1
|
Mendoza CS, Plowinske CR, Montgomery AC, Quinones GB, Banker G, Bentley M. Kinesin Regulation in the Proximal Axon is Essential for Dendrite-selective Transport. Mol Biol Cell 2024; 35:ar81. [PMID: 38598291 PMCID: PMC11238084 DOI: 10.1091/mbc.e23-11-0457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
Neurons are polarized and typically extend multiple dendrites and one axon. To maintain polarity, vesicles carrying dendritic proteins are arrested upon entering the axon. To determine whether kinesin regulation is required for terminating anterograde axonal transport, we overexpressed the dendrite-selective kinesin KIF13A. This caused mistargeting of dendrite-selective vesicles to the axon and a loss of dendritic polarity. Polarity was not disrupted if the kinase MARK2/Par1b was coexpressed. MARK2/Par1b is concentrated in the proximal axon, where it maintains dendritic polarity-likely by phosphorylating S1371 of KIF13A, which lies in a canonical 14-3-3 binding motif. We probed for interactions of KIF13A with 14-3-3 isoforms and found that 14-3-3β and 14-3-3ζ bound KIF13A. Disruption of MARK2 or 14-3-3 activity by small molecule inhibitors caused a loss of dendritic polarity. These data show that kinesin regulation is integral for dendrite-selective transport. We propose a new model in which KIF13A that moves dendrite-selective vesicles in the proximal axon is phosphorylated by MARK2. Phosphorylated KIF13A is then recognized by 14-3-3, which causes dissociation of KIF13A from the vesicle and termination of transport. These findings define a new paradigm for the regulation of vesicle transport by localized kinesin tail phosphorylation, to restrict dendrite-selective vesicles from entering the axon.
Collapse
Affiliation(s)
- Christina S. Mendoza
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Cameron R. Plowinske
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Andrew C. Montgomery
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Geraldine B. Quinones
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Gary Banker
- Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon 97239
| | - Marvin Bentley
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180
| |
Collapse
|
2
|
Spudich JA. One must reconstitute the functions of interest from purified proteins. Front Physiol 2024; 15:1390186. [PMID: 38827995 PMCID: PMC11140241 DOI: 10.3389/fphys.2024.1390186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 06/05/2024] Open
Abstract
I am often asked by students and younger colleagues and now by the editors of this issue to tell the history of the development of the in vitro motility assay and the dual-beam single-molecule laser trap assay for myosin-driven actin filament movement, used widely as key assays for understanding how both muscle and nonmuscle myosin molecular motors work. As for all discoveries, the history of the development of the myosin assays involves many people who are not authors of the final publications, but without whom the assays would not have been developed as they are. Also, early experiences shape how one develops ideas and experiments, and influence future discoveries in major ways. I am pleased here to trace my own path and acknowledge the many individuals involved and my early science experiences that led to the work I and my students, postdoctoral fellows, and sabbatical visitors did to develop these assays. Mentors are too often overlooked in historical descriptions of discoveries, and my story starts with those who mentored me.
Collapse
Affiliation(s)
- James A. Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
3
|
Suber Y, Spiliotis ET. Reconstitution of Neuronal Motor Traffic on Septin-Associated Microtubules. Methods Mol Biol 2024; 2794:79-94. [PMID: 38630222 DOI: 10.1007/978-1-0716-3810-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Reconstitution of intracellular transport in cell-free in vitro assays enables the understanding and dissection of the molecular mechanisms that underlie membrane traffic. Using total internal reflection fluorescence (TIRF) microscopy and microtubules, which are immobilized to a functionalized glass surface, the kinetic properties of single kinesin molecules can be imaged and analyzed in the presence or absence of microtubule-associated proteins. Here, we describe methods for the in vitro reconstitution of the motility of the neuronal kinesin motor KIF1A on microtubules associated with heteromeric septin (SEPT2/6/7) complexes. This method can be adapted for various neuronal septin complexes and kinesin motors, leading to new insights into the spatial regulation of neuronal membrane traffic by microtubule-associated septins.
Collapse
Affiliation(s)
- Yani Suber
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, Philadelphia, PA, USA.
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
4
|
Cai G. The legacy of kinesins in the pollen tube thirty years later. Cytoskeleton (Hoboken) 2022; 79:8-19. [PMID: 35766009 PMCID: PMC9542081 DOI: 10.1002/cm.21713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 11/10/2022]
Abstract
The pollen tube is fundamental in the reproduction of seed plants. Particularly in angiosperms, we now have much information about how it grows, how it senses extracellular signals, and how it converts them into a directional growth mechanism. The expansion of the pollen tube is also related to dynamic cytoplasmic processes based on the cytoskeleton (such as polymerization/depolymerization of microtubules and actin filaments) or motor activity along with the two cytoskeletal systems and is dependent on motor proteins. While a considerable amount of information is available for the actomyosin system in the pollen tube, the role of microtubules in the transport of organelles or macromolecular structures is still quite uncertain despite that 30 years ago the first work on the presence of kinesins in the pollen tube was published. Since then, progress has been made in elucidating the role of kinesins in plant cells. However, their role within the pollen tube is still enigmatic. In this review, I will postulate some roles of kinesins in the pollen tube 30 years after their initial discovery based on information obtained in other plant cells in the meantime. The most concrete hypotheses predict that kinesins in the pollen tube enable the short movement of specific organelles or contribute to generative cell or sperm cell transport, as well as mediate specific steps in the process of endocytosis.
Collapse
Affiliation(s)
- Giampiero Cai
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, Siena, Italy
| |
Collapse
|
5
|
Wang Z, Wang X, Zhang Y, Xu W, Han X. Principles and Applications of Single Particle Tracking in Cell Research. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005133. [PMID: 33533163 DOI: 10.1002/smll.202005133] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/24/2020] [Indexed: 06/12/2023]
Abstract
It is a tough challenge for many decades to decipher the complex relationships between cell behaviors and cellular physical properties. Single particle tracking (SPT) with high spatial and temporal resolution has been applied extensively in cell research to understand physicochemical properties of cells and their bio-functions by tracking endogenous or exogenous probes. This review describes the fundamental principles of SPT as well as its applications in intracellular mechanics, membrane dynamics, organelles distribution, and processes of internalization and transport. Finally, challenges and future directions of SPT are also discussed.
