPA.
Collapse
Affiliation(s)
- Galit Shaltiel
- Stanley Research Center and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Mental Health Center, Beersheva, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Burkhalter MD, Sogo JM. rDNA enhancer affects replication initiation and mitotic recombination: Fob1 mediates nucleolytic processing independently of replication. Mol Cell 2004; 15:409-21. [PMID: 15304221 DOI: 10.1016/j.molcel.2004.06.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 05/18/2004] [Accepted: 05/24/2004] [Indexed: 02/04/2023]
Abstract
To investigate the influence of the ribosomal DNA enhancer on initiation of replication and recombination at the ribosomal array, we used yeast S. cerevisiae strains with adjacent, tagged rRNA genes. We found that the enhancer is an absolute requirement for replication fork barrier function, while it only modulates initiation of replication. Moreover, the formation of monomeric extrachromosomal ribosomal circles depends on this element. Our data indicate that DNA double-strand breaks occur at specific sites in the parental leading arm of replication forks stalled at the replication fork barrier. Additionally, nicks upstream of the replication fork barrier were visualized by nucleotide-resolution mapping. They coincide with essential sequences of the mitotic hyperrecombination site HOT1, which previously has been determined at ectopic sites. Interestingly, these nicks are strictly dependent on the replication fork blocking-protein (Fob1), but are replication independent, suggesting that intrachromosomal ribosomal DNA recombination may occur outside of S phase.
Collapse
Affiliation(s)
- Martin D Burkhalter
- Institute of Cell Biology, Department of Biology, ETH Hönggerberg, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
18
|
Flotho A, Simpson DM, Qi M, Elion EA. Localized feedback phosphorylation of Ste5p scaffold by associated MAPK cascade. J Biol Chem 2004; 279:47391-401. [PMID: 15322134 DOI: 10.1074/jbc.m405681200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Scaffold proteins play pivotal roles during signal transduction. In Saccharomyces cerevisiae, the Ste5p scaffold protein is required for activation of the mating MAPK cascade in response to mating pheromone and assembles a G protein-MAPK cascade complex at the plasma membrane. To serve this function, Ste5p undergoes a regulated localization event involving nuclear shuttling and recruitment to the cell cortex. Here, we show that Ste5p is also subject to two types of phosphorylation and increases in abundance as a result of MAPK activation. During vegetative growth, Ste5p is basally phosphorylated through a process regulated by the CDK Cdc28p. During mating pheromone signaling, Ste5p undergoes increased phosphorylation by the mating MAPK cascade. Multiple kinases of the mating MAPK cascade contribute to pheromone-induced phosphorylation of Ste5p, with the mating MAPKs contributing the most. Pheromone induction or overexpression of the Ste4p Gbeta subunit increases the abundance of Ste5p at a post-translational step, as long as the mating MAPKs are present. Increasing the level of MAPK activation increases the amount of Ste5p at the cell cortex. Analysis of Ste5p localization mutants reveals a strict requirement for Ste5p recruitment to the plasma membrane for the pheromone-induced phosphorylation. These results suggest that the pool of Ste5p that is recruited to the plasma membrane selectively undergoes feedback phosphorylation by the associated MAPKs, leading to an increased pool of Ste5p at the site of polarized growth. These findings provide evidence of a spatially regulated mechanism for post-activation control of a signaling scaffold that potentiates pathway activation.
Collapse
Affiliation(s)
- Annette Flotho
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
19
|
Sorger D, Athenstaedt K, Hrastnik C, Daum G. A yeast strain lacking lipid particles bears a defect in ergosterol formation. J Biol Chem 2004; 279:31190-6. [PMID: 15155725 DOI: 10.1074/jbc.m403251200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipid particles of the yeast Saccharomyces cerevisiae are storage compartments for triacylglycerols (TAG) and steryl esters (STE). Four gene products, namely the TAG synthases Dga1p and Lro1p, and the STE synthases Are1p and Are2p contribute to storage lipid synthesis. A yeast strain lacking the four respective genes is devoid of lipid particles thus providing a valuable tool to study the physiological role of storage lipids and lipid particles. Using a dga1lro1are1are2 quadruple mutant transformed with plasmids bearing inducible DGA1, LRO1, or ARE2 we demonstrate that TAG synthesis contributes more efficiently to lipid particle proliferation than synthesis of STE. Moreover, we show that proteins typically located to lipid particles in wild type such as Erg1p, Erg6p, Erg7p, and Ayr1p are refined to microsomal fractions of the dga1lro1are1are2 quadruple mutant. This result confirms the close relationship between lipid particles and endoplasmic reticulum. Most interestingly, the amount of the squalene epoxidase Erg1p, which is dually located in lipid particles and endoplasmic reticulum of wild type, is decreased in the quadruple mutant, whereas amounts of other lipid particle proteins tested were not reduced. This decrease is not caused by down-regulation of ERG1 transcription but by the low stability of Erg1p in the quadruple mutant. Because a similar effect was also observed in are1are2 mutants this finding can be mainly attributed to the lack of STE. The quadruple mutant, however, was more sensitive to terbinafine, an inhibitor of Erg1p, than the are1are2 strain suggesting that the presence of TAG and/or intact lipid particles has an additional protective effect. In a strain lacking the two STE synthases, Are1p and Are2p, incorporation of ergosterol into the plasma membrane was reduced, although the total cellular amount of free ergosterol was higher in the mutant than in wild type. Thus, an esterification/deacylation mechanism appears to contribute to the supply of ergosterol to the plasma membrane.
Collapse
Affiliation(s)
- Daniel Sorger
- Institut für Biochemie, Technische Universität Graz, Petersgasse12/2, A-8010 Graz, Austria
| | | | | | | |
Collapse
|
20
|
Abstract
Recombination hotspots are DNA sequences which enhance recombination around that region. HOT1 is one of the best-studied mitotic hotspots in yeast. HOT1 includes a RNA polymerase I (PolI) transcription promoter which is responsible for 35S ribosomal rRNA gene (rDNA) transcription. In a PolI defective mutant the HOT1 hotspot activity is abolished, therefore transcription of HOT1 is thought to be an important factor for the recombination stimulation. However, it is not clear whether the transcription itself or other pleiotropic phenotypes stimulates recombination. To investigate the role of transcription, we made a highly activated PolI transcription system in HOT1 by using a strain whose rDNA repeats are deleted (rdnDeltaDelta). In the rdnDeltaDelta strain, HOT1 transcription was increased about 14 times compared to wild-type. Recombination activity stimulated by HOT1 in this strain was also elevated, about 15 times, compared to wild-type. These results indicate that the level of PolI transcription in HOT1 determines efficiency of the recombination. Moreover, Fob1p, which is essential for both the recombination stimulation activity and transcription of HOT1, was dispensable in the rdnDeltaDelta strains. This suggests that Fob1p is functioning as a PolI transcriptional activator in the wild-type strain.
