1
|
Feng X, Chen J, Lian J, Dong T, Gao Y, Zhang X, Zhai Y, Zou B, Guo Y, Xu E, Cui Y, Zhang L. The glycogene alterations and potential effects in esophageal squamous cell carcinoma. Cell Mol Life Sci 2024; 81:481. [PMID: 39636330 PMCID: PMC11621258 DOI: 10.1007/s00018-024-05534-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/13/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Aberrant glycosylation is one of the hallmarks of cancer. The profile of glycoprotein expression caused by abnormal glycosylation has been revealed, while abnormal glycogenes that may disturb the structure of glycans have not yet been identified in esophageal squamous cell carcinoma (ESCC). METHODS Genomic alterations driven by differentially expressed glycogenes in ESCC were compared with matched normal tissues by multi-omics analysis. Immunohistochemistry, MTT, colony formation, transwell assays, subcutaneous tumor formation experiments and tail vein injection were used to study the expression and the effect on the proliferation and metastasis of the differentially expressed glycogenes POFUT1 and RPN1 in ESCC. In the alkyne fucose labeling experiment, AAL lectin affinity chromatography and immunoprecipitation were used to explore the mechanism of POFUT1 in ESCC. RESULTS The expression of the POFUT1 and RPN1 glycogenes were upregulated, as determined by genomic copy number gain and proteomics analysis. The overexpression of POFUT1 or RPN1 was associated with poor prognosis in ESCC patients and affected the proliferation and metastasis of ESCC in vivo and in vitro. The overexpression of POFUT1 increased the overall fucosylation level and activated the Notch signaling pathway, which partially mediated POFUT1 induced pro-migration in ESCC. The regulation of malignant progression of ESCC by RPN1 may be related to the TNF signaling pathway, p53 signaling pathway, etc. CONCLUSIONS: Our study fills a gap in the study of abnormal glycogenes and highlights the potential role of the POFUT1/Notch axis in ESCC. Moreover, our study identifies POFUT1 and RPN1 as promising anticancer targets in ESCC.
Collapse
Affiliation(s)
- Xuefei Feng
- Department of Pathology, Basic Medical Sciences Center, Key Laboratory of Cellular Physiology of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jinyan Chen
- Department of Pathology, Basic Medical Sciences Center, Key Laboratory of Cellular Physiology of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jianhong Lian
- Department of Thoracic Surgery, Shanxi Cancer Hospital, Taiyuan, 030001, Shanxi, China
| | - Tianyue Dong
- Department of Pathology, Basic Medical Sciences Center, Key Laboratory of Cellular Physiology of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yingzhen Gao
- Department of Pathology, Basic Medical Sciences Center, Key Laboratory of Cellular Physiology of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaojuan Zhang
- Department of Pathology, People's Hospital of Puyang, Henan, 457005, China
| | - Yuanfang Zhai
- Department of Pathology, Basic Medical Sciences Center, Key Laboratory of Cellular Physiology of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Binbin Zou
- Department of Pathology, Basic Medical Sciences Center, Key Laboratory of Cellular Physiology of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanlin Guo
- Department of Pathology, Basic Medical Sciences Center, Key Laboratory of Cellular Physiology of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Enwei Xu
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan, 030001, Shanxi, China
| | - Yongping Cui
- Department of Pathology, Basic Medical Sciences Center, Key Laboratory of Cellular Physiology of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| | - Ling Zhang
- Department of Pathology, Basic Medical Sciences Center, Key Laboratory of Cellular Physiology of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
2
|
Zheng Y, Luo Y, Tang K. Bioinformatics Analysis and Experimental Validation of Endoplasmic Reticulum Stress-Related Genes in Osteoporosis. Int J Gen Med 2024; 17:5359-5371. [PMID: 39582915 PMCID: PMC11583764 DOI: 10.2147/ijgm.s486776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024] Open
Abstract
Background Endoplasmic reticulum stress (ERS) is closely associated with Osteoporosis (OP). In order to explore the role of ERS related genes in OP and its molecular mechanism. Methods OP-related transcriptome data were retrieved from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was applied to screen OP-related genes. Differentially expressed ERS-related genes (DE-ERSGs) between OP and controls were identified by overlapping OP-related, differentially expressed genes (DEGs), and ERS-related genes. ERS-related genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to explore their functions. Receiver operating characteristic (ROC) curves assessed the diagnostic value of DE-ERSGs, and comparative toxicogenomics database (CTD) was used to predict targeting agents for key DE-ERSGs. Finally, biomarker expression was verified by real time quantitative polymerase chain reaction (RT-qPCR). Results A total of 10 DE-ERSGs were screened in OP patients. GO and KEGG analyses indicated their enrichment in Alcoholic liver disease, Endometrial cancer, and Glycerolipid metabolism. ROC curve analysis revealed that RPN2, FOXO3, ERGIC2, and MYO9A had significant diagnostic value, thus being identified as key DE-ERSGs. Moreover, the key DE-ERSGs-drug interaction network showed that some drugs such as bisphenol A, Cisplatin, Cyclosporine, and Valproic Acid might play roles by targeting key DE-ERSGs in OP. The expression validation analysis of key DE-ERSGs revealed that RPN2, ERGIC2, and MYO9A was significantly expressed in the GSE62402. Ultimately, The blood samples RT-qPCR verification results show that RPN2, ERGIC2, and MYO9A were significantly lower in OP samples compared to normal samples (p < 0.05), whereas there was no difference in the expression levels of FOXO3. Conclusion RPN2, FOXO3, ERGIC2 and MYO9A as the biomarkers associated with ERS in OP by bioinformatics analysis, which may provide new biological targets for clinical treatment.