Collapse
Affiliation(s)
- Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xuejing Wang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310058, China
| | - Ying Zhang
- School of Materials and Chemical Engineering, Heilongjiang Institute of Technology, Harbin, 150027, China
| | - Weili Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
6
|
Crawford K, Diaz Quiroz JF, Koenig KM, Ahuja N, Albertin CB, Rosenthal JJC. Highly Efficient Knockout of a Squid Pigmentation Gene. Curr Biol 2020; 30:3484-3490.e4. [PMID: 32735817 PMCID: PMC7484294 DOI: 10.1016/j.cub.2020.06.099] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/15/2022]
Abstract
Seminal studies using squid as a model led to breakthroughs in neurobiology. The squid giant axon and synapse, for example, laid the foundation for our current understanding of the action potential [1], ionic gradients across cells [2], voltage-dependent ion channels [3], molecular motors [4-7], and synaptic transmission [8-11]. Despite their anatomical advantages, the use of squid as a model receded over the past several decades as investigators turned to genetically tractable systems. Recently, however, two key advances have made it possible to develop techniques for the genetic manipulation of squid. The first is the CRISPR-Cas9 system for targeted gene disruption, a largely species-agnostic method [12, 13]. The second is the sequencing of genomes for several cephalopod species [14-16]. If made genetically tractable, squid and other cephalopods offer a wealth of biological novelties that could spur discovery. Within invertebrates, not only do they possess by far the largest brains, they also express the most sophisticated behaviors [17]. In this paper, we demonstrate efficient gene knockout in the squid Doryteuthis pealeii using CRISPR-Cas9. Ommochromes, the pigments found in squid retinas and chromatophores, are derivatives of tryptophan, and the first committed step in their synthesis is normally catalyzed by Tryptophan 2,3 Dioxygenase (TDO [18-20]). Knocking out TDO in squid embryos efficiently eliminated pigmentation. By precisely timing CRISPR-Cas9 delivery during early development, the degree of pigmentation could be finely controlled. Genotyping revealed knockout efficiencies routinely greater than 90%. This study represents a critical advancement toward making squid genetically tractable.
Collapse
Affiliation(s)
- Karen Crawford
- Biology Department, St. Mary's College of Maryland, 18952 E. Fisher Road, St. Mary's City, MD 20650, USA; The Eugene Bell Center, The Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA
| | - Juan F Diaz Quiroz
- The Eugene Bell Center, The Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA
| | - Kristen M Koenig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 01451, USA; John Harvard Distinguished Science Fellowship Program, Harvard University, Cambridge, MA 01451, USA
| | - Namrata Ahuja
- The Eugene Bell Center, The Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA
| | - Caroline B Albertin
- The Eugene Bell Center, The Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA
| | - Joshua J C Rosenthal
- The Eugene Bell Center, The Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA.
| |
Collapse
|
7
|
Roll-Mecak A. The Tubulin Code in Microtubule Dynamics and Information Encoding. Dev Cell 2020; 54:7-20. [PMID: 32634400 PMCID: PMC11042690 DOI: 10.1016/j.devcel.2020.06.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 05/08/2020] [Accepted: 06/03/2020] [Indexed: 01/05/2023]
Abstract
Microtubules are non-covalent mesoscale polymers central to the eukaryotic cytoskeleton. Microtubule structure, dynamics, and mechanics are modulated by a cell's choice of tubulin isoforms and post-translational modifications, a "tubulin code," which is thought to support the diverse morphology and dynamics of microtubule arrays across various cell types, cell cycle, and developmental stages. We give a brief historical overview of research into tubulin diversity and highlight recent progress toward uncovering the mechanistic underpinnings of the tubulin code. As a large number of essential pathways converge upon the microtubule cytoskeleton, understanding how cells utilize tubulin diversity is crucial to understanding cellular physiology and disease.
Collapse
Affiliation(s)
- Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA; Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
8
|
Isozaki N, Shintaku H, Kotera H, Hawkins TL, Ross JL, Yokokawa R. Control of molecular shuttles by designing electrical and mechanical properties of microtubules. Sci Robot 2017; 2:2/10/eaan4882. [PMID: 33157889 DOI: 10.1126/scirobotics.aan4882] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/06/2017] [Indexed: 12/23/2022]
Abstract
Kinesin-driven microtubules have been focused on to serve as molecular transporters, called "molecular shuttles," to replace micro/nanoscale molecular manipulations necessitated in micro total analysis systems. Although transport, concentration, and detection of target molecules have been demonstrated, controllability of the transport directions is still a major challenge. Toward broad applications of molecular shuttles by defining multiple moving directions for selective molecular transport, we integrated a bottom-up molecular design of microtubules and a top-down design of a microfluidic device. The surface charge density and stiffness of microtubules were controlled, allowing us to create three different types of microtubules, each with different gliding directions corresponding to their electrical and mechanical properties. The measured curvature of the gliding microtubules enabled us to optimize the size and design of the device for molecular sorting in a top-down approach. The integrated bottom-up and top-down design achieved separation of stiff microtubules from negatively charged, soft microtubules under an electric field. Our method guides multiple microtubules by integrating molecular control and microfluidic device design; it is not only limited to molecular sorters but is also applicable to various molecular shuttles with the high controllability in their movement directions.
Collapse
Affiliation(s)
- Naoto Isozaki
- Department of Micro Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Hirofumi Shintaku
- Department of Micro Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Hidetoshi Kotera
- Department of Micro Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Taviare L Hawkins
- Department of Physics, University of Wisconsin-La Crosse, 1725 State Street, La Crosse, WI 54601, USA
| | - Jennifer L Ross
- Department of Physics, University of Massachusetts Amherst, 666 North Pleasant Street, Amherst, MA 01003, USA
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| |
Collapse
|
9
|
Yoke H, Shingyoji C. Effects of external strain on the regulation of microtubule sliding induced by outer arm dynein of sea urchin sperm flagella. J Exp Biol 2017; 220:1122-1134. [DOI: 10.1242/jeb.147942] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022]
Abstract
Oscillatory bending movement of eukaryotic flagella is powered by orchestrated activity of dynein motor proteins that hydrolyze ATP and produce microtubule sliding. Although the ATP concentration within a flagellum is kept uniform at a few mmol l−1 level, sliding activities of dyneins are dynamically coordinated along the flagellum in accordance with the phase of bending waves. Thus, at the organellar level the dynein not only generates force for bending but also modulates its motile activity by responding to bending of the flagellum. Single molecule analyses have suggested that dynein at the molecular level, even if isolated from the axoneme, could alter the modes of motility in response to mechanical strain. However, it still remains unknown whether the coordinated activities of multiple dyneins can be modulated directly by mechanical signals. Here, we studied the effects of externally applied strain on the sliding movement of microtubules interacted with ensemble of dynein molecules adsorbed on a glass surface. We found that by bending the microtubules with a glass microneedle, three modes of motility that have not been previously characterized without bending can be induced: those were, stoppage, backward sliding and dissociation. Modification in sliding velocities was also induced by imposed bending. These results suggest that the activities of dyneins interacted with a microtubule can be modified and coordinated through external strain in a quite flexible manner and that such regulatory mechanism may be the basis of flagellar oscillation.
Collapse
Affiliation(s)
- Hiroshi Yoke
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Chikako Shingyoji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Koenig KM, Sun P, Meyer E, Gross JM. Eye development and photoreceptor differentiation in the cephalopod Doryteuthis pealeii. Development 2016; 143:3168-81. [PMID: 27510978 DOI: 10.1242/dev.134254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 07/25/2016] [Indexed: 12/11/2022]
Abstract
Photoreception is a ubiquitous sensory ability found across the Metazoa, and photoreceptive organs are intricate and diverse in their structure. Although the morphology of the compound eye in Drosophila and the single-chambered eye in vertebrates have elaborated independently, the amount of conservation within the 'eye' gene regulatory network remains controversial, with few taxa studied. To better understand the evolution of photoreceptive organs, we established the cephalopod Doryteuthis pealeii as a lophotrochozoan model for eye development. Utilizing histological, transcriptomic and molecular assays, we characterize eye formation in Doryteuthis pealeii Through lineage tracing and gene expression analyses, we demonstrate that cells expressing Pax and Six genes incorporate into the lens, cornea and iris, and the eye placode is the sole source of retinal tissue. Functional assays demonstrate that Notch signaling is required for photoreceptor cell differentiation and retinal organization. This comparative approach places the canon of eye research in traditional models into perspective, highlighting complexity as a result of both conserved and convergent mechanisms.
