1
|
Claeys L, Zhytnik L, Wisse LE, van Essen HW, Eekhoff EMW, Pals G, Bravenboer N, Micha D. Exploration of the skeletal phenotype of the Col1a1 +/Mov13 mouse model for haploinsufficient osteogenesis imperfecta type 1. Front Endocrinol (Lausanne) 2023; 14:1145125. [PMID: 36967771 PMCID: PMC10031054 DOI: 10.3389/fendo.2023.1145125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/17/2023] [Indexed: 03/29/2023] Open
Abstract
INTRODUCTION Osteogenesis Imperfecta is a rare genetic connective tissue disorder, characterized by skeletal dysplasia and fragile bones. Currently only two mouse models have been reported for haploinsufficient (HI) mild Osteogenesis Imperfecta (OI); the Col1a1 +/Mov13 (Mov13) and the Col1a1 +/-365 mouse model. The Mov13 mice were created by random insertion of the Mouse Moloney leukemia virus in the first intron of the Col1a1 gene, preventing the initiation of transcription. Since the development of the Mov13 mice almost four decades ago and its basic phenotypic characterization in the 90s, there have not been many further studies. We aimed to extensively characterize the Mov13 mouse model in order to critically evaluate its possible use for preclinical studies of HI OI. METHODS Bone tissue from ten heterozygous Mov13 and ten wild-type littermates (WT) C57BL/6J mice (50% males per group) was analyzed at eight weeks of age with bone histomorphometry, micro computed tomography (microCT), 3-point bending, gene expression of different collagens, as well as serum markers of bone turnover. RESULTS The Mov13 mouse presented a lower bone strength and impaired material properties based on our results of 3-point bending and microCT analysis respectively. In contrast, no significant differences were found for all histomorphometric parameters. In addition, no significant differences in Col1a1 bone expression were present, but there was a significant lower P1NP concentration, a bone formation marker, measured in serum. Furthermore, bone tissue of Mov13 mice presented significantly higher expression of collagens (Col1a2, Col5a1 and Col5a2), and bone metabolism markers (Bglap, Fgf23, Smad7, Edn1 and Eln) compared to WT. Finally, we measured a significantly lower Col1a1 expression in heart and skin tissue and also determined a higher expression of other collagens in the heart tissue. CONCLUSION Although we did not detect a significant reduction in Col1a1 expression in the bone tissue, a change in bone structure and reduction in bone strength was noted. Regrettably, the variability of the bone phenotype and the appearance of severe lymphoma in adult Mov13 mice, does not favor their use for the testing of new long-term drug studies. As such, a new HI OI type 1 mouse model is urgently needed.
Collapse
Affiliation(s)
- Lauria Claeys
- Department of Human Genetics, Amsterdam Movement Sciences, Tissue Function & Regeneration and Musculoskeletal Health, Amsterdam University Medical Centers (UMC) location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Lidiia Zhytnik
- Department of Human Genetics, Amsterdam Movement Sciences, Tissue Function & Regeneration and Musculoskeletal Health, Amsterdam University Medical Centers (UMC) location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Traumatology and Orthopeadics, Institute of Clinical Medicine, The University of Tartu, Tartu, Estonia
| | - Lisanne E. Wisse
- Department of Human Genetics, Amsterdam Movement Sciences, Tissue Function & Regeneration and Musculoskeletal Health, Amsterdam University Medical Centers (UMC) location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Huib W. van Essen
- Department of Clinical Chemistry, Amsterdam Movement Sciences, Tissue Function & Regeneration and Ageing & Vitality, Amsterdam University Medical Centers (UMC) location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - E. Marelise W. Eekhoff
- Department of Endocrinology and Metabolism, Amsterdam Rare Bone Disease Center, Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands
| | - Gerard Pals
- Department of Human Genetics, Amsterdam Movement Sciences, Tissue Function & Regeneration and Musculoskeletal Health, Amsterdam University Medical Centers (UMC) location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam Movement Sciences, Tissue Function & Regeneration and Ageing & Vitality, Amsterdam University Medical Centers (UMC) location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Dimitra Micha
- Department of Human Genetics, Amsterdam Movement Sciences, Tissue Function & Regeneration and Musculoskeletal Health, Amsterdam University Medical Centers (UMC) location Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Dimitra Micha,
| |
Collapse
|
2
|
Aberg T, Cavender A, Gaikwad JS, Bronckers ALJJ, Wang X, Waltimo-Sirén J, Thesleff I, D'Souza RN. Phenotypic Changes in Dentition of Runx2 Homozygote-null Mutant Mice. J Histochem Cytochem 2016; 52:131-9. [PMID: 14688224 DOI: 10.1177/002215540405200113] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Genetic and molecular studies in humans and mice indicate that Runx2 (Cbfa1) is a critical transcriptional regulator of bone and tooth formation. Heterozygous mutations in Runx2 cause cleidocranial dysplasia (CCD), an inherited disorder in humans and mice characterized by skeletal defects, supernumerary teeth, and delayed eruption. Mice lacking the Runx2 gene die at birth and lack bone and tooth development. Our extended phenotypic studies of Runx2 mutants showed that developing teeth fail to advance beyond the bud stage and that mandibular molar organs were more severely affected than maxillary molar organs. Runx2 (−/−) tooth organs, when transplanted beneath the kidney capsules of nude mice, failed to progress in development. Tooth epithelial-mesenchymal recombinations using Runx2 (+/+) and (−/−) tissues indicate that the defect in mesenchyme cannot be rescued by normal dental epithelium. Finally, our molecular analyses showed differential effects of the absence of Runx2 on tooth extracellular matrix (ECM) gene expression. These data support the hypothesis that Runx2 is one of the key mesenchymal factors that influences tooth morphogenesis and the subsequent differentiation of ameloblasts and odontoblasts.
Collapse
Affiliation(s)
- Thomas Aberg
- Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Kwon H, Park HS, Yu J, Hong S, Choi Y. Spatio-temporally controlled transfection by quantitative injection into a single cell. Biomaterials 2015. [PMID: 26222285 DOI: 10.1016/j.biomaterials.2015.07.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Transfection-based cellular control has been widely used in biology; however, conventional transfection methods cannot control spatio-temporal differences in gene expression or the quantity of delivered materials such as external DNA or RNA. Here, we present a non-viral and spatio-temporally controlled transfection technique of a quantitative injection into a single cell. DNA was quantitatively injected into a single cell at a desired location and time, and the optimal gene delivery and expression conditions were determined based on the amount of the delivered DNA and the transfection efficacy. Interestingly, an injection of 1500 DNAs produced an about average 30% gene expression efficiency, which was the optimal condition, and gene expression was sustained for more than 14 days. In a single cell, fluorescent intensity and polymerase chain reaction (PCR) results were compared for the quantity of gene expression. The high coincidence of both results suggests that the fluorescence intensity can reveal gene expression level which was investigated by PCR. In addition, 3 multiple DNA genes were successfully expressed in a single cell with different ratio. Overall, these results demonstrate that spatio-temporally controlled transfection by quantitative transfection is a useful technique for regulating gene expression in a single cell, which suggests that this technique may be used for stem cell research, including the creation of induced pluripotent stem (iPS) cells.
Collapse
Affiliation(s)
- Hyosung Kwon
- Department of Bio-convergence Engineering, Korea University, Seoul 136-701, South Korea
| | - Hang-soo Park
- Department of Integrated Biomedical and Life Science, Korea University, Seoul 136-701, South Korea
| | - Jewon Yu
- Department of Biomedical Engineering, Korea University, Seoul 136-701, South Korea
| | - Sunghoi Hong
- Department of Integrated Biomedical and Life Science, Korea University, Seoul 136-701, South Korea; School of Biosystem and Biomedical Science, Korea University, Seoul 136-701, South Korea.
| | - Yeonho Choi
- Department of Bio-convergence Engineering, Korea University, Seoul 136-701, South Korea; Department of Biomedical Engineering, Korea University, Seoul 136-701, South Korea.
| |
Collapse
|
4
|
Abstract
Children with the human immunodeficiency virus (HIV) have a higher probability of hard and soft oral tissue diseases because of their compromised immune systems and socioeconomic factors such as poor access to medical and dental care and limited availability of fluoridated water or toothpaste. To improve health outcomes and help monitor the progression of HIV, a preventive, child-specific oral health protocol for children with HIV that is easy to use and appropriate for all different resource settings should be established. Further, both medical and dental health practitioners should incorporate such a protocol into their care routine for HIV-infected children. Using proactive oral health risk assessments complemented by scheduled follow-up visits based on individual risk determination can prevent opportunistic infection, track the HIV disease trajectory, and monitor the effectiveness of highly active antiretroviral therapy (HAART) while improving the quality of life and longevity of children living with HIV.
