1
|
Smith IC, Chakraborty S, Bourque PR, Sampaio ML, Melkus G, Lochmüller H, Woulfe J, Parks RJ, Brais B, Warman-Chardon J. Emerging and established biomarkers of oculopharyngeal muscular dystrophy. Neuromuscul Disord 2023; 33:824-834. [PMID: 37926637 DOI: 10.1016/j.nmd.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023]
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a rare, primarily autosomal dominant, late onset muscular dystrophy commonly presenting with ptosis, dysphagia, and subsequent weakness of proximal muscles. Although OPMD diagnosis can be confirmed with high confidence by genetic testing, the slow progression of OPMD poses a significant challenge to clinical monitoring and a barrier to assessing the efficacy of treatments during clinical trials. Accordingly, there is a pressing need for more sensitive measures of OPMD progression, particularly those which do not require a muscle biopsy. This review provides an overview of progress in OPMD biomarkers from clinical assessment, quantitative imaging, histological assessments, and genomics, as well as hypothesis-generating "omics" approaches. The ongoing search for biomarkers relevant to OPMD progression needs an integrative, longitudinal approach combining validated and experimental approaches which may include clinical, imaging, demographic, and biochemical assessment methods. A multi-omics approach to biochemical biomarker discovery could help provide context for differences found between individuals with varying levels of disease activity and provide insight into pathomechanisms and prognosis of OPMD.
Collapse
Affiliation(s)
- Ian C Smith
- The Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada
| | | | - Pierre R Bourque
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, ON K1H 8L6, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada
| | - Marcos L Sampaio
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada; Department of Medical Imaging, The Ottawa Hospital, Ottawa, Ontario K1Y 4E9, Canada; Department of Radiology, Radiation Oncology and Medical Physics, University of Ottawa, Ottawa, ON K1H 8L6, Canada
| | - Gerd Melkus
- Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada; Department of Medical Imaging, The Ottawa Hospital, Ottawa, Ontario K1Y 4E9, Canada; Department of Physics, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Hanns Lochmüller
- The Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada; Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, ON K1H 8L6, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada; Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada
| | - John Woulfe
- The Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada; Department of Pathology and Laboratory Medicine, The Ottawa Hospital, Ottawa, ON K1Y 4E9, Canada
| | - Robin J Parks
- The Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada; Department of Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, ON K1H 8L6, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada
| | - Bernard Brais
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jodi Warman-Chardon
- The Ottawa Hospital Research Institute, Ottawa, ON K1Y 4E9, Canada; Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, ON K1H 8L6, Canada; Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, ON K1Y 4E9, Canada; Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON K1H 8L1, Canada; Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec H3A 2B4, Canada.
| |
Collapse
|
2
|
Huang L, Li G, Du C, Jia Y, Yang J, Fan W, Xu Y, Cheng H, Zhou Y. The polyA tail facilitates splicing of last introns with weak 3' splice sites via PABPN1. EMBO Rep 2023; 24:e57128. [PMID: 37661812 PMCID: PMC10561182 DOI: 10.15252/embr.202357128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
The polyA tail of mRNAs is important for many aspects of RNA metabolism. However, whether and how it regulates pre-mRNA splicing is still unknown. Here, we report that the polyA tail acts as a splicing enhancer for the last intron via the nuclear polyA binding protein PABPN1 in HeLa cells. PABPN1-depletion induces the retention of a group of introns with a weaker 3' splice site, and they show a strong 3'-end bias and mainly locate in nuclear speckles. The polyA tail is essential for PABPN1-enhanced last intron splicing and functions in a length-dependent manner. Tethering PABPN1 to nonpolyadenylated transcripts also promotes splicing, suggesting a direct role for PABPN1 in splicing regulation. Using TurboID-MS, we construct the PABPN1 interactome, including many spliceosomal and RNA-binding proteins. Specifically, PABPN1 can recruit RBM26&27 to promote splicing by interacting with the coiled-coil and RRM domain of RBM27. PABPN1-regulated terminal intron splicing is conserved in mice. Together, our study establishes a novel mode of post-transcriptional splicing regulation via the polyA tail and PABPN1.
Collapse
Affiliation(s)
- Li Huang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA InstituteWuhan UniversityWuhanChina
| | - Guangnan Li
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA InstituteWuhan UniversityWuhanChina
| | - Chen Du
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA InstituteWuhan UniversityWuhanChina
| | - Yu Jia
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA InstituteWuhan UniversityWuhanChina
| | - Jiayi Yang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA InstituteWuhan UniversityWuhanChina
| | - Weiliang Fan
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA InstituteWuhan UniversityWuhanChina
| | - Yong‐Zhen Xu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA InstituteWuhan UniversityWuhanChina
| | - Hong Cheng
- Key Laboratory of RNA Science and Engineering, Chinese Academy of Sciences, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| | - Yu Zhou
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA InstituteWuhan UniversityWuhanChina
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhanChina
- Institute of Advanced StudiesWuhan UniversityWuhanChina
- State Key Laboratory of VirologyWuhan UniversityWuhanChina
| |
Collapse
|
3
|
Ay S, Di Nunzio F. HIV-Induced CPSF6 Condensates. J Mol Biol 2023; 435:168094. [PMID: 37061085 DOI: 10.1016/j.jmb.2023.168094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023]
Abstract
Viruses are obligate parasites that rely on their host's cellular machinery for replication. To facilitate their replication cycle, many viruses have been shown to remodel the cellular architecture by inducing the formation of membraneless organelles (MLOs). Eukaryotic cells have evolved MLOs that are highly dynamic, self-organizing microenvironments that segregate biological processes and increase the efficiency of reactions by concentrating enzymes and substrates. In the context of viral infections, MLOs can be utilized by viruses to complete their replication cycle. This review focuses on the pathway used by the HIV-1 virus to remodel the nuclear landscape of its host, creating viral/host niches that enable efficient viral replication. Specifically, we discuss how the interaction between the HIV-1 capsid and the cellular factor CPSF6 triggers the formation of nuclear MLOs that support nuclear reverse transcription and viral integration in favored regions of the host chromatin. This review compiles current knowledge on the origin of nuclear HIV-MLOs and their role in early post-nuclear entry steps of the HIV-1 replication cycle.
Collapse
Affiliation(s)
- Selen Ay
- Advanced Molecular Virology Unit, Department of Virology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Francesca Di Nunzio
- Advanced Molecular Virology Unit, Department of Virology, Institut Pasteur, Université Paris Cité, 75015 Paris, France.
| |
Collapse
|
4
|
Guan WL, Jiang LL, Yin XF, Hu HY. PABPN1 aggregation is driven by Ala expansion and poly(A)-RNA binding, leading to CFIm25 sequestration that impairs alternative polyadenylation. J Biol Chem 2023; 299:105019. [PMID: 37422193 PMCID: PMC10403730 DOI: 10.1016/j.jbc.2023.105019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023] Open
Abstract
Poly(A)-binding protein nuclear 1 (PABPN1) is an RNA-binding protein localized in nuclear speckles, while its alanine (Ala)-expanded variants accumulate as intranuclear aggregates in oculopharyngeal muscular dystrophy. The factors that drive PABPN1 aggregation and its cellular consequences remain largely unknown. Here, we investigated the roles of Ala stretch and poly(A) RNA in the phase transition of PABPN1 using biochemical and molecular cell biology methods. We have revealed that the Ala stretch controls its mobility in nuclear speckles, and Ala expansion leads to aggregation from the dynamic speckles. Poly(A) nucleotide is essential to the early-stage condensation that thereby facilitates speckle formation and transition to solid-like aggregates. Moreover, the PABPN1 aggregates can sequester CFIm25, a component of the pre-mRNA 3'-UTR processing complex, in an mRNA-dependent manner and consequently impair the function of CFIm25 in alternative polyadenylation. In conclusion, our study elucidates a molecular mechanism underlying PABPN1 aggregation and sequestration, which will be beneficial for understanding PABPN1 proteinopathy.
Collapse
Affiliation(s)
- Wen-Liang Guan
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lei-Lei Jiang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Fang Yin
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
5
|
Ramming A, Kappel C, Kanaoka MM, Higashiyama T, Lenhard M. Poly(A) polymerase 1 contributes to competence acquisition of pollen tubes growing through the style in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:651-667. [PMID: 36811355 DOI: 10.1111/tpj.16162] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/16/2023] [Indexed: 05/10/2023]
Abstract
Polyadenylation of mRNAs is critical for their export from the nucleus, stability, and efficient translation. The Arabidopsis thaliana genome encodes three isoforms of canonical nuclear poly(A) polymerase (PAPS) that redundantly polyadenylate the bulk of pre-mRNAs. However, previous studies have indicated that subsets of pre-mRNAs are preferentially polyadenylated by either PAPS1 or the other two isoforms. Such functional specialization raises the possibility of an additional level of gene-expression control in plants. Here we test this notion by studying the function of PAPS1 in pollen-tube growth and guidance. Pollen tubes growing through female tissue acquire the competence to find ovules efficiently and upregulate PAPS1 expression at the transcriptional, but not detectably at the protein level compared with in vitro grown pollen tubes. Using the temperature-sensitive paps1-1 allele we show that PAPS1 activity during pollen-tube growth is required for full acquisition of competence, resulting in inefficient fertilization by paps1-1 mutant pollen tubes. While these mutant pollen tubes grow almost at the wild-type rate, they are compromised in locating the micropyles of ovules. Previously identified competence-associated genes are less expressed in paps1-1 mutant than in wild-type pollen tubes. Estimating the poly(A) tail lengths of transcripts suggests that polyadenylation by PAPS1 is associated with reduced transcript abundance. Our results therefore suggest that PAPS1 plays a key role in the acquisition of competence and underline the importance of functional specialization between PAPS isoforms throughout different developmental stages.
Collapse
Affiliation(s)
- Anna Ramming
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| | - Christian Kappel
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| | - Masahiro M Kanaoka
- Prefectural University of Hiroshima, Faculty of Life and Environmental Sciences, Faculty of Bioresource Sciences, Shobara, Hiroshima, Japan
| | - Tetsuya Higashiyama
- The University of Tokyo Graduate School of Science, Faculty of Science, Bunkyo-ku, Tokyo, Japan
| | - Michael Lenhard
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
6
|
Chen L, Dong W, Zhou M, Yang C, Xiong M, Kazobinka G, Chen Z, Xing Y, Hou T. PABPN1 regulates mRNA alternative polyadenylation to inhibit bladder cancer progression. Cell Biosci 2023; 13:45. [PMID: 36879298 PMCID: PMC9987104 DOI: 10.1186/s13578-023-00997-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND About 10-20% of patients with bladder cancer (BC) progress to muscle-invasive diseases, of which the underlying key molecular events have yet to be addressed. RESULTS Here, we identified poly(A) binding protein nuclear 1 (PABPN1), a general factor of alternative polyadenylation (APA), was downregulated in BC. Overexpression and knockdown of PABPN1 significantly decreased and increased BC aggressiveness, respectively. Mechanistically, we provide evidence that the preference of PABPN1-bound polyadenylation signals (PASs) depends on the relative location between canonical and non-canonical PASs. PABPN1 shapes inputs converging on Wnt signaling, cell cycle, and lipid biosynthesis. CONCLUSIONS Together, these findings provide insights into how PABPN1-mediated APA regulation contributes to BC progression, and suggest that pharmacological targeting PABPN1 might have therapeutic potential in patients with BC.