Collapse
Affiliation(s)
- Naomi Serizawa
- National Institute for Basic Biology, School of Life Science, 38 Nishigonaka, Myodaijicho, Okazaki, 444-8585, Japan
| | | | | |
Collapse
|
21
|
Eiznhamer DA, Ashburner BP, Jackson JC, Gardenour KR, Lopes JM. Expression of the INO2 regulatory gene of Saccharomyces cerevisiae is controlled by positive and negative promoter elements and an upstream open reading frame. Mol Microbiol 2004. [DOI: 10.1111/j.1365-2958.2001.02330.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Kobayashi T. The replication fork barrier site forms a unique structure with Fob1p and inhibits the replication fork. Mol Cell Biol 2004; 23:9178-88. [PMID: 14645529 PMCID: PMC309713 DOI: 10.1128/mcb.23.24.9178-9188.2003] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The replication fork barrier site (RFB) is an approximately 100-bp DNA sequence located near the 3' end of the rRNA genes in the yeast Saccharomyces cerevisiae. The gene FOB1 is required for this RFB activity. FOB1 is also necessary for recombination in the ribosomal DNA (rDNA), including increase and decrease of rDNA repeat copy number, production of extrachromosomal rDNA circles, and possibly homogenization of the repeats. Despite the central role that Foblp plays in both replication fork blocking and rDNA recombination, the molecular mechanism by which Fob1p mediates these activities has not been determined. Here, I show by using chromatin immunoprecipitation, gel shift, footprinting, and atomic force microscopy assays that Fob1p directly binds to the RFB. Fob1p binds to two separated sequences in the RFB. A predicted zinc finger motif in Fob1p was shown to be essential for the RFB binding, replication fork blocking, and rDNA recombination activities. The RFB seems to wrap around Fob1p, and this wrapping structure may be important for function in the rDNA repeats.
Collapse
Affiliation(s)
- Takehiko Kobayashi
- National Institute for Basic Biology, 38 Nishigonaka, Myodaijicho, Okazaki 444-8585, Japan.
| |
Collapse
|
23
|
Heo JH, Hong WK, Cho EY, Kim MW, Kim JY, Kim CH, Rhee SK, Kang HA. Properties of the -derived constitutive promoter, assessed using an HSA reporter gene. FEMS Yeast Res 2003; 4:175-84. [PMID: 14613882 DOI: 10.1016/s1567-1356(03)00150-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The glyceraldehyde-3-phosphate dehydrogenase promoter, P(GAP), was employed to direct the constitutive expression of recombinant human serum albumin (HSA) in Hansenula polymorpha. A set of integration vectors containing the HSA cDNA under the control of P(GAP) was constructed and the elemental parameters affecting the expression of HSA from P(GAP) were analyzed. The presence of a 5'-untranslated region derived from the HSA cDNA and the integration of the expression vector into the GAP locus were shown to improve the expression of HSA under P(GAP). Glycerol supported a higher level of HSA expression from P(GAP) along with a higher cell density than either glucose or methanol. The growth at high glycerol concentrations up to 12% did not cause any significant repression of the cell growth. A high cell density culture, up to 83 g l(-1) dry cell weight with a HSA production of 550 mg l(-1), was obtained in less than 32 h of cultivation in a fed-batch fermentation employing intermittent feeding with 12% glycerol. The GAP promoter-based HSA expression system showed a higher specific production rate and required a much simpler fermentation process than the MOX promoter-based system, demonstrating that P(GAP) can be a practical alternative of the MOX promoter in the large-scale production of HSA from H. polymorpha.
Collapse
Affiliation(s)
- Joo Hyung Heo
- Korea Research Institute of Bioscience and Biotechnology, Yusong P.O. Box 115, 305-600, Taejon, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Gardocki ME, Lopes JM. Expression of the yeast PIS1 gene requires multiple regulatory elements including a Rox1p binding site. J Biol Chem 2003; 278:38646-52. [PMID: 12890676 DOI: 10.1074/jbc.m305251200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PIS1 gene is required for de novo synthesis of phosphatidylinositol (PI), an essential phospholipid in Saccharomyces cerevisiae. PIS1 gene expression is unusual because it is uncoupled from the other phospholipid biosynthetic genes, which are regulated in response to inositol and choline. Relatively little is known about regulation of transcription of the PIS1 gene. We reported previously that PIS1 transcription is sensitive to carbon source. To further our understanding of the regulation of PIS1 transcription, we carried out a promoter deletion analysis that identified three regions required for PIS1 gene expression (upstream activating sequence (UAS) elements 1-3). Deletion of either UAS1 or UAS2 resulted in an approximately 45% reduction in expression, whereas removal of UAS3 yielded an 84% decrease in expression. A comparison of promoters among several Saccharomyces species shows that these sequences are highly conserved. Curiously, the UAS3 element region (-149 to -138) includes a Rox1p binding site. Rox1p is a repressor of hypoxic genes under aerobic growth conditions. Consistent with this, we have found that expression of a PIS1-cat reporter was repressed under aerobic conditions, and this repression was dependent on both Rox1p and its binding site. Furthermore, PI levels were elevated under anaerobic conditions. This is the first evidence that PI levels are affected by regulation of PIS1 transcription.