Collapse
Affiliation(s)
- Yong Zheng
- Department of Orthopedics, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550014, People’s Republic of China
| | - Yonggui Luo
- Department of Orthopedics, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550014, People’s Republic of China
| | - Kuihan Tang
- Department of Orthopedics, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, 550014, People’s Republic of China
| |
Collapse
|
3
|
Alfaro GF, Palombo V, D’Andrea M, Cao W, Zhang Y, Beever JE, Muntifering RB, Pacheco WJ, Rodning SP, Wang X, Moisá SJ. Hepatic transcript profiling in beef cattle: Effects of feeding endophyte-infected tall fescue seeds. PLoS One 2024; 19:e0306431. [PMID: 39058685 PMCID: PMC11280227 DOI: 10.1371/journal.pone.0306431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
The objective of our study was to evaluate the effect of endophyte-infected tall fescue (E+) seeds intake on liver tissue transcriptome in growing Angus × Simmental steers and heifers through RNA-seq analysis. Normal weaned calves (~8 months old) received either endophyte-free tall fescue (E-; n = 3) or infected tall fescue (E+; n = 6) seeds for a 30-d period. The diet offered was ad libitum bermudagrass (Cynodon dactylon) hay combined with a nutritional supplement of 1.61 kg (DM basis) of E+ or E- tall fescue seeds, and 1.61 kg (DM basis) of energy/protein supplement pellets for a 30-d period. Dietary E+ tall fescue seeds were included in a rate of 20 μg of ergovaline/kg BW/day. Liver tissue was individually obtained through biopsy at d 30. After preparation and processing of the liver samples for RNA sequencing, we detected that several metabolic pathways were activated (i.e., upregulated) by the consumption of E+ tall fescue. Among them, oxidative phosphorylation, ribosome biogenesis, protein processing in endoplasmic reticulum and apoptosis, suggesting an active mechanism to cope against impairment in normal liver function. Interestingly, hepatic protein synthesis might increase due to E+ consumption. In addition, there was upregulation of "thermogenesis" KEGG pathway, showing a possible increase in energy expenditure in liver tissue due to consumption of E+ diet. Therefore, results from our study expand the current knowledge related to liver metabolism of growing beef cattle under tall fescue toxicosis.
Collapse
Affiliation(s)
- Gastón F. Alfaro
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
| | - Valentino Palombo
- Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, Campobasso, Italy
| | - MariaSilvia D’Andrea
- Department of Agricultural, Environmental and Food Sciences, Università degli Studi del Molise, Campobasso, Italy
| | - Wenqi Cao
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Yue Zhang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Jonathan E. Beever
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, United States of America
| | | | - Wilmer J. Pacheco
- Department of Poultry Sciences, Auburn University, Auburn, AL, United States of America
| | - Soren P. Rodning
- Department of Animal Sciences, Auburn University, Auburn, AL, United States of America
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States of America
| | - Sonia J. Moisá
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
4
|
Wani WY, Zunke F, Belur NR, Mazzulli JR. The hexosamine biosynthetic pathway rescues lysosomal dysfunction in Parkinson's disease patient iPSC derived midbrain neurons. Nat Commun 2024; 15:5206. [PMID: 38897986 PMCID: PMC11186828 DOI: 10.1038/s41467-024-49256-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Disrupted glucose metabolism and protein misfolding are key characteristics of age-related neurodegenerative disorders including Parkinson's disease, however their mechanistic linkage is largely unexplored. The hexosamine biosynthetic pathway utilizes glucose and uridine-5'-triphosphate to generate N-linked glycans required for protein folding in the endoplasmic reticulum. Here we find that Parkinson's patient midbrain cultures accumulate glucose and uridine-5'-triphosphate, while N-glycan synthesis rates are reduced. Impaired glucose flux occurred by selective reduction of the rate-limiting enzyme, GFPT2, through disrupted signaling between the unfolded protein response and the hexosamine pathway. Failure of the unfolded protein response and reduced N-glycosylation caused immature lysosomal hydrolases to misfold and accumulate, while accelerating glucose flux through the hexosamine pathway rescued hydrolase function and reduced pathological α-synuclein. Our data indicate that the hexosamine pathway integrates glucose metabolism with lysosomal activity, and its failure in Parkinson's disease occurs by uncoupling of the unfolded protein response-hexosamine pathway axis. These findings offer new methods to restore proteostasis by hexosamine pathway enhancement.
Collapse
Affiliation(s)
- Willayat Y Wani
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Friederike Zunke
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nandkishore R Belur
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Joseph R Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
5
|
Jansson MK, Nguyen DT, Mikkat S, Warnke C, Janssen MB, Warnke P, Kreikemeyer B, Patenge N. Synthetic mRNA delivered to human cells leads to expression of Cpl-1 bacteriophage-endolysin with activity against Streptococcus pneumoniae. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102145. [PMID: 38435119 PMCID: PMC10907214 DOI: 10.1016/j.omtn.2024.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Endolysins are bacteriophage-encoded hydrolases that show high antibacterial activity and a narrow substrate spectrum. We hypothesize that an mRNA-based approach to endolysin therapy can overcome some challenges of conventional endolysin therapy, namely organ targeting and bioavailability. We show that synthetic mRNA applied to three human cell lines (HEK293T, A549, HepG2 cells) leads to expression and cytosolic accumulation of the Cpl-1 endolysin with activity against Streptococcus pneumoniae. Addition of a human lysozyme signal peptide sequence translocates the Cpl-1 to the endoplasmic reticulum leading to secretion (hlySP-sCpl-1). The pneumococcal killing effect of hlySP-sCpl-1 was enhanced by introduction of a point mutation to avoid N-linked-glycosylation. hlySP-sCpl-1N215D, collected from the culture supernatant of A549 cells 6 h post-transfection showed a significant killing effect and was active against nine pneumococcal strains. mRNA-based cytosolic Cpl-1 and secretory hlySP-sCpl-1N215D show potential for innovative treatment strategies against pneumococcal disease and, to our best knowledge, represent the first approach to mRNA-based endolysin therapy. We assume that many other bacterial pathogens could be targeted with this novel approach.
Collapse
Affiliation(s)
- Moritz K. Jansson
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Dat Tien Nguyen
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Stefan Mikkat
- Core Facility Proteome Analysis, University Medicine Rostock, Rostock, Germany
| | - Carolin Warnke
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Marc Benjamin Janssen
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Philipp Warnke
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| | - Nadja Patenge
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
6
|
Ramírez AS, Locher KP. Structural and mechanistic studies of the N-glycosylation machinery: from lipid-linked oligosaccharide biosynthesis to glycan transfer. Glycobiology 2023; 33:861-872. [PMID: 37399117 PMCID: PMC10859629 DOI: 10.1093/glycob/cwad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
N-linked protein glycosylation is a post-translational modification that exists in all domains of life. It involves two consecutive steps: (i) biosynthesis of a lipid-linked oligosaccharide (LLO), and (ii) glycan transfer from the LLO to asparagine residues in secretory proteins, which is catalyzed by the integral membrane enzyme oligosaccharyltransferase (OST). In the last decade, structural and functional studies of the N-glycosylation machinery have increased our mechanistic understanding of the pathway. The structures of bacterial and eukaryotic glycosyltransferases involved in LLO elongation provided an insight into the mechanism of LLO biosynthesis, whereas structures of OST enzymes revealed the molecular basis of sequon recognition and catalysis. In this review, we will discuss approaches used and insight obtained from these studies with a special emphasis on the design and preparation of substrate analogs.