Collapse
Affiliation(s)
- Liang Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Dong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Menghao Zhou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chenlu Yang
- Department of Gynecology and Obstetrics, Women and Children Hospital of Guangdong Province, Guangzhou, 510080, China
| | - Ming Xiong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gallina Kazobinka
- Urology Unit, La Nouvelle Polyclinique Centrale de Bujumbura, Bujumbura, 378, Burundi
| | - Zhaohui Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yifei Xing
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Teng Hou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen, 518116, China.
| |
Collapse
|
7
|
Lin F, Yang K, Lin MT, Zheng FZ, Chen L, Ding YL, Ye ZX, Lin X, Wang N, Wang ZQ. The phenotypic and genotypic features of Chinese patients with oculopharyngeal muscular dystrophy. Ann Clin Transl Neurol 2023; 10:426-439. [PMID: 36691350 PMCID: PMC10014010 DOI: 10.1002/acn3.51733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Oculopharyngeal muscular dystrophy (OPMD) is a late-onset inherited neuromuscular disorder, with progressive ptosis and dysphagia as common manifestations. To date, OPMD has rarely been reported among East Asians. The present study summarizes the phenotypic and genotypic features of Chinese patients with OPMD. METHODS Twenty-one patients with molecularly confirmed OPMD from 9 unrelated families were identified by direct sequencing of the polyadenlyate binding protein nuclear-1 (PABPN1) gene. Immunofluorescence staining of muscle biopsies was conducted to identify the components of protein degradation pathways involved in OPMD. RESULTS In our cohort, the genetically confirmed OPMD group had a mean age at onset of 50.6 ± 4.2 years (range 45-60 years). Ptosis (42.9%) was the most common initial symptom; patients with ptosis as the first symptom subsequently developed dysphagia within a median time of 5.5 years (range 1-19 years). Evidence of external ophthalmoplegia was found in 38.1% of patients. A total of 33.3% of the patients developed muscle weakness at a median age at onset of 66 years (range 50-70 years), with neck flexor involvement in all patients. Five genotypes were observed in our cohort, including classical (GCG)9-11 repeats in 7 families and non-GCG elongations with additional GCA expansions in 2 families. OPMD muscle biopsies revealed rimmed vacuoles and intranuclear filamentous inclusions. The PABPN1 protein showed substantial accumulation in the nuclei of muscle fiber aggregates and closely colocalized with p62, LC3B and FK2. INTERPRETATION Our findings indicate wide genetic heterogeneity in OPMD in the Chinese population and demonstrate abnormalities in protein degradation pathways in this disease.
Collapse
Affiliation(s)
- Feng Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, 350005, Fujian, Fuzhou, China
| | - Kang Yang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, 350005, Fujian, Fuzhou, China
| | - Min-Ting Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, 350005, Fujian, Fuzhou, China.,Fujian Key Laboratory of Molecular Neurology, 350005, Fuzhou, China
| | - Fu-Ze Zheng
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, 350005, Fujian, Fuzhou, China.,Fujian Key Laboratory of Molecular Neurology, 350005, Fuzhou, China
| | - Long Chen
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, 350005, Fujian, Fuzhou, China
| | - Yuan-Liang Ding
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, 350005, Fujian, Fuzhou, China.,Fujian Key Laboratory of Molecular Neurology, 350005, Fuzhou, China
| | - Zhi-Xian Ye
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, 350005, Fujian, Fuzhou, China
| | - Xin Lin
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, 350005, Fujian, Fuzhou, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, 350005, Fujian, Fuzhou, China.,Fujian Key Laboratory of Molecular Neurology, 350005, Fuzhou, China
| | - Zhi-Qiang Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital, Fujian Medical University, 350005, Fujian, Fuzhou, China.,Fujian Key Laboratory of Molecular Neurology, 350005, Fuzhou, China
| |
Collapse
|
8
|
Soni K, Sivadas A, Horvath A, Dobrev N, Hayashi R, Kiss L, Simon B, Wild K, Sinning I, Fischer T. Mechanistic insights into RNA surveillance by the canonical poly(A) polymerase Pla1 of the MTREC complex. Nat Commun 2023; 14:772. [PMID: 36774373 PMCID: PMC9922296 DOI: 10.1038/s41467-023-36402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/31/2023] [Indexed: 02/13/2023] Open
Abstract
The S. pombe orthologue of the human PAXT connection, Mtl1-Red1 Core (MTREC), is an eleven-subunit complex that targets cryptic unstable transcripts (CUTs) to the nuclear RNA exosome for degradation. It encompasses the canonical poly(A) polymerase Pla1, responsible for polyadenylation of nascent RNA transcripts as part of the cleavage and polyadenylation factor (CPF/CPSF). In this study we identify and characterise the interaction between Pla1 and the MTREC complex core component Red1 and analyse the functional relevance of this interaction in vivo. Our crystal structure of the Pla1-Red1 complex shows that a 58-residue fragment in Red1 binds to the RNA recognition motif domain of Pla1 and tethers it to the MTREC complex. Structure-based Pla1-Red1 interaction mutations show that Pla1, as part of MTREC complex, hyper-adenylates CUTs for their efficient degradation. Interestingly, the Red1-Pla1 interaction is also required for the efficient assembly of the fission yeast facultative heterochromatic islands. Together, our data suggest a complex interplay between the RNA surveillance and 3'-end processing machineries.
Collapse
Affiliation(s)
- Komal Soni
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120, Heidelberg, Germany
| | - Anusree Sivadas
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Attila Horvath
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Nikolay Dobrev
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120, Heidelberg, Germany
| | - Rippei Hayashi
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Leo Kiss
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120, Heidelberg, Germany
| | - Bernd Simon
- European Molecular Biology Laboratory (EMBL), Meyerhofstr, 1, D-69117, Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120, Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120, Heidelberg, Germany.
| | - Tamás Fischer
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
9
|
Alles J, Legnini I, Pacelli M, Rajewsky N. Rapid nuclear deadenylation of mammalian messenger RNA. iScience 2022; 26:105878. [PMID: 36691625 PMCID: PMC9860345 DOI: 10.1016/j.isci.2022.105878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/13/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Poly(A) tails protect RNAs from degradation and their deadenylation rates determine RNA stability. Although poly(A) tails are generated in the nucleus, deadenylation of tails has mostly been investigated within the cytoplasm. Here, we combined long-read sequencing with metabolic labeling, splicing inhibition and cell fractionation experiments to quantify, separately, the genesis and trimming of nuclear and cytoplasmic tails in vitro and in vivo. We present evidence for genome-wide, nuclear synthesis of tails longer than 200 nt, which are rapidly shortened after transcription. Our data suggests that rapid deadenylation is a nuclear process, and that different classes of transcripts and even transcript isoforms have distinct nuclear tail lengths. For example, many long-noncoding RNAs retain long poly(A) tails. Modeling deadenylation dynamics predicts nuclear deadenylation about 10 times faster than cytoplasmic deadenylation. In summary, our data suggests that nuclear deadenylation might be a key mechanism for regulating mRNA stability, abundance, and subcellular localization.
Collapse
Affiliation(s)
- Jonathan Alles
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Laboratory for Systems Biology of Gene Regulatory Elements, Hannoversche Str. 28, 10115 Berlin, Germany,Humboldt-Universität zu Berlin, Institute of Biology, Unter den Linden 6, 10099 Berlin, Germany
| | - Ivano Legnini
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Laboratory for Systems Biology of Gene Regulatory Elements, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Maddalena Pacelli
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Laboratory for Systems Biology of Gene Regulatory Elements, Hannoversche Str. 28, 10115 Berlin, Germany
| | - Nikolaus Rajewsky
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Laboratory for Systems Biology of Gene Regulatory Elements, Hannoversche Str. 28, 10115 Berlin, Germany,Humboldt-Universität zu Berlin, Institute of Biology, Unter den Linden 6, 10099 Berlin, Germany,Corresponding author
| |
Collapse
|
10
|
Liu J, Lu X, Zhang S, Yuan L, Sun Y. Molecular Insights into mRNA Polyadenylation and Deadenylation. Int J Mol Sci 2022; 23:ijms231910985. [PMID: 36232288 PMCID: PMC9570436 DOI: 10.3390/ijms231910985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022] Open
Abstract
Poly(A) tails are present on almost all eukaryotic mRNAs, and play critical roles in mRNA stability, nuclear export, and translation efficiency. The biosynthesis and shortening of a poly(A) tail are regulated by large multiprotein complexes. However, the molecular mechanisms of these protein machineries still remain unclear. Recent studies regarding the structural and biochemical characteristics of those protein complexes have shed light on the potential mechanisms of polyadenylation and deadenylation. This review summarizes the recent structural studies on pre-mRNA 3′-end processing complexes that initiate the polyadenylation and discusses the similarities and differences between yeast and human machineries. Specifically, we highlight recent biochemical efforts in the reconstitution of the active human canonical pre-mRNA 3′-end processing systems, as well as the roles of RBBP6/Mpe1 in activating the entire machinery. We also describe how poly(A) tails are removed by the PAN2-PAN3 and CCR4-NOT deadenylation complexes and discuss the emerging role of the cytoplasmic poly(A)-binding protein (PABPC) in promoting deadenylation. Together, these recent discoveries show that the dynamic features of these machineries play important roles in regulating polyadenylation and deadenylation.
Collapse
|
11
|
Richard P, Stojkovic T, Metay C, Lacau St Guily J, Trollet C. Distrofia muscolare oculofaringea. Neurologia 2022. [DOI: 10.1016/s1634-7072(22)46725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
12
|
Nicholson-Shaw AL, Kofman ER, Yeo GW, Pasquinelli A. Nuclear and cytoplasmic poly(A) binding proteins (PABPs) favor distinct transcripts and isoforms. Nucleic Acids Res 2022; 50:4685-4702. [PMID: 35438785 PMCID: PMC9071453 DOI: 10.1093/nar/gkac263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/14/2022] Open
Abstract
The poly(A)-tail appended to the 3'-end of most eukaryotic transcripts plays a key role in their stability, nuclear transport, and translation. These roles are largely mediated by Poly(A) Binding Proteins (PABPs) that coat poly(A)-tails and interact with various proteins involved in the biogenesis and function of RNA. While it is well-established that the nuclear PABP (PABPN) binds newly synthesized poly(A)-tails and is replaced by the cytoplasmic PABP (PABPC) on transcripts exported to the cytoplasm, the distribution of transcripts for different genes or isoforms of the same gene on these PABPs has not been investigated on a genome-wide scale. Here, we analyzed the identity, splicing status, poly(A)-tail size, and translation status of RNAs co-immunoprecipitated with endogenous PABPN or PABPC in human cells. At steady state, many protein-coding and non-coding RNAs exhibit strong bias for association with PABPN or PABPC. While PABPN-enriched transcripts more often were incompletely spliced and harbored longer poly(A)-tails and PABPC-enriched RNAs had longer half-lives and higher translation efficiency, there are curious outliers. Overall, our study reveals the landscape of RNAs bound by PABPN and PABPC, providing new details that support and advance the current understanding of the roles these proteins play in poly(A)-tail synthesis, maintenance, and function.