Collapse
|
25
|
Ju S, Greenberg ML. Valproate disrupts regulation of inositol responsive genes and alters regulation of phospholipid biosynthesis. Mol Microbiol 2003; 49:1595-603. [PMID: 12950923 DOI: 10.1046/j.1365-2958.2003.03641.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Valproate (VPA) is one of the two drugs approved by the Food and Drug Administration (FDA) for the treatment of bipolar disorder. The therapeutic mechanism of VPA has not been established. We have shown previously that growth of the yeast Saccharomyces cerevisiae in the presence of VPA causes a decrease in intracellular inositol and inositol-1-P, and a dramatic increase in expression of INO1, which encodes the rate limiting enzyme for de novo inositol biosynthesis. To understand the underlying mechanism of action of VPA, INO1, CHO1 and INO2 expression, intracellular inositol and phospholipid biosynthesis were studied as a function of acute and chronic exposure of growing cells to the drug. A decrease in intracellular inositol was apparent immediately after addition of VPA. Surprisingly, expression of genes that are usually derepressed during inositol depletion, including INO1, CHO1 and INO2 (that contain inositol-responsive UASINO sequences) decreased several fold during the first hour, after which expression began to increase. Incorporation of 32Pi into total phospholipids was significantly decreased. Pulse labelling of CDP-DG and PG, shown previously to increase during inositol depletion, increased within 30 min. However, pulse labelling of PS, which normally increases during inositol depletion, was decreased within 30 min. PS synthase activity in cell extracts decreased with time, although VPA did not directly inhibit PS synthase enzyme activity. Thus, in contrast to the effect of chronic VPA treatment, short-term exposure to VPA abrogated the normal response to inositol depletion of inositol responsive genes and led to aberrant synthesis of phospholipids.
Collapse
Affiliation(s)
- Shulin Ju
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
26
|
Huang J, Moazed D. Association of the RENT complex with nontranscribed and coding regions of rDNA and a regional requirement for the replication fork block protein Fob1 in rDNA silencing. Genes Dev 2003; 17:2162-76. [PMID: 12923057 PMCID: PMC196457 DOI: 10.1101/gad.1108403] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Silencing within the yeast rDNA repeats inhibits hyperrecombination, represses transcription from foreign promoters, and extends replicative life span. rDNA silencing is mediated by a Sir2-containing complex called RENT (regulator of nucleolar silencing and telophase exit). We show that the Net1 (also called Cfi1) and Sir2 subunits of RENT localize primarily to two distinct regions within rDNA: in one of the nontranscribed spacers (NTS1) and around the Pol I promoter, extending into the 35S rRNA coding region. Binding to NTS1 overlaps the recombination hotspot and replication fork barrier elements, which have been shown previously to require the Fob1 protein for their activities. In cells lacking Fob1, silencing and the association of RENT subunits are abolished specifically at NTS1, while silencing and association at the Pol I promoter region are unaffected or increased. We find that Net1 and Sir2 are physically associated with Fob1 and subunits of RNA polymerase I. Together with the localization data, these results suggest the existence of two distinct modes for the recruitment of the RENT complex to rDNA and reveal a role for Fob1 in rDNA silencing and in the recruitment of the RENT complex. Furthermore, the Fob1-dependent associations of Net1 and Sir2 with the recombination hotspot region strongly suggest that Sir2 acts directly at this region to carry out its inhibitory effect on rDNA recombination and accelerated aging.
Collapse
Affiliation(s)
- Julie Huang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
27
|
Almaguer C, Mantella D, Perez E, Patton-Vogt J. Inositol and phosphate regulate GIT1 transcription and glycerophosphoinositol incorporation in Saccharomyces cerevisiae. EUKARYOTIC CELL 2003; 2:729-36. [PMID: 12912892 PMCID: PMC178388 DOI: 10.1128/ec.2.4.729-736.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glycerophosphoinositol is produced through deacylation of the essential phospholipid phosphatidylinositol. In Saccharomyces cerevisiae, the glycerophosphoinositol produced is excreted from the cell but is recycled for phosphatidylinositol synthesis when inositol is limiting. To be recycled, glycerophosphoinositol enters the cell through the permease encoded by GIT1. The transport of exogenous glycerophosphoinositol through Git1p is sufficiently robust to support the growth of an inositol auxotroph (ino1Delta). We now report that S. cerevisiae also uses exogenous phosphatidylinositol as an inositol source. Evidence suggests that phosphatidylinositol is deacylated to glycerophosphoinositol extracellularly before being transported across the plasma membrane by Git1p. A genetic screen identified Pho86p, which is required for targeting of the major phosphate transporter (Pho84p) to the plasma membrane, as affecting the utilization of phosphatidylinositol and glycerophosphoinositol. Deletion of PHO86 in an ino1Delta strain resulted in faster growth when either phosphatidylinositol or glycerophosphoinositol was supplied as the sole inositol source. The incorporation of radiolabeled glycerophosphoinositol into an ino1Delta pho86Delta mutant was higher than that into wild-type, ino1Delta, and pho86Delta strains. All strains accumulated the most GIT1 transcript when incubated in media limited for inositol and phosphate in combination. However, the ino1Delta pho86Delta mutant accumulated approximately threefold more GIT1 transcript than did the other strains when incubated in inositol-free media containing either high or low concentrations of P(i). Deletion of PHO4 abolished GIT1 transcription in a wild-type strain. These results indicate that the transport of glycerophosphoinositol by Git1p is regulated by factors affecting both inositol and phosphate availabilities and suggest a regulatory connection between phosphate metabolism and phospholipid metabolism.
Collapse
Affiliation(s)
- C Almaguer
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | | | | | | |
Collapse
|
28
|
Nomura M. Ribosomal RNA genes, RNA polymerases, nucleolar structures, and synthesis of rRNA in the yeast Saccharomyces cerevisiae. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:555-65. [PMID: 12762057 DOI: 10.1101/sqb.2001.66.555] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- M Nomura
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
| |
Collapse
|
29
|
Takeuchi Y, Horiuchi T, Kobayashi T. Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev 2003; 17:1497-506. [PMID: 12783853 PMCID: PMC196080 DOI: 10.1101/gad.1085403] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It is speculated that the function of the replication fork barrier (RFB) site is to avoid collision between the 35S rDNA transcription machinery and the DNA replication fork, because the RFB site is located near the 3'-end of the gene and inhibits progression of the replication fork moving in the opposite direction to the transcription machinery. However, the collision has never been observed in a blockless (fob1) mutant with 150 copies of rDNA. The gene FOB1 was shown previously to be required for replication fork blocking activity at the RFB site, and also for the rDNA copy number variation through unequal sister-chromatid recombination. This study documents the detection of fork collision in an fob1 derivative with reduced rDNA copy number (approximately 20) using two-dimensional agarose gel electrophoresis. This suggests that most of these reduced copies are actively transcribed. The collision was dependent on the transcription by RNA polymerase I. In addition, the transcription stimulated rDNA copy number variation, and the production of the extrachromosomal rDNA circles (ERCs), whose accumulation is thought to be a cause of aging. These results suggest that such a transcription-dependent fork collision induces recombination, and may function as a general recombination trigger for multiplication of highly transcribed single-copy genes.