Collapse
Affiliation(s)
- Francisco J Ramos-Gomez
- UCLA School of Dentistry, 10833 Le Conte Avenue, Box 951668, CHS Room 23-020B, Los Angeles, CA 90095-1668, USA.
| | | |
Collapse
|
5
|
Tjäderhane L, Vered M, Pääkkönen V, Peteri A, Mäki JM, Myllyharju J, Dayan D, Salo T. The expression and role of Lysyl oxidase (LOX) in dentinogenesis. Int Endod J 2012. [PMID: 23190333 DOI: 10.1111/iej.12031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM To establish whether eliminating Lysyl oxidase (LOX) gene would affect dentine formation. METHODOLOGY Newborn wild-type (wt) and homo- and heterozygous LOX knock-out (Lox(-/-) and Lox(+/-) , respectively) mice were used to study developing tooth morphology and dentine formation. Collagen aggregation in the developing dentine was examined histochemically with picrosirius red (PSR) staining followed by polarized microscopy. Because Lox(-/-) die at birth, adult wt and Lox(+/-) mouse tooth morphologies were examined with FESEM. Human odontoblasts and pulp tissue were used to study the expression of LOX and its isoenzymes with Affymetrix cDNA microarray. RESULTS No differences between Lox(-/-) , Lox(+/-) and wt mice developing tooth morphology were seen by light microscopy. Histochemically, however, teeth in wt mice demonstrated yellow-orange and orange-red polarization colours with PSR staining, indicating thick and more densely packed collagen fibres, whilst in Lox(-/-) and Lox(+/-) mice, most of the polarization colours were green to green-yellow, indicating thinner, less aggregated collagen fibres. Fully developed teeth did not show any differences between Lox(+/-) and wt mice with FESEM. Human odontoblasts expressed LOX and three of four of its isoenzymes. CONCLUSIONS The data indicate that LOX is not essential in dentinogenesis, even though LOX deletion may affect dentine matrix collagen thickness and packing. The absence of functional LOX may be compensated by LOX isoenzymes.
Collapse
Affiliation(s)
- L Tjäderhane
- Institute of Dentistry, University of Oulu, Oulu, Finland; Oulu University Hospital, Oulu, Finland. leo.Tja¨
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Cellular mechanism of decreased bone in Brtl mouse model of OI: imbalance of decreased osteoblast function and increased osteoclasts and their precursors. J Bone Miner Res 2008; 23:1983-94. [PMID: 18684089 PMCID: PMC2686922 DOI: 10.1359/jbmr.080804] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Brtl mouse, a knock-in model for moderately severe osteogenesis imperfecta (OI), has a G349C substitution in half of type I collagen alpha1(I) chains. We studied the cellular contribution to Brtl bone properties. Brtl cortical and trabecular bone are reduced before and after puberty, with BV/TV decreased 40-45%. Brtl ObS/BS is comparable to wildtype, and Brtl and wildtype marrow generate equivalent number of colony-forming units (CFUs) at both ages. However, OcS/BS is increased in Brtl at both ages (36-45%), as are TRACP(+) cell numbers (57-47%). After puberty, Brtl ObS/BS decreases comparably to wildtype mice, but osteoblast matrix production (MAR) decreases to one half of wildtype values. In contrast, Brtl OcS falls only moderately (approximately 16%), and Brtl TRACP staining remains significantly elevated compared with wildtype. Consequently, Brtl BFR decreases from normal at 2 mo to one half of wildtype values at 6 mo. Immunohistochemistry and real-time RT-PCR show increased RANK, RANKL, and osteoprotegerin (OPG) levels in Brtl, although a normal RANKL/OPG ratio is maintained. TRACP(+) precursors are markedly elevated in Brtl marrow cultures and form more osteoclasts, suggesting that osteoclast increases arise from more RANK-expressing precursors. We conclude that osteoblasts and osteoclasts are unsynchronized in Brtl bone. This cellular imbalance results in declining BFR as Brtl ages, consistent with reduced femoral geometry. The disparity in cellular number and function results from poorly functioning osteoblasts in addition to increased RANK-expressing precursors that respond to normal RANKL/OPG ratios to generate more bone-resorbing osteoclasts. Interruption of the stimulus that increases osteoclast precursors may lead to novel OI therapies.
Collapse
|
7
|
Stankovic KM, Kristiansen AG, Bizaki A, Lister M, Adams JC, McKenna MJ. Studies of Otic Capsule Morphology and Gene Expression in the Mov13 Mouse – An Animal Model of Type I Osteogenesis Imperfecta. Audiol Neurootol 2007; 12:334-43. [PMID: 17595534 DOI: 10.1159/000104789] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 03/28/2007] [Indexed: 11/19/2022] Open
Abstract
Type I osteogenesis imperfecta (OI) is a disorder of skeletal bones characterized by bone fragility and blue sclera, which can result from mutations in genes encoding for type I collagen--the COL1A1 and COL1A2 genes. Fifty percent of patients with type I OI develop hearing loss and associated histopathological changes in the otic capsule that are indistinguishable from otosclerosis, a major cause of acquired hearing loss. In an attempt to elucidate molecular and cellular mechanisms of hearing loss in type I OI, we have studied the Mov13 mouse, which has served as an animal model of type I OI by virtue of exhibiting variable transcriptional block of the COL1A1 gene. We studied the morphometry of the Mov13 otic capsule and compared expression levels of 60 genes in the otic capsule with those in the tibia and parietal bone of the Mov13 and wild-type mice. The degree of transcriptional block of the COL1A1 gene and its downstream effects differed significantly between the bones examined. We found that expression levels of bone morphogenetic protein 3 and nuclear factor kappa-B1 best distinguished Mov13 otic capsule from wild-type otic capsule, and that osteoprotegerin, caspase recruitment domain containing protein 1, and partitioning defective protein 3 best distinguished Mov13 otic capsule from Mov13 tibia and parietal bone. Although the Mov13 mouse did not demonstrate evidence of active abnormal otic capsule remodeling as seen in type I OI and otosclerosis, studying gene expression in the Mov13 mouse has provided evidence that osteocytes of the otic capsule differ from osteocytes in other bones.
Collapse
Affiliation(s)
- Konstantina M Stankovic
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Mass. 02114-3096, USA
| | | | | | | | | | | |
Collapse
|
8
|
Kamoun-Goldrat AS, Le Merrer MF. Animal models of osteogenesis imperfecta and related syndromes. J Bone Miner Metab 2007; 25:211-8. [PMID: 17593490 DOI: 10.1007/s00774-007-0750-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 02/27/2007] [Indexed: 01/24/2023]
Affiliation(s)
- Agnès S Kamoun-Goldrat
- Paris Descartes University, INSERM U781, Tour Lavoisier, Hôpital Necker, 75743, Paris, Cedex 15, France.
| | | |
Collapse
|
9
|
Weiss KM. A tooth, a toe, and a vertebra: The genetic dimensions of complex morphological traits. Evol Anthropol 2005. [DOI: 10.1002/evan.1360020407] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Bahramian MB, Zarbl H. GENE impedance: a natural process for control of gene expression and the origin of RNA interference. J Theor Biol 2005; 233:301-14. [PMID: 15652140 DOI: 10.1016/j.jtbi.2004.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 09/21/2004] [Accepted: 10/07/2004] [Indexed: 10/26/2022]
Abstract
Gene expression is controlled by coordinated transcriptional and post-transcriptional mechanisms. Normally, expression of a gene switches on and off in response to specific physiological signals that are triggered by cellular demand for the gene products at a given time. Based on our previous studies and the scientific literature, we hypothesize that when a gene promoter switches to transcriptional repression mode, transcription of the gene ceases, and a small amount of double-stranded RNA (dsRNA) is synthesized by the RNA polymerase switching to the opposite DNA strand at the termination region of the gene. These dsRNA structures, which result from normal transcriptional repression, can then be processed into short interfering RNAs (siRNAs) within the nucleus. These molecules subsequently direct specific cleavage of the cognate mRNAs and interfere with their translation through sequence complementarily. We further hypothesize that cellular defense mechanisms invoked by invading genetic elements could be rooted in this fundamental regulatory pathway that we call "GENE impedance", or simply, GENEi. Here, we present a working model that illustrates how transcription-termination and transcription-arrest can contribute to the regulation of gene expression via GENEi. In our model RNAi is only one component of GENEi, which is a more generalized mechanism of gene regulation.
Collapse
|
11
|
Wenstrup RJ, Florer JB, Brunskill EW, Bell SM, Chervoneva I, Birk DE. Type V collagen controls the initiation of collagen fibril assembly. J Biol Chem 2004; 279:53331-7. [PMID: 15383546 DOI: 10.1074/jbc.m409622200] [Citation(s) in RCA: 361] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vertebrate collagen fibrils are heterotypically composed of a quantitatively major and minor fibril collagen. In non-cartilaginous tissues, type I collagen accounts for the majority of the collagen mass, and collagen type V, the functions of which are poorly understood, is a minor component. Type V collagen has been implicated in the regulation of fibril diameter, and we reported recently preliminary evidence that type V collagen is required for collagen fibril nucleation (Wenstrup, R. J., Florer, J. B., Cole, W. G., Willing, M. C., and Birk, D. E. (2004) J. Cell. Biochem. 92, 113-124). The purpose of this study was to define the roles of type V collagen in the regulation of collagen fibrillogenesis and matrix assembly. Mouse embryos completely deficient in pro-alpha1(V) chains were created by homologous recombination. The col5a1-/- animals die in early embryogenesis, at approximately embryonic day 10. The type V collagen-deficient mice demonstrate a virtual lack of collagen fibril formation. In contrast, the col5a1+/- animals are viable. The reduced type V collagen content is associated with a 50% reduction in fibril number and dermal collagen content. In addition, relatively normal, cylindrical fibrils are assembled with a second population of large, structurally abnormal collagen fibrils. The structural properties of the abnormal matrix are decreased relative to the wild type control animals. These data indicate a central role for the evolutionary, ancient type V collagen in the regulation of fibrillogenesis. The complete dependence of fibril formation on type V collagen is indicative of the critical role of the latter in early fibril initiation. In addition, this fibril collagen is important in the determination of fibril structure and matrix organization.