Collapse
Affiliation(s)
- Ana S Ramírez
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich 8093, Switzerland
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH), Zürich 8093, Switzerland
| |
Collapse
|
7
|
Pan YR, Wu CS, Zhong YQ, Zhang YA, Zhang XJ. An Atlas of Grass Carp IgM+ B Cells in Homeostasis and Bacterial Infection Helps to Reveal the Unique Heterogeneity of B Cells in Early Vertebrates. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:964-980. [PMID: 37578390 DOI: 10.4049/jimmunol.2300052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023]
Abstract
Teleost B cells are primitive lymphocytes with both innate and adaptive immune functions. However, the heterogeneity and differentiation trajectory of teleost B cells remain largely unknown. In this study, the landscape of grass carp IgM+ (gcIgM+) B cells was revealed by single-cell RNA sequencing. The results showed that gcIgM+ B cells mainly comprise six populations: (im)mature B cells, innate B cells, proliferating B cells, plasma cells, CD22+ cells, and CD34+ cells, among which innate B cells and proliferating B cells were uncommon B cell subsets with, to our knowledge, new characteristics. Remarkably, three functional IgMs were discovered in grass carp, and a significant percentage of gcIgM+ B cells, especially plasma cells, expressed multiple Igμ genes (Igμ1, Igμ2, and/or Igμ3). More importantly, through single-cell sorting combined with Sanger sequencing, we found that distinct VHDJH recombination patterns of Igμ genes were present in single IgM+ B cells, indicating that individual teleost B cells might produce multiple Abs by coexpressing rearranged IgM subclass genes. Moreover, the percentage of IgM1highIgM2highIgM3high plasma cells increased significantly after bacterial infection, suggesting that individual plasma cells might tend to produce multiple IgMs to resist the infection in teleost fish. In summary, to our knowledge, this study not only helps to uncover the unique heterogeneity of B cells in early vertebrates but also provided significant new evidence supporting the recently proposed "one cell-multiple Abs" paradigm, challenging the classical rule of "one cell-one Ab."
Collapse
Affiliation(s)
- Yi-Ru Pan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Chang-Song Wu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ya-Qin Zhong
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xu-Jie Zhang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, China
| |
Collapse
|
8
|
Zgutka K, Tkacz M, Tomasiak P, Tarnowski M. A Role for Advanced Glycation End Products in Molecular Ageing. Int J Mol Sci 2023; 24:9881. [PMID: 37373042 PMCID: PMC10298716 DOI: 10.3390/ijms24129881] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Ageing is a composite process that involves numerous changes at the cellular, tissue, organ and whole-body levels. These changes result in decreased functioning of the organism and the development of certain conditions, which ultimately lead to an increased risk of death. Advanced glycation end products (AGEs) are a family of compounds with a diverse chemical nature. They are the products of non-enzymatic reactions between reducing sugars and proteins, lipids or nucleic acids and are synthesised in high amounts in both physiological and pathological conditions. Accumulation of these molecules increases the level of damage to tissue/organs structures (immune elements, connective tissue, brain, pancreatic beta cells, nephrons, and muscles), which consequently triggers the development of age-related diseases, such as diabetes mellitus, neurodegeneration, and cardiovascular and kidney disorders. Irrespective of the role of AGEs in the initiation or progression of chronic disorders, a reduction in their levels would certainly provide health benefits. In this review, we provide an overview of the role of AGEs in these areas. Moreover, we provide examples of lifestyle interventions, such as caloric restriction or physical activities, that may modulate AGE formation and accumulation and help to promote healthy ageing.
Collapse
Affiliation(s)
- Katarzyna Zgutka
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| | - Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| |
Collapse
|
9
|
Bajwa S, Luebbe A, Vo NDN, Piskor EM, Kosan C, Wolf G, Loeffler I. RAGE is a critical factor of sex-based differences in age-induced kidney damage. Front Physiol 2023; 14:1154551. [PMID: 37064891 PMCID: PMC10090518 DOI: 10.3389/fphys.2023.1154551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction: Advanced glycation end products (AGEs) are a heterogeneous group of molecules with potential pathophysiological effects on the kidneys. Fibrosis together with the accumulation of AGEs has been investigated for its contribution to age-related decline in renal function. AGEs mediate their effects in large parts through their interactions with the receptor for AGEs (RAGE). RAGE is a transmembrane protein that belongs to the immunoglobulin superfamily and has the ability to interact with multiple pro-inflammatory/pro-oxidative ligands. The role of RAGE in aging kidneys has not been fully characterized, especially for sex-based differences. Methods: Therefore, we analyzed constitutive RAGE knockout (KO) mice in an age- and sex-dependent manner. Paraffin-embedded kidney sections were used for histological analysis and protein expression of fibrosis and damage markers. RNA expression analysis from the kidney cortex was done by qPCR for AGE receptors, kidney damage, and early inflammation/fibrosis factors. FACS analysis was used for immune cell profiling of the kidneys. Results: Histological analysis revealed enhanced infiltration of immune cells (positive for B220) in aged (>70 weeks old) KO mice in both sexes. FACS analysis revealed a similar pattern of enhanced B-1a cells in aged KO mice. There was an age-based increase in pro-fibrotic and pro-inflammatory markers (IL-6, TNF, TGF-β1, and SNAIL1) in KO male mice that presumably contributed to renal fibrosis and renal damage (glomerular and tubular). In fact, in KO mice, there was an age-dependent increase in renal damage (assessed by NGAL and KIM1) that was accompanied by increased fibrosis (assessed by CTGF). This effect was more pronounced in male KO mice than in the female KO mice. In contrast to the KO animals, no significant increase in damage markers was detectable in wild-type animals at the age examined (>70 weeks old). Moreover, there is an age-based increase in AGEs and scavenger receptor MSR-A2 in the kidneys. Discussion: Our data suggest that the loss of the clearance receptor RAGE in male animals further accelerates age-dependent renal damage; this could be in part due to an increase in AGEs load during aging and the absence of protective female hormones. By contrast, in females, RAGE expression seems to play only a minor role when compared to tissue pathology.