Collapse
Affiliation(s)
- Yasushi Takeuchi
- National Institute for Basic Biology, Myodaijicho, Okazaki 444-8585, Japan
| | | | | |
Collapse
|
30
|
Kaadige MR, Lopes JM. Opi1p, Ume6p and Sin3p control expression from the promoter of the INO2 regulatory gene via a novel regulatory cascade. Mol Microbiol 2003; 48:823-32. [PMID: 12694624 DOI: 10.1046/j.1365-2958.2003.03472.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The INO2 gene of Saccharomyces cerevisiae is required for expression of most of the phospholipid biosynthetic genes. INO2 expression is regulated by a complex cascade that includes autoregulation, Opi1p-mediated repression and Ume6p-mediated activation. To screen for mutants with altered INO2 expression directly, we constructed an INO2-HIS3 reporter that provides a plate assay for INO2 promoter activity. This reporter was used to isolate mutants (dim1) that fail to repress expression of the INO2 gene in an otherwise wild-type strain. The dim1 mutants contain mutations in the OPI1 gene. To define further the mechanism for Ume6p regulation of INO2 expression, we isolated suppressors (rum1, 2, 3) of the ume6Delta mutation that overexpress the INO2-HIS3 gene. Two of the rum mutant groups contain mutations in the OPI1 and SIN3 genes showing that opi1 and sin3 mutations are epistatic to the ume6Delta mutation. These results are surprising given that Ume6p, Sin3p and Rpd3p are known to form a complex that represses the expression of a diverse set of yeast genes. This prompted us to examine the effect of sin3Delta and rpd3Delta mutants on INO2-cat expression. Surprisingly, the sin3Delta allele overexpressed INO2-cat, whereas the rpd3Delta mutant had no effect. We also show that the UME6 gene does not affect the expression of an OPI1-cat reporter. This suggests that Ume6p does not regulate INO2 expression indirectly by regulating OPI1 expression.
Collapse
Affiliation(s)
- Mohan R Kaadige
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
31
|
Bae JH, Sohn JH, Park CS, Rhee JS, Choi ES. Integrative transformation system for the metabolic engineering of the sphingoid base-producing yeast Pichia ciferrii. Appl Environ Microbiol 2003; 69:812-9. [PMID: 12570999 PMCID: PMC143681 DOI: 10.1128/aem.69.2.812-819.2003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed an integrative transformation system for metabolic engineering of the tetraacetyl phytosphingosine (TAPS)-secreting yeast Pichia ciferrii. The system uses (i) a mutagenized ribosomal protein L41 gene of P. ciferrii as a dominant selection marker that confer resistance to the antibiotic cycloheximide and (ii) a ribosomal DNA (rDNA) fragment of P. ciferrii as a target for multicopy gene integration into the chromosome. A locus within the nontranscribed region located between 5S and 26S rDNAs was selected as the integration site. A maximum frequency of integrative transformation of approximately 1,350 transformants/ microg of DNA was observed. To improve the de novo synthesis of sphingolipid, the LCB2 gene, encoding a subunit of serine palmitoyltransferase, which catalyzes the first committed step of sphingolipid synthesis, was cloned from P. ciferrii and overexpressed under the control of the P. ciferrii glyceraldehyde-3-phosphate dehydrogenase promoter. After transformation of an LCB2 gene expression cassette, several transformants that contained approximately five to seven copies of transforming DNA in the chromosome and exhibited about 50-fold increase in LCB2 mRNA relative to the wild type were identified. These transformants were observed to produce approximately two times more TAPS than the wild type.
Collapse
Affiliation(s)
- Jung-Hoon Bae
- Laboratory of Microbial Functions, Korea Research Institute of Bioscience and Biotechnology, Yusong, Taejon 305-333, Korea
| | | | | | | | | |
Collapse
|
32
|
Ding D, Greenberg ML. Lithium and valproate decrease the membrane phosphatidylinositol/phosphatidylcholine ratio. Mol Microbiol 2003; 47:373-81. [PMID: 12519189 DOI: 10.1046/j.1365-2958.2003.03284.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lithium and valproate, two structurally different anti-bipolar drugs, cause decreased intracellular inositol in the yeast Saccharomyces cerevisiae and an in-crease in expression of a structural (INO1) and a regulatory (INO2) gene for phospholipid synthesis that responds to inositol depletion (Vaden, D., Ding, D., Peterson, B., and Greenberg, M.L., 2001, J Biol Chem 276: 15466-15471). We report here that both drugs decrease the relative rate of membrane phosphatidylinositol synthesis and, to a lesser but still significant degree, the steady state relative phosphatidylinositol composition. In addition, both drugs increase the rate of phosphatidylcholine (PC) synthesis. Finally, valproate, but not lithium, increases expression of phosphatidylcholine pathway genes CHO1 and OPI3. The overall effect on membrane phospholipid composition is a reduction in the phosphatidylinositol/phosphatidylcholine ratio by both drugs. Because maintenance of the appropriate phosphatidylinositol/phosphatidylcholine ratio is required for secretory vesicle formation, a decrease in this ratio may have far-reaching implications for understanding the therapeutic mechanisms of action of these drugs.
Collapse
Affiliation(s)
- Daobin Ding
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
33
|
Valachovic M, Klobucníková V, Griac P, Hapala I. Heme-regulated expression of two yeast acyl-CoA:sterol acyltransferases is involved in the specific response of sterol esterification to anaerobiosis. FEMS Microbiol Lett 2002; 206:121-5. [PMID: 11786267 DOI: 10.1111/j.1574-6968.2002.tb10996.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Sterol esterification in Saccharomyces cerevisiae is catalyzed by two acyl-CoA:sterol acyltransferases encoded by the genes ARE1 and ARE2. Using double mutants in the HEM1 gene and individual ARE genes we demonstrated that the relative contribution of these two enzymes to sterol esterification was dependent on cellular heme status. Observed changes in sterol esterification could be explained by a different effect of heme on the transcription of both genes: while the ARE1 transcript level was elevated in heme-deficient and anaerobic cells, the ARE2 gene transcript was more abundant in aerobic cells competent for heme synthesis. Our results indicate that transcriptional regulation of ARE genes by heme and specific substrate preferences of Are1p and Are2p may be involved in the adaptation of yeast sterol metabolism to hypoxia.