Collapse
Affiliation(s)
| | - Eric R Kofman
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- UCSD Stem Cell Program, Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
- UCSD Stem Cell Program, Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Amy E Pasquinelli
- Division of Biology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
13
|
Sommerkamp P, Sommerkamp AC, Zeisberger P, Eiben PL, Narr A, Korkmaz A, Przybylla A, Sohn M, van der Hoeven F, Schönig K, Trumpp A. CRISPR-Cas9 mediated generation of a conditional poly(A) binding protein nuclear 1 (Pabpn1) mouse model reveals an essential role for hematopoietic stem cells. Sci Rep 2022; 12:7181. [PMID: 35504940 PMCID: PMC9065150 DOI: 10.1038/s41598-022-11203-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022] Open
Abstract
Poly(A) binding protein nuclear 1 (PABPN1) is known for its role in poly(A) tail addition and regulation of poly(A) tail length. In addition, it has been shown to be involved in alternative polyadenylation (APA). APA is a process regulating differential selection of polyadenylation sites, thereby influencing protein isoform expression and 3ʹ-UTR make-up. In this study, we generated an inducible Pabpn1flox/flox mouse model using crRNA-tracrRNA:Cas9 complexes targeting upstream and downstream genomic regions, respectively, in combination with a long single-stranded DNA (ssDNA) template. We performed extensive in vitro testing of various guide RNAs (gRNAs) to optimize recombination efficiency for in vivo application. Pabpn1flox/flox mice were generated and crossed to MxCre mice for validation experiments, allowing the induction of Cre expression in the bone marrow (BM) by poly(I:C) (pIC) injections. Validation experiments revealed successful deletion of Pabpn1 and absence of PABPN1 protein. Functionally, knockout (KO) of Pabpn1 led to a rapid and robust depletion of hematopoietic stem and progenitor cells (HSPCs) as well as myeloid cells, suggesting an essential role of Pabpn1 in the hematopoietic lineage. Overall, the mouse model allows an inducible in-depth in vivo analysis of the role of PABPN1 and APA regulation in different tissues and disease settings.
Collapse
Affiliation(s)
- Pia Sommerkamp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Alexander C Sommerkamp
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Pediatric Glioma Research Group, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Petra Zeisberger
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Paula Leonie Eiben
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Andreas Narr
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Aylin Korkmaz
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Adriana Przybylla
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Markus Sohn
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany
| | - Franciscus van der Hoeven
- Transgenic Service, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Kai Schönig
- Central Institute for Mental Health, University of Heidelberg, 68159, Mannheim, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120, Heidelberg, Germany. .,German Cancer Consortium (DKTK), 69120, Heidelberg, Germany.
| |
Collapse
|
14
|
Relative expression of the developmentally important candidate genes in immature oocytes and in vitro-produced embryos of buffalo ( Bubalus bubalis). ZYGOTE 2022; 30:509-515. [DOI: 10.1017/s0967199421000976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Summary
The study was undertaken to examine the relative abundance (RA) of the major developmental important candidate genes in different grades of immature oocytes (A-grade, B-grade, C-grade and D-grade) and various stages of in vitro-produced embryos (2-cell, 4-cell, 8–16-cell, morula, and blastocyst) of buffalo using RT-qPCR. Results showed that the RA of GLUT1, CX43, HSP70.1 and GDF9 was significantly higher (P < 0.05) in the A-grade of oocytes than the C-grade and D-grade but did not differ significantly from the B-grade of oocytes. Similarly, RA of BMP15 and Survivin were significantly higher (P < 0.05) in A-grade than the other grades of oocytes, however, poly(A) polymerase expression was not significantly different (P > 0.05) among the immature oocytes. The expression of GLUT1 was significantly higher (P < 0.05) in the blastocysts, but the expression of CX43 (P < 0.05; P > 0.05), HSP70.1 (P < 0.05; P > 0.05) and GDF9 (P > 0.05) was higher at the 2-cell stage than the other stages of embryos. Interestingly, the expression levels of poly(A) polymerase (P < 0.05), BMP15 (P < 0.05; P > 0.05) and Survivin (P > 0.05) were higher at the 8–16-cell stage than the other stages of embryos. It is concluded that A-grade of immature oocytes has shown more mRNA abundance for the major developmental important genes; therefore A-grade oocytes may be considered as the most developmentally competent and suitable for handmade cloning research in buffalo.
Collapse
|
15
|
Ribot C, Soler C, Chartier A, Al Hayek S, Naït-Saïdi R, Barbezier N, Coux O, Simonelig M. Activation of the ubiquitin-proteasome system contributes to oculopharyngeal muscular dystrophy through muscle atrophy. PLoS Genet 2022; 18:e1010015. [PMID: 35025870 PMCID: PMC8791501 DOI: 10.1371/journal.pgen.1010015] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 01/26/2022] [Accepted: 01/01/2022] [Indexed: 12/05/2022] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late-onset disorder characterized by progressive weakness and degeneration of specific muscles. OPMD is due to extension of a polyalanine tract in poly(A) binding protein nuclear 1 (PABPN1). Aggregation of the mutant protein in muscle nuclei is a hallmark of the disease. Previous transcriptomic analyses revealed the consistent deregulation of the ubiquitin-proteasome system (UPS) in OPMD animal models and patients, suggesting a role of this deregulation in OPMD pathogenesis. Subsequent studies proposed that UPS contribution to OPMD involved PABPN1 aggregation. Here, we use a Drosophila model of OPMD to address the functional importance of UPS deregulation in OPMD. Through genome-wide and targeted genetic screens we identify a large number of UPS components that are involved in OPMD. Half dosage of UPS genes reduces OPMD muscle defects suggesting a pathological increase of UPS activity in the disease. Quantification of proteasome activity confirms stronger activity in OPMD muscles, associated with degradation of myofibrillar proteins. Importantly, improvement of muscle structure and function in the presence of UPS mutants does not correlate with the levels of PABPN1 aggregation, but is linked to decreased degradation of muscle proteins. Oral treatment with the proteasome inhibitor MG132 is beneficial to the OPMD Drosophila model, improving muscle function although PABPN1 aggregation is enhanced. This functional study reveals the importance of increased UPS activity that underlies muscle atrophy in OPMD. It also provides a proof-of-concept that inhibitors of proteasome activity might be an attractive pharmacological approach for OPMD. Oculopharyngeal muscular dystrophy (OPMD) is a genetic disease characterized by progressive weakness of specific muscles, leading to swallowing difficulties (dysphagia), eyelid drooping (ptosis) and walking difficulties at later stages. No drug treatments are currently available. OPMD is due to mutations in a nuclear protein called poly(A) binding protein nuclear 1 (PABPN1) that is involved in processing of different classes of RNAs in the nucleus. We have used an animal model of OPMD that we have developed in the fly Drosophila to investigate the role in OPMD of the ubiquitin-proteasome system, a pathway specialized in protein degradation. We report an increased activity of the ubiquitin-proteasome system that is associated with degradation of muscular proteins in the OPMD Drosophila model. We propose that higher activity of the ubiquitin-proteasome system leads to muscle atrophy in OPMD. Importantly, oral treatment of this OPMD animal model with an inhibitor of proteasome activity reduces muscle defects. A number of proteasome inhibitors are approved drugs used in clinic against cancers, therefore our results provide a proof-of-concept that inhibitors of proteasome might be of interest in future treatments of OPMD.
Collapse
Affiliation(s)
- Cécile Ribot
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
| | - Cédric Soler
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
| | - Aymeric Chartier
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
| | - Sandy Al Hayek
- GReD Laboratory, Clermont-Auvergne University, INSERM U1103, CNRS UMR6293, Clermont-Ferrand, France
| | - Rima Naït-Saïdi
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
| | - Nicolas Barbezier
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
| | - Olivier Coux
- Ubiquitin-proteasome system and cell cycle control, Montpellier Cell Biology Research Center, UMR5237 CNRS-Univ Montpellier, Montpellier, France
| | - Martine Simonelig
- mRNA Regulation and Development, Institute of Human Genetics, UMR9002 CNRS-Univ Montpellier, Montpellier, France
- * E-mail:
| |
Collapse
|
16
|
Aloufi N, Alluli A, Eidelman DH, Baglole CJ. Aberrant Post-Transcriptional Regulation of Protein Expression in the Development of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:ijms222111963. [PMID: 34769392 PMCID: PMC8584689 DOI: 10.3390/ijms222111963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an incurable and prevalent respiratory disorder that is characterized by chronic inflammation and emphysema. COPD is primarily caused by cigarette smoke (CS). CS alters numerous cellular processes, including the post-transcriptional regulation of mRNAs. The identification of RNA-binding proteins (RBPs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) as main factors engaged in the regulation of RNA biology opens the door to understanding their role in coordinating physiological cellular processes. Dysregulation of post-transcriptional regulation by foreign particles in CS may lead to the development of diseases such as COPD. Here we review current knowledge about post-transcriptional events that may be involved in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Noof Aloufi
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada; (N.A.); (A.A.)
- Department of Medical Laboratory Technology, Applied Medical Science, Taibah University, Universities Road, Medina P.O. Box 344, Saudi Arabia
| | - Aeshah Alluli
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada; (N.A.); (A.A.)
| | - David H. Eidelman
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada;
| | - Carolyn J. Baglole
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada; (N.A.); (A.A.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada;
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
- Correspondence:
| |
Collapse
|
17
|
Kumar S, Singh MK, Chauhan MS. Expression of the developmental important candidate genes in oocytes, embryos, embryonic stem cells, cumulus cells, and fibroblast cells of buffalo (Bubalus bubalis). Gene Expr Patterns 2021; 41:119200. [PMID: 34329769 DOI: 10.1016/j.gep.2021.119200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The present study was undertaken to study the expression of the developmental important gene transcripts in immature oocytes, mature oocytes, different stages of IVF produced embryos, embryonic stem (ES), cumulus (BCC), fetal fibroblast (BFF), newborn fibroblast (NBF) and adult fibroblast (BAF) cells of buffalo by semi-quantitative RT-PCR. The expression of GLUT1, HSP70.1, POL A Polymerase, GDF9, BMP15, and SURVIVIN transcripts was found in immature oocytes, mature oocytes, 2-cell, 4-cell, 8-16 cell, morula, and the blastocyst. Interestingly, the CX43 expression was found in oocytes, embryos, and other cell types, but it was not detected in the blastocyst. However, the IFNT expression was found in the blastocyst only, but not in other cells. The buffalo ES cells showed the expression of intracellular and cell surface markers (NANOG, OCT4, SOX2, FOXD3, SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81) and alkaline phosphatase activity. Two ES cell lines (S-line and M-line-II) were continued to survive up to 98th passages (~630 days) and 97th passages (~624 days), respectively. It was interesting to note that GLUT1, CX43, HSP70.1, POL A Polymerase, GDF9, BMP15, and SURVIVIN transcripts (except the IFNT) were expressed in buffalo ES, BCC, BFF, NBF and BAF cells. This is the first preliminary report that the buffalo ES, BCC, BFF, NBF, and BAF cells expressed the several developmental important candidate genes. It is concluded that the expression of the major developmental important genes was not only expressed in the oocytes and embryos but also expressed in the ES, BCC, BFF, NBF, and BAF cells of buffalo.