Collapse
Affiliation(s)
- Seerat Bajwa
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| | - Alexander Luebbe
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| | - Ngoc Dong Nhi Vo
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| | - Eva-Maria Piskor
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University, Jena, Germany
| | - Christian Kosan
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University, Jena, Germany
| | - Gunter Wolf
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| | - Ivonne Loeffler
- Department of Internal Medicine III, Jena University Hospital, Jena, Germany
| |
Collapse
|
10
|
Bieberich E. Synthesis, Processing, and Function of N-Glycans in N-Glycoproteins. ADVANCES IN NEUROBIOLOGY 2023; 29:65-93. [PMID: 36255672 DOI: 10.1007/978-3-031-12390-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Many membrane-resident and secreted proteins, including growth factors and their receptors are N-glycosylated. The initial N-glycan structure is synthesized in the endoplasmic reticulum (ER) as a branched structure on a lipid anchor (dolicholpyrophosphate) and then co-translationally, "en bloc" transferred and linked via N-acetylglucosamine to asparagine within a specific N-glycosylation acceptor sequence of the nascent recipient protein. In the ER and then the Golgi apparatus, the N-linked glycan structure is modified by hydrolytic removal of sugar residues ("trimming") followed by re-glycosylation with additional sugar residues ("processing") such as galactose, fucose or sialic acid to form complex N-glycoproteins. While the sequence of the reactions leading to biosynthesis, "en bloc" transfer and processing of N-glycans is well investigated, it is still not completely understood how N-glycans affect the biological fate and function of N-glycoproteins. This review will discuss the biology of N-glycoprotein synthesis, processing and function with specific reference to the physiology and pathophysiology of the immune and nervous system, as well as infectious diseases such as Covid-19.
Collapse
Affiliation(s)
- Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY, USA.
- Veteran Affairs Medical Center, Lexington, KY, USA.
| |
Collapse
|
11
|
Advanced Glycation End Products (AGEs) and Chronic Kidney Disease: Does the Modern Diet AGE the Kidney? Nutrients 2022; 14:nu14132675. [PMID: 35807857 PMCID: PMC9268915 DOI: 10.3390/nu14132675] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/13/2022] Open
Abstract
Since the 1980s, chronic kidney disease (CKD) affecting all ages has increased by almost 25%. This increase may be partially attributable to lifestyle changes and increased global consumption of a “western” diet, which is typically energy dense, low in fruits and vegetables, and high in animal protein and ultra-processed foods. These modern food trends have led to an increase in the consumption of advanced glycation end products (AGEs) in conjunction with increased metabolic dysfunction, obesity and diabetes, which facilitates production of endogenous AGEs within the body. When in excess, AGEs can be pathological via both receptor-mediated and non-receptor-mediated pathways. The kidney, as a major site for AGE clearance, is particularly vulnerable to AGE-mediated damage and increases in circulating AGEs align with risk of CKD and all-cause mortality. Furthermore, individuals with significant loss of renal function show increased AGE burden, particularly with uraemia, and there is some evidence that AGE lowering via diet or pharmacological inhibition may be beneficial for CKD. This review discusses the pathways that drive AGE formation and regulation within the body. This includes AGE receptor interactions and pathways of AGE-mediated pathology with a focus on the contribution of diet on endogenous AGE production and dietary AGE consumption to these processes. We then analyse the contribution of AGEs to kidney disease, the evidence for dietary AGEs and endogenously produced AGEs in driving pathogenesis in diabetic and non-diabetic kidney disease and the potential for AGE targeted therapies in kidney disease.
Collapse
|
12
|
Ito J, Baldwin WH, Cox C, Healey JF, Parker ET, Legan ER, Li R, Gill S, Batsuli G. Removal of single-site N-linked glycans on factor VIII alters binding of domain-specific monoclonal antibodies. J Thromb Haemost 2022; 20:574-588. [PMID: 34863021 PMCID: PMC8885965 DOI: 10.1111/jth.15616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND A portion of individuals with hemophilia A develop neutralizing antibodies called inhibitors to glycoprotein factor VIII (FVIII). There are multiple risk factors that contribute to the risk of inhibitor formation. However, knowledge of the role of FVIII asparagine (N)-linked glycosylation in FVIII immunity is limited. OBJECTIVE To evaluate the effect of site-specific N-linked glycan removal on FVIII biochemical properties, endocytosis by murine bone marrow-derived dendritic cells (BMDCs), and antibody responses. METHODS Four recombinant B domain-deleted (BDD) FVIII variants with single-site amino acid substitutions to remove N-linked glycans were produced for experimental assays. RESULTS BDD FVIII-N41G, FVIII-N239A, FVIII-N1810A, and FVIII-N2118A with confirmed removal of N-linked glycans and similar glycosylation profiles to BDD FVIII were produced. There were no differences in thrombin activation or von Willebrand factor binding of FVIII variants compared with BDD FVIII; however, reduced FVIII expression, activity, and specific activity was observed with all variants. BDD FVIII-N41G and FVIII-N1810A had reduced uptake by BMDCs, but there were no differences in antibody development in immunized hemophilia A mice compared with BDD FVIII. Half of a repertoire of 12 domain-specific FVIII MAbs had significantly reduced binding to ≥1 FVIII variant with a 50% decrease in A1 domain MAb 2-116 binding to FVIII-N239A. CONCLUSIONS Modifications of FVIII N-linked glycans reduced FVIII endocytosis by BMDCs and binding of domain-specific FVIII MAbs, but did not alter de novo antibody production in hemophilia A mice, suggesting that N-glycans do not significantly contribute to inhibitor formation.
Collapse
Affiliation(s)
- Jasmine Ito
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Wallace Hunter Baldwin
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Courtney Cox
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - John F Healey
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Ernest T Parker
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Emily R Legan
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Surinder Gill
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Glaivy Batsuli
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Huang YC, Yuan TM, Liu BH, Liu KL, Wung CH, Chuang SM. Capsaicin Potentiates Anticancer Drug Efficacy Through Autophagy-Mediated Ribophorin II Downregulation and Necroptosis in Oral Squamous Cell Carcinoma Cells. Front Pharmacol 2021; 12:676813. [PMID: 34512323 PMCID: PMC8429935 DOI: 10.3389/fphar.2021.676813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
The ability of capsaicin co-treatment to sensitize cancer cells to anticancer drugs has been widely documented, but the detailed underlying mechanisms remain unknown. In addition, the role of ribophorin II turnover on chemosensitization is still uncertain. Here, we investigated capsaicin-induced sensitization to chemotherapeutic agents in the human oral squamous carcinoma cell lines, HSC-3 and SAS. We found that capsaicin (200 μM) did not induce remarkable apoptotic cell death in these cell lines; instead, it significantly enhanced autophagy with a concomitant decrease of ribophorin II protein. This capsaicin-induced decrease in ribophorin II was intensified by the autophagy inducer, rapamycin, but attenuated by the autophagy inhibitors, ULK1 inhibitor and chloroquine, indicating that the autophagic process was responsible for the capsaicin-induced down-regulation of ribophorin II. Co-administration of capsaicin with conventional anticancer agents did, indeed, sensitize the cancer cells to these agents. In co-treated cells, the induction of apoptosis was significantly reduced and the levels of the necroptosis markers, phospho-MLKL and phospho-RIP3, were increased relative to the levels seen in capsaicin treatment alone. The levels of DNA damage response markers were also diminished by co-treatment. Collectively, our results reveal a novel mechanism by which capsaicin sensitizes oral cancer cells to anticancer drugs through the up-regulation of autophagy and down-regulation of ribophorin II, and further indicate that the induction of necroptosis is a critical factor in the capsaicin-mediated chemosensitization of oral squamous carcinoma cells to conventional anticancer drugs.