Collapse
Affiliation(s)
- Richard J Wenstrup
- Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Ave., ML 4006, Cincinnati, OH 45229, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Dai XM, Zong XH, Akhter MP, Stanley ER. Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblast behavior in developing bone. J Bone Miner Res 2004; 19:1441-1451. [PMID: 15312244 DOI: 10.1359/jbmr.040514] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Revised: 03/15/2004] [Accepted: 05/07/2004] [Indexed: 11/18/2022]
Abstract
UNLABELLED Studies of the influence of the osteoclast on bone development, in particular on mineralization and the formation of the highly organized lamellar architecture of cortical bone by osteoblasts, have not been reported. We therefore examined the micro- and ultrastructure of the developing bones of osteoclast-deficient CSF-1R-nullizygous mice (Csf1r(-/-) mice). INTRODUCTION Colony-stimulating factor-1 receptor (CSF-1R)-mediated signaling is critical for osteoclastogenesis. Consequently, the primary defect in osteopetrotic Csf1r(-/-) mice is severe osteoclast deficiency. Csf1r(-/-) mice therefore represent an ideal model system in which to investigate regulation by the osteoclast of osteoblast-mediated bone formation during development. MATERIALS AND METHODS Bones of developing Csf1r(-/-) mice and their littermate controls were subjected to X-ray analysis, histological examination by light microscopy and transmission electron microscopy, and a three-point bending assay to test their biomechanical strength. Bone mineralization in embryonic and postnatal bones was visualized by double staining with alcian blue and alizarin red. Bone formation by osteoblasts in these mice was also examined by double-calcein labeling and in femoral anlagen transplantation experiments. RESULTS AND CONCLUSIONS Frequent spontaneous fractures and decreased strength parameters (ultimate load, yield load, and stiffness) in a three-point bending assay showed the biomechanical weakness of long bones in Csf1r(-/-) mice. Histologically, these bones have an expanded epiphyseal chondrocyte region, a poorly formed cortex with disorganized collagen fibrils, and a severely disturbed matrix structure. The mineralization of their bone matrix at secondary sites of ossification is significantly reduced. While individual osteoblasts in Csf1r(-/-) mice have preserved their typical ultrastructure and matrix depositing activity, the layered organization of osteoblasts on the bone-forming surface and the direction of their matrix deposition toward the bone surface have been lost, resulting in their abnormal entrapment by matrix. Moreover, we also found that (1) osteoblasts do not express CSF-1R, (2) the bone defects in Csf1r(-/-) embryos develop later than the development of osteoclasts in normal embryos, and (3) the transplanted Csf1r(-/-) femoral anlagen develop normally in the presence of wildtype osteoclasts. These results suggest that the dramatic bone defects in Csf1r(-/-) mice are caused by a deficiency of the osteoclast-mediated regulation of osteoblasts and that the osteoclast plays an important role in regulating osteoblastic bone formation during development, in particular, in the formation of lamellar bone.
Collapse
Affiliation(s)
- Xu-Ming Dai
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
13
|
Gotkin MG, Ripley CR, Lamande SR, Bateman JF, Bienkowski RS. Intracellular trafficking and degradation of unassociated proalpha2 chains of collagen type I. Exp Cell Res 2004; 296:307-16. [PMID: 15149860 DOI: 10.1016/j.yexcr.2004.01.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Revised: 01/23/2004] [Indexed: 10/26/2022]
Abstract
Procollagen I is a trimer consisting of two proalpha1(I) chains and one proalpha 2(I) chain. In certain cases of mild osteogenesis imperfecta, abnormal proalpha1(I) chains are degraded very soon after synthesis. As a consequence, the cells produce excess proalpha2(I) chains, which cannot form trimers and are not secreted. The objective of this work was to determine the intracellular fate of unassociated proalpha2(I) chains. Mov13 mouse fibroblasts, which do not synthesize proalpha1(I) mRNA, but do produce proalpha2(I) mRNA, were incubated with radioactive amino acids using pulse-chase protocols, and proteins were analyzed by gel electrophoresis, autoradiography, and Western blotting. Mov13 cells produced proalpha2(I) chains that were degraded intracellularly within 30 min. Degradation was inhibited when cells were treated with brefeldin-A, which blocks transit from endoplasmic reticulum to Golgi. Fixed cells exposed to various immunofluorescence markers and imaged by confocal laser scanning microscopy showed that proalpha2(I) chains colocalized with Golgi and lysosome markers. Degradation was inhibited and chains were secreted when cells were treated with wortmannin, which blocks trafficking to lysosomes. These results demonstrate that unassociated proalpha2(I) chains leave the endoplasmic reticulum, transit the Golgi, and enter lysosomes where they are degraded.
Collapse
Affiliation(s)
- Marilyn G Gotkin
- Program in Biology, Graduate Center of the City University of New York, New York 11016, USA
| | | | | | | | | |
Collapse
|
14
|
Rahkonen O, Su M, Hakovirta H, Koskivirta I, Hormuzdi SG, Vuorio E, Bornstein P, Penttinen R. Mice with a deletion in the first intron of the Col1a1 gene develop age-dependent aortic dissection and rupture. Circ Res 2003; 94:83-90. [PMID: 14630726 DOI: 10.1161/01.res.0000108263.74520.15] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The functional significance of the first intron of the Col1a1 gene in regulation of type I collagen synthesis remains uncertain. A previous study in mice established that a mutated Col1a1 allele that lacked a large fraction of the first intron, but retained the sequences required for normal splicing, was subject to an age- and tissue-dependent decrease in expression. In this study, we report that mice homozygous for this deletion are predisposed to dissection and rupture of the aorta during their adult life. Aortic dissection was not detected in autopsies of heterozygous animals or their littermate controls. Electron micrographs revealed fewer collagen fibrils and less compacted, irregular elastic lamellae in the aortic walls of homozygous mutant animals. Northern analysis of aortic RNA from 2.5- and 12-month-old homozygous mutant mice revealed that Col1a1 mRNA levels were decreased by 29% and 42%, respectively, relative to those of control littermates. In 12-month-old heterozygotes, the decrease was 32%. Allele-specific amplification of heterozygous cDNAs demonstrated that this reduction was limited to transcripts from the mutant allele. The collagen content of the aortas of homozygous mutant mice was also significantly lower in comparison to that of age-matched, control animals. These data establish that the integrity of the aortic wall depends on an adequate content of type I collagen, and that continued synthesis of collagen in the aorta as a function of age is critically dependent on sequences in the first intron of the Col1a1 gene.
Collapse
Affiliation(s)
- Otto Rahkonen
- Department of Medical Biochemistry and Molecular Biology, University of Turku, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
McKenna MJ, Kristiansen AG, Tropitzsch AS. Similar COL1A1 expression in fibroblasts from some patients with clinical otosclerosis and those with type I osteogenesis imperfecta. Ann Otol Rhinol Laryngol 2002; 111:184-9. [PMID: 11860074 DOI: 10.1177/000348940211100214] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Because of the clinical and histopathologic similarities between otosclerosis and type I osteogenesis imperfecta, we examined COL1A1 messenger RNA (mRNA) expression in cultured fibroblasts from patients with clinical otosclerosis to determine whether abnormalities of expression of COL1A1 were present, as has been reported in type I osteogenesis imperfecta. Type I osteogenesis imperfecta has been found to result from mutations in the COL1A1 gene that result in null expression of the mutant allele. Patients with clinical otosclerosis were genotyped for the presence of an expressed 4 base-pair insertion polymorphism in the 3' region of the COL1A1 gene. Skin biopsies were performed, and cultured fibroblast cell lines were established from patients who were heterozygous for the polymorphism. Allelic expression was examined by reverse transcription-polymerase chain reaction and silver-stained polyacrylamide gel electrophoresis. Two of 9 patients with clinical otosclerosis demonstrated null or reduced expression of one COL1A1 allele. The differential expression of the two COL1A1 alleles in all subjects was also examined by a semiquantitative method using an ABI Prism 7700 Sequence Detection System (Taqman). We did this examination to determine whether milder abnormalities in COL1A1 expression might account for the development of otosclerosis in the 7 clinical cases that did not reveal evidence of null expression by the gel technique. Of the same 2 cases of otosclerosis that demonstrated evidence of null expression by gel electrophoresis, both were found to have significant differences in COL1A1 mRNA expression by the Taqman analysis. The remaining 7 cases revealed equal expression of the two COL1A1 alleles similar to that seen in controls. These results suggest that mutations in COL1A1 that are similar to those that occur in type I osteogenesis imperfecta may account for a small percentage of cases of otosclerosis, and that the majority of cases of clinical otosclerosis are related to other genetic abnormalities that have yet to be identified.