Collapse
Affiliation(s)
- S Kumar
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | - M K Singh
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| | - M S Chauhan
- Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
18
|
Komini C, Theohari I, Lambrianidou A, Nakopoulou L, Trangas T. PAPOLA contributes to cyclin D1 mRNA alternative polyadenylation and promotes breast cancer cell proliferation. J Cell Sci 2021; 134:237820. [PMID: 33712453 DOI: 10.1242/jcs.252304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Poly(A) polymerases add the poly(A) tail at the 3' end of nearly all eukaryotic mRNA, and are associated with proliferation and cancer. To elucidate the role of the most-studied mammalian poly(A) polymerase, poly(A) polymerase α (PAPOLA), in cancer, we assessed its expression in 221 breast cancer samples and found it to correlate strongly with the aggressive triple-negative subtype. Silencing PAPOLA in MCF-7 and MDA-MB-231 breast cancer cells reduced proliferation and anchorage-independent growth by decreasing steady-state cyclin D1 (CCND1) mRNA and protein levels. Whereas the length of the CCND1 mRNA poly(A) tail was not affected, its 3' untranslated region (3'UTR) lengthened. Overexpressing PAPOLA caused CCND1 mRNA 3'UTR shortening with a concomitant increase in the amount of corresponding transcript and protein, resulting in growth arrest in MCF-7 cells and DNA damage in HEK-293 cells. Such overexpression of PAPOLA promoted proliferation in the p53 mutant MDA-MB-231 cells. Our data suggest that PAPOLA is a possible candidate target for the control of tumor growth that is mostly relevant to triple-negative tumors, a group characterized by PAPOLA overexpression and lack of alternative targeted therapies.
Collapse
Affiliation(s)
- Chrysoula Komini
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, 45110, Greece
| | - Irini Theohari
- First Department of Pathology, Medical School, University of Athens, Athens, 11517, Greece
| | - Andromachi Lambrianidou
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, 45110, Greece
| | - Lydia Nakopoulou
- First Department of Pathology, Medical School, University of Athens, Athens, 11517, Greece
| | - Theoni Trangas
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, 45110, Greece
| |
Collapse
|
19
|
Zhao LW, Fan HY. Revisiting poly(A)-binding proteins: Multifaceted regulators during gametogenesis and early embryogenesis. Bioessays 2021; 43:e2000335. [PMID: 33830517 DOI: 10.1002/bies.202000335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/27/2022]
Abstract
Post-transcriptional regulation faces a distinctive challenge in gametes. Transcription is limited when the germ cells enter the division phase due to condensed chromatin, while gene expression during gamete maturation, fertilization, and early cleavage depends on existing mRNA post-transcriptional coordination. The dynamics of the 3'-poly(A) tail play crucial roles in defining mRNA fate. The 3'-poly(A) tail is covered with poly(A)-binding proteins (PABPs) that help to mediate mRNA metabolism and recent work has shed light on the number and function of germ cell-specific expressed PABPs. There are two structurally different PABP groups distinguished by their cytoplasmic and nuclear localization. Both lack catalytic activity but are coupled with various roles through their interaction with multifunctional partners during mRNA metabolism. Here, we present a synopsis of PABP function during gametogenesis and early embryogenesis and describe both conventional and current models of the functions and regulation of PABPs, with an emphasis on the physiological significance of how germ cell-specific PABPs potentially affect human fertility.
Collapse
Affiliation(s)
- Long-Wen Zhao
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Heng-Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Regulation of Kv11.1 Isoform Expression by Polyadenylate Binding Protein Nuclear 1. Int J Mol Sci 2021; 22:ijms22020863. [PMID: 33467093 PMCID: PMC7829756 DOI: 10.3390/ijms22020863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/03/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
The Kv11.1 voltage-gated potassium channel, encoded by the KCNH2 gene, conducts the rapidly activating delayed rectifier current in the heart. KCNH2 pre-mRNA undergoes alternative polyadenylation to generate two C-terminal Kv11.1 isoforms in the heart. Utilization of a poly(A) signal in exon 15 produces the full-length, functional Kv11.1a isoform, while intron 9 polyadenylation generates the C-terminally truncated, nonfunctional Kv11.1a-USO isoform. The relative expression of Kv11.1a and Kv11.1a-USO isoforms plays an important role in the regulation of Kv11.1 channel function. In this study, we tested the hypothesis that the RNA polyadenylate binding protein nuclear 1 (PABPN1) interacts with a unique 22 nt adenosine stretch adjacent to the intron 9 poly(A) signal and regulates KCNH2 pre-mRNA alternative polyadenylation and the relative expression of Kv11.1a C-terminal isoforms. We showed that PABPN1 inhibited intron 9 poly(A) activity using luciferase reporter assays, tandem poly(A) reporter assays, and RNA pulldown assays. We also showed that PABPN1 increased the relative expression level of the functional Kv11.1a isoform using RNase protection assays, immunoblot analyses, and patch clamp recordings. Our present findings suggest a novel role for the RNA-binding protein PABPN1 in the regulation of functional and nonfunctional Kv11.1 isoform expression.
Collapse
|
21
|
Baker JD, Uhrich RL, Strovas TJ, Saxton AD, Kraemer BC. Targeting Pathological Tau by Small Molecule Inhibition of the Poly(A):MSUT2 RNA-Protein Interaction. ACS Chem Neurosci 2020; 11:2277-2285. [PMID: 32589834 PMCID: PMC8629322 DOI: 10.1021/acschemneuro.0c00214] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Neurofibrillary tangles composed of aberrantly aggregating tau protein are a hallmark of Alzheimer's disease and related dementia disorders. Recent work has shown that mammalian suppressor of tauopathy 2 (MSUT2), also named ZC3H14 (Zinc Finger CCCH-Type Containing 14), controls accumulation of pathological tau in cultured human cells and mice. Knocking out MSUT2 protects neurons from neurodegenerative tauopathy and preserves learning and memory. MSUT2 protein functions to bind polyadenosine [poly(A)] tails of mRNA through its C-terminal CCCH type zinc finger domains, and loss of CCCH domain function suppresses tauopathy in Caenorhabditis elegans and mice. Thus, we hypothesized that inhibiting the poly(A):MSUT2 RNA-protein interaction would ameliorate pathological tau accumulation. Here we present a high-throughput screening method for the identification of small molecules inhibiting the poly(A):MSUT2 RNA-protein interaction. We employed a fluorescent polarization assay for initial small molecule discovery with the intention to repurpose hits identified from the NIH Clinical Collection (NIHCC). Our drug repurposing development workflow included validation of hits by dose-response analysis, specificity testing, orthogonal assays of activity, and cytotoxicity. Validated compounds passing through this screening funnel will be evaluated for translational effectiveness in future studies. This preclinical drug development pipeline identified diverse FDA approved drugs duloxetine, saquinavir, and clofazimine as potential repurposing candidates for reducing pathological tau accumulation.
Collapse
Affiliation(s)
- Jeremy D Baker
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington 98104, United States
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, United States
| | - Rikki L Uhrich
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, United States
| | - Timothy J Strovas
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, United States
| | - Aleen D Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, United States
| | - Brian C Kraemer
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington 98104, United States
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, United States
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 98195, United States
- Department of Pathology, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
22
|
PABPN1, a Target of p63, Modulates Keratinocyte Differentiation through Regulation of p63α mRNA Translation. J Invest Dermatol 2020; 140:2166-2177.e6. [PMID: 32243883 DOI: 10.1016/j.jid.2020.03.942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 01/25/2023]
Abstract
p63 is expressed from two promoters and produces two N-terminal isoforms, TAp63 and ΔNp63. Alternative splicing creates three C-terminal isoforms p63α, p63β, and p63δ, whereas alternative polyadenylation (APA) in coding sequence creates two more C-terminal isoforms p63γ and p63ε. Although several transcription factors have been identified to differentially regulate the N-terminal p63 isoforms, it is unclear how the C-terminal p63 isoforms are regulated. Thus, we determined whether PABPN1, a key regulator of APA, may differentially regulate the C-terminal p63 isoforms. We found that PABPN1 deficiency increases p63γ mRNA through APA in coding sequence. We also found that PABPN1 is necessary for p63α translation by modulating the binding of translation initiation factors eIF4E and eIF4G to p63α mRNA. Moreover, we found that the p53 family, especially p63α, regulates PABPN1 transcription, suggesting that the mutual regulation between p63 and PABPN1 forms a feedback loop. Furthermore, we found that PABPN1 deficiency inhibits keratinocyte cell growth, which can be rescued by ectopic ΔNp63α. Finally, we found that PABPN1 controls the terminal differentiation of HaCaT keratinocytes by modulating ΔNp63α expression. Taken together, our findings suggest that PABPN1 is a key regulator of the C-terminal p63 isoforms through APA in coding sequence and mRNA translation and that the p63-PABPN1 loop modulates p63 activity and the APA landscape.
Collapse
|
23
|
Chaudhuri A, Das S, Das B. Localization elements and zip codes in the intracellular transport and localization of messenger RNAs in Saccharomyces cerevisiae. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 11:e1591. [PMID: 32101377 DOI: 10.1002/wrna.1591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/13/2022]
Abstract
Intracellular trafficking and localization of mRNAs provide a mechanism of regulation of expression of genes with excellent spatial control. mRNA localization followed by localized translation appears to be a mechanism of targeted protein sorting to a specific cell-compartment, which is linked to the establishment of cell polarity, cell asymmetry, embryonic axis determination, and neuronal plasticity in metazoans. However, the complexity of the mechanism and the components of mRNA localization in higher organisms prompted the use of the unicellular organism Saccharomyces cerevisiae as a simplified model organism to study this vital process. Current knowledge indicates that a variety of mRNAs are asymmetrically and selectively localized to the tip of the bud of the daughter cells, to the vicinity of endoplasmic reticulum, mitochondria, and nucleus in this organism, which are connected to diverse cellular processes. Interestingly, specific cis-acting RNA localization elements (LEs) or RNA zip codes play a crucial role in the localization and trafficking of these localized mRNAs by providing critical binding sites for the specific RNA-binding proteins (RBPs). In this review, we present a comprehensive account of mRNA localization in S. cerevisiae, various types of localization elements influencing the mRNA localization, and the RBPs, which bind to these LEs to implement a number of vital physiological processes. Finally, we emphasize the significance of this process by highlighting their connection to several neuropathological disorders and cancers. This article is categorized under: RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Anusha Chaudhuri
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Subhadeep Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Biswadip Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| |
Collapse
|
24
|
Lloret-Llinares M, Jensen TH. Global Identification of Human Exosome Substrates Using RNA Interference and RNA Sequencing. Methods Mol Biol 2020; 2062:127-145. [PMID: 31768975 DOI: 10.1007/978-1-4939-9822-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
The RNA exosome is involved in RNA processing and quality control. In humans, it consists of an enzymatically inactive nine-subunit core, with ribonucleolytic activity contributed by one or two additional components. Moreover, several protein cofactors interact with the exosome to enable and specify its recruitment to a wide range of substrates. A common strategy to identify these substrates has been to deplete an exosome subunit or a cofactor and subsequently interrogate which transcripts become stabilized. Here, we describe an experimental pipeline including siRNA-mediated depletion of the RNA exosome or its cofactors in HeLa cells, confirmation of the knockdown efficiencies, and the manual or high-throughput identification of exosome targets.