Collapse
Affiliation(s)
- Yi-Ching Huang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Tien-Ming Yuan
- Department of Surgery, Feng Yuan Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Bang-Hung Liu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan.,Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiung-Hua Wung
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Show-Mei Chuang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
14
|
Eldeeb MA, Zorca CE, Ragheb MA, Rashidi FB, Salah El-Din DS. Fine-tuning ER-phagy by post-translational modifications. Bioessays 2020; 43:e2000212. [PMID: 33210303 DOI: 10.1002/bies.202000212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 01/23/2023]
Abstract
Autophagy functions in both selective and non-selective ways to maintain cellular homeostasis. Endoplasmic reticulum autophagy (ER-phagy) is a subclass of autophagy responsible for the degradation of the endoplasmic reticulum through selective encapsulation into autophagosomes. ER-phagy occurs both under physiological conditions and in response to stress cues, and plays a crucial role in maintaining the homeostatic control of the organelle. Although specific receptors that target parts of the ER membrane, as well as, internal proteins for lysosomal degradation have been identified, the molecular regulation of ER-phagy has been elusive. Recent work has uncovered novel regulators of ER-phagy that involve post-translational modifications of ER-resident proteins and functional cross-talk with other cellular processes. Herein, we discuss how morphology affects the function of the peripheral ER, and how ER-phagy modulates the turnover of this organelle. We also address how ER-phagy is regulated at the molecular level, considering implications relevant to human diseases.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Cornelia E Zorca
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Mohamed A Ragheb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Fatma B Rashidi
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Doaa S Salah El-Din
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
15
|
Eck F, Phuyal S, Smith MD, Kaulich M, Wilkinson S, Farhan H, Behrends C. ACSL3 is a novel GABARAPL2 interactor that links ufmylation and lipid droplet biogenesis. J Cell Sci 2020; 133:jcs243477. [PMID: 32843575 DOI: 10.1242/jcs.243477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
While studies of the autophagy-related (ATG) genes in knockout models have led to an explosion of knowledge about the functions of autophagy components, the exact roles of LC3 and GABARAP family proteins (human ATG8 equivalents) are still poorly understood. A major drawback in understanding their roles is that the available interactome data has largely been acquired using overexpression systems. To overcome these limitations, we employed CRISPR/Cas9-based genome-editing to generate a panel of cells in which human ATG8 genes were tagged at their natural chromosomal locations with an N-terminal affinity epitope. This cellular resource was employed to map endogenous GABARAPL2 protein complexes using interaction proteomics. This approach identified the ER-associated protein and lipid droplet (LD) biogenesis factor ACSL3 as a stabilizing GABARAPL2-binding partner. GABARAPL2 bound ACSL3 in a manner dependent on its LC3-interacting regions, whose binding site in GABARAPL2 was required to recruit the latter to the ER. Through this interaction, the UFM1-activating enzyme UBA5 became anchored at the ER. Furthermore, ACSL3 depletion and LD induction affected the abundance of several ufmylation components and ER-phagy. Together these data allow us to define ACSL3 as a novel regulator of the enigmatic UFM1 conjugation pathway.
Collapse
Affiliation(s)
- Franziska Eck
- Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, Ludwig-Maximilians-University München, Feodor-Lynen Strasse 17, 81377 Munich, Germany
| | - Santosh Phuyal
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Matthew D Smith
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Manuel Kaulich
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Simon Wilkinson
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Hesso Farhan
- Institute of Basic Medical Sciences, Department of Molecular Medicine, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Christian Behrends
- Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, Ludwig-Maximilians-University München, Feodor-Lynen Strasse 17, 81377 Munich, Germany
| |
Collapse
|
16
|
Hannigan MM, Hoffman AM, Thompson JW, Zheng T, Nicchitta CV. Quantitative Proteomics Links the LRRC59 Interactome to mRNA Translation on the ER Membrane. Mol Cell Proteomics 2020; 19:1826-1849. [PMID: 32788342 DOI: 10.1074/mcp.ra120.002228] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/04/2020] [Indexed: 12/22/2022] Open
Abstract
Protein synthesis on the endoplasmic reticulum (ER) requires the dynamic coordination of numerous cellular components. Together, resident ER membrane proteins, cytoplasmic translation factors, and both integral membrane and cytosolic RNA-binding proteins operate in concert with membrane-associated ribosomes to facilitate ER-localized translation. Little is known, however, regarding the spatial organization of ER-localized translation. This question is of growing significance as it is now known that ER-bound ribosomes contribute to secretory, integral membrane, and cytosolic protein synthesis alike. To explore this question, we utilized quantitative proximity proteomics to identify neighboring protein networks for the candidate ribosome interactors SEC61β (subunit of the protein translocase), RPN1 (oligosaccharyltransferase subunit), SEC62 (translocation integral membrane protein), and LRRC59 (ribosome binding integral membrane protein). Biotin labeling time course studies of the four BioID reporters revealed distinct labeling patterns that intensified but only modestly diversified as a function of labeling time, suggesting that the ER membrane is organized into discrete protein interaction domains. Whereas SEC61β and RPN1 reporters identified translocon-associated networks, SEC62 and LRRC59 reporters revealed divergent protein interactomes. Notably, the SEC62 interactome is enriched in redox-linked proteins and ER luminal chaperones, with the latter likely representing proximity to an ER luminal chaperone reflux pathway. In contrast, the LRRC59 interactome is highly enriched in SRP pathway components, translation factors, and ER-localized RNA-binding proteins, uncovering a functional link between LRRC59 and mRNA translation regulation. Importantly, analysis of the LRRC59 interactome by native immunoprecipitation identified similar protein and functional enrichments. Moreover, [35S]-methionine incorporation assays revealed that siRNA silencing of LRRC59 expression reduced steady state translation levels on the ER by ca. 50%, and also impacted steady state translation levels in the cytosol compartment. Collectively, these data reveal a functional domain organization for the ER and identify a key role for LRRC59 in the organization and regulation of local translation.