Collapse
Affiliation(s)
- Martin Valachovic
- Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, 900 28, Ivanka pri Dunaji, Slovak Republic
| | | | | | | |
Collapse
|
34
|
Wai H, Johzuka K, Vu L, Eliason K, Kobayashi T, Horiuchi T, Nomura M. Yeast RNA polymerase I enhancer is dispensable for transcription of the chromosomal rRNA gene and cell growth, and its apparent transcription enhancement from ectopic promoters requires Fob1 protein. Mol Cell Biol 2001; 21:5541-53. [PMID: 11463836 PMCID: PMC87276 DOI: 10.1128/mcb.21.16.5541-5553.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
At the end of the 35S rRNA gene within ribosomal DNA (rDNA) repeats in Saccharomyces cerevisiae lies an enhancer that has been shown to greatly stimulate rDNA transcription in ectopic reporter systems. We found, however, that the enhancer is not necessary for normal levels of rRNA synthesis from chromosomal rDNA or for cell growth. Yeast strains which have the entire enhancer from rDNA deleted did not show any defects in growth or rRNA synthesis. We found that the stimulatory activity of the enhancer for ectopic reporters is not observed in cells with disrupted nucleolar structures, suggesting that reporter genes are in general poorly accessible to RNA polymerase I (Pol I) machinery in the nucleolus and that the enhancer improves accessibility. We also found that a fob1 mutation abolishes transcription from the enhancer-dependent rDNA promoter integrated at the HIS4 locus without any effect on transcription from chromosomal rDNA. FOB1 is required for recombination hot spot (HOT1) activity, which also requires the enhancer region, and for recombination within rDNA repeats. We suggest that Fob1 protein stimulates interactions between rDNA repeats through the enhancer region, thus helping ectopic rDNA promoters to recruit the Pol I machinery normally present in the nucleolus.
Collapse
Affiliation(s)
- H Wai
- Department of Biological Chemistry, University of California-Irvine, Irvine, California 92697-1700, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Vaden DL, Ding D, Peterson B, Greenberg ML. Lithium and valproate decrease inositol mass and increase expression of the yeast INO1 and INO2 genes for inositol biosynthesis. J Biol Chem 2001; 276:15466-71. [PMID: 11278273 DOI: 10.1074/jbc.m004179200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bipolar affective disorder (manic-depressive illness) is a chronic, severe, debilitating illness affecting 1-2% of the population. The Food and Drug Administration-approved drugs lithium and valproate are not completely effective in the treatment of this disorder, and the mechanisms underlying their therapeutic effects have not been established. We are employing genetic and molecular approaches to identify common targets of lithium and valproate in the yeast Saccharomyces cerevisiae. We show that both drugs affect molecular targets in the inositol metabolic pathway. Lithium and valproate cause a decrease in intracellular myo-inositol mass and an increase in expression of both a structural (INO1) and a regulatory (INO2) gene required for inositol biosynthesis. The opi1 mutant, which exhibits constitutive expression of INO1, is more resistant to inhibition of growth by lithium but not by valproate, suggesting that valproate may inhibit the Ino1p-catalyzed synthesis of inositol 1-phosphate. Consistent with this possibility, growth in valproate leads to decreased synthesis of inositol monophosphate. Thus, both lithium and valproate perturb regulation of the inositol biosynthetic pathway, albeit via different mechanisms. This is the first demonstration of increased expression of genes in the inositol biosynthetic pathway by both lithium and valproate. Because inositol is a key regulator of many cellular processes, the effects of lithium and valproate on inositol synthesis have far-reaching implications for predicting genetic determinants of responsiveness and resistance to these agents.
Collapse
Affiliation(s)
- D L Vaden
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
36
|
Basu U, Si K, Warner JR, Maitra U. The Saccharomyces cerevisiae TIF6 gene encoding translation initiation factor 6 is required for 60S ribosomal subunit biogenesis. Mol Cell Biol 2001; 21:1453-62. [PMID: 11238882 PMCID: PMC86691 DOI: 10.1128/mcb.21.5.1453-1462.2001] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic translation initiation factor 6 (eIF6), a monomeric protein of about 26 kDa, can bind to the 60S ribosomal subunit and prevent its association with the 40S ribosomal subunit. In Saccharomyces cerevisiae, eIF6 is encoded by a single-copy essential gene. To understand the function of eIF6 in yeast cells, we constructed a conditional mutant haploid yeast strain in which a functional but a rapidly degradable form of eIF6 fusion protein was synthesized from a repressible GAL10 promoter. Depletion of eIF6 from yeast cells resulted in a selective reduction in the level of 60S ribosomal subunits, causing a stoichiometric imbalance in 60S-to-40S subunit ratio and inhibition of the rate of in vivo protein synthesis. Further analysis indicated that eIF6 is not required for the stability of 60S ribosomal subunits. Rather, eIF6-depleted cells showed defective pre-rRNA processing, resulting in accumulation of 35S pre-rRNA precursor, formation of a 23S aberrant pre-rRNA, decreased 20S pre-rRNA levels, and accumulation of 27SB pre-rRNA. The defect in the processing of 27S pre-rRNA resulted in the reduced formation of mature 25S and 5.8S rRNAs relative to 18S rRNA, which may account for the selective deficit of 60S ribosomal subunits in these cells. Cell fractionation as well as indirect immunofluorescence studies showed that c-Myc or hemagglutinin epitope-tagged eIF6 was distributed throughout the cytoplasm and the nuclei of yeast cells.
Collapse
Affiliation(s)
- U Basu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
37
|
Kobayashi T, Nomura M, Horiuchi T. Identification of DNA cis elements essential for expansion of ribosomal DNA repeats in Saccharomyces cerevisiae. Mol Cell Biol 2001; 21:136-47. [PMID: 11113188 PMCID: PMC88787 DOI: 10.1128/mcb.21.1.136-147.2001] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae carries approximately 150 ribosomal DNA (rDNA) copies in tandem repeats. Each repeat consists of the 35S rRNA gene, the NTS1 spacer, the 5S rRNA gene, and the NTS2 spacer. The FOB1 gene was previously shown to be required for replication fork block (RFB) activity at the RFB site in NTS1, for recombination hot spot (HOT1) activity, and for rDNA repeat expansion and contraction. We have constructed a strain in which the majority of rDNA repeats are deleted, leaving two copies of rDNA covering the 5S-NTS2-35S region and a single intact NTS1, and whose growth is supported by a helper plasmid carrying, in addition to the 5S rRNA gene, the 35S rRNA coding region fused to the GAL7 promoter. This strain carries a fob1 mutation, and an extensive expansion of chromosomal rDNA repeats was demonstrated by introducing the missing FOB1 gene by transformation. Mutational analysis using this system showed that not only the RFB site but also the adjacent approximately 400-bp region in NTS1 (together called the EXP region) are required for the FOB1-dependent repeat expansion. This approximately 400-bp DNA element is not required for the RFB activity or the HOT1 activity and therefore defines a function unique to rDNA repeat expansion (and presumably contraction) separate from HOT1 and RFB activities.