Collapse
Affiliation(s)
| | - Torben Heick Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
25
|
Das S, Biswas S, Chaudhuri S, Bhattacharyya A, Das B. A Nuclear Zip Code in SKS1 mRNA Promotes Its Slow Export, Nuclear Retention, and Degradation by the Nuclear Exosome/DRN in Saccharomyces cerevisiae. J Mol Biol 2019; 431:3626-3646. [DOI: 10.1016/j.jmb.2019.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 01/12/2023]
|
26
|
Phillips BL, Banerjee A, Sanchez BJ, Di Marco S, Gallouzi IE, Pavlath GK, Corbett AH. Post-transcriptional regulation of Pabpn1 by the RNA binding protein HuR. Nucleic Acids Res 2019; 46:7643-7661. [PMID: 29939290 PMCID: PMC6125628 DOI: 10.1093/nar/gky535] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 06/08/2018] [Indexed: 01/14/2023] Open
Abstract
RNA processing is critical for proper spatial and temporal control of gene expression. The ubiquitous nuclear polyadenosine RNA binding protein, PABPN1, post-transcriptionally regulates multiple steps of gene expression. Mutations in the PABPN1 gene expanding an N-terminal alanine tract in the PABPN1 protein from 10 alanines to 11–18 alanines cause the muscle-specific disease oculopharyngeal muscular dystrophy (OPMD), which affects eyelid, pharynx, and proximal limb muscles. Previous work revealed that the Pabpn1 transcript is unstable, contributing to low steady-state Pabpn1 mRNA and protein levels in vivo, specifically in skeletal muscle, with even lower levels in muscles affected in OPMD. Thus, low levels of PABPN1 protein could predispose specific tissues to pathology in OPMD. However, no studies have defined the mechanisms that regulate Pabpn1 expression. Here, we define multiple cis-regulatory elements and a trans-acting factor, HuR, which regulate Pabpn1 expression specifically in mature muscle in vitro and in vivo. We exploit multiple models including C2C12 myotubes, primary muscle cells, and mice to determine that HuR decreases Pabpn1 expression. Overall, we have uncovered a mechanism in mature muscle that negatively regulates Pabpn1 expression in vitro and in vivo, which could provide insight to future studies investigating therapeutic strategies for OPMD treatment.
Collapse
Affiliation(s)
- Brittany L Phillips
- Department of Biology, Emory University, Atlanta, GA 30322, USA.,Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
| | - Ayan Banerjee
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Brenda J Sanchez
- Department of Biochemistry, Goodman Cancer Center, McGill University, Montreal, Quebec, Canada
| | - Sergio Di Marco
- Department of Biochemistry, Goodman Cancer Center, McGill University, Montreal, Quebec, Canada
| | - Imed-Eddine Gallouzi
- Department of Biochemistry, Goodman Cancer Center, McGill University, Montreal, Quebec, Canada.,Hamad Bin Khalifa University (HBKU), Life Sciences Division, College of Sciences and Engineering, Education City, Doha, Qatar
| | - Grace K Pavlath
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
27
|
Ozturk S. The translational functions of embryonic poly(A)‐binding protein during gametogenesis and early embryo development. Mol Reprod Dev 2019; 86:1548-1560. [DOI: 10.1002/mrd.23253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 07/26/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Saffet Ozturk
- Department of Histology and EmbryologyAkdeniz University School of MedicineAntalya Turkey
| |
Collapse
|
28
|
Ozturk S, Uysal F. Poly(A)-binding proteins are required for translational regulation in vertebrate oocytes and early embryos. Reprod Fertil Dev 2018; 29:1890-1901. [PMID: 28103468 DOI: 10.1071/rd16283] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/01/2016] [Indexed: 12/22/2022] Open
Abstract
Poly(A)-binding proteins (PABPs) function in the timely regulation of gene expression during oocyte maturation, fertilisation and early embryo development in vertebrates. To this end, PABPs bind to poly(A) tails or specific sequences of maternally stored mRNAs to protect them from degradation and to promote their translational activities. To date, two structurally different PABP groups have been identified: (1) cytoplasmic PABPs, including poly(A)-binding protein, cytoplasmic 1 (PABPC1), embryonic poly(A)-binding protein (EPAB), induced PABP and poly(A)-binding protein, cytoplasmic 3; and (2) nuclear PABPs, namely embryonic poly(A)-binding protein 2 and nuclear poly(A)-binding protein 1. Many studies have been undertaken to characterise the spatial and temporal expression patterns and subcellular localisations of PABPC1 and EPAB in vertebrate oocytes and early embryos. In the present review, we comprehensively evaluate and discuss the expression patterns and particular functions of the EPAB and PABPC1 genes, especially in mouse and human oocytes and early embryos.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Campus, 07070, Antalya, Turkey
| | - Fatma Uysal
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Campus, 07070, Antalya, Turkey
| |
Collapse
|
29
|
Valdés-Flores J, López-Rosas I, López-Camarillo C, Ramírez-Moreno E, Ospina-Villa JD, Marchat LA. Life and Death of mRNA Molecules in Entamoeba histolytica. Front Cell Infect Microbiol 2018; 8:199. [PMID: 29971219 PMCID: PMC6018208 DOI: 10.3389/fcimb.2018.00199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/28/2018] [Indexed: 02/05/2023] Open
Abstract
In eukaryotic cells, the life cycle of mRNA molecules is modulated in response to environmental signals and cell-cell communication in order to support cellular homeostasis. Capping, splicing and polyadenylation in the nucleus lead to the formation of transcripts that are suitable for translation in cytoplasm, until mRNA decay occurs in P-bodies. Although pre-mRNA processing and degradation mechanisms have usually been studied separately, they occur simultaneously and in a coordinated manner through protein-protein interactions, maintaining the integrity of gene expression. In the past few years, the availability of the genome sequence of Entamoeba histolytica, the protozoan parasite responsible for human amoebiasis, coupled to the development of the so-called “omics” technologies provided new opportunities for the study of mRNA processing and turnover in this pathogen. Here, we review the current knowledge about the molecular basis for splicing, 3′ end formation and mRNA degradation in amoeba, which suggest the conservation of events related to mRNA life throughout evolution. We also present the functional characterization of some key proteins and describe some interactions that indicate the relevance of cooperative regulatory events for gene expression in this human parasite.
Collapse
Affiliation(s)
- Jesús Valdés-Flores
- Departamento de Bioquímica, CINVESTAV, Ciudad de Mexico, Mexico City, Mexico
| | - Itzel López-Rosas
- CONACyT Research Fellow - Colegio de Postgraduados Campus Campeche, Campeche, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México Ciudad de Mexico, Mexico City, Mexico
| | - Esther Ramírez-Moreno
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional Ciudad de Mexico, Mexico City, Mexico
| | - Juan D Ospina-Villa
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional Ciudad de Mexico, Mexico City, Mexico
| | - Laurence A Marchat
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional Ciudad de Mexico, Mexico City, Mexico
| |
Collapse
|
30
|
Beta RAA, Balatsos NAA. Tales around the clock: Poly(A) tails in circadian gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1484. [PMID: 29911349 DOI: 10.1002/wrna.1484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 04/15/2018] [Accepted: 04/20/2018] [Indexed: 11/07/2022]
Abstract
Circadian rhythms are ubiquitous time-keeping processes in eukaryotes with a period of ~24 hr. Light is perhaps the main environmental cue (zeitgeber) that affects several aspects of physiology and behaviour, such as sleep/wake cycles, orientation of birds and bees, and leaf movements in plants. Temperature can serve as the main zeitgeber in the absence of light cycles, even though it does not lead to rhythmicity through the same mechanism as light. Additional cues include feeding patterns, humidity, and social rhythms. At the molecular level, a master oscillator orchestrates circadian rhythms and organizes molecular clocks located in most cells. The generation of the 24 hr molecular clock is based on transcriptional regulation, as it drives intrinsic rhythmic changes based on interlocked transcription/translation feedback loops that synchronize expression of genes. Thus, processes and factors that determine rhythmic gene expression are important to understand circadian rhythms. Among these, the poly(A) tails of RNAs play key roles in their stability, translational efficiency and degradation. In this article, we summarize current knowledge and discuss perspectives on the role and significance of poly(A) tails and associating factors in the context of the circadian clock. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA Processing > 3' End Processing.
Collapse
Affiliation(s)
- Rafailia A A Beta
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Nikolaos A A Balatsos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
31
|
Ozturk S, Uysal F. Potential roles of the poly(A)-binding proteins in translational regulation during spermatogenesis. J Reprod Dev 2018; 64:289-296. [PMID: 29780056 PMCID: PMC6105736 DOI: 10.1262/jrd.2018-026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis is briefly defined as the production of mature spermatozoa from spermatogonial stem cells at the end of a strictly regulated process. It is well known that, to a large
extent, transcriptional activity ceases at mid-spermiogenesis. Several mRNAs transcribed during early stages of spermatogenesis are stored as ribonucleoproteins (RNPs). During the later
stages, translational control of these mRNAs is mainly carried out in a time dependent-manner by poly(A)-binding proteins (PABPs) in cooperation with other RNA-binding proteins and
translation-related factors. Conserved PABPs specifically bind to poly(A) tails at the 3′ ends of mRNAs to regulate their translational activity in spermatogenic cells. Studies in this field
have revealed that PABPs, particularly poly(A)-binding protein cytoplasmic 1 (Pabpc1), Pabpc2, and the embryonic poly(A)-binding protein (Epab), play roles in the translational regulation of
mRNAs required at later stages of spermatogenesis. In this review article, we evaluated the spatial and temporal expression patterns and potential functions of these PABPs in spermatogenic
cells during spermatogenesis. The probable relationship between alterations in PABP expression and the development of male infertility is also reviewed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Antalya, Turkey
| | - Fatma Uysal
- Department of Histology and Embryology, Akdeniz University, School of Medicine, Antalya, Turkey
| |
Collapse
|
32
|
Targeting the Polyadenylation Signal of Pre-mRNA: A New Gene Silencing Approach for Facioscapulohumeral Dystrophy. Int J Mol Sci 2018; 19:ijms19051347. [PMID: 29751519 PMCID: PMC5983732 DOI: 10.3390/ijms19051347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/27/2018] [Accepted: 04/30/2018] [Indexed: 02/07/2023] Open
Abstract
Facioscapulohumeral dystrophy (FSHD) is characterized by the contraction of the D4Z4 array located in the sub-telomeric region of the chromosome 4, leading to the aberrant expression of the DUX4 transcription factor and the mis-regulation of hundreds of genes. Several therapeutic strategies have been proposed among which the possibility to target the polyadenylation signal to silence the causative gene of the disease. Indeed, defects in mRNA polyadenylation leads to an alteration of the transcription termination, a disruption of mRNA transport from the nucleus to the cytoplasm decreasing the mRNA stability and translation efficiency. This review discusses the polyadenylation mechanisms, why alternative polyadenylation impacts gene expression, and how targeting polyadenylation signal may be a potential therapeutic approach for FSHD.