Collapse
Affiliation(s)
- Michael J McKenna
- Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
16
|
Gaikwad JS, Hoffmann M, Cavender A, Bronckers AL, D'Souza RN. Molecular insights into the lineage-specific determination of odontoblasts: the role of Cbfa1. Adv Dent Res 2001; 15:19-24. [PMID: 12640733 DOI: 10.1177/08959374010150010501] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of stable transcription complexes in initiating and consolidating programs of gene expression during lineage specification has been extensively studied. Despite the progress made in the identification of key molecules of tooth initiation and patterning, the mechanisms leading to cell differentiation during odontogenesis are unknown. Odontoblasts are exclusive dentin-producing cells that are phenotypically and functionally distinct from osteoblasts. However, not much is known about the precise determinants of odontoblast terminal differentiation--in particular, how the fate of these cells becomes delineated from that of osteogenic mesenchyme. Cbfa1(-/-) mice completely lack osteoblasts and bone, while tooth development arrests at the time of odontoblast differentiation. The purpose of this paper is to overview our studies on the role of Cbfa1 in odontoblast determination and differentiation using the Cbfa1(-/-) mouse model and various experimental approaches. Our expression analyses confirm the down-regulation of Cbfa1 expression in newly differentiated and functional odontoblasts. Second, we demonstrate that Cbfa1(-/-) incisor organs arrest at a later stage than molars, and that alpha 1 (I) collagen, a marker of odontoblast differentiation shared in common with osteoblasts, is not significantly affected by the absence of the transcription factor. Interestingly, Dspp expression in Cbfa1(-/-) appeared markedly down-regulated in putative odontoblasts. The overexpression of Cbfa1 in an odontoblast cell line (MDPC-23) results in the selective down-regulation of Dspp and not type I collagen. It is likely that, in addition to its influence on tooth epithelial morphogenesis, Cbfa1 plays a non-redundant and stage-specific role in the lineage determination and terminal differentiation of odontoblasts from dental papilla mesenchyme.
Collapse
Affiliation(s)
- J S Gaikwad
- Department of Orthodontics, Dental Branch, Room 370, University of Texas Health Science Center at Houston, 6516 John Freeman Avenue, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
17
|
Stover ML, Wang CK, McKinstry MB, Kalajzic I, Gronowicz G, Clark SH, Rowe DW, Lichtler AC. Bone-directed expression of Col1a1 promoter-driven self-inactivating retroviral vector in bone marrow cells and transgenic mice. Mol Ther 2001; 3:543-50. [PMID: 11319916 DOI: 10.1006/mthe.2001.0293] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gene therapy of bone would benefit from the availability of vectors that provide stable, osteoblast-specific expression. This would allow bone-specific expression of Col1a1 cDNAs for treatment of osteogenesis imperfecta. In addition, such a vector would restrict expression of secreted therapeutic proteins to the bone-synthesizing regions of the bone marrow after ex vivo transduction of marrow stromal cells and reintroduction of the cells into patients. Retrovirus vectors stably integrate into target cell genomes; however, long-term regulated expression from internal cellular promoters has not been consistently achieved. In some cases this is due to a stem cell-specific mechanism for transcriptional repression of retroviruses. We evaluated the ability of self-inactivating ROSA-derived vectors containing a bone-directed 2.3-kb rat Col1a1 promoter to display osteoblast-specific expression. In vitro expression was examined in bone marrow stromal cell cultures induced to undergo osteoblastic differentiation. In vivo expression was evaluated in chimeric mice derived from transduced embryonic stem cells. The results indicate that self-inactivating retrovirus vectors containing the Col1a1 promoter are not permanently inactivated in embryonic stem cells and are specifically expressed in osteoblasts in vivo and in vitro. Thus these vectors should be useful for bone-directed gene therapy.
Collapse
Affiliation(s)
- M L Stover
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Namgung U, Routtenberg A. Transcriptional and post-transcriptional regulation of a brain growth protein: regional differentiation and regeneration induction of GAP-43. Eur J Neurosci 2000; 12:3124-36. [PMID: 10998096 DOI: 10.1046/j.1460-9568.2000.00196.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During axonal regeneration synthesis of different growth-associated proteins is increased. As yet there is no clear picture of the specific contribution made by the transcriptional and post-transcriptional machinery that provides the gene products necessary for process outgrowth. Here we focus our study on the transcriptional processes in neurons by using intron-directed in situ hybridization to the primary transcript of a brain growth protein GAP-43. In most brain regions, levels of primary transcript expression of GAP-43 were highly correlated with levels of its mRNA. However, there were notable dissociations: in hippocampal granule cells, high levels of primary transcript were evident yet no GAP-43 mRNA was detected. In locus coeruleus the reverse was true; there were high levels of GAP-43 mRNA but no detectable primary transcript. A primary transcript antitermination mechanism is proposed to explain the first dissociation, and a post-transcriptional mRNA stabilization mechanism to explain the second. Transcriptional activation during nerve regeneration was monitored by assessing primary transcript induction of GAP-43 in mouse facial motor neurons. This induction, as well as its mRNA, was restricted to the side of the facial nerve crush. Increases were first observed at 24 h with a rapid increase in both measures up to 3 days. To our knowledge, this is the first in vivo evidence demonstrating transcriptional activation of a brain growth protein in regenerating neurons. The present study points to the GAP-43 transcriptional mechanism as a key determinant of GAP-43 synthesis. Along with the recruitment of post-transcriptional mechanisms, such synthesis occurs in response to both intrinsic developmental programs and extrinsic environmental signals.
Collapse
Affiliation(s)
- U Namgung
- Cresap Neuroscience Laboratory, 2021 Sheridan Road, Northwestern University, Evanston, IL60208, USA
| | | |
Collapse
|
19
|
Jochum W, David JP, Elliott C, Wutz A, Plenk H, Matsuo K, Wagner EF. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med 2000; 6:980-4. [PMID: 10973316 DOI: 10.1038/79676] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bone formation by osteoblasts is essential for skeletal growth and remodeling. Fra-1 is a c-Fos-related protein belonging to the AP-1 family of transcription factors. Here we show that transgenic mice overexpressing Fra-1 in various organs develop a progressive increase in bone mass leading to osteosclerosis of the entire skeleton, which is due to a cell-autonomous increase in the number of mature osteoblasts. Moreover, osteoblast differentiation, but not proliferation, was enhanced and osteoclastogenesis was also elevated in vitro. These data indicate that, unlike c-Fos, which causes osteosarcomas, Fra-1 specifically enhances bone formation, which may be exploited to stimulate bone formation in pathological conditions.
Collapse
Affiliation(s)
- W Jochum
- Research Institute of Molecular Pathology (I.M.P.), Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
20
|
Rynditch AV, Zoubak S, Tsyba L, Tryapitsina-Guley N, Bernardi G. The regional integration of retroviral sequences into the mosaic genomes of mammals. Gene 1998; 222:1-16. [PMID: 9813219 DOI: 10.1016/s0378-1119(98)00451-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have reviewed here three sets of data concerning the integration of retroviral sequences in the mammalian genome: (i) our experimental localization of a number of proviruses integrated in isochores characterized by different GC levels; (ii) results from other laboratories on the localization of retroviral sequences in open chromatin regions and/or next to CpG islands; and (iii) our compositional analysis of genes located in the neighborhood of integrated retroviral sequences. The three sets of data have provided a very consistent picture in that a compartmentalized, isopycnic integration of expressed proviruses appears to be the rule ('isopycnic' refers to the compositional match between viral and host sequences around the integration site). The results reviewed here suggest that: (i) integration of proviral sequences is targeted initially towards 'open chromatin regions'; while these exist in both GC-rich and GC-poor isochores, the 'open chromatin regions' of GC-rich isochores are the main targets for integration of retroviral sequences because of their much greater abundance; (ii) isopycnicity is associated with stability of integration; indeed, even non-expressed integrated retroviral sequences tend to show an isopycnic localization in the genome; (iii) transcription of integrated viral sequences (like transcription of host genes) appears to be associated, as a rule, with an isopycnic localization, as indicated by transcribed sequences that show an isopycnic integration and act in trans; (iv) selection plays a role in the choice of specific sites within an isopycnic region; in exceptional cases [such as mouse mammary tumor virus (MMTV) activating GC-rich oncogenes], selection may override isopycnicity.
Collapse
Affiliation(s)
- A V Rynditch
- Laboratoire de Génétique Moléculaire, Institut Jacques Monod, 2 Place Jussieu, 75005, Paris, France
| | | | | | | | | |
Collapse
|
21
|
Hormuzdi SG, Penttinen R, Jaenisch R, Bornstein P. A gene-targeting approach identifies a function for the first intron in expression of the alpha1(I) collagen gene. Mol Cell Biol 1998; 18:3368-75. [PMID: 9584177 PMCID: PMC108918 DOI: 10.1128/mcb.18.6.3368] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/1998] [Accepted: 03/10/1998] [Indexed: 02/07/2023] Open
Abstract
The role of the first intron of the Col1A1 gene in the regulation of type I collagen synthesis remains uncertain and controversial despite numerous studies that have made use of transgenic and transfection experiments. To examine the importance of the first intron in regulation of the gene, we have used the double-replacement method of gene targeting to introduce, by homologous recombination in embryonic stem (ES) cells, a mutated Col1A1 allele (Col-IntDelta). The Col-IntDelta allele contains a 1. 3-kb deletion within intron I and is also marked by the introduction of a silent mutation that created an XhoI restriction site in exon 7. Targeted mice were generated from two independently derived ES cell clones. Mice carrying two copies of the mutated gene were born in the expected Mendelian ratio, developed normally, and showed no apparent abnormalities. We used heterozygous mice to determine whether expression of the mutated allele differs from that of the normal allele. For this purpose, we developed a reverse transcription-PCR assay which takes advantage of the XhoI polymorphism in exon 7. Our results indicate that in the skin, and in cultured cells derived from the skin, the intron plays little or no role in constitutive expression of collagen I. However, in the lungs of young mice, the mutated allele was expressed at about 75% of the level of the normal allele, and in the adult lung expression was decreased to less than 50%. These results were confirmed by RNase protection assays which demonstrated a two- to threefold decrease in Col1A1 mRNA in lungs of homozygous mutant mice. Surprisingly, in cultured cells derived from the lung, the mutated allele was expressed at a level similar to that of the wild-type allele. Our results also indicated an age-dependent requirement for the intact intron in expression of the Col1A1 gene in muscle. Since the intron is spliced normally, and since the mutant allele is expressed as well as the wild-type allele in the skin, reduced mRNA stability is unlikely to contribute to the reduction in transcript levels. We conclude that the first intron of the Col1A1 gene plays a tissue-specific and developmentally regulated role in transcriptional regulation of the gene. Our experiments demonstrate the utility of gene-targeting techniques that produce subtle mutations for studies of cis-acting elements in gene regulation.