Collapse
Affiliation(s)
- Kristen M Koenig
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Peter Sun
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Eli Meyer
- Department of Zoology, Oregon State University, Cordley Hall 3029, Corvallis, OR 97331, USA
| | - Jeffrey M Gross
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
11
|
Stuurman N, Vale RD. Impact of New Camera Technologies on Discoveries in Cell Biology. THE BIOLOGICAL BULLETIN 2016; 231:5-13. [PMID: 27638691 PMCID: PMC5100698 DOI: 10.1086/689587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
New technologies can make previously invisible phenomena visible. Nowhere is this more obvious than in the field of light microscopy. Beginning with the observation of "animalcules" by Antonie van Leeuwenhoek, when he figured out how to achieve high magnification by shaping lenses, microscopy has advanced to this day by a continued march of discoveries driven by technical innovations. Recent advances in single-molecule-based technologies have achieved unprecedented resolution, and were the basis of the Nobel prize in Chemistry in 2014. In this article, we focus on developments in camera technologies and associated image processing that have been a major driver of technical innovations in light microscopy. We describe five types of developments in camera technology: video-based analog contrast enhancement, charge-coupled devices (CCDs), intensified sensors, electron multiplying gain, and scientific complementary metal-oxide-semiconductor cameras, which, together, have had major impacts in light microscopy.
Collapse
Affiliation(s)
- Nico Stuurman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16th Street, San Francisco, California 94143
| | - Ronald D Vale
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, 600 16th Street, San Francisco, California 94143
| |
Collapse
|
12
|
Liu C, Song X, Nisbet R, Götz J. Co-immunoprecipitation with Tau Isoform-specific Antibodies Reveals Distinct Protein Interactions and Highlights a Putative Role for 2N Tau in Disease. J Biol Chem 2016; 291:8173-88. [PMID: 26861879 PMCID: PMC4825019 DOI: 10.1074/jbc.m115.641902] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 01/24/2023] Open
Abstract
Alternative splicing generates multiple isoforms of the microtubule-associated protein Tau, but little is known about their specific function. In the adult mouse brain, three Tau isoforms are expressed that contain either 0, 1, or 2 N-terminal inserts (0N, 1N, and 2N). We generated Tau isoform-specific antibodies and performed co-immunoprecipitations followed by tandem mass tag multiplexed quantitative mass spectrometry. We identified novel Tau-interacting proteins of which one-half comprised membrane-bound proteins, localized to the plasma membrane, mitochondria, and other organelles. Tau was also found to interact with proteins involved in presynaptic signal transduction. MetaCore analysis revealed one major Tau interaction cluster that contained 33 Tau pulldown proteins. To explore the pathways in which these proteins are involved, we conducted an ingenuity pathway analysis that revealed two significant overlapping pathways, “cell-to-cell signaling and interaction” and “neurological disease.” The functional enrichment tool DAVID showed that in particular the 2N Tau-interacting proteins were specifically associated with neurological disease. Finally, for a subset of Tau interactions (apolipoprotein A1 (apoA1), apoE, mitochondrial creatine kinase U-type, β-synuclein, synaptogyrin-3, synaptophysin, syntaxin 1B, synaptotagmin, and synapsin 1), we performed reverse co-immunoprecipitations, confirming the preferential interaction of specific isoforms. For example, apoA1 displayed a 5-fold preference for the interaction with 2N, whereas β-synuclein showed preference for 0N. Remarkably, a reverse immunoprecipitation with apoA1 detected only the 2N isoform. This highlights distinct protein interactions of the different Tau isoforms, suggesting that they execute different functions in brain tissue.
Collapse
Affiliation(s)
- Chang Liu
- From the Sydney Medical School, Brain and Mind Research Institute, University of Sydney, Camperdown, New South Wales 2050
| | - Xiaomin Song
- the Australian Proteome Analysis Facility, Macquarie University (Sydney), New South Wales 2109, and
| | - Rebecca Nisbet
- the Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, St. Lucia Campus (Brisbane), Queensland 4072, Australia
| | - Jürgen Götz
- the Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, St. Lucia Campus (Brisbane), Queensland 4072, Australia
| |
Collapse
|
13
|
Abstract
Scientific publications enable results and ideas to be transmitted throughout the scientific community. The number and type of journal publications also have become the primary criteria used in evaluating career advancement. Our analysis suggests that publication practices have changed considerably in the life sciences over the past 30 years. More experimental data are now required for publication, and the average time required for graduate students to publish their first paper has increased and is approaching the desirable duration of PhD training. Because publication is generally a requirement for career progression, schemes to reduce the time of graduate student and postdoctoral training may be difficult to implement without also considering new mechanisms for accelerating communication of their work. The increasing time to publication also delays potential catalytic effects that ensue when many scientists have access to new information. The time has come for life scientists, funding agencies, and publishers to discuss how to communicate new findings in a way that best serves the interests of the public and the scientific community.
Collapse
|
14
|
Linganna RE, Levy WJ, Dmochowski IJ, Eckenhoff RG, Speck RM. Taxane modulation of anesthetic sensitivity in surgery for nonmetastatic breast cancer. J Clin Anesth 2015; 27:481-5. [PMID: 26036970 DOI: 10.1016/j.jclinane.2015.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 03/19/2015] [Accepted: 05/13/2015] [Indexed: 11/18/2022]
Abstract
STUDY OBJECTIVE AND DESIGN The mechanism of action of commonly used general anesthetics is largely unknown. One hypothesized mechanism is through modulation of microtubule stability. Taxanes, a subset of chemotherapeutic drugs known to alter microtubule stability and commonly used to treat breast cancer, offer a natural experiment to test our hypothesis that patients exposed to taxanes prior to surgery, as compared to after surgery, would have a partial resistance to general anesthetics. SETTING, PATIENTS, AND MEASUREMENTS The anesthetic record of adult women with nonmetastatic breast cancer was used to obtain changes in heart rate and blood pressure surrounding incision, and the amount of inhaled anesthetic agent, induction, and rescue drugs administered. MAIN RESULTS Change in blood pressure in response to incision was significantly higher in the neoadjuvant group (P = .03), whereas change in heart rate was not (P = .53). A greater amount of morphine was administered in the neoadjuvant group (26.3 vs 15.5 mg, P = .02), although not a higher concentration of inhaled anesthetics (P = .15). CONCLUSION These results suggest that the alteration of microtubule stability is one of a number of mechanisms of inhaled anesthetics.