Collapse
Affiliation(s)
- Molly M Hannigan
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Alyson M Hoffman
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - J Will Thompson
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Duke Proteomics and Metabolomics Shared Resource, Duke University School of Medicine, Durham, North Carolina, USA
| | - Tianli Zheng
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christopher V Nicchitta
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA.
| |
Collapse
|
17
|
Ren J, Wang Y, Wang L, Guo X, Guo X. Ribophorin II is upregulated in myelodysplastic syndromes and prevents apoptosis and cell cycle progression. Exp Biol Med (Maywood) 2020; 245:1009-1015. [PMID: 32447991 DOI: 10.1177/1535370220927996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
IMPACT STATEMENT This study explored the role of ribophorin II (RPN2) in myelodysplastic syndromes (MDSs) cell proliferation and growth and revealed that RPN2 knockdown suppressed OCI-AML3 cell growth and proliferation and triggered cell cycle arrest and elicited apoptosis in OCI-AML3 cells. In addition, it shed light on the etiology of RPN2's role in MDS cell proliferation that RPN2 can negatively impact enhancer of zeste homolog-2 (EZH2) expression, which in turn is able to modulate the cell cycle location and death in OCI-AML3 cells. Hence, RPN2 expression could be a latent predictor of prognosis in patients with MDS.
Collapse
Affiliation(s)
- Jinhai Ren
- Department of Hematology, Second Hospital of Hebei Medical University, Key Laboratory of Hematology of Hebei Province, Shijiazhuang, Hebei 050000, China
| | - Ying Wang
- Department of Hematology, Second Hospital of Hebei Medical University, Key Laboratory of Hematology of Hebei Province, Shijiazhuang, Hebei 050000, China
| | - Lihua Wang
- Department of Hematology, Second Hospital of Hebei Medical University, Key Laboratory of Hematology of Hebei Province, Shijiazhuang, Hebei 050000, China
| | - Xiaoling Guo
- Department of Hematology, Second Hospital of Hebei Medical University, Key Laboratory of Hematology of Hebei Province, Shijiazhuang, Hebei 050000, China
| | - Xiaonan Guo
- Department of Hematology, Second Hospital of Hebei Medical University, Key Laboratory of Hematology of Hebei Province, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
18
|
Liang JR, Lingeman E, Luong T, Ahmed S, Muhar M, Nguyen T, Olzmann JA, Corn JE. A Genome-wide ER-phagy Screen Highlights Key Roles of Mitochondrial Metabolism and ER-Resident UFMylation. Cell 2020; 180:1160-1177.e20. [PMID: 32160526 DOI: 10.1016/j.cell.2020.02.017] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 11/04/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022]
Abstract
Selective autophagy of organelles is critical for cellular differentiation, homeostasis, and organismal health. Autophagy of the ER (ER-phagy) is implicated in human neuropathy but is poorly understood beyond a few autophagosomal receptors and remodelers. By using an ER-phagy reporter and genome-wide CRISPRi screening, we identified 200 high-confidence human ER-phagy factors. Two pathways were unexpectedly required for ER-phagy. First, reduced mitochondrial metabolism represses ER-phagy, which is opposite of general autophagy and is independent of AMPK. Second, ER-localized UFMylation is required for ER-phagy to repress the unfolded protein response via IRE1α. The UFL1 ligase is brought to the ER surface by DDRGK1 to UFMylate RPN1 and RPL26 and preferentially targets ER sheets for degradation, analogous to PINK1-Parkin regulation during mitophagy. Our data provide insight into the cellular logic of ER-phagy, reveal parallels between organelle autophagies, and provide an entry point to the relatively unexplored process of degrading the ER network.
Collapse
Affiliation(s)
- Jin Rui Liang
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Emily Lingeman
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Thao Luong
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Saba Ahmed
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Matthias Muhar
- Department of Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Truc Nguyen
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - James A Olzmann
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Jacob E Corn
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Biology, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
19
|
Zhang S, Sun Y. Cullin RING Ligase 5 (CRL-5): Neddylation Activation and Biological Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:261-283. [DOI: 10.1007/978-981-15-1025-0_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Ni L, Yu J, Gui X, Lu Z, Wang X, Guo H, Zhou Y. Overexpression of RPN2 promotes osteogenic differentiation of hBMSCs through the JAK/STAT3 pathway. FEBS Open Bio 2019; 10:158-167. [PMID: 31743606 PMCID: PMC6943221 DOI: 10.1002/2211-5463.12766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 10/28/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is characterized by decreased bone mass and degenerating bone structure, which cause severe bone fragility and increase the risk for fractures. Human bone mesenchymal stem cells (hBMSCs) differentiate into osteoblasts through osteogenesis, and disturbances in the balance between bone generation and degeneration underlie the pathogenesis of senile osteoporosis. The highly conserved glycoprotein Ribophorin II (RPN2) is involved in multiple biological reactions, but the role of RPN2 in the osteogenic differentiation of hBMSCs and their molecular etiology is incompletely understood. Here, we show that RPN2 expression is up‐regulated in hBMSCs during osteogenic differentiation. In vitro assays revealed that silencing of RPN2 inhibited hBMSC differentiation into osteoblasts. Moreover, RPN2 overexpression enhanced the expression of linked genes and resulted in high alkaline phosphatase activity. Our results suggest that RPN2 targets Janus kinase 1 (JAK1), and RPN2 overexpression was observed to induce JAK1 ubiquitination. Depletion of JAK1 facilitated osteogenic differentiation of RPN2‐silenced hBMSCs. Moreover, western blot analysis revealed that RPN2 silencing suppressed the stimulation and nuclear translocation of the downstream signal transducer and activator of transcription 3 sensor; this could be reversed via RPN2 overexpression. This research sheds light on an innovative molecular mechanism that is associated with hBMSC differentiation into osteoblasts and may facilitate bone anabolism through RPN2.