Collapse
Affiliation(s)
- S G Hormuzdi
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
22
|
Frenzel K, Amann G, Lubec B. Deficiency of laryngeal collagen type II in an infant with respiratory problems. Arch Dis Child 1998; 78:557-9. [PMID: 9713015 PMCID: PMC1717609 DOI: 10.1136/adc.78.6.557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A dysmorphic infant is described who presented with laryngeal collapse leading to intubation and respiratory problems that were assigned clinically to the Sussman syndrome. The baby had repeated episodes of respiratory distress necessitating assisted ventilation. At 6 months old, uvulopharyngopalatotomy was done to enlarge the supraglottic airway without any benefit. Surgical reduction of the tongue and cricoid splitting did not ameliorate the respiratory distress; repeated extubation attempts failed with the baby developing stridor, respiratory distress, and episodes of cardiac arrest. At 10 months old he developed seizures and computed tomography showed diffuse cerebral atrophy consisted with hypoxic-ischaemic damage. He died at 17 months old. Western blots using antibodies against collagen alpha 1 (II) showed an absence of collagen type II in laryngeal tissue, which may explain the laryngeal collapse and impaired respiratory functions.
Collapse
Affiliation(s)
- K Frenzel
- University of Vienna, Department of Neonatology, Austria
| | | | | |
Collapse
|
23
|
|
24
|
Harbers K, Müller U, Grams A, Li E, Jaenisch R, Franz T. Provirus integration into a gene encoding a ubiquitin-conjugating enzyme results in a placental defect and embryonic lethality. Proc Natl Acad Sci U S A 1996; 93:12412-7. [PMID: 8901595 PMCID: PMC38005 DOI: 10.1073/pnas.93.22.12412] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ubiquitin-conjugating enzymes (E2 or Ubc) constitute a family of conserved proteins that play a key role in ubiquitin-dependent degradation of proteins in eukaryotes. We describe here a transgenic mouse strain where retrovirus integration into an Ubc gene, designated UbcM4, results in a recessive-lethal mutation. UbcM4 is the mouse homologue of the previously described human UbcH7 that is involved in the in vitro ubiquitination of several proteins including the tumor suppressor protein p53. The provirus is located in the first intron of the gene. When both alleles are mutated the level of steady-state mRNA is reduced by about 70%. About a third of homozygous mutant embryos die around day 11.5 of gestation. Embryos that survive that stage are growth retarded and die perinatally. The lethal phenotype is most likely caused by impairment of placenta development as this is the only organ that consistently showed pathological defects. The placental labyrinth is drastically reduced in size and vascularization is disturbed. The UbcM4 mouse mutant represents the first example in mammals of a mutation in a gene involved in ubiquitin conjugation. Its recessive-lethal phenotype demonstrates that the ubiquitin system plays an essential role during mouse development.
Collapse
Affiliation(s)
- K Harbers
- Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie, Universität Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Iruela-Arispe ML, Vernon RB, Wu H, Jaenisch R, Sage EH. Type I collagen-deficient Mov-13 mice do not retain SPARC in the extracellular matrix: implications for fibroblast function. Dev Dyn 1996; 207:171-83. [PMID: 8906420 DOI: 10.1002/(sici)1097-0177(199610)207:2<171::aid-aja5>3.0.co;2-e] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Mov-13 strain of mice was created by the insertion of the murine Moloney leukemia virus into the first intron of the alpha 1 (I) collagen gene. Consequently, Mov-13 embryos do not transcribe alpha 1 (I) collagen mRNA and lack type I collagen protein in the extracellular matrix (ECM). Homozygotes die within 12-14 days of embryonic development, in part from the rupture of large blood vessels, and also exhibit deficiencies in hematopoesis and assembly of the ECM (Lohler et al. [1984] Cell 38:597-607). Several matricellular proteins, proteoglycans, and growth factors bind to type I collagen, e.g., fibronectin, secreted protein acidic and rich in cysteine (SPARC), decorin, and transforming growth factor-beta. Here we investigate the expression and function of SPARC in the absence of type I collagen. We show that fibroblasts isolated from Mov-13 homozygous, heterozygous, and wild-type embryos transcribed and translated SPARC mRNA in vitro. However, accumulation of extracellular SPARC was severely affected in the tissues of Mov-13 homozygotes, whereas extracellular deposition of the secreted glycoproteins fibronectin and type III collagen was not altered. Since SPARC has been shown to be a regulator of cell shape, the functional consequences of the absence of extracellular SPARC were evaluated in collagen gel contraction assays. Fibroblasts isolated from homozygous Mov-13 mice did not contract native type I collagen gels as efficiently as fibroblasts from heterozygous littermates; however, addition of exogenous SPARC enhanced the contraction of collagen by homozygous Mov-13 fibroblasts. The stimulatory effect of SPARC was blocked by antibodies specific for the amino terminus of the protein. These results provide evidence that type I collagen is one of the major extracellular proteins that binds SPARC in vivo. Furthermore, the capacity of fibroblasts to contract ECM in vitro is enhanced by extracellular SPARC. We therefore propose that the remodeling of ECM by cells in vivo is regulated in part by a specific interaction between SPARC and type I collagen.
Collapse
Affiliation(s)
- M L Iruela-Arispe
- Department of Biological Structure, University of Washington School of Medicine, Seattle 98195, USA
| | | | | | | | | |
Collapse
|
26
|
MacNeil RL, Berry J, Strayhorn C, Somerman MJ. Expression of bone sialoprotein mRNA by cells lining the mouse tooth root during cementogenesis. Arch Oral Biol 1996; 41:827-35. [PMID: 9022920 DOI: 10.1016/s0003-9969(96)00051-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Adhesion molecules are considered to have an active role in controlling cell differentiation, although the mechanisms involved have yet to be determined. The developing tooth provides an excellent model to use for determining the factors/processes regulating cell differentiation. The studies presented here focused specifically on the timed and spatial expression of a bone-associated adhesion molecule, bone sialoprotein, during tooth root development. Mandibular tissues in the first molar region of CD-1 mice, at sequential stages of development, were analysed by in situ hybridization. The results demonstrate distinct expression of bone sialoprotein in surrounding bone at early stages of tooth development. At stages of active cementogenesis, bone sialoprotein transcripts were specific to cells lining the root surface, with limited expression in the surrounding connective tissue (periodontal ligament) region. The strong expression of bone sialoprotein, a mineral-specific protein having the capacity to act as a nucleator of hydroxyapatite in vitro, by cells lining the root surface at early stages of cementogenesis suggests that this molecule is operative in the cell/matrix events that accompany cementum formation.
Collapse
Affiliation(s)
- R L MacNeil
- Department of Periodontics/Prevention/Geriatrics, University of Michigan, Ann Arbor 48109-1078, USA
| | | | | | | |
Collapse
|
27
|
Waltimo J, Ojanotko-Harri A, Lukinmaa PL. Mild forms of dentinogenesis imperfecta in association with osteogenesis imperfecta as characterized by light and transmission electron microscopy. J Oral Pathol Med 1996; 25:256-64. [PMID: 8835824 DOI: 10.1111/j.1600-0714.1996.tb01381.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Osteogenesis imperfecta (OI) results from various gene mutations leading to defects in type I collagen, which is the major component of both bone and dentin. Yet dentinogenesis imperfecta (DI) is found only in half of the patients with OI. Here we document patients from three families with OI and DI lacking the clinical and radiographic features of DI in permanent teeth. However, light and transmission electron microscopic studies of dentin of deciduous and permanent teeth revealed various changes in the morphology of the dentinal tubules and collagen fibers. In one family, diagnosis of DI preceded that of OI. The grade of severity of dentinal manifestations in patients with OI apparently forms a continuum from normal dentin structure to severe DI, and the marked difficulty in diagnosing mild DI may have led to underestimating its frequency. Furthermore, patients with DI should be carefully examined for the possible presence of OI.
Collapse
Affiliation(s)
- J Waltimo
- Department of Pedodontics, University of Helsinki, Finland
| | | | | |
Collapse
|
28
|
Bornstein P. Regulation of expression of the alpha 1 (I) collagen gene: a critical appraisal of the role of the first intron. Matrix Biol 1996; 15:3-10. [PMID: 8783182 DOI: 10.1016/s0945-053x(96)90121-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The transcriptional regulation of the genes encoding the alpha 1 (I) collagen chains is necessarily complex since these genes are expressed at widely different levels, and in a cell- and tissue-specific fashion. In the case of the alpha 1 (I) gene, there is substantial, but controversial, evidence for an involvement of the first intron in the tissue-specific expression of the gene. This evidence is based largely on transfection of cells with collagen-reporter gene constructs and on studies of transgenic mice. In this review, I propose a number of reason for the conflicting data in the literature: 1) the cell-specific nature of the intronic effect; thus, not all cultured, collagen-synthesizing cells will demonstrate an intronic effect by transfection; 2) the possibility that functionally equivalent regulatory elements are placed in different regions of the alpha 1 (I) gene in different species; and 3) the possibility that functionally redundant sequences exist within the alpha 1 (I) gene, which would permit other regions to substitute for the first intron.