Collapse
Affiliation(s)
| | - Warren J Levy
- University of Pennsylvania, Department of Anesthesiology.
| | | | | | - Rebecca M Speck
- University of Pennsylvania, Department of Anesthesiology; Evidera, Outcomes Research.
| |
Collapse
|
15
|
Derksen J, Wilms FHA, Pierson ES. The plant cytoskeleton: its significance in plant development. ACTA ACUST UNITED AC 2015. [DOI: 10.1111/j.1438-8677.1990.tb01441.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- J. Derksen
- Department of Experimental Botany; University of Nijmegen; Toernooiveld NL-6525 ED Nijmegen The Netherlands
| | - F. H. A. Wilms
- Department of Experimental Botany; University of Nijmegen; Toernooiveld NL-6525 ED Nijmegen The Netherlands
| | - E. S. Pierson
- Department of Experimental Botany; University of Nijmegen; Toernooiveld NL-6525 ED Nijmegen The Netherlands
| |
Collapse
|
16
|
Ziebert F, Mohrbach H, Kulić IM. Why microtubules run in circles: mechanical hysteresis of the tubulin lattice. PHYSICAL REVIEW LETTERS 2015; 114:148101. [PMID: 25910164 DOI: 10.1103/physrevlett.114.148101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Indexed: 06/04/2023]
Abstract
The fate of every eukaryotic cell subtly relies on the exceptional mechanical properties of microtubules. Despite significant efforts, understanding their unusual mechanics remains elusive. One persistent, unresolved mystery is the formation of long-lived arcs and rings, e.g., in kinesin-driven gliding assays. To elucidate their physical origin we develop a model of the inner workings of the microtubule's lattice, based on recent experimental evidence for a conformational switch of the tubulin dimer. We show that the microtubule lattice itself coexists in discrete polymorphic states. Metastable curved states can be induced via a mechanical hysteresis involving torques and forces typical of few molecular motors acting in unison, in agreement with the observations.
Collapse
Affiliation(s)
- Falko Ziebert
- Albert-Ludwigs-Universität, 79104 Freiburg, Germany
- Institut Charles Sadron UPR22-CNRS, 67034 Strasbourg, France
| | - Hervé Mohrbach
- Institut Charles Sadron UPR22-CNRS, 67034 Strasbourg, France
- Groupe BioPhysStat, LCP-A2MC, Université de Lorraine, 57078 Metz, France
| | - Igor M Kulić
- Institut Charles Sadron UPR22-CNRS, 67034 Strasbourg, France
| |
Collapse
|
17
|
Dumont ELP, Do C, Hess H. Molecular wear of microtubules propelled by surface-adhered kinesins. NATURE NANOTECHNOLOGY 2015; 10:166-169. [PMID: 25622231 DOI: 10.1038/nnano.2014.334] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Wear is the progressive loss of material from a body caused by contact and relative movement and is a major concern in both engineering and biology. Advances in nanotechnology have allowed the origins of wear processes to be studied at the atomic and molecular scale, but also demand that wear in nanoscale systems can be predicted and controlled. Biomolecular systems can undergo a range of active movements at the nanoscale, which are enabled by the transduction of chemical energy into mechanical work by polymerization processes and motor proteins. The active movements are accompanied by dissipative processes that can be conceptually understood as 'protein friction'. Here, we show that wear also occurs in an in vitro system consisting of microtubules gliding across a surface coated with kinesin-1 motor proteins, and that energetic considerations suggest a molecule-by-molecule removal of tubulin proteins. The rates of removal show a complex dependence on sliding velocity and kinesin density, which, in contrast to the friction behaviour between microtubules and kinesin-8, cannot be explained by simple chemical reaction kinetics.
Collapse
Affiliation(s)
- Emmanuel L P Dumont
- 1] Department of Biomedical Engineering, Columbia University, New York, New York 10027, USA [2] The Jacobs Technion-Cornell Institute at Cornell Tech, 111 8th Avenue #302, New York, New York 10011, USA
| | - Catherine Do
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, USA
| |
Collapse
|
18
|
|
19
|
|
20
|
Hsieh CL, Spindler S, Ehrig J, Sandoghdar V. Tracking Single Particles on Supported Lipid Membranes: Multimobility Diffusion and Nanoscopic Confinement. J Phys Chem B 2014; 118:1545-54. [DOI: 10.1021/jp412203t] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chia-Lung Hsieh
- Max Planck Institute
for the Science of Light and Friedrich Alexander University, 91058 Erlangen, Germany
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan
| | - Susann Spindler
- Max Planck Institute
for the Science of Light and Friedrich Alexander University, 91058 Erlangen, Germany
| | - Jens Ehrig
- Max Planck Institute
for the Science of Light and Friedrich Alexander University, 91058 Erlangen, Germany
| | - Vahid Sandoghdar
- Max Planck Institute
for the Science of Light and Friedrich Alexander University, 91058 Erlangen, Germany
| |
Collapse
|
21
|
Affiliation(s)
- Ronald D Vale
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, California, USA
| |
Collapse
|
22
|
Dumont ELP, Belmas H, Hess H. Observing the mushroom-to-brush transition for kinesin proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15142-5. [PMID: 24266641 DOI: 10.1021/la4030712] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The height of polymers grafted to a surface is predicted to be constant at low densities ("mushroom" regime) and increase with the third root of the polymer surface density at high densities ("brush" regime). This mushroom-to-brush transition is explored with kinesin-1 proteins adhered to a surface at controlled densities. The kinesin height is measured by attaching fluorescently labeled microtubules to the kinesins and determining their elevation using fluorescence interference contrast microscopy. Our measurements are consistent with a mushroom regime and a brush regime and a transition near the theoretically predicted density. The mushroom-to-brush transition may play a role in protein behavior in crowded cellular environments and may be exploited as a signal in intracellular regulation and mechanotransduction.
Collapse
Affiliation(s)
- Emmanuel L P Dumont
- Department of Biomedical Engineering, Columbia University , 1210 Amsterdam Avenue, New York, New York 10027, United States
| | | | | |
Collapse
|
23
|
Single-molecule inhibition of human kinesin by adociasulfate-13 and -14 from the sponge Cladocroce aculeata. Proc Natl Acad Sci U S A 2013; 110:18880-5. [PMID: 24191039 DOI: 10.1073/pnas.1314132110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two merotriterpenoid hydroquinone sulfates designated adociasulfate-13 (1) and adociasulfate-14 (2) were purified from Cladocroce aculeata (Chalinidae) along with adociasulfate-8. All three compounds were found to inhibit microtubule-stimulated ATPase activity of kinesin at 15 µM by blocking both the binding of microtubules and the processive motion of kinesin along microtubules. These findings directly show that substitution of the 5'-sulfate in 1 for a glycolic acid moiety in 2 maintains kinesin inhibition. Nomarski imaging and bead diffusion assays in the presence of adociasulfates showed no signs of either free-floating or bead-bound adociasulfate aggregates. Single-molecule biophysical experiments also suggest that inhibition of kinesin activity does not involve adociasulfate aggregation. Furthermore, both mitotic and nonmitotic kinesins are inhibited by adociasulfates to a significantly different extent. We also report evidence that microtubule binding of nonkinesin microtubule binding domains may be affected by adociasulfates.