Collapse
Affiliation(s)
- Ling Ni
- Department of Geriatrics, Yangpu District Shidong Hospital, Shanghai, China
| | - Jianhua Yu
- Department of Geriatrics, Yangpu District Shidong Hospital, Shanghai, China
| | - Xueqiong Gui
- Department of Geriatrics, Yangpu District Shidong Hospital, Shanghai, China
| | - Zhonghua Lu
- Department of Geriatrics, Yangpu District Shidong Hospital, Shanghai, China
| | - Xiwen Wang
- Department of Geriatrics, Yangpu District Shidong Hospital, Shanghai, China
| | - Hongyan Guo
- Department of Geriatrics, Yangpu District Shidong Hospital, Shanghai, China
| | - Ying Zhou
- Department of Geriatrics, Yangpu District Shidong Hospital, Shanghai, China
| |
Collapse
|
21
|
Huang L, Jian Z, Gao Y, Zhou P, Zhang G, Jiang B, Lv Y. RPN2 promotes metastasis of hepatocellular carcinoma cell and inhibits autophagy via STAT3 and NF-κB pathways. Aging (Albany NY) 2019; 11:6674-6690. [PMID: 31481647 PMCID: PMC6756868 DOI: 10.18632/aging.102167] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
This study aimed to investigate the function and the molecular mechanism of Ribophorin II (RPN2) in regulating Hepatocellular carcinoma (HCC) cell growth, metastasis, and autophagy. Quantitative real-time PCR (qPCR), western blotting analysis, and immunofluorescence assay were utilized to detect the RPN2 expression in HCC cell lines and specimens of HCC patients. We discovered that RPN2 expression was upregulated in HCC cell lines and tissues of HCC patients, which correlated with the low histological grade and low survival rate. Enhanced RPN2 expression stimulated cell proliferation, metastasis, invasion, and epithelial-mesenchymal transition (EMT), and decreased Microtubule-associated protein light chain 3B (LC3B) synthesis and reduced the expression of p62 protein. Further studies suggested that matrix metalloproteinase 9 (MMP-9) was partially upregulated by RPN2 via Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65. Interestingly, we found that phosphorylated RPN2 activated the signal transducer and activator of transcription 3 (STAT3) in HCC cells. It was also accountable for RPN2-stimulated elevated expression of MMP-9 and for invading HCC cells. It can be concluded that over-expression of RPN2 in HCC aggravated the malignant progression into cancerous cells. This research provided new evidences that RPN2 could facilitate tumor invasion by increasing the expression of MMP-9 in HCC cells.
Collapse
Affiliation(s)
- Linsheng Huang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi’an, Shaanxi Province, China
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Zhiyuan Jian
- The First General Surgery Department of the Hospital Affiliated Guilin Medical University, Guilin, Guangxi Province, China
| | - Yi Gao
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi’an, Shaanxi Province, China
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Ping Zhou
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Gan Zhang
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Bin Jiang
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi’an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| |
Collapse
|
22
|
Shrimal S, Gilmore R. Oligosaccharyltransferase structures provide novel insight into the mechanism of asparagine-linked glycosylation in prokaryotic and eukaryotic cells. Glycobiology 2019; 29:288-297. [PMID: 30312397 DOI: 10.1093/glycob/cwy093] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/26/2018] [Accepted: 10/09/2018] [Indexed: 11/12/2022] Open
Abstract
Asparagine-linked (N-linked) glycosylation is one of the most common protein modification reactions in eukaryotic cells, occurring upon the majority of proteins that enter the secretory pathway. X-ray crystal structures of the single subunit OSTs from eubacterial and archaebacterial organisms revealed the location of donor and acceptor substrate binding sites and provided the basis for a catalytic mechanism. Cryoelectron microscopy structures of the octameric yeast OST provided substantial insight into the organization and assembly of the multisubunit oligosaccharyltransferases. Furthermore, the cryoelectron microscopy structure of a complex consisting of a mammalian OST complex, the protein translocation channel and a translating ribosome revealed new insight into the mechanism of cotranslational glycosylation.
Collapse
Affiliation(s)
- Shiteshu Shrimal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, USA
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, USA
| |
Collapse
|
23
|
Zhang H, Jiang H, Zhang H, Liu J, Hu X, Chen L. Ribophorin II potentiates P-glycoprotein- and ABCG2-mediated multidrug resistance via activating ERK pathway in gastric cancer. Int J Biol Macromol 2019; 128:574-582. [PMID: 30710584 DOI: 10.1016/j.ijbiomac.2019.01.195] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022]
Abstract
Multidrug resistance (MDR) is a critical reason of cancer chemotherapy failure. Ribophorin II (RPN2) has emerged as a vital regulator of MDR in multiple cancers including gastric cancer (GC). However, the roles and molecular mechanisms of RPN2 in MDR have not been well featured till now. The present study aimed to explore the roles and molecular mechanisms of RPN2 in MDR of drug-resistant GC cells. Results showed that the expressions of RPN2, multidrug resistance 1 (MDR1), and ATP binding cassette subfamily G member 2 (ABCG2) were upregulated in SGC7901/DDP and SGC7901/VCR cells. Knockdown of RPN2 alleviated MDR through downregulating MDR1 and ABCG2 expressions in SGC7901/DDP and SGC7901/VCR cells. RPN2 depletion inhibited the activation of MEK/ERK pathway. RPN2 overexpression enhanced MDR by upregulating P-glycoprotein (P-gp) and ABCG2 protein expressions in SGC7901/DDP or SGC7901/VCR cells, while this effect of RPN2 was abrogated by ERK knockdown or treatment with ERK inhibitor PD98059. Our findings suggested that RPN2 potentiated P-gp- and ABCG2-mediated MDR via activating MEK/ERK pathway in GC, hinting the critical values of RPN2 in ameliorating MDR and providing a promising target for GC therapy.
Collapse
Affiliation(s)
- Hongzhi Zhang
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, PR China.
| | - Huijuan Jiang
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, PR China
| | - Huixiang Zhang
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, PR China
| | - Juncai Liu
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, PR China
| | - Xigang Hu
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, PR China
| | - Lei Chen
- Department of Radiotherapy, Huaihe Hospital of Henan University, Kaifeng 475000, PR China
| |
Collapse
|
24
|
Jeong IS, Lee S, Bonkhofer F, Tolley J, Fukudome A, Nagashima Y, May K, Rips S, Lee SY, Gallois P, Russell WK, Jung HS, von Schaewen A, Koiwa H. Purification and characterization of Arabidopsis thaliana oligosaccharyltransferase complexes from the native host: a protein super-expression system for structural studies. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:131-145. [PMID: 29385647 DOI: 10.1111/tpj.13847] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/31/2017] [Accepted: 01/15/2018] [Indexed: 05/18/2023]
Abstract
The oligosaccharyltransferase (OT) complex catalyzes N-glycosylation of nascent secretory polypeptides in the lumen of the endoplasmic reticulum. Despite their importance, little is known about the structure and function of plant OT complexes, mainly due to lack of efficient recombinant protein production systems suitable for studies on large plant protein complexes. Here, we purified Arabidopsis OT complexes using the tandem affinity-tagged OT subunit STAUROSPORINE AND TEMPERATURE SENSITIVE3a (STT3a) expressed by an Arabidopsis protein super-expression platform. Mass-spectrometry analysis of the purified complexes identified three essential OT subunits, OLIGOSACCHARYLTRANSFERASE1 (OST1), HAPLESS6 (HAP6), DEFECTIVE GLYCOSYLATION1 (DGL1), and a number of ribosomal subunits. Transmission-electron microscopy showed that STT3a becomes incorporated into OT-ribosome super-complexes formed in vivo, demonstrating that this expression/purification platform is suitable for analysis of large protein complexes. Pairwise in planta interaction analyses of individual OT subunits demonstrated that all subunits identified in animal OT complexes are conserved in Arabidopsis and physically interact with STT3a. Genetic analysis of newly established OT subunit mutants for OST1 and DEFENDER AGAINST APOTOTIC DEATH (DAD) family genes revealed that OST1 and DAD1/2 subunits are essential for the plant life cycle. However, mutations in these individual isoforms produced much milder growth/underglycosylation phenotypes than previously reported for mutations in DGL1, OST3/6 and STT3a.