Collapse
Affiliation(s)
- T Kobayashi
- National Institute for Basic Biology, Okazaki 444-8585, Japan.
| | | | | |
Collapse
|
38
|
Wai HH, Vu L, Oakes M, Nomura M. Complete deletion of yeast chromosomal rDNA repeats and integration of a new rDNA repeat: use of rDNA deletion strains for functional analysis of rDNA promoter elements in vivo. Nucleic Acids Res 2000; 28:3524-34. [PMID: 10982872 PMCID: PMC110729 DOI: 10.1093/nar/28.18.3524] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2000] [Revised: 07/19/2000] [Accepted: 07/19/2000] [Indexed: 12/16/2022] Open
Abstract
Strains of Saccharomyces cerevisiae were constructed in which chromosomal rDNA repeats are completely deleted and their growth is supported by a plasmid carrying a single rDNA repeat, either a plasmid carrying the 35S rRNA gene transcribed from the native promoter by RNA polymerase I or a plasmid carrying the 35S rRNA gene fused to the GAL7 promoter for transcription by RNA polymerase II. This system has made it possible to assess the expression of rDNA by measuring the ability of synthesized rRNA to support cell growth as well as by measuring the actual rRNA synthesized rather than by the use of reporter mini-rDNA genes. Using this system, deletion analysis of the rDNA promoter confirmed the presence of two elements, the upstream element and the core promoter, and showed that basal transcription from the core promoter, if it takes place in vivo as was observed in vitro, is not sufficient to allow cell growth. We have also succeeded in integration of a rDNA repeat and its copy number expansion at the original chromosomal locus, which will allow future mutational analysis not only of rRNA but also other DNA elements involved in rRNA transcription, rDNA replication and recombination within a repeated rDNA structure.
Collapse
MESH Headings
- Chromosomes, Fungal
- DNA, Fungal/genetics
- DNA, Fungal/physiology
- DNA, Ribosomal/genetics
- DNA, Ribosomal/physiology
- Gene Dosage
- Genetic Techniques
- Plasmids
- Promoter Regions, Genetic
- RNA Polymerase I/metabolism
- RNA Polymerase II/metabolism
- RNA, Ribosomal/genetics
- Repetitive Sequences, Nucleic Acid
- Saccharomyces cerevisiae/genetics
- Sequence Deletion
- Templates, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- H H Wai
- Department of Biological Chemistry, University of California at Irvine, Irvine, CA 92697-1700, USA
| | | | | | | |
Collapse
|
39
|
Elkhaimi M, Kaadige MR, Kamath D, Jackson JC, Biliran H, Lopes JM. Combinatorial regulation of phospholipid biosynthetic gene expression by the UME6, SIN3 and RPD3 genes. Nucleic Acids Res 2000; 28:3160-7. [PMID: 10931932 PMCID: PMC108424 DOI: 10.1093/nar/28.16.3160] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2000] [Revised: 05/18/2000] [Accepted: 06/21/2000] [Indexed: 12/18/2022] Open
Abstract
The Ume6p-Sin3p-Rpd3p complex negatively regulates expression of genes containing a Ume6p binding site. However, these regulatory proteins also function independently to regulate gene expression both negatively and positively. The model system for this combinatorial regulation is the yeast phospholipid biosynthetic pathway. Sin3p negatively regulates the INO1, CHO1, CHO2 and OPI3 genes while Ume6p negatively regulates the INO1 gene and positively regulates the other genes. We have suggested that the positive regulation results from indirect effects on expression of the INO2 transcriptional activator gene. Here, we demonstrate that the effect of Ume6p on INO2 gene expression is also indirect. We also show that Rpd3p is a negative regulator of phospholipid biosynthetic gene expression. The ability of Ume6p, Sin3p and Rpd3p to differentially regulate expression of the phospholipid biosynthetic genes affects phospholipid composition. A sin3 mutant strain lacks detectable levels of phosphatidylethanolamine and elevated levels of phosphatidylcholine (PC) and a rpd3 mutant strain has reduced levels of PC. These alterations in membrane composition suggest that there may exist additional differences in regulation of phospholipid biosynthetic gene expression and that membrane compositions may be coordinated with other biological processes regulated by Ume6p, Sin3p and Rpd3p.
Collapse
Affiliation(s)
- M Elkhaimi
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
40
|
Effect of aPMR1 disruption on the processing of heterologous glycoproteins secreted in the yeastSaccharomyces cerevisiae. BIOTECHNOL BIOPROC E 2000. [DOI: 10.1007/bf02942179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Robinson KA, Lopes JM. The promoter of the yeast INO4 regulatory gene: a model of the simplest yeast promoter. J Bacteriol 2000; 182:2746-52. [PMID: 10781542 PMCID: PMC101982 DOI: 10.1128/jb.182.10.2746-2752.2000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2000] [Accepted: 03/02/2000] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, the phospholipid biosynthetic genes are transcriptionally regulated in response to inositol and choline. This regulation requires the transcriptional activator proteins Ino4p and Ino2p, which form a heterodimer that binds to the UAS(INO) element. We have previously shown that the promoters of the INO4 and INO2 genes are among the weakest promoters characterized in yeast. Because little is known about the promoters of weakly expressed yeast genes, we report here the analysis of the constitutive INO4 promoter. Promoter deletion constructs scanning 1,000 bp upstream of the INO4 gene identified a small region (-58 to -46) that is absolutely required for expression. S1 nuclease mapping shows that this region contains the transcription start sites for the INO4 gene. An additional element (-114 to -86) modestly enhances INO4 promoter activity (fivefold). Thus, the region required for INO4 transcription is limited to 68 bp. These studies also found that INO4 gene expression is not autoregulated by Ino2p and Ino4p, despite the presence of a putative UAS(INO) element in the INO4 promoter. We further report that the INO4 steady-state transcript levels and Ino4p levels are regulated twofold in response to inositol and choline, suggesting a posttranscriptional mechanism of regulation.