Collapse
|
33
|
Gavish-Izakson M, Velpula BB, Elkon R, Prados-Carvajal R, Barnabas GD, Ugalde AP, Agami R, Geiger T, Huertas P, Ziv Y, Shiloh Y. Nuclear poly(A)-binding protein 1 is an ATM target and essential for DNA double-strand break repair. Nucleic Acids Res 2018; 46:730-747. [PMID: 29253183 PMCID: PMC5778506 DOI: 10.1093/nar/gkx1240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022] Open
Abstract
The DNA damage response (DDR) is an extensive signaling network that is robustly mobilized by DNA double-strand breaks (DSBs). The primary transducer of the DSB response is the protein kinase, ataxia-telangiectasia, mutated (ATM). Here, we establish nuclear poly(A)-binding protein 1 (PABPN1) as a novel target of ATM and a crucial player in the DSB response. PABPN1 usually functions in regulation of RNA processing and stability. We establish that PABPN1 is recruited to the DDR as a critical regulator of DSB repair. A portion of PABPN1 relocalizes to DSB sites and is phosphorylated on Ser95 in an ATM-dependent manner. PABPN1 depletion sensitizes cells to DSB-inducing agents and prolongs the DSB-induced G2/M cell-cycle arrest, and DSB repair is hampered by PABPN1 depletion or elimination of its phosphorylation site. PABPN1 is required for optimal DSB repair via both nonhomologous end-joining (NHEJ) and homologous recombination repair (HRR), and specifically is essential for efficient DNA-end resection, an initial, key step in HRR. Using mass spectrometry analysis, we capture DNA damage-induced interactions of phospho-PABPN1, including well-established DDR players as well as other RNA metabolizing proteins. Our results uncover a novel ATM-dependent axis in the rapidly growing interface between RNA metabolism and the DDR.
Collapse
Affiliation(s)
- Michal Gavish-Izakson
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Bhagya Bhavana Velpula
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rosario Prados-Carvajal
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) and Department of Genetics, University of Sevilla, Sevilla, Spain
| | - Georgina D Barnabas
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alejandro Pineiro Ugalde
- Division of Biological Stress Response, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Reuven Agami
- Division of Biological Stress Response, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pablo Huertas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) and Department of Genetics, University of Sevilla, Sevilla, Spain
| | - Yael Ziv
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yosef Shiloh
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
34
|
Banerjee A, Vest KE, Pavlath GK, Corbett AH. Nuclear poly(A) binding protein 1 (PABPN1) and Matrin3 interact in muscle cells and regulate RNA processing. Nucleic Acids Res 2017; 45:10706-10725. [PMID: 28977530 PMCID: PMC5737383 DOI: 10.1093/nar/gkx786] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/27/2017] [Indexed: 01/01/2023] Open
Abstract
The polyadenylate binding protein 1 (PABPN1) is a ubiquitously expressed RNA binding protein vital for multiple steps in RNA metabolism. Although PABPN1 plays a critical role in the regulation of RNA processing, mutation of the gene encoding this ubiquitously expressed RNA binding protein causes a specific form of muscular dystrophy termed oculopharyngeal muscular dystrophy (OPMD). Despite the tissue-specific pathology that occurs in this disease, only recently have studies of PABPN1 begun to explore the role of this protein in skeletal muscle. We have used co-immunoprecipitation and mass spectrometry to identify proteins that interact with PABPN1 in mouse skeletal muscles. Among the interacting proteins we identified Matrin 3 (MATR3) as a novel protein interactor of PABPN1. The MATR3 gene is mutated in a form of distal myopathy and amyotrophic lateral sclerosis (ALS). We demonstrate, that like PABPN1, MATR3 is critical for myogenesis. Furthermore, MATR3 controls critical aspects of RNA processing including alternative polyadenylation and intron retention. We provide evidence that MATR3 also binds and regulates the levels of long non-coding RNA (lncRNA) Neat1 and together with PABPN1 is required for normal paraspeckle function. We demonstrate that PABPN1 and MATR3 are required for paraspeckles, as well as for adenosine to inosine (A to I) RNA editing of Ctn RNA in muscle cells. We provide a functional link between PABPN1 and MATR3 through regulation of a common lncRNA target with downstream impact on paraspeckle morphology and function. We extend our analysis to a mouse model of OPMD and demonstrate altered paraspeckle morphology in the presence of endogenous levels of alanine-expanded PABPN1. In this study, we report protein-binding partners of PABPN1, which could provide insight into novel functions of PABPN1 in skeletal muscle and identify proteins that could be sequestered with alanine-expanded PABPN1 in the nuclear aggregates found in OPMD.
Collapse
Affiliation(s)
- Ayan Banerjee
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Katherine E Vest
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Grace K Pavlath
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
35
|
Neve J, Patel R, Wang Z, Louey A, Furger AM. Cleavage and polyadenylation: Ending the message expands gene regulation. RNA Biol 2017; 14:865-890. [PMID: 28453393 PMCID: PMC5546720 DOI: 10.1080/15476286.2017.1306171] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Cleavage and polyadenylation (pA) is a fundamental step that is required for the maturation of primary protein encoding transcripts into functional mRNAs that can be exported from the nucleus and translated in the cytoplasm. 3'end processing is dependent on the assembly of a multiprotein processing complex on the pA signals that reside in the pre-mRNAs. Most eukaryotic genes have multiple pA signals, resulting in alternative cleavage and polyadenylation (APA), a widespread phenomenon that is important to establish cell state and cell type specific transcriptomes. Here, we review how pA sites are recognized and comprehensively summarize how APA is regulated and creates mRNA isoform profiles that are characteristic for cell types, tissues, cellular states and disease.
Collapse
Affiliation(s)
- Jonathan Neve
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Radhika Patel
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Zhiqiao Wang
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Alastair Louey
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
36
|
Kühn U, Buschmann J, Wahle E. The nuclear poly(A) binding protein of mammals, but not of fission yeast, participates in mRNA polyadenylation. RNA (NEW YORK, N.Y.) 2017; 23:473-482. [PMID: 28096519 PMCID: PMC5340911 DOI: 10.1261/rna.057026.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 01/04/2017] [Indexed: 05/22/2023]
Abstract
The nuclear poly(A) binding protein (PABPN1) has been suggested, on the basis of biochemical evidence, to play a role in mRNA polyadenylation by strongly increasing the processivity of poly(A) polymerase. While experiments in metazoans have tended to support such a role, the results were not unequivocal, and genetic data show that the S. pombe ortholog of PABPN1, Pab2, is not involved in mRNA polyadenylation. The specific model in which PABPN1 increases the rate of poly(A) tail elongation has never been examined in vivo. Here, we have used 4-thiouridine pulse-labeling to examine the lengths of newly synthesized poly(A) tails in human cells. Knockdown of PABPN1 strongly reduced the synthesis of full-length tails of ∼250 nucleotides, as predicted from biochemical data. We have also purified S. pombe Pab2 and the S. pombe poly(A) polymerase, Pla1, and examined their in vitro activities. Whereas PABPN1 strongly increases the activity of its cognate poly(A) polymerase in vitro, Pab2 was unable to stimulate Pla1 to any significant extent. Thus, in vitro and in vivo data are consistent in supporting a role of PABPN1 but not S. pombe Pab2 in the polyadenylation of mRNA precursors.
Collapse
Affiliation(s)
- Uwe Kühn
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Juliane Buschmann
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| |
Collapse
|
37
|
Björk P, Wieslander L. Integration of mRNP formation and export. Cell Mol Life Sci 2017; 74:2875-2897. [PMID: 28314893 PMCID: PMC5501912 DOI: 10.1007/s00018-017-2503-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
Abstract
Expression of protein-coding genes in eukaryotes relies on the coordinated action of many sophisticated molecular machineries. Transcription produces precursor mRNAs (pre-mRNAs) and the active gene provides an environment in which the pre-mRNAs are processed, folded, and assembled into RNA–protein (RNP) complexes. The dynamic pre-mRNPs incorporate the growing transcript, proteins, and the processing machineries, as well as the specific protein marks left after processing that are essential for export and the cytoplasmic fate of the mRNPs. After release from the gene, the mRNPs move by diffusion within the interchromatin compartment, making up pools of mRNPs. Here, splicing and polyadenylation can be completed and the mRNPs recruit the major export receptor NXF1. Export competent mRNPs interact with the nuclear pore complex, leading to export, concomitant with compositional and conformational changes of the mRNPs. We summarize the integrated nuclear processes involved in the formation and export of mRNPs.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Lars Wieslander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
38
|
Richard P, Roth F, Stojkovic T, Trollet C. Distrofia muscolare oculofaringea. Neurologia 2017. [DOI: 10.1016/s1634-7072(16)81777-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
39
|
Wigington CP, Morris KJ, Newman LE, Corbett AH. The Polyadenosine RNA-binding Protein, Zinc Finger Cys3His Protein 14 (ZC3H14), Regulates the Pre-mRNA Processing of a Key ATP Synthase Subunit mRNA. J Biol Chem 2016; 291:22442-22459. [PMID: 27563065 DOI: 10.1074/jbc.m116.754069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 08/25/2016] [Indexed: 12/23/2022] Open
Abstract
Polyadenosine RNA-binding proteins (Pabs) regulate multiple steps in gene expression. This protein family includes the well studied Pabs, PABPN1 and PABPC1, as well as the newly characterized Pab, zinc finger CCCH-type containing protein 14 (ZC3H14). Mutations in ZC3H14 are linked to a form of intellectual disability. To probe the function of ZC3H14, we performed a transcriptome-wide analysis of cells depleted of either ZC3H14 or the control Pab, PABPN1. Depletion of PABPN1 affected ∼17% of expressed transcripts, whereas ZC3H14 affected only ∼1% of expressed transcripts. To assess the function of ZC3H14 in modulating target mRNAs, we selected the gene encoding the ATP synthase F0 subunit C (ATP5G1) transcript. Knockdown of ZC3H14 significantly reduced ATP5G1 steady-state mRNA levels. Consistent with results suggesting that ATP5G1 turnover increases upon depletion of ZC3H14, double knockdown of ZC3H14 and the nonsense-mediated decay factor, UPF1, rescues ATP5G1 transcript levels. Furthermore, fractionation reveals an increase in the amount of ATP5G1 pre-mRNA that reaches the cytoplasm when ZC3H14 is depleted and that ZC3H14 binds to ATP5G1 pre-mRNA in the nucleus. These data support a role for ZC3H14 in ensuring proper nuclear processing and retention of ATP5G1 pre-mRNA. Consistent with the observation that ATP5G1 is a rate-limiting component for ATP synthase activity, knockdown of ZC3H14 decreases cellular ATP levels and causes mitochondrial fragmentation. These data suggest that ZC3H14 modulates pre-mRNA processing of select mRNA transcripts and plays a critical role in regulating cellular energy levels, observations that have broad implications for proper neuronal function.