Collapse
Affiliation(s)
- P Bornstein
- Department of Biochemistry University of Washington, Seattle, Washington, USA
| |
Collapse
|
29
|
Moser T, Harbers K, Kratochwil K. Tissue- and stage-specific activation of an endogenous provirus after transcription through its integration site in the opposite orientation. Mol Cell Biol 1996; 16:384-9. [PMID: 8524319 PMCID: PMC231013 DOI: 10.1128/mcb.16.1.384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Endogenous proviruses of the Moloney murine leukemia retrovirus (Mo-MuLV) are transcriptionally blocked in early embryos and in general remain silent even when the tissues have become permissive to the expression of newly integrated copies. Eventually, activation in presumably very few cells initiates rapid superinfection leading to viremia and leukemia, but the processes leading to provirus activation are unknown. Differences in the onset and development of viremia between several mouse strains carrying an endogenous Mo-MuLV (Mov lines) are attributed to a chromosomal position effect, but neither cell type nor stage of provirus activation is known for any strain. We have now monitored the appearance of viral transcripts and particles in the Mov13 strain, which carries the Mo-MuLV provirus in inverted orientation in the first intron of a collagen gene (Col1a1) with well-characterized transcriptional activity. We report obligatory tissue- and stage-specific virus activation in osteoblasts and odontoblasts. The significance of this activation pattern is indicated by the fact that of the great variety of cells expressing the wild-type collagen gene, only these two cell types can also transcribe the mutant allele including its viral insert. We propose that this transcription of the proviral genome, albeit in the opposite direction, leads to the activation of the viral promoter.
Collapse
Affiliation(s)
- T Moser
- Institute of Molecular Biology, Austrian Academy of Sciences, Salzburg, Austria
| | | | | |
Collapse
|
30
|
Abstract
Knowledge about the genes that encode extracellular matrix (ECM) proteins is expanding every day. Genes encoding long-known matrix proteins are being isolated while new genes for ECM proteins are being discovered using techniques that directly target the mRNA population. The regulation of expression of most genes occurs through the promoter domain upstream of the coding sequence, although this information may be supplemented by far upstream DNA sequences or DNA in the introns of the gene. Since this important information is embedded in the DNA, the study of gene structure is crucial to the analysis of gene regulation. With all of this new information, it will be possible to characterize common elements in genes that are coordinately regulated, and eventually target individual genes for control by exogenous agents such as drugs.
Collapse
Affiliation(s)
- L J Sandell
- Department of Orthopaedics, University of Washington, USA.
| |
Collapse
|
31
|
Schuster-Gossler K, Simon-Chazottes D, Guenet JL, Zachgo J, Gossler A. Gtl2lacZ, an insertional mutation on mouse chromosome 12 with parental origin-dependent phenotype. Mamm Genome 1996; 7:20-4. [PMID: 8903723 DOI: 10.1007/s003359900006] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have produced a transgenic mouse line, Gtl2lacZ (Gene trap locus 2), that carries an insertional mutation with a dominant modified pattern of inheritance:heterozygous Gtl2lacZ mice that inherited the transgene from the father show a proportionate dwarfism phenotype, whereas the penetrance and expressivity of the phenotype is strongly reduced in Gtl2lacZ mice that inherited the transgene from the mother. On a mixed genetic background this pattern of inheritance was reversible upon transmission of the transgene through the germ line of the opposite sex. On a predominantly 129/Sv genetic background, however, transgene passage through the female germ line modified the transgene effect, such that the penetrance of the mutation was drastically reduced and the phenotype was no longer obvious after subsequent male germ line transmission. Expression of the transgene, however, was neither affected by genetic background nor by parental legacy. Gtl2lacZ maps to mouse Chromosome 12 in a region that displays imprinting effects associated with maternal and paternal disomy. Our results suggest that the transgene insertion in Gtl2lacZ mice affects an endogenous gene(s) required for fetal and postnatal growth and that this gene(s) is predominantly paternally expressed.
Collapse
|
32
|
Niederreither K, D'Souza R, Metsäranta M, Eberspaecher H, Toman PD, Vuorio E, De Crombrugghe B. Coordinate patterns of expression of type I and III collagens during mouse development. Matrix Biol 1995; 14:705-13. [PMID: 8785585 DOI: 10.1016/s0945-053x(05)80013-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The extracellular proteins types I and III collagen are abundantly expressed during development. Here, the patterns of the pro alpha 1(I), pro alpha 2(I), and pro alpha 1(III) collagen mRNAs are systematically examined from 7.5 to 17.5 days of development (E7.5 to E17.5) in the mouse using in situ hybridization with specific riboprobes. Coordinated expression of pro alpha 1(I) and pro alpha 2(I) collagen mRNA was found throughout development in all regions examined. Widespread type I collagen expression starting at E8.5 occurred in embryonic mesoderm, sclerotomes, dermatomes, and in the forming connective tissues. After E14.5, regions of ossification showed highest levels of type I collagen expression. Pro alpha 1(III) collagen expression was specific to and coordinated with patterns of type I collagen expression in many fibroblast-containing tissues. No expression of type III collagen occurred in osteoblasts. This comprehensive study of the transcripts of abundantly expressed structural proteins should provide a basis for comparison of other key extracellular matrix molecules and serve as a reference for studies on the patterns of activities of various promoter/enhancer-reporter gene constructions of type I and III collagen genes in transgenic mice.
Collapse
Affiliation(s)
- K Niederreither
- Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center, Houston, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Houglum K, Buck M, Alcorn J, Contreras S, Bornstein P, Chojkier M. Two different cis-acting regulatory regions direct cell-specific transcription of the collagen alpha 1(I) gene in hepatic stellate cells and in skin and tendon fibroblasts. J Clin Invest 1995; 96:2269-76. [PMID: 7593613 PMCID: PMC185877 DOI: 10.1172/jci118282] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The expression of the collagen alpha 1(I) gene in activated stellate cells plays an important role during liver fibrogenesis. To identify the critical cis-elements of the collagen alpha 1(I) gene in stellate cells, we used transgenic animals bearing various collagen alpha 1(I) regulatory regions directing the expression of either a human growth hormone minigene or the bacterial beta-galactosidase gene. We found that collagen alpha 1(I)-human growth hormone transgene expression was constitutively high in tendon and skin, provided the transgene contained the -2.3 to -0.44 kb collagen regulatory region. However in the liver, expression was stimulated several-fold, as was the endogeneous gene, by the fibrogenic hepatotoxin carbon tetrachloride. This stimulation occurred whether the collagen 5' regulatory region extended -2.3, -1.6 or -0.44 kb, and in the presence or absence of much of the first intron (+292 to +1607 bp). In addition, the -0.44 kb 5' region was sufficient for high-level transgene expression in stellate cells, following their activation by culture on plastic. In contrast, in skin and tendon, high-level transcription of the collagen alpha 1(I) gene required the -2.3 to -0.44 kb 5' flanking region. Thus, two different cis-regulatory regions direct cell-specific transcription of the collagen alpha 1(I) gene in stellate cells and in skin and tendon.
Collapse
Affiliation(s)
- K Houglum
- Department of Medicine, Veterans Affairs Medical Center, San Diego, California, USA
| | | | | | | | | | | |
Collapse
|
34
|
Lubec B, Steinert I, Breier F, Jurecka W, Pillwein K, Fang-Kircher S. Skin collagen defects in a patient with juvenile hyaline fibromatosis. Arch Dis Child 1995; 73:246-8. [PMID: 7492165 PMCID: PMC1511266 DOI: 10.1136/adc.73.3.246] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Juvenile hyaline fibromatosis is a rare disorder characterised by multiple subcutaneous tumours, gum hypertrophy, muscle weakness, and flexion contractures of the large joints. Histology shows an abundance of a homogenous, amorphous, acidophilic extracellular matrix in which spindle shaped cells are embedded forming minute streaks. It has been previously suggested that collagen abnormalities may be involved. A 14 month old girl with this syndrome is described in whom postmortem western blot studies were performed. These studies revealed an absent pro-alpha 2(I) chain and an absent collagen type III chain in skin but not in the other organs examined.
Collapse
Affiliation(s)
- B Lubec
- Department of Paediatrics (Neonatology), University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
35
|
Rossert J, Eberspaecher H, de Crombrugghe B. Separate cis-acting DNA elements of the mouse pro-alpha 1(I) collagen promoter direct expression of reporter genes to different type I collagen-producing cells in transgenic mice. J Cell Biol 1995; 129:1421-32. [PMID: 7775585 PMCID: PMC2120462 DOI: 10.1083/jcb.129.5.1421] [Citation(s) in RCA: 200] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The genes coding for the two type I collagen chains, which are active selectively in osteoblasts, odontoblasts, fibroblasts, and some mesenchymal cells, constitute good models for studying the mechanisms responsible for the cell-specific activity of genes which are expressed in a small number of discrete cell types. To test whether separate genetic elements could direct the activity of the mouse pro-alpha 1(I) collagen gene to different cell types in which it is expressed, transgenic mice were generated harboring various fragments of the proximal promoter of this gene cloned upstream of the Escherichia coli beta-galactosidase gene. During embryonic development, X-gal staining allows for the precise identification of the different cell types in which the beta-galactosidase gene is active. Transgenic mice harboring 900 bp of the pro-alpha 1(I) proximal promoter expressed the transgene at relatively low levels almost exclusively in skin. In mice containing 2.3 kb of this proximal promoter, the transgene was also expressed at high levels in osteoblasts and odontoblasts, but not in other type I collagen-producing cells. Transgenic mice harboring 3.2 kb of the proximal promoter showed an additional high level expression of the transgene in tendon and fascia fibroblasts. The pattern of expression of the lacZ transgene directed by the 0.9- and 2.3-kb pro-alpha 1(I) proximal promoters was confirmed by using the firefly luciferase gene as a reporter gene. The pattern of expression of this transgene, which can be detected even when it is active at very low levels, paralleled that of the beta-galactosidase gene. These data strongly suggest a modular arrangement of separate cell-specific cis-acting elements that can activate the mouse pro-alpha(I) collagen gene in different type I collagen-producing cells. At least three different types of cell-specific elements would be located in the first 3.2 kb of the promoter: (a) an element that confers low level expression in dermal fibroblasts; (b) a second that mediates high level expression in osteoblasts and odontoblasts; and (c) one responsible for high level expression in tendon and fascia fibroblasts. Our data also imply that other cis-acting cell-specific elements which direct activity of the gene to still other type I collagen-producing cells remain to be identified.