Collapse
Affiliation(s)
- K A Robinson
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
42
|
Graves JA, Henry SA. Regulation of the yeast INO1 gene. The products of the INO2, INO4 and OPI1 regulatory genes are not required for repression in response to inositol. Genetics 2000; 154:1485-95. [PMID: 10747047 PMCID: PMC1461034 DOI: 10.1093/genetics/154.4.1485] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ino2Delta, ino4Delta, opi1Delta, and sin3Delta mutations all affect expression of INO1, a structural gene for inositol-1-phosphate synthase. These same mutations affect other genes of phospholipid biosynthesis that, like INO1, contain the repeated element UAS(INO) (consensus 5' CATGTGAAAT 3'). In this study, we evaluated the effects of these four mutations, singly and in all possible combinations, on growth and expression of INO1. All strains carrying an ino2Delta or ino4Delta mutation, or both, failed to grow in medium lacking inositol. However, when grown in liquid culture in medium containing limiting amounts of inositol, the opi1Delta ino4Delta strain exhibited a level of INO1 expression comparable to, or higher than, the wild-type strain growing under the same conditions. Furthermore, INO1 expression in the opi1Delta ino4Delta strain was repressed in cells grown in medium fully supplemented with both inositol and choline. Similar results were obtained using the opi1Delta ino2Delta ino4Delta strain. Regulation of INO1 was also observed in the absence of the SIN3 gene product. Therefore, while Opi1p, Sin3p, and the Ino2p/Ino4p complex all affect the overall level of INO1 expression in an antagonistic manner, they do not appear to be responsible for transmitting the signal that leads to repression of INO1 in response to inositol. Various models for Opi1p function were tested and no evidence for binding of Opi1p to UAS(INO), or to Ino2p or Ino4p, was obtained.
Collapse
Affiliation(s)
- J A Graves
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
43
|
Abstract
The task of transcribing nuclear genes is shared between three RNA polymerases in eukaryotes: RNA polymerase (pol) I synthesizes the large rRNA, pol II synthesizes mRNA and pol III synthesizes tRNA and 5S rRNA. Although pol II has received most attention, pol I and pol III are together responsible for the bulk of transcriptional activity. This survey will summarise what is known about the process of transcription by pol I and pol III, how it happens and the proteins involved. Attention will be drawn to the similarities between the three nuclear RNA polymerase systems and also to their differences.
Collapse
Affiliation(s)
- M R Paule
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
44
|
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen that synthesizes and catabolizes inositol. This study demonstrates inositol synthesis from glucose-6-phosphate via inositol-1-phosphate synthase and catabolism to glucuronic acid via inositol oxygenase in this organism. These inositol synthetic and catabolic pathways are regulated in opposition; repressing conditions for one are inducing conditions for the other. An inositol-requiring strain was generated by UV mutagenesis. Without inositol, this mutant strain undergoes 'inositol-less' death, during which time the phosphatidylinositol composition of the membranes decreases without alteration of the proportion of other phospholipids. The mutation on this strain results in no detectable inositol synthetic activity but normal (wild-type) inositol catabolic activity. This inositol-requiring mutant strain reverted at a high frequency. Classical genetic experiments revealed that the majority of the reverting mutations are at second sites. Interestingly, the revertants exhibited unusual morphological phenotypes when deprived of inositol, while provision of inositol restored wild-type morphology. Inositol metabolism is clearly important for growth and development of C. neoformans and may be involved in this organism's mechanism for survival as both a saprophyte in soil and a parasite in humans.
Collapse
Affiliation(s)
- Y Molina
- Department of Biological Sciences, California State University, Long Beach, CA 90840, USA
| | | | | | | |
Collapse
|
45
|
Banditt M, Koller T, Sogo JM. Transcriptional activity and chromatin structure of enhancer-deleted rRNA genes in Saccharomyces cerevisiae. Mol Cell Biol 1999; 19:4953-60. [PMID: 10373545 PMCID: PMC84309 DOI: 10.1128/mcb.19.7.4953] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We used the psoralen gel retardation assay and Northern blot analysis in an in vivo yeast system to analyze effects of rDNA enhancer deletions on the chromatin structure and the transcription of tagged rDNA units. We found that upon deletion of a single enhancer element, transcription of the upstream and downstream rRNA gene was reduced by about 50%. Although removing both flanking enhancers of an rRNA gene led to a further reduction in transcription levels, a significant amount of transcriptional activity remained, either resulting from the influence of more distantly located enhancer elements or reflecting the basal activity of the polymerase I promoter within the nucleolus. Despite the reduction of transcriptional activity upon enhancer deletion, the activation frequency (proportion of nonnucleosomal to nucleosomal gene copies in a given cell culture) of the tagged rRNA genes was not significantly altered, as determined by the psoralen gel retardation assay. This is a strong indication that, within the nucleolus, the yeast rDNA enhancer functions by increasing transcription rates of active rRNA genes and not by activating silent transcription units.
Collapse
Affiliation(s)
- M Banditt
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
46
|
Griac P, Henry SA. The yeast inositol-sensitive upstream activating sequence, UASINO, responds to nitrogen availability. Nucleic Acids Res 1999; 27:2043-50. [PMID: 10198439 PMCID: PMC148419 DOI: 10.1093/nar/27.9.2043] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The INO1 gene of yeast is expressed in logarithmically growing, wild-type cells when inositol is absent from the medium. However, the INO1 gene is repressed when inositol is present during logarithmic growth and it is also repressed as cells enter stationary phase whether inositol is present or not. In this report, we demonstrate that transient nitrogen limitation also causes INO1 repression. The repression of INO1 in response to nitrogen limitation shares many features in common with repression in response to the presence of inositol. Specifically, the response to nitrogen limitation is dependent upon the presence of a functional OPI1 gene product, it requires ongoing phosphatidylcholine biosynthesis and it is mediated by the repeated element, UASINO, found in the promoter of INO1 and other co-regulated genes of phospholipid biosynthesis. Thus, we propose that repression of INO1 in response to inositol and in response to nitrogen limitation occurs via a common mechanism that is sensitive to the status of ongoing phospholipid metabolism.