Collapse
Affiliation(s)
- Callie P Wigington
- From the Department of Biochemistry and.,the Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia 30322
| | - Kevin J Morris
- From the Department of Biochemistry and.,the Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia 30322
| | - Laura E Newman
- From the Department of Biochemistry and.,the Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia 30322
| | - Anita H Corbett
- From the Department of Biochemistry and .,the Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
40
|
Rissland OS. The organization and regulation of mRNA-protein complexes. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27324829 PMCID: PMC5213448 DOI: 10.1002/wrna.1369] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/21/2022]
Abstract
In a eukaryotic cell, each messenger RNA (mRNA) is bound to a variety of proteins to form an mRNA-protein complex (mRNP). Together, these proteins impact nearly every step in the life cycle of an mRNA and are critical for the proper control of gene expression. In the cytoplasm, for instance, mRNPs affect mRNA translatability and stability and provide regulation of specific transcripts as well as global, transcriptome-wide control. mRNPs are complex, diverse, and dynamic, and so they have been a challenge to understand. But the advent of high-throughput sequencing technology has heralded a new era in the study of mRNPs. Here, I will discuss general principles of cytoplasmic mRNP organization and regulation. Using microRNA-mediated repression as a case study, I will focus on common themes in mRNPs and highlight the interplay between mRNP composition and posttranscriptional regulation. mRNPs are an important control point in regulating gene expression, and while the study of these fascinating complexes presents remaining challenges, recent advances provide a critical lens for deciphering gene regulation. WIREs RNA 2017, 8:e1369. doi: 10.1002/wrna.1369 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Olivia S Rissland
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Kini HK, Silverman IM, Ji X, Gregory BD, Liebhaber SA. Cytoplasmic poly(A) binding protein-1 binds to genomically encoded sequences within mammalian mRNAs. RNA (NEW YORK, N.Y.) 2016; 22:61-74. [PMID: 26554031 PMCID: PMC4691835 DOI: 10.1261/rna.053447.115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
The functions of the major mammalian cytoplasmic poly(A) binding protein, PABPC1, have been characterized predominantly in the context of its binding to the 3' poly(A) tails of mRNAs. These interactions play important roles in post-transcriptional gene regulation by enhancing translation and mRNA stability. Here, we performed transcriptome-wide CLIP-seq analysis to identify additional PABPC1 binding sites within genomically encoded mRNA sequences that may impact on gene regulation. From this analysis, we found that PABPC1 binds directly to the canonical polyadenylation signal in thousands of mRNAs in the mouse transcriptome. PABPC1 binding also maps to translation initiation and termination sites bracketing open reading frames, exemplified most dramatically in replication-dependent histone mRNAs. Additionally, a more restricted subset of PABPC1 interaction sites comprised A-rich sequences within the 5' UTRs of mRNAs, including Pabpc1 mRNA itself. Functional analyses revealed that these PABPC1 interactions in the 5' UTR mediate both auto- and trans-regulatory translational control. In total, these findings reveal a repertoire of PABPC1 binding that is substantially broader than previously recognized with a corresponding potential to impact and coordinate post-transcriptional controls critical to a broad array of cellular functions.
Collapse
Affiliation(s)
- Hemant K Kini
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Ian M Silverman
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Xinjun Ji
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Brian D Gregory
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Stephen A Liebhaber
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
42
|
Nguyen D, Grenier St-Sauveur V, Bergeron D, Dupuis-Sandoval F, Scott MS, Bachand F. A Polyadenylation-Dependent 3' End Maturation Pathway Is Required for the Synthesis of the Human Telomerase RNA. Cell Rep 2015; 13:2244-57. [PMID: 26628368 DOI: 10.1016/j.celrep.2015.11.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/02/2015] [Accepted: 10/29/2015] [Indexed: 12/19/2022] Open
Abstract
Telomere maintenance by the telomerase reverse transcriptase requires a noncoding RNA subunit that acts as a template for the synthesis of telomeric repeats. In humans, the telomerase RNA (hTR) is a non-polyadenylated transcript produced from an independent transcriptional unit. As yet, the mechanism and factors responsible for hTR 3' end processing have remained largely unknown. Here, we show that hTR is matured via a polyadenylation-dependent pathway that relies on the nuclear poly(A)-binding protein PABPN1 and the poly(A)-specific RNase PARN. Depletion of PABPN1 and PARN results in telomerase RNA deficiency and the accumulation of polyadenylated precursors. Accordingly, a deficiency in PABPN1 leads to impaired telomerase activity and telomere shortening. In contrast, we find that hTRAMP-dependent polyadenylation and exosome-mediated degradation function antagonistically to hTR maturation, thereby limiting telomerase RNA accumulation. Our findings unveil a critical requirement for RNA polyadenylation in telomerase RNA biogenesis, providing alternative approaches for telomerase inhibition in cancer.
Collapse
Affiliation(s)
- Duy Nguyen
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | | | - Danny Bergeron
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Fabien Dupuis-Sandoval
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Michelle S Scott
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - François Bachand
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
43
|
The Inhibition of Heat Shock Protein 90 Facilitates the Degradation of Poly-Alanine Expanded Poly (A) Binding Protein Nuclear 1 via the Carboxyl Terminus of Heat Shock Protein 70-Interacting Protein. PLoS One 2015; 10:e0138936. [PMID: 26414348 PMCID: PMC4587574 DOI: 10.1371/journal.pone.0138936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/06/2015] [Indexed: 01/24/2023] Open
Abstract
Background Since the identification of poly-alanine expanded poly(A) binding protein nuclear 1 (PABPN1) as the genetic cause of oculopharyngeal muscular dystrophy (OPMD), considerable progress has been made in our understanding of the pathogenesis of the disease. However, the molecular mechanisms that regulate the onset and progression of the disease remain unclear. Results In this study, we show that PABPN1 interacts with and is stabilized by heat shock protein 90 (HSP90). Treatment with the HSP90 inhibitor 17-AAG disrupted the interaction of mutant PABPN1 with HSP90 and reduced the formation of intranuclear inclusions (INIs). Furthermore, mutant PABPN1 was preferentially degraded in the presence of 17-AAG compared with wild-type PABPN1 in vitro and in vivo. The effect of 17-AAG was mediated through an increase in the interaction of PABPN1 with the carboxyl terminus of heat shock protein 70-interacting protein (CHIP). The overexpression of CHIP suppressed the aggregation of mutant PABPN1 in transfected cells. Conclusions Our results demonstrate that the HSP90 molecular chaperone system plays a crucial role in the selective elimination of abnormal PABPN1 proteins and also suggest a potential therapeutic application of the HSP90 inhibitor 17-AAG for the treatment of OPMD.
Collapse
|
44
|
Genome-Wide Analysis of PAPS1-Dependent Polyadenylation Identifies Novel Roles for Functionally Specialized Poly(A) Polymerases in Arabidopsis thaliana. PLoS Genet 2015; 11:e1005474. [PMID: 26305463 PMCID: PMC4549238 DOI: 10.1371/journal.pgen.1005474] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/28/2015] [Indexed: 11/29/2022] Open
Abstract
The poly(A) tail at 3’ ends of eukaryotic mRNAs promotes their nuclear export, stability and translational efficiency, and changes in its length can strongly impact gene expression. The Arabidopsis thaliana genome encodes three canonical nuclear poly(A) polymerases, PAPS1, PAPS2 and PAPS4. As shown by their different mutant phenotypes, these three isoforms are functionally specialized, with PAPS1 modifying organ growth and suppressing a constitutive immune response. However, the molecular basis of this specialization is largely unknown. Here, we have estimated poly(A)-tail lengths on a transcriptome-wide scale in wild-type and paps1 mutants. This identified categories of genes as particularly strongly affected in paps1 mutants, including genes encoding ribosomal proteins, cell-division factors and major carbohydrate-metabolic proteins. We experimentally verified two novel functions of PAPS1 in ribosome biogenesis and redox homoeostasis that were predicted based on the analysis of poly(A)-tail length changes in paps1 mutants. When overlaying the PAPS1-dependent effects observed here with coexpression analysis based on independent microarray data, the two clusters of transcripts that are most closely coexpressed with PAPS1 show the strongest change in poly(A)-tail length and transcript abundance in paps1 mutants in our analysis. This suggests that their coexpression reflects at least partly the preferential polyadenylation of these transcripts by PAPS1 versus the other two poly(A)-polymerase isoforms. Thus, transcriptome-wide analysis of poly(A)-tail lengths identifies novel biological functions and likely target transcripts for polyadenylation by PAPS1. Data integration with large-scale co-expression data suggests that changes in the relative activities of the isoforms are used as an endogenous mechanism to co-ordinately modulate plant gene expression. The poly(A) tail of eukaryotic mRNAs promotes export from the nucleus, translation in the cytoplasm and stability of the mRNA, and changes in poly(A)-tail length can strongly impact on gene expression. The Arabidopsis thaliana genome encodes three nuclear canonical poly(A) polymerases (PAPS1, PAPS2, PAPS4) that fulfill different functions, presumably by preferentially polyadenylating certain subpopulations of pre-mRNAs. Here, we use a fractionation-based technique to assess the transcriptome-wide impact of reduced PAPS1 activity and identify functional classes of transcripts that are particularly sensitive to reduced PAPS1 activity. Analysis of these transcripts identifies two novel biological functions for PAPS1 in ribosome biogenesis and in redox homeostasis that we confirm experimentally. By overlaying our results with information about genome-wide co-expression, we demonstrate that genes co-expressed with PAPS1 are the most strongly affected in terms of poly(A)-tail length and total-abundance changes in the paps1 mutants. This provides strong evidence that the co-expression of these genes with PAPS1 that is seen across thousands of microarrays is at least partly caused by altered activity of the PAPS1 isoform, suggesting that the plant indeed uses modulation of the balance of isoform activities to coordinately regulate the expression of groups of genes.