Collapse
Affiliation(s)
- J Rossert
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, Houston 77030, USA
| | | | | |
Collapse
|
36
|
Kream BE, Harrison JR, Krebsbach PH, Bogdanovic Z, Bedalov A, Pavlin D, Woody CO, Clark SH, Rowe D, Lichtler AC. Regulation of type I collagen gene expression in bone. Connect Tissue Res 1995; 31:261-4. [PMID: 15612364 DOI: 10.3109/03008209509010819] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The regulation of COL1A1 gene expression in bone was studied by measuring the activity of type I collagen promoter fusion genes (ColCAT) in permanently transfected osteoblastic cells and calvariae from transgenic animals. The basal activity of ColCAT fusion genes in transfected cells is mediated by DNA sequences between -3.5 to -2.3 kb while expression in vivo requires sequences between -2.3 and -1.7 kb. Parathyroid hormone, 1,25-dihydroxyvitamin D3 and interleukin-1 decrease the activity of ColCAT fusion genes in osteoblastic cells and transgenic calvariae. Because there may be differences between the expression of ColCAT fusion genes in cultured cells and intact bone, it will be important to compare data obtained from transfected cells with an in vivo model such as calvariae from transgenic mice.
Collapse
Affiliation(s)
- B E Kream
- Department of Medicine, The University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Thomas HF, Feldman JA, Bedalov A, Woody CO, Clark SH, Mack K, Lichtler AC. Identification of regulatory elements necessary for the expression of the COL1A1 promoter in murine odontoblasts. Connect Tissue Res 1995; 33:81-5. [PMID: 7554966 DOI: 10.3109/03008209509016986] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recent studies have indicated that odontoblasts and osteoblasts have unique regulatory mechanisms that control COL1A1 gene expression. We are currently examining the regulation of COL1A1 gene expression in odontoblasts and have produced transgenic mice containing various collagen promoter constructs fused to the indicator gene, chloramphenicol acetyl transferase (CAT). Mandibular first molars were removed from jaws of transgenic mice. Some teeth were assayed for CAT activity (CAT diffusion assays), others were fixed and prepared for immunohistochemistry (CAT antibodies). Our results indicate the CAT activity was present in tooth germs containing promoter constructs longer than 1.719 kb. Immunoreactivity to CAT was confined to the odontoblast cell layer. No CAT activity was present in tooth germs containing a 1.670 kb construct. These data suggest that there are important regulatory elements located between -1.719 kb and -1.670 kb on the collagen promoter in odontoblasts. Examination of sequences in this region of the promoter demonstrates consensus with those known to be involved with binding of translation products of homeobox genes.
Collapse
Affiliation(s)
- H F Thomas
- Department of Pediatric Dentistry, University of Texas Health Science Center, San Antonio 78284, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA, Wagner EF. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 1994; 266:443-8. [PMID: 7939685 DOI: 10.1126/science.7939685] [Citation(s) in RCA: 978] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mice lacking the proto-oncogene c-fos develop the bone disease osteopetrosis. Fos mutant mice were found to have a block in the differentiation of bone-resorbing osteoclasts that was intrinsic to hematopoietic cells. Bone marrow transplantation rescued the osteopetrosis, and ectopic c-fos expression overcame this differentiation block. The lack of Fos also caused a lineage shift between osteoclasts and macrophages that resulted in increased numbers of bone marrow macrophages. These results identify Fos as a key regulator of osteoclast-macrophage lineage determination in vivo and provide insights into the molecular mechanisms underlying metabolic bone diseases.
Collapse
Affiliation(s)
- A E Grigoriadis
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The extracellular matrix and its cell surface receptors are thought to be important in development. Recent applications of targeted mutagenesis in mice have begun to test hypotheses based on in vitro data and patterns of expression. 'Knockout' mutations of matrix molecules and integrins reveal complexities arising from multiple receptors and ligands.
Collapse
Affiliation(s)
- R O Hynes
- Howard Hughes Medical Institute and Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139
| |
Collapse
|
40
|
Abstract
Increasing numbers of transgenic mouse lines have resulted in several dozens of mutants created by insertional mutagenesis. The advantages of different vector systems and the problems associated with the analysis of mutations and the cloning of the affected genes are discussed in this review.
Collapse
Affiliation(s)
- T Rijkers
- Institute for Molecular Biology, Medical School Hannover, Germany
| | | | | |
Collapse
|
41
|
Liska DJ, Reed MJ, Sage EH, Bornstein P. Cell-specific expression of alpha 1(I) collagen-hGH minigenes in transgenic mice. J Biophys Biochem Cytol 1994; 125:695-704. [PMID: 8175887 PMCID: PMC2119997 DOI: 10.1083/jcb.125.3.695] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Sequences within the first intron of the alpha 1(I) collagen gene have been implicated in the regulation of expression of alpha 1(I) collagen-reporter gene constructs in cultured cells. However, the physiological significance of these intronic elements has not been established. We have used in situ hybridization to examine whether a cell-specific pattern of expression of human alpha 1(I) collagen-human growth hormone minigenes exists in transgenic mice. Our results indicate that transgenes which contained 2,300 bp of promoter/5' flanking sequence and an intact first intron were well expressed by fibroblasts in dermis and fascia, whereas transgenes lacking the intronic sequence, +292 to +1440, were not expressed in dermis and poorly expressed in fascia. Analysis of transgene expression in cultured fibroblasts obtained from dermal explants of transgenic animals confirmed the requirement for these intronic sequences in the regulation of the alpha 1(I) collagen gene. In contrast, transgenes with or without the intronic deletion were expressed equally well in tendon and bone, in a manner comparable to the endogenous mouse alpha 1(I) collagen gene, and expression of neither transgene was detected in skeletal muscle or perichondrium. These data support a model in which cis-acting elements in the first intron, and their cognate DNA-binding proteins, mediate transcription of the alpha 1(I) collagen gene in some cells, such as dermal fibroblasts, but not in tendon cells or osteoblasts. Moreover, regions of the gene not included in the sequence, -2300 to +1440, appear to be required for transcription in tissues such as skeletal muscle and perichondrium.
Collapse
Affiliation(s)
- D J Liska
- Department of Biochemistry, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
42
|
Cole WG. Collagen genes: mutations affecting collagen structure and expression. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 47:29-80. [PMID: 8016323 DOI: 10.1016/s0079-6603(08)60249-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It is to be expected that more collagen genes will be identified and that additional heritable connective tissue diseases will be shown to arise from collagen mutations. Further progress will be fostered by the coordinated study of naturally occurring and induced heritable connective tissues diseases. In some instances, human mutations will be studied in more detail using transgenic mice, while in others, transgenic studies will be used to determine the type of human phenotype that is likely to result from mutations of a given collagen gene. Further studies of transcriptional regulation of the collagen genes will provide the prospect for therapeutic control of expression of specific collagen genes in patients with genetically determined collagen disorders as well as in a wide range of common human diseases in which abnormal formation of the connective tissues is a feature.
Collapse
Affiliation(s)
- W G Cole
- Division of Orthopaedics, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
43
|
George EL, Hynes RO. Gene targeting and generation of mutant mice for studies of cell-extracellular matrix interactions. Methods Enzymol 1994; 245:386-420. [PMID: 7760744 DOI: 10.1016/0076-6879(94)45021-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- E L George
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
44
|
Nehls MC, Brenner DA, Gruss HJ, Dierbach H, Mertelsmann R, Herrmann F. Mithramycin selectively inhibits collagen-alpha 1(I) gene expression in human fibroblast. J Clin Invest 1993; 92:2916-21. [PMID: 7504695 PMCID: PMC288495 DOI: 10.1172/jci116914] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The products of the collagen-alpha 1(I) and -alpha 2(I) genes form the triple helical molecule collagen type I, which constitutes the major ECM protein in tissue fibrosis. The collagen-alpha 1(I) gene is mainly transcriptionally regulated, and its promoter activity depends on the interaction of the transcription factors NF-I and Sp1 with a tandem repeat of evolutionary conserved NF-I/Sp1 switch elements. An increased affinity of Sp1 to these elements has been observed in experimental liver fibrosis. Here, we demonstrate that the DNA binding drug mithramycin displays a high affinity binding to the GC-rich elements in the collagen-alpha 1(I) promoter as measured by DNAse I protection and gel retardation assays. Mithramycin interferes with Sp1 but not with NF-I binding to these sites. At a concentration of 100 nM, mithramycin efficiently reduces basal and TGF-beta-stimulated alpha 1(I) gene expression in human primary fibroblasts. The transcriptional activity and mRNA steady state levels of other genes, including the collagenase gene, as well as the growth rate of fibroblasts remained unchanged on exposure to this drug. Taken together, our results indicate that the transcriptional activity of the type I collagen gene highly depends on its GC-rich regulatory elements, and further, that these elements can be differentially blocked, thereby changing the balance between ECM structural and degrading gene activities in human fibroblasts.