Collapse
Affiliation(s)
- P Griac
- Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, 90028 Ivanka pri Dunaji, Slovakia
| | | |
Collapse
|
47
|
Reeder RH. Regulation of RNA polymerase I transcription in yeast and vertebrates. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 62:293-327. [PMID: 9932458 DOI: 10.1016/s0079-6603(08)60511-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
This article focuses on what is currently known about the regulation of transcription by RNA polymerase I (pol I) in eukaryotic organisms at opposite ends of the evolutionary spectrum--a yeast, Saccharomyces cerevisiae, and vertebrates, including mice, frogs, and man. Contemporary studies that have defined the DNA sequence elements are described, as well as the majority of the basal transcription factors essential for pol I transcription. Situations in which pol I transcription is known to be regulated are reviewed and possible regulatory mechanisms are critically discussed. Some aspects of basal pol I transcription machinery appear to have been conserved from fungi to vertebrates, but other aspects have evolved, perhaps to meet the needs of a metazoan organism. Different parts of the pol I transcription machinery are regulatory targets depending on different physiological stimuli. This suggests that multiple signaling pathways may also be involved. The involvement of ribosomal genes and their transcripts in events such as mitosis, cancer, and aging is discussed.
Collapse
Affiliation(s)
- R H Reeder
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
48
|
Kobayashi T, Heck DJ, Nomura M, Horiuchi T. Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev 1998; 12:3821-30. [PMID: 9869636 PMCID: PMC317266 DOI: 10.1101/gad.12.24.3821] [Citation(s) in RCA: 305] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Saccharomyces cerevisiae carries approximately 150 copies of rDNA in tandem repeats. It was found that the absence of an essential subunit of RNA polymerase I (Pol I) in rpa135 deletion mutants triggers a gradual decrease in rDNA repeat number to about one-half the normal level. Reintroduction of the missing RPA135 gene induced a gradual increase in repeat number back to the normal level. Gene FOB1 was shown to be essential for both the decrease and increase of rDNA repeats. FOB1 was shown previously to be required for replication fork blocking (RFB) activity at RFB site in rDNA and for recombination hot-spot (HOT1) activity. Thus, DNA replication fork blockage appears to stimulate recombination and play an essential role in rDNA expansion/contraction and sequence homogenization, and possibly, in the instability of repeated sequences in general. RNA Pol I, on the other hand, appears to control repeat numbers, perhaps by stabilizing rDNA with the normal repeat numbers as a stable nucleolar structure.
Collapse
MESH Headings
- Blotting, Southern
- Cell Division
- Chromosomes/genetics
- DNA Replication
- DNA, Fungal/genetics
- DNA, Fungal/metabolism
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- DNA-Binding Proteins
- Electrophoresis, Gel, Pulsed-Field
- Fungal Proteins/genetics
- Fungal Proteins/physiology
- Gene Amplification/genetics
- Gene Dosage
- Genetic Vectors
- Models, Genetic
- Molecular Weight
- Mutagenesis, Insertional
- RNA Polymerase I/genetics
- RNA Polymerase I/metabolism
- Recombination, Genetic
- Regulatory Sequences, Nucleic Acid
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Tandem Repeat Sequences
Collapse
Affiliation(s)
- T Kobayashi
- National Institute for Basic Biology, Myodaijicho, Okazaki, 444-8585, Japan
| | | | | | | |
Collapse
|
49
|
Kobayashi O, Hayashi N, Kuroki R, Sone H. Region of FLO1 proteins responsible for sugar recognition. J Bacteriol 1998; 180:6503-10. [PMID: 9851992 PMCID: PMC107751 DOI: 10.1128/jb.180.24.6503-6510.1998] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/1998] [Accepted: 10/16/1998] [Indexed: 11/20/2022] Open
Abstract
Yeast flocculation is a phenomenon which is believed to result from an interaction between a lectin-like protein and a mannose chain located on the yeast cell surface. The FLO1 gene, which encodes a cell wall protein, is considered to play an important role in yeast flocculation, which is inhibited by mannose but not by glucose (mannose-specific flocculation). A new homologue of FLO1, named Lg-FLO1, was isolated from a flocculent bottom-fermenting yeast strain in which flocculation is inhibited by both mannose and glucose (mannose/glucose-specific flocculation). In order to confirm that both FLO1 and Lg-FLO1 are involved in the yeast flocculation phenomenon, the FLO1 gene in the mannose-specific flocculation strain was replaced by the Lg-FLO1 gene. The transformant in which the Lg-FLO1 gene was incorporated showed the same flocculation phenotype as the mannose/glucose-specific flocculation strain, suggesting that the FLO1 and Lg-FLO1 genes encode mannose-specific and mannose/glucose-specific lectin-like proteins, respectively. Moreover, the sugar recognition sites for these sugars were identified by expressing chimeric FLO1 and Lg-FLO1 genes. It was found that the region from amino acid 196 to amino acid 240 of both gene products is important for flocculation phenotypes. Further mutational analysis of this region suggested that Thr-202 in the Lg-Flo1 protein and Trp-228 in the Flo1 protein are involved in sugar recognition.
Collapse
Affiliation(s)
- O Kobayashi
- Central Laboratories for Key Technology, Kirin Brewery Co., Ltd., 1-13-5 Fukuura, Kanazawa-ku, Yokohama-shi, Kanagawa 236-0004, Japan.
| | | | | | | |
Collapse
|
50
|
Maines S, Negritto MC, Wu X, Manthey GM, Bailis AM. Novel mutations in the RAD3 and SSL1 genes perturb genome stability by stimulating recombination between short repeats in Saccharomyces cerevisiae. Genetics 1998; 150:963-76. [PMID: 9799251 PMCID: PMC1460400 DOI: 10.1093/genetics/150.3.963] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Maintaining genome stability requires that recombination between repetitive sequences be avoided. Because short, repetitive sequences are the most abundant, recombination between sequences that are below a certain length are selectively restricted. Novel alleles of the RAD3 and SSL1 genes, which code for components of a basal transcription and UV-damage-repair complex in Saccharomyces cerevisiae, have been found to stimulate recombination between short, repeated sequences. In double mutants, these effects are suppressed, indicating that the RAD3 and SSL1 gene products work together in influencing genome stability. Genetic analysis indicates that this function is independent of UV-damage repair and mutation avoidance, supporting the notion that RAD3 and SSL1 together play a novel role in the maintenance of genome integrity.
Collapse
Affiliation(s)
- S Maines
- Department of Molecular Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California 91010, USA
| | | | | | | | | |
Collapse
|