Collapse
|
24
|
Götz J, Xia D, Leinenga G, Chew YL, Nicholas HR. What Renders TAU Toxic. Front Neurol 2013; 4:72. [PMID: 23772223 PMCID: PMC3677143 DOI: 10.3389/fneur.2013.00072] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/28/2013] [Indexed: 12/21/2022] Open
Abstract
TAU is a microtubule-associated protein that under pathological conditions such as Alzheimer's disease (AD) forms insoluble, filamentous aggregates. When 20 years after TAU's discovery the first TAU transgenic mouse models were established, one declared goal that was achieved was the modeling of authentic TAU aggregate formation in the form of neurofibrillary tangles. However, as we review here, it has become increasingly clear that TAU causes damage much before these filamentous aggregates develop. In fact, because TAU is a scaffolding protein, increased levels and an altered subcellular localization (due to an increased insolubility and impaired clearance) result in the interaction of TAU with cellular proteins with which it would otherwise either not interact or do so to a lesser degree, thereby impairing their physiological functions. We specifically discuss the non-axonal localization of TAU, the role phosphorylation has in TAU toxicity and how TAU impairs mitochondrial functions. A major emphasis is on what we have learned from the four available TAU knock-out models in mice, and the knock-out of the TAU/MAP2 homolog PTL-1 in worms. It has been proposed that in human pathological conditions such as AD, a rare toxic TAU species exists which needs to be specifically removed to abrogate TAU's toxicity and restore neuronal functions. However, what is toxic in one context may not be in another, and simply reducing, but not fully abolishing TAU levels may be sufficient to abrogate TAU toxicity.
Collapse
Affiliation(s)
- Jürgen Götz
- Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Sydney Medical School, Brain and Mind Research Institute, University of Sydney, Sydney, NSW, Australia
| | - Di Xia
- Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Gerhard Leinenga
- Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Yee Lian Chew
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Hannah R. Nicholas
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
25
|
Gunawardena S. Nanoparticles in the Brain: A Potential Therapeutic System Targeted to an Early Defect Observed in Many Neurodegenerative Diseases. Pharm Res 2013; 30:2459-74. [DOI: 10.1007/s11095-013-1037-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 03/25/2013] [Indexed: 12/14/2022]
|
26
|
Developing nanotherapies for neurodegenerative diseases: ORMOSIL and its potential in axonal transport. Ther Deliv 2012; 3:1189-98. [PMID: 23116011 DOI: 10.4155/tde.12.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In neurons, essential components packaged into vesicles are transported down microtubules to the ends of axons (synapses) where they are utilized. Components are also transported from the synapse to the cell body. This transport pathway is crucial for normal development, cell survival and plasticity. Recent work has established that defects in transport can contribute to the initiation of neurodegenerative disease, culminating in cell death and degeneration. Thus, delivering therapeutic treatments to an early defect is critical since many current strategies target pathology that occurs at later stages in the disease. Current treatments also affect the entire organism, causing side-effects that are often more deleterious than the disease. This article discusses how engineered synthetic structures can be used to directly target axonal transport--a pathway that is affected during the early stages of disease. Studies in this area will require the exchange of fundamental knowledge between biologists, chemists and engineers to effectively manufacture novel biomaterials for medical use.
Collapse
|
27
|
The Lasker Awards: motors take centre stage. Nat Cell Biol 2012. [DOI: 10.1038/ncb2618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Vale RD. How lucky can one be? A perspective from a young scientist at the right place at the right time. Nat Med 2012; 18:1486-8. [PMID: 23042358 DOI: 10.1038/nm.2925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ronald D Vale
- Department of Cellular and Molecular Pharmacology and the Howard Hughes Medical Institute, University of California-San Francisco, San Francisco, California, USA.
| |
Collapse
|
29
|
Seamster PE, Loewenberg M, Pascal J, Chauviere A, Gonzales A, Cristini V, Bearer EL. Quantitative measurements and modeling of cargo-motor interactions during fast transport in the living axon. Phys Biol 2012; 9:055005. [PMID: 23011729 DOI: 10.1088/1478-3975/9/5/055005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The kinesins have long been known to drive microtubule-based transport of sub-cellular components, yet the mechanisms of their attachment to cargo remain a mystery. Several different cargo-receptors have been proposed based on their in vitro binding affinities to kinesin-1. Only two of these-phosphatidyl inositol, a negatively charged lipid, and the carboxyl terminus of the amyloid precursor protein (APP-C), a trans-membrane protein-have been reported to mediate motility in living systems. A major question is how these many different cargo, receptors and motors interact to produce the complex choreography of vesicular transport within living cells. Here we describe an experimental assay that identifies cargo-motor receptors by their ability to recruit active motors and drive transport of exogenous cargo towards the synapse in living axons. Cargo is engineered by derivatizing the surface of polystyrene fluorescent nanospheres (100 nm diameter) with charged residues or with synthetic peptides derived from candidate motor receptor proteins, all designed to display a terminal COOH group. After injection into the squid giant axon, particle movements are imaged by laser-scanning confocal time-lapse microscopy. In this report we compare the motility of negatively charged beads with APP-C beads in the presence of glycine-conjugated non-motile beads using new strategies to measure bead movements. The ensuing quantitative analysis of time-lapse digital sequences reveals detailed information about bead movements: instantaneous and maximum velocities, run lengths, pause frequencies and pause durations. These measurements provide parameters for a mathematical model that predicts the spatiotemporal evolution of distribution of the two different types of bead cargo in the axon. The results reveal that negatively charged beads differ from APP-C beads in velocity and dispersion, and predict that at long time points APP-C will achieve greater progress towards the presynaptic terminal. The significance of this data and accompanying model pertains to the role transport plays in neuronal function, connectivity, and survival, and has implications in the pathogenesis of neurological disorders, such as Alzheimer's, Huntington and Parkinson's diseases.
Collapse
Affiliation(s)
- Pamela E Seamster
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
This year, the Albert Lasker Basic Medical Research Award will be shared by Michael Sheetz, James Spudich, and Ronald Vale for discoveries concerning the biophysical actions of cytoskeletal motor-protein machines that move cargo within cells, contract muscles, and enable cell motility.
Collapse
Affiliation(s)
- Dagmar Ringe
- Departments of Biochemistry and Chemistry and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA.
| | | |
Collapse
|
31
|
Sadananda A, Ray K. Neurogenetics of slow axonal transport: from cells to animals. J Neurogenet 2012; 26:291-7. [PMID: 22834647 DOI: 10.3109/01677063.2012.699564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Slow axonal transport is a multivariate phenomenon implicated in several neurodegenerative disorders. Recent reports have unraveled the molecular basis of the transport of certain slow component proteins, such as the neurofilament subunits, tubulin, and certain soluble enzymes such as Ca(2+)/calmodulin-dependent protein kinase IIa (CaM kinase IIa), etc., in tissue cultured neurons. In addition, genetic analyses also implicate microtubule-dependent motors and other housekeeping proteins in this process. However, the biological relevance of this phenomenon is not so well understood. Here, the authors have discussed the possibility of adopting neurogenetic analyses in multiple model organisms to correlate molecular level measurements of the slow transport phenomenon to animal behavior, thus facilitating the investigation of its biological efficacy.