Collapse
|
45
|
Liebold J, Winter R, Golbik R, Hause G, Parthier C, Schwarz E. Conformational stability of the RNP domain controls fibril formation of PABPN1. Protein Sci 2015; 24:1789-99. [PMID: 26267866 DOI: 10.1002/pro.2769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 11/07/2022]
Abstract
The disease oculopharyngeal muscular dystrophy is caused by alanine codon trinucleotide expansions in the N-terminal segment of the nuclear poly(A) binding protein PABPN1. As histochemical features of the disease, intranuclear inclusions of PABPN1 have been reported. Whereas the purified N-terminal domain of PABPN1 forms fibrils in an alanine-dependent way, fibril formation of the full-length protein occurs also in the absence of alanines. Here, we addressed the question whether the stability of the RNP domain or domain swapping within the RNP domain may add to fibril formation. A variant of full-length PABPN1 with a stabilizing disulfide bond at position 185/201 in the RNP domain fibrillized in a redox-sensitive manner suggesting that the integrity of the RNP domain may contribute to fibril formation. Thermodynamic analysis of the isolated wild-type and the disulfide-linked RNP domain showed two state unfolding/refolding characteristics without detectable intermediates. Quantification of the thermodynamic stability of the mutant RNP domain pointed to an inverse correlation between fibril formation of full-length PABPN1 and the stability of the RNP domain.
Collapse
Affiliation(s)
- Jens Liebold
- Department of Protein Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University, Halle Wittenberg, 06120, Halle, Germany
| | - Reno Winter
- Department of Protein Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University, Halle Wittenberg, 06120, Halle, Germany
| | - Ralph Golbik
- Department of Virology, Institute of Biochemistry and Biotechnology, Martin Luther University, Halle Wittenberg, 06120, Halle, Germany
| | - Gerd Hause
- Biocenter, Martin Luther University, Halle Wittenberg, 06120, Halle, Germany
| | - Christoph Parthier
- Department of Physical Biotechnology, Institute of Biochemistry and Biotechnology, Martin Luther University, Halle Wittenberg, 06120, Halle, Germany
| | - Elisabeth Schwarz
- Department of Protein Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University, Halle Wittenberg, 06120, Halle, Germany
| |
Collapse
|
46
|
Regulated Intron Retention and Nuclear Pre-mRNA Decay Contribute to PABPN1 Autoregulation. Mol Cell Biol 2015; 35:2503-17. [PMID: 25963658 DOI: 10.1128/mcb.00070-15] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/02/2015] [Indexed: 11/20/2022] Open
Abstract
The poly(A)-binding protein nuclear 1 is encoded by the PABPN1 gene, whose mutations result in oculopharyngeal muscular dystrophy, a late-onset disorder for which the molecular basis remains unknown. Despite recent studies investigating the functional roles of PABPN1, little is known about its regulation. Here, we show that PABPN1 negatively controls its own expression to maintain homeostatic levels in human cells. Transcription from the PABPN1 gene results in the accumulation of two major isoforms: an unspliced nuclear transcript that retains the 3'-terminal intron and a fully spliced cytoplasmic mRNA. Increased dosage of PABPN1 protein causes a significant decrease in the spliced/unspliced ratio, reducing the levels of endogenous PABPN1 protein. We also show that PABPN1 autoregulation requires inefficient splicing of its 3'-terminal intron. Our data suggest that autoregulation occurs via the binding of PABPN1 to an adenosine (A)-rich region in its 3' untranslated region, which promotes retention of the 3'-terminal intron and clearance of intron-retained pre-mRNAs by the nuclear exosome. Our findings unveil a mechanism of regulated intron retention coupled to nuclear pre-mRNA decay that functions in the homeostatic control of PABPN1 expression.
Collapse
|
47
|
Poly(A) Polymerase and the Nuclear Poly(A) Binding Protein, PABPN1, Coordinate the Splicing and Degradation of a Subset of Human Pre-mRNAs. Mol Cell Biol 2015; 35:2218-30. [PMID: 25896913 PMCID: PMC4456446 DOI: 10.1128/mcb.00123-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/11/2015] [Indexed: 12/13/2022] Open
Abstract
Most human protein-encoding transcripts contain multiple introns that are removed by splicing. Although splicing catalysis is frequently cotranscriptional, some introns are excised after polyadenylation. Accumulating evidence suggests that delayed splicing has regulatory potential, but the mechanisms are still not well understood. Here we identify a terminal poly(A) tail as being important for a subset of intron excision events that follow cleavage and polyadenylation. In these cases, splicing is promoted by the nuclear poly(A) binding protein, PABPN1, and poly(A) polymerase (PAP). PABPN1 promotes intron excision in the context of 3′-end polyadenylation but not when bound to internal A-tracts. Importantly, the ability of PABPN1 to promote splicing requires its RNA binding and, to a lesser extent, PAP-stimulatory functions. Interestingly, an N-terminal alanine expansion in PABPN1 that is thought to cause oculopharyngeal muscular dystrophy cannot completely rescue the effects of PABPN1 depletion, suggesting that this pathway may have relevance to disease. Finally, inefficient polyadenylation is associated with impaired recruitment of splicing factors to affected introns, which are consequently degraded by the exosome. Our studies uncover a new function for polyadenylation in controlling the expression of a subset of human genes via pre-mRNA splicing.
Collapse
|
48
|
Chartier A, Klein P, Pierson S, Barbezier N, Gidaro T, Casas F, Carberry S, Dowling P, Maynadier L, Bellec M, Oloko M, Jardel C, Moritz B, Dickson G, Mouly V, Ohlendieck K, Butler-Browne G, Trollet C, Simonelig M. Mitochondrial dysfunction reveals the role of mRNA poly(A) tail regulation in oculopharyngeal muscular dystrophy pathogenesis. PLoS Genet 2015; 11:e1005092. [PMID: 25816335 PMCID: PMC4376527 DOI: 10.1371/journal.pgen.1005092] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/23/2015] [Indexed: 01/25/2023] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD), a late-onset disorder characterized by progressive degeneration of specific muscles, results from the extension of a polyalanine tract in poly(A) binding protein nuclear 1 (PABPN1). While the roles of PABPN1 in nuclear polyadenylation and regulation of alternative poly(A) site choice are established, the molecular mechanisms behind OPMD remain undetermined. Here, we show, using Drosophila and mouse models, that OPMD pathogenesis depends on affected poly(A) tail lengths of specific mRNAs. We identify a set of mRNAs encoding mitochondrial proteins that are down-regulated starting at the earliest stages of OPMD progression. The down-regulation of these mRNAs correlates with their shortened poly(A) tails and partial rescue of their levels when deadenylation is genetically reduced improves muscle function. Genetic analysis of candidate genes encoding RNA binding proteins using the Drosophila OPMD model uncovers a potential role of a number of them. We focus on the deadenylation regulator Smaug and show that it is expressed in adult muscles and specifically binds to the down-regulated mRNAs. In addition, the first step of the cleavage and polyadenylation reaction, mRNA cleavage, is affected in muscles expressing alanine-expanded PABPN1. We propose that impaired cleavage during nuclear cleavage/polyadenylation is an early defect in OPMD. This defect followed by active deadenylation of specific mRNAs, involving Smaug and the CCR4-NOT deadenylation complex, leads to their destabilization and mitochondrial dysfunction. These results broaden our understanding of the role of mRNA regulation in pathologies and might help to understand the molecular mechanisms underlying neurodegenerative disorders that involve mitochondrial dysfunction. Oculopharyngeal muscular dystrophy is a genetic disease characterized by progressive degeneration of specific muscles, leading to ptosis (eyelid drooping), dysphagia (swallowing difficulties) and proximal limb weakness. The disease results from mutations in a nuclear protein called poly(A) binding protein nuclear 1 that is involved in polyadenylation of messenger RNAs (mRNAs) and poly(A) site selection. To address the molecular mechanisms involved in the disease, we have used two animal models (Drosophila and mouse) that recapitulate the features of this disorder. We show that oculopharyngeal muscular dystrophy pathogenesis depends on defects in poly(A) tail length regulation of specific mRNAs. Because poly(A) tails play an essential role in mRNA stability, these defects result in accelerated decay of these mRNAs. The affected mRNAs encode mitochondrial proteins, and mitochondrial activity is impaired in diseased muscles. These findings have important implications for the development of potential therapies for oculopharyngeal muscular dystrophy, and might be relevant to decipher the molecular mechanisms underlying other disorders that involve mitochondrial dysfunction.
Collapse
Affiliation(s)
- Aymeric Chartier
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, France
| | - Pierre Klein
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - Stéphanie Pierson
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, France
| | - Nicolas Barbezier
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, France
| | - Teresa Gidaro
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - François Casas
- INRA, UMR 866 Différenciation cellulaire et croissance, Montpellier, France
| | - Steven Carberry
- Department of Biology, National University of Ireland, Maynooth, Ireland
| | - Paul Dowling
- Department of Biology, National University of Ireland, Maynooth, Ireland
| | - Laurie Maynadier
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, France
| | - Maëlle Bellec
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, France
| | - Martine Oloko
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - Claude Jardel
- Service de Biochimie Métabolique et Centre de Génétique moléculaire et chromosomique, INSERM U1016, Institut Cochin, CNRS UMR 8104, AP-HP, GHU Pitié-Salpêtrière, Paris, France
| | - Bodo Moritz
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - George Dickson
- School of Biological Sciences, Royal Holloway - University of London, Egham, Surrey, United Kingdom
| | - Vincent Mouly
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - Kay Ohlendieck
- Department of Biology, National University of Ireland, Maynooth, Ireland
| | - Gillian Butler-Browne
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - Capucine Trollet
- Sorbonne Universités, UPMC Univ Paris 06, UM76, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France
| | - Martine Simonelig
- mRNA Regulation and Development, Institut de Génétique Humaine, CNRS UPR1142, Montpellier, France
- * E-mail:
| |
Collapse
|
49
|
Temme C, Wahle E. Assaying mRNA deadenylation in vivo. Methods Mol Biol 2014; 1125:313-24. [PMID: 24590799 DOI: 10.1007/978-1-62703-971-0_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deadenylation is the removal of poly(A) tails from mRNA. Here, we present two methods for assaying deadenylation in vivo. The first is a method for measuring bulk poly(A) tail lengths. When combined with a block in transcription, the method can be used for measuring the rate of bulk poly(A) tail shortening. The second is an RT-PCR method to determine the poly(A) tail lengths of individual RNAs. Again in combination with a block of transcription, the method permits the rate of deadenylation of an individual RNA to be measured.
Collapse
Affiliation(s)
- Claudia Temme
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120, Halle, Germany
| | | |
Collapse
|
50
|
Abstract
Deadenylation is the removal of poly(A) tails from mRNA. This chapter presents two methods to assay deadenylation in vitro. The first is a quick and quantitative assay for the degradation of radiolabeled poly(A) that can easily be adapted to be used for many different enzymes. The second method uses an extract from Drosophila embryos to catalyze the deadenylation of an RNA dependent on a specific sequence that also directs deadenylation in vivo.
Collapse
Affiliation(s)
- Mandy Jeske
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120, Halle, Germany
| | | | | |
Collapse
|