Collapse
Affiliation(s)
- M C Nehls
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Kratochwil K, Ghaffari-Tabrizi N, Holzinger I, Harbers K. Restricted expression of Mov13 mutant alpha 1(I) collagen gene in osteoblasts and its consequences for bone development. Dev Dyn 1993; 198:273-83. [PMID: 8130375 DOI: 10.1002/aja.1001980405] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cell type-specific differences in the transcriptional control of the mouse gene coding for the alpha 1 chain of collagen type I (Col1a1) have been revealed previously with the help of the Mov13 mouse strain which carries a retroviral insert in the first intron of the gene. Transcription of this mutant Col1a1 allele is completely blocked in all mesodermal cell types tested so far, with the exception of the odontoblast where it is expressed at an apparently normal rate (Kratochwil et al. [1989] Cell 57:807-816). To define the tissue specificity of the mutant allele more precisely, we have now studied its expression in osteoblasts, another skeletogenic cell type which, like odontoblasts, produces high amounts of collagen I. Evidence for transcription of the Mov13 allele was obtained by in situ hybridization in homozygous (M/M) and heterozygous (M/+) bone tissue, in grafts as well as in vivo. The presence of mouse collagen I and the development of bone tissue were demonstrated in M/M skeletal elements grown on the chick chorioallantoic membrane (CAM). Further support for expression of the mutant gene was obtained from two 16 day M/M fetuses in vivo. Bone tissue of diverse embryological origin (vertebrae and ribs of somitic origin, long bones derived from lateral plate, calvariae from head paraxial mesoderm, and mandibulae from head neural crest) expresses the mutant allele. However, in situ hybridization experiments indicate that only a subpopulation of osteoblasts is capable of transcribing it at a high rate, resulting in severe impairment of bone development in grafts and in vivo. Therefore, osteoblasts, in comparison to odontoblasts and fibroblast-like cells, assume an intermediate position with respect to transcription of the Mov13 allele. We suggest that this diversity in the utilization of the mutant collagen gene reflects cell type-specific differences in the transcriptional regulation of the wild type (wt) Col1a1 gene.
Collapse
Affiliation(s)
- K Kratochwil
- Institute of Molecular Biology, Austrian Academy of Sciences, Salzburg
| | | | | | | |
Collapse
|
46
|
Abstract
Ongoing efforts to clone, sequence and map genes in the mouse have far exceeded our ability to define their functional role. The generation of mutations is an important first step towards understanding the function of genes in normal mouse development and physiology. Gene trapping in embryonic stem cells provides an efficient method to identify, clone and mutate genes at random, permitting the functional analysis of new genes in mice.
Collapse
Affiliation(s)
- W C Skarnes
- AFRC Centre for Genome Research, Edinburgh, UK
| |
Collapse
|
47
|
Bonadio J, Jepsen KJ, Mansoura MK, Jaenisch R, Kuhn JL, Goldstein SA. A murine skeletal adaptation that significantly increases cortical bone mechanical properties. Implications for human skeletal fragility. J Clin Invest 1993; 92:1697-705. [PMID: 8408623 PMCID: PMC288329 DOI: 10.1172/jci116756] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Mov13 mice carry a provirus that prevents transcription initiation of the alpha 1(I) collagen gene. Mutant mice homozygous for the null mutation produce no type I collagen and die at mid-gestation, whereas heterozygotes survive to adulthood. Dermal fibroblasts from heterozygous mice produce approximately 50% less type I collagen than normal littermates, and the partial deficiency in collagen production results in a phenotype similar to osteogenesis imperfecta type I (an inherited form of skeletal fragility). In this study, we have identified an adaptation of Mov13 skeletal tissue that significantly improves the bending strength of long bone. The adaptive response occurred over a 2-mo period, during which time a small number of newly proliferated osteogenic cells produced a significant amount of matrix components and thus generated new bone along periosteal surfaces. New bone deposition resulted in a measurable increase in cross-sectional geometry which, in turn, led to a dramatic increase in long bone bending strength.
Collapse
Affiliation(s)
- J Bonadio
- Department of Pathology, University of Michigan, Ann Arbor 48109-0650
| | | | | | | | | | | |
Collapse
|
48
|
D'Souza RN, Niederreither K, de Crombrugghe B. Osteoblast-specific expression of the alpha 2(I) collagen promoter in transgenic mice: correlation with the distribution of TGF-beta 1. J Bone Miner Res 1993; 8:1127-36. [PMID: 8237483 DOI: 10.1002/jbmr.5650080914] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To begin to assess the transcriptional mechanisms that regulate type I collagen gene expression in differentiating osteoblasts, we have sought to determine the minimal promoter sequences that confer osteoblast-specific expression to the alpha 2(I) collagen gene during murine development. Transgenic mice were generated harboring DNA constructs in which the -2000, -500, and -350 to +54 regions located upstream of the start of transcription were linked to the Escherichia coli beta-galactosidase reporter gene (LacZ). Histochemical staining using X-gal indicated that the -2000 lacZ transgene was strongly expressed in newly differentiated and fully functional osteoblasts at intramembranous and endochondral sites of ossification. The promoter was also active in osteocytes in regions of bone remodeling within alveolar bone. The temporal and spatial activity of this region of the promoter closely resembled the developmental patterns of expression of the endogenous alpha 2(I) collagen gene as determined by in situ hybridization. The cis-acting elements within the 500 and 350 bp segments of the alpha 2(I) collagen promoter also drove reporter gene expression in forming osteoblasts, although levels of transgene expression were not as marked as that seen with the 2000 bp promoter. Furthermore, the synthesis and secretion of TGF-beta 1 in osteogenic zones coincided with areas where the alpha 2(I) collagen promoter constructs were transcriptionally active. Since a nuclear factor 1 binding site present at -300 has been shown to mediate the effects of TGF-beta 1 on the alpha 2(I) collagen promoter, these data support a role for TGF-beta 1 in the control of this gene during development.
Collapse
Affiliation(s)
- R N D'Souza
- Department of Anatomical Sciences, University of Texas Health Science Center Dental Branch, Houston
| | | | | |
Collapse
|
49
|
Helder MN, Bronckers AL, Wöltgens JH. Dissimilar expression patterns for the extracellular matrix proteins osteopontin (OPN) and collagen type I in dental tissues and alveolar bone of the neonatal rat. MATRIX (STUTTGART, GERMANY) 1993; 13:415-25. [PMID: 8246837 DOI: 10.1016/s0934-8832(11)80047-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Osteopontin (OPN) is a phosphorylated, sialic acid containing glycoprotein that can be extracted from the mineralized extracellular matrix of bone. In the present study we determined the expression patterns of OPN in dental tissues and alveolar bone of 1-3 day old (neonatal) rats by means of 1) immunohistochemistry, 2) Northern blotting and 3) in situ hybridization. We compared these patterns with those of type I collagen. We localized collagen type I expression in osteoblasts adjacent to alveolar bone and in odontoblasts lining predentin/dentin, but not in the epithelial ameloblasts. For OPN, we observed a weak antigenicity in predentin. Although generally no cellular immunostaining was found, very occasionally a minor immunoreactivity was detected in a small number of pre-mineralizing incisor odontoblasts. On the mRNA level, however, no OPN transcripts could be detected in odontoblasts, either by in situ or by Northern hybridization analyses. Also the odontoblasts of the bone-like dentin (osteodentin) region in the tip of incisors were negative for OPN. In contrast, however, osteoblasts of alveolar bone showed strong positive signals with all three techniques, confirming the sensitivity and specificity of the detection methods. From the data obtained in this study, it can be concluded that during early stages of dentinogenesis OPN presumably is not expressed in developing rat tooth germs. The weak immunostaining observed sporadically in some young odontoblasts is probably due to resorption of OPN of non-dental origin entrapped in the predentin.
Collapse
Affiliation(s)
- M N Helder
- Department of Oral Cell Biology, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | |
Collapse
|
50
|
Ranta H, Lukinmaa PL, Waltimo J. Heritable dentin defects: nosology, pathology, and treatment. AMERICAN JOURNAL OF MEDICAL GENETICS 1993; 45:193-200. [PMID: 8456802 DOI: 10.1002/ajmg.1320450209] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Heritable dentin defects have been divided into 2 main categories: dentinogenesis imperfecta (DI) and dentin dysplasia (DD). Recent studies have shown that they share many features in common. Of the connective tissue diseases, only osteogenesis imperfecta (OI) has been linked to these disorders. So far, no definitive relation between the type of OI and the dental involvement can be established. Familial occurrence of DI with OI cannot be comprehensively explained by mutations in type I collagen genes. No information about the gene defects in DD is available. At the ultrastructural level, the organization of the normally cross-striated collagen fibers in the dentin matrix varies markedly in patients affected by DI.
Collapse
Affiliation(s)
- H Ranta
- Department of Forensic Medicine, University of Helsinki, Finland
| | | | | |
Collapse
|