Collapse
|
32
|
Abstract
Microtubule-based mRNA transport participates in the establishment of cell asymmetries. An in vitro reconstitution assay demonstrates that localization signals present in an mRNA influence motor copy number on single RNA molecule cargoes, ultimately leading to highly polarized distributions of transcripts.
Collapse
|
33
|
Segal M, Soifer I, Petzold H, Howard J, Elbaum M, Reiner O. Ndel1-derived peptides modulate bidirectional transport of injected beads in the squid giant axon. Biol Open 2012; 1:220-31. [PMID: 23213412 PMCID: PMC3507287 DOI: 10.1242/bio.2012307] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bidirectional transport is a key issue in cellular biology. It requires coordination between microtubule-associated molecular motors that work in opposing directions. The major retrograde and anterograde motors involved in bidirectional transport are cytoplasmic dynein and conventional kinesin, respectively. It is clear that failures in molecular motor activity bear severe consequences, especially in the nervous system. Neuronal migration may be impaired during brain development, and impaired molecular motor activity in the adult is one of the hallmarks of neurodegenerative diseases leading to neuronal cell death. The mechanisms that regulate or coordinate kinesin and dynein activity to generate bidirectional transport of the same cargo are of utmost importance. We examined how Ndel1, a cytoplasmic dynein binding protein, may regulate non-vesicular bidirectional transport. Soluble Ndel1 protein, Ndel1-derived peptides or control proteins were mixed with fluorescent beads, injected into the squid giant axon, and the bead movements were recorded using time-lapse microscopy. Automated tracking allowed for extraction and unbiased analysis of a large data set. Beads moved in both directions with a clear bias to the anterograde direction. Velocities were distributed over a broad range and were typically slower than those associated with fast vesicle transport. Ironically, the main effect of Ndel1 and its derived peptides was an enhancement of anterograde motion. We propose that they may function primarily by inhibition of dynein-dependent resistance, which suggests that both dynein and kinesin motors may remain engaged with microtubules during bidirectional transport.
Collapse
Affiliation(s)
- Michal Segal
- Department of Molecular Genetics, The Weizmann Institute of Science , Rehovot 76100 , Israel
| | | | | | | | | | | |
Collapse
|
34
|
DeGiorgis JA, Cavaliere KR, Burbach JPH. Identification of molecular motors in the Woods Hole squid, Loligo pealei: an expressed sequence tag approach. Cytoskeleton (Hoboken) 2011; 68:566-77. [PMID: 21913340 DOI: 10.1002/cm.20531] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 08/26/2011] [Indexed: 12/31/2022]
Abstract
The squid giant axon and synapse are unique systems for studying neuronal function. While a few nucleotide and amino acid sequences have been obtained from squid, large scale genetic and proteomic information is lacking. We have been particularly interested in motors present in axons and their roles in transport processes. Here, to obtain genetic data and to identify motors expressed in squid, we initiated an expressed sequence tag project by single-pass sequencing mRNAs isolated from the stellate ganglia of the Woods Hole Squid, Loligo pealei. A total of 22,689 high quality expressed sequence tag (EST) sequences were obtained and subjected to basic local alignment search tool analysis. Seventy six percent of these sequences matched genes in the National Center for Bioinformatics databases. By CAP3 analysis this library contained 2459 contigs and 7568 singletons. Mining for motors successfully identified six kinesins, six myosins, a single dynein heavy chain, as well as components of the dynactin complex, and motor light chains and accessory proteins. This initiative demonstrates that EST projects represent an effective approach to obtain sequences of interest.
Collapse
Affiliation(s)
- Joseph A DeGiorgis
- Department of Biology, Providence College, Providence, Rhode Island, USA.
| | | | | |
Collapse
|
35
|
Functional surface attachment in a sandwich geometry of GFP-labeled motor proteins. Methods Mol Biol 2011. [PMID: 21809197 DOI: 10.1007/978-1-61779-261-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Molecular motors perform work in cells by moving in an ATP-dependent manner along filamentous tracks. In vitro, the mechanical action of such motor proteins can be investigated by attaching the molecules to surfaces in the so-called gliding or bead assays. Surface attachment protocols have to be used that do not interfere with the function of the molecule. Here, we describe a sandwich protocol that preserves functionality. The protocol can be used for a large variety of proteins, in particular kinesin motor proteins that are GFP-tagged.
Collapse
|
36
|
Hoffman PN. A conditioning lesion induces changes in gene expression and axonal transport that enhance regeneration by increasing the intrinsic growth state of axons. Exp Neurol 2009; 223:11-8. [PMID: 19766119 DOI: 10.1016/j.expneurol.2009.09.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 08/13/2009] [Accepted: 09/09/2009] [Indexed: 11/19/2022]
Abstract
Injury of axons in the peripheral nervous system (PNS) induces transcription-dependent changes in gene expression and axonal transport that promote effective regeneration by increasing the intrinsic growth state of axons. Regeneration is enhanced in axons re-injured 1-2 weeks after the intrinsic growth state has been increased by such a prior conditioning lesion (CL). The intrinsic growth state does not increase after axons are injured in the mammalian central nervous system (CNS), where they lack the capacity for effective regeneration. Sensory neurons in the dorsal root ganglion (DRG) have two axonal branches that respond differently to injury. Peripheral branches, which are located entirely in the PNS, are capable of effective regeneration. Central branches regenerate in the PNS (i.e., in the dorsal root, which extends from the DRG to the spinal cord), but not in the CNS (i.e., the spinal cord). A CL of peripheral branches increases the intrinsic growth state of central branches in the dorsal columns of the spinal cord, enabling these axons to undergo lengthy regeneration in a segment of peripheral nerve transplanted into the spinal cord (i.e., a peripheral nerve graft). This regeneration does not occur in the absence of a CL. We will examine how changes in gene expression and axonal transport induced by a CL may promote this regeneration.
Collapse
Affiliation(s)
- Paul N Hoffman
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287-6953, USA.
| |
Collapse
|
37
|
|
38
|
Simple non-fluorescent polarity labeling of microtubules for molecular motor assays. Biotechniques 2009; 46:543-9. [DOI: 10.2144/000113124] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Transport of intracellular organelles along the microtubule cytoskeleton occurs in a bidirectional manner due to opposing activity of microtubule-associated motor proteins of the kinesin and dynein families. Regulation of this opposing activity and the resultant motion is believed to generate a polarized distribution of many organelles within the cell. The bidirectional motion can be reconstituted on in vitro assembled microtubules using organelles extracted from cells. This provides an opportunity to understand the regulation of intracellular transport through quantitative analysis of the motion of organelles in a controlled environment. Such analysis requires the use of polarity-labeled microtubules to resolve the plus and minus components of bidirectional motion. However, existing methods of in vitro microtubule polarity labeling are unsuitable for high-resolution recording of motion. Here we present a simple and reliable method that uses avidin-coated magnetic beads to prepare microtubules labeled at the minus end. The microtubule polarity can be identified without any need for fluorescence excitation. We demonstrate video-rate high-resolution imaging of single cellular organelles moving along plus and minus directions on labeled microtubules. Quantitative analysis of this motion indicates that these organelles are likely to be driven by multiple dynein motors in vivo.
Collapse
|
39
|
Jermy A. Brand new motor. Nat Rev Mol Cell Biol 2008. [DOI: 10.1038/nrm2570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Choi J, Ha CM, Choi EJ, Jeong CS, Park JW, Baik JH, Park JY, Costa ME, Ojeda SR, Lee BJ. Kinesin superfamily-associated protein 3 is preferentially expressed in glutamatergic neurons and contributes to the excitatory control of female puberty. Endocrinology 2008; 149:6146-56. [PMID: 18703627 PMCID: PMC2613065 DOI: 10.1210/en.2008-0432] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It was earlier shown that expression of kinesin superfamily-associated protein 3 (KAP3), involved in the neuronal anterograde, microtubule-dependent transport of membrane organelles, increases in the hypothalamus of female rats during the juvenile phase of sexual development. KAP3 mRNA is abundant in the hypothalamus, suggesting that it might be expressed in broadly disseminated neuronal systems controlling neuroendocrine function. The present study identifies one of these systems and provides evidence for an involvement of KAP3 in the excitatory control of female puberty. In situ hybridization and immunohistofluorescence studies revealed that the KAP3 gene is expressed in glutamatergic neurons but not in GABAergic or GnRH neurons. Hypothalamic KAP3 mRNA levels increase during the juvenile period of female prepubertal development, remaining elevated throughout puberty. These changes appear to be, at least in part, estradiol dependent because ovariectomy decreases and estradiol increases KAP3 mRNA abundance. Lowering hypothalamic KAP3 protein levels via intraventricular administration of an antisense oligodeoxynucleotide resulted in reduced release of both glutamate and GnRH from the median eminence and delayed the onset of puberty. The median eminence content of vesicular glutamate transporter 2, a glutamate neuron-selective synaptic protein, and synaptophysin, a synaptic vesicle marker, were also reduced, suggesting that the loss of KAP3 diminishes the anterograde transport of these proteins. Altogether, these results support the view that decreased KAP3 synthesis diminishes GnRH output and delays female sexual development by compromising hypothalamic release of glutamate.
Collapse
Affiliation(s)
- Jungil Choi
- Department of Biological Sciences, University of Ulsan, Ulsan 680-749, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
H Roos W, Campàs O, Montel F, Woehlke G, Spatz JP, Bassereau P, Cappello G. Dynamic kinesin-1 clustering on microtubules due to mutually attractive interactions. Phys Biol 2008; 5:046004. [DOI: 10.1088/1478-3975/5/4/046004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
TSUNODA M, ISAILOVIC D, YEUNG E. Real-time three-dimensional imaging of cell division by differential interference contrast microscopy. J Microsc 2008; 232:207-11. [DOI: 10.1111/j.1365-2818.2008.02091.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Abstract
A paper by DeGiorgis et al. (DeGiorgis JA, Petukhova TA, Evans TA, Reese TS. Kinesin-3 is an organelle motor in the squid giant axon. Traffic 2008; DOI: 10.1111/j.1600-0854.2008.00809.x) in this issue of Traffic reports on the identification and function of a second squid kinesin, a kinesin-3 motor. As expected, the newly discovered motor associates with axoplasmic organelles in situ and powers motility along microtubules of vesicles isolated from squid axoplasm. Less expected was the finding that kinesin-3 may be the predominant motor for anterograde organelle movement in the squid axon, which challenges the so far undisputed view that this function is fulfilled by the conventional kinesin, kinesin-1. These novel findings let us wonder what the real function of kinesin-1--the most abundant motor in squid axons--actually is.
Collapse
Affiliation(s)
- Virgil Muresan
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA
| | | |
Collapse
|
44
|
DeGiorgis JA, Petukhova TA, Evans TA, Reese TS. Kinesin-3 is an organelle motor in the squid giant axon. Traffic 2008; 9:1867-77. [PMID: 18928504 DOI: 10.1111/j.1600-0854.2008.00809.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conventional kinesin (Kinesin-1), the founding member of the kinesin family, was discovered in the squid giant axon, where it is thought to move organelles on microtubules. In this study, we identify a second squid kinesin by searching an expressed sequence tag database derived from the ganglia that give rise to the axon. The full-length open reading frame encodes a 1753 amino acid sequence that classifies this protein as a Kinesin-3. Immunoblots demonstrate that this kinesin, unlike Kinesin-1, is highly enriched in chaotropically stripped axoplasmic organelles, and immunogold electron microscopy (EM) demonstrates that Kinesin-3 is tightly bound to the surfaces of these organelles. Video microscopy shows that movements of purified organelles on microtubules are blocked, but organelles remain attached, in the presence Kinesin-3 antibody. Immunogold EM of axoplasmic spreads with antibody to Kinesin-3 decorates discrete sites on many, but not all, free organelles and localizes Kinesin-3 to organelle/microtubule interfaces. In contrast, label for Kinesin-1 decorates microtubules but not organelles. The presence of Kinesin-3 on purified organelles, the ability of an antibody to block their movements along microtubules, the tight association of Kinesin-3 with motile organelles and its distribution at the interface between native organelles and microtubules suggest that Kinesin-3 is a dominant motor in the axon for unidirectional movement of organelles along microtubules.
Collapse
Affiliation(s)
- Joseph A DeGiorgis
- Laboratory of Neurobiology, NINDS, National Institutes of Health, Building 49, Room 3A60, 49 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
45
|
Bearer EL, Falzone TL, Zhang X, Biris O, Rasin A, Jacobs RE. Role of neuronal activity and kinesin on tract tracing by manganese-enhanced MRI (MEMRI). Neuroimage 2007; 37 Suppl 1:S37-46. [PMID: 17600729 PMCID: PMC2096707 DOI: 10.1016/j.neuroimage.2007.04.053] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 04/19/2007] [Accepted: 04/20/2007] [Indexed: 11/25/2022] Open
Abstract
MEMRI offers the exciting possibility of tracing neuronal circuits in living animals by MRI. Here we use the power of mouse genetics and the simplicity of the visual system to test rigorously the parameters affecting Mn2+ uptake, transport and trans-synaptic tracing. By measuring electrical response to light before and after injection of Mn2+ into the eye, we determine the dose of Mn2+ with the least toxicity that can still be imaged by MR at 11.7 T. Using mice with genetic retinal blindness, we discover that electrical activity is not necessary for uptake and transport of Mn2+ in the optic nerve but is required for trans-synaptic transmission of this tracer to distal neurons in this pathway. Finally, using a kinesin light chain 1 knockout mouse, we find that conventional kinesin is a participant but not essential to neuronal transport of Mn2+ in the optic tract. This work provides a molecular and physiological framework for interpreting data acquired by MEMRI of circuitry in the brain.
Collapse
Affiliation(s)
- Elaine L Bearer
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02903, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Fischer T, Hess H. Materials chemistry challenges in the design of hybrid bionanodevices: supporting protein function within artificial environments. ACTA ACUST UNITED AC 2007. [DOI: 10.1039/b615278c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
Satpute-Krishnan P, DeGiorgis JA, Conley MP, Jang M, Bearer EL. A peptide zipcode sufficient for anterograde transport within amyloid precursor protein. Proc Natl Acad Sci U S A 2006; 103:16532-7. [PMID: 17062754 PMCID: PMC1621108 DOI: 10.1073/pnas.0607527103] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fast anterograde transport of membrane-bound organelles delivers molecules synthesized in the neuronal cell body outward to distant synapses. Identification of the molecular "zipcodes" on organelles that mediate attachment and activation of microtubule-based motors for this directed transport is a major area of inquiry. Here we identify a short peptide sequence (15 aa) from the cytoplasmic C terminus of amyloid precursor protein (APP-C) sufficient to mediate the anterograde transport of peptide-conjugated beads in the squid giant axon. APP-C beads travel at fast axonal transport rates (0.53 mum/s average velocity, 0.9 mum/s maximal velocity) whereas beads coupled to other peptides coinjected into the same axon remain stationary at the injection site. This transport appears physiologic, because it mimics behavior of endogenous squid organelles and of beads conjugated to C99, a polypeptide containing the full-length cytoplasmic domain of amyloid precursor protein (APP). Beads conjugated to APP lacking the APP-C domain are not transported. Coinjection of APP-C peptide reduces C99 bead motility by 75% and abolishes APP-C bead motility, suggesting that the soluble peptide competes with protein-conjugated beads for axoplasmic motor(s). The APP-C domain is conserved (13/15 aa) from squid to human, and peptides from either squid or human APP behave similarly. Thus, we have identified a conserved peptide zipcode sufficient to direct anterograde transport of exogenous cargo and suggest that one of APP's roles may be to recruit and activate axonal machinery for endogenous cargo transport.
Collapse
Affiliation(s)
- Prasanna Satpute-Krishnan
- *Department of Pathology and Laboratory Medicine, Brown University Medical School, Providence, RI 02912
- Marine Biological Laboratory, Woods Hole, MA 02543; and
| | - Joseph A. DeGiorgis
- Marine Biological Laboratory, Woods Hole, MA 02543; and
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Michael P. Conley
- *Department of Pathology and Laboratory Medicine, Brown University Medical School, Providence, RI 02912
- Marine Biological Laboratory, Woods Hole, MA 02543; and
| | - Marcus Jang
- *Department of Pathology and Laboratory Medicine, Brown University Medical School, Providence, RI 02912
- Marine Biological Laboratory, Woods Hole, MA 02543; and
| | - Elaine L. Bearer
- *Department of Pathology and Laboratory Medicine, Brown University Medical School, Providence, RI 02912
- Marine Biological Laboratory, Woods Hole, MA 02543; and
- To whom correspondence should be addressed at:
Brown University Medical School, 70 Ship Street, G-E527, Providence, RI 02912. E-mail:
| |
Collapse
|
48
|
Götz J, Ittner LM, Kins S. Do axonal defects in tau and amyloid precursor protein transgenic animals model axonopathy in Alzheimer's disease? J Neurochem 2006; 98:993-1006. [PMID: 16787410 DOI: 10.1111/j.1471-4159.2006.03955.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The subcellular localization of organelles, mRNAs and proteins is particularly challenging in neurons. Owing to their extended morphology, with axons in humans exceeding a meter in length, in addition to which they are not renewed but persist for the entire lifespan, it is no surprise that neurons are highly vulnerable to any perturbation of their sophisticated transport machinery. There is emerging evidence that impaired transport is not only causative for a range of motor disorders, but possibly also for Alzheimer's disease (AD) and related neurodegenerative disorders. Support for this hypothesis comes from transgenic animal models. Overexpression of human tau and amyloid precursor protein (APP) in mice and flies models the key hallmark histopathological characteristics of AD, such as somatodendritic accumulation of phosphorylated forms of tau and beta-amyloid (Abeta) peptide-containing amyloid plaques, as well as axonopathy. The latter has also been demonstrated in mutant mice with altered levels of Alzheimer-associated genes, such as presenilin (PS). In Abeta-producing APP transgenic mice, axonopathy was observed before the onset of plaque formation and tau hyperphosphorylation. In human AD brain, an axonopathy was revealed for early but not late Braak stages. The overall picture is that key players in AD, such as tau, APP and PS, perturb axonal transport early on in AD, causing impaired synaptic plasticity and reducing survival rates. It will be challenging to determine the molecular mechanisms of these different axonopathies, as this might assist in the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Jürgen Götz
- Brain and Mind Research Institute, University of Sydney, Camperdown, New South Wales, Australia.
| | | | | |
Collapse
|
49
|
Pool M, Rippstein P, McBride H, Kothary R. Trafficking of macromolecules and organelles in culturedDystonia musculorumsensory neurons is normal. J Comp Neurol 2006; 494:549-58. [PMID: 16374799 DOI: 10.1002/cne.20815] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dystonia musculorum (dt) mice suffer from a recessive neuropathy characterized by the progressive loss of sensory axons. The gene responsible for this disorder, dystonin/Bpag1, encodes several alternatively spliced forms of a cytoskeletal linker protein. Neural isoforms of dystonin/Bpag1 are predicted to link actin filaments to microtubules. Consistent with this, previous observations have demonstrated that the cytoskeleton within sensory neurites of dt mice is perturbed. Also, recent results have indicated that a neural isoform of dystonin/Bpag1 interacts with the dynein motor complex. Because microtubule organization and dynein motor function are essential for trafficking, we hypothesized that this process would be perturbed in dt sensory neurons. Here, we demonstrate that cultured primary dorsal root ganglion (DRG) neurons express dystonin/Bpag1 and that loss of this expression causes an increase in apoptosis and a decrease in average neurite length. In contrast, detailed examination showed that the organization of microtubules is indistinguishable in DRG neuronal cultures from neonatal dt and wild-type mice. In addition, the steady-state distribution of several molecules and organelles is unchanged in these cultures. Furthermore, the speeds of mitochondrial movement in both anterograde and retrograde directions were comparable in dt and wild-type sensory neurons cultured from neonatal mice. Thus, dystonin/Bpag1 is not essential for microtubule network assembly since the microtubule network is intact in short-term cultures of sensory neurons from neonatal mice lacking this protein. In addition, dystonin/Bpag1 is not an essential part of the dynein motor complex for mitochondrial transport since mitochondrial trafficking is normal in cultured sensory neurons from dt mice.
Collapse
Affiliation(s)
- Madeline Pool
- Molecular Medicine Program, Ottawa Health Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | | | | | | |
Collapse
|
50
|
Abstract
Much of our current understanding of the molecular physiology of kinesin has come from in vitro motility assays: indeed, the discovery of kinesin relied upon such assays. By marrying in vitro assays with novel instruments capable of resolving movements on the molecular scale, it has proved possible to make measurements on single motors. Such key parameters as the step size, stepping force, and force-velocity relationship for kinesin have been determined in this fashion, and should soon contribute to a molecular model for the movement of kinesin.
Collapse
Affiliation(s)
- S M Block
- Dept of Molecular Biology and the Princeton Materials Institute at Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|