Collapse
Affiliation(s)
- In Sil Jeong
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
- Department of Biomedical Engineering College of Creative Convergence Engineering, Catholic Kwandong University, Gangneung, Gangwon-do, 25601, South Korea
| | - Sangmin Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 24341, South Korea
| | - Florian Bonkhofer
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149, Münster, Germany
| | - Jordan Tolley
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Akihito Fukudome
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Yukihiro Nagashima
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Kimberly May
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Stephan Rips
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149, Münster, Germany
| | - Sang Y Lee
- Division of Applied Life Science and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Patrick Gallois
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PT, UK
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas-Medical Branch, Oxford Rd, Galveston, TX, 77555, USA
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 24341, South Korea
| | - Antje von Schaewen
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149, Münster, Germany
| | - Hisashi Koiwa
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
25
|
Li H, Al-Japairai K, Tao Y, Xiang Z. RPN2 promotes colorectal cancer cell proliferation through modulating the glycosylation status of EGFR. Oncotarget 2017; 8:72633-72651. [PMID: 29069815 PMCID: PMC5641158 DOI: 10.18632/oncotarget.20005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/12/2017] [Indexed: 12/15/2022] Open
Abstract
Various studies have found that silencing ribophorin II (RPN2) inhibits cell growth in several cancers. However, the underlying mechanism by which RPN2 regulates cancer cell proliferation remains unclear. Herein, we reveal that downregulation of RPN2, which may be a crucial regulator of N-linked glycosylation in cancer cells and drug-resistant cancer cells, promoted the progression of colorectal cancer (CRC) cell cycle and proliferation in vitro and in vivo. We found that RPN2 silencing reduced glycosylation of EGFR, a highly N-link glycosylated cell surface glycoprotein that plays a critical role in majority of human cancers correlating with increased cell growth, proliferation, and differentiation. In addition, RPN2 knockdown decreased EGFR expression and cell surface transport by EGFR deglycosylation. In summary, our findings suggest that RPN2 regulates CRC cell proliferation through mediating the glycosylation of EGFR which affecting the EGFR/ERK signaling pathways. Clinicopathological analysis showed that the overexpression of RPN2 and EGFR was positively correlated with colorectal tumor size. Therefore, RPN2 may be a new therapeutic target and prognostic biomarker for CRC.
Collapse
Affiliation(s)
- Haiping Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - K Al-Japairai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Tao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Xiang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Department of General Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
26
|
Shrimal S, Cherepanova NA, Gilmore R. DC2 and KCP2 mediate the interaction between the oligosaccharyltransferase and the ER translocon. J Cell Biol 2017; 216:3625-3638. [PMID: 28860277 PMCID: PMC5674889 DOI: 10.1083/jcb.201702159] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/29/2017] [Accepted: 07/27/2017] [Indexed: 12/21/2022] Open
Abstract
The STT3A isoform of the oligosaccharyltransferase is adjacent to the protein translocation channel to catalyze co-translational N-glycosylation of proteins in the endoplasmic reticulum. Shrimal et al. show that the DC2 and KCP2 subunits of the STT3A isoform of the oligosaccharyltransferase are responsible for mediating the interaction between the STT3A complex and the protein translocation channel to allow co-translational N-glycosylation of proteins. In metazoan organisms, the STT3A isoform of the oligosaccharyltransferase is localized adjacent to the protein translocation channel to catalyze co-translational N-linked glycosylation of proteins in the endoplasmic reticulum. The mechanism responsible for the interaction between the STT3A complex and the translocation channel has not been addressed. Using genetically modified human cells that are deficient in DC2 or KCP2 proteins, we show that loss of DC2 causes a defect in co-translational N-glycosylation of proteins that mimics an STT3A−/− phenotype. Biochemical analysis showed that DC2 and KCP2 are responsible for mediating the interaction between the protein translocation channel and the STT3A complex. Importantly, DC2- and KCP2-deficient STT3A complexes are stable and enzymatically active. Deletion mutagenesis revealed that a conserved motif in the C-terminal tail of DC2 is critical for assembly into the STT3A complex, whereas the lumenal loop and the N-terminal cytoplasmic segment are necessary for the functional interaction between the STT3A and Sec61 complexes.
Collapse
Affiliation(s)
- Shiteshu Shrimal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Natalia A Cherepanova
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
27
|
Prasad C, Davis KE, Imrhan V, Juma S, Vijayagopal P. Advanced Glycation End Products and Risks for Chronic Diseases: Intervening Through Lifestyle Modification. Am J Lifestyle Med 2017; 13:384-404. [PMID: 31285723 DOI: 10.1177/1559827617708991] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/17/2022] Open
Abstract
Advanced glycation end products (AGEs) are a family of compounds of diverse chemical nature that are the products of nonenzymatic reactions between reducing sugars and proteins, lipids, or nucleic acids. AGEs bind to one or more of their multiple receptors (RAGE) found on a variety of cell types and elicit an array of biologic responses. In this review, we have summarized the data on the nature of AGEs and issues associated with their measurements, their receptors, and changes in their expression under different physiologic and disease states. Last, we have used this information to prescribe lifestyle choices to modulate AGE-RAGE cycle for better health.
Collapse
Affiliation(s)
- Chandan Prasad
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas (CP, VI, SJ, PV).,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas (KED)
| | - Kathleen E Davis
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas (CP, VI, SJ, PV).,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas (KED)
| | - Victorine Imrhan
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas (CP, VI, SJ, PV).,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas (KED)
| | - Shanil Juma
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas (CP, VI, SJ, PV).,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas (KED)
| | - Parakat Vijayagopal
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, Texas (CP, VI, SJ, PV).,Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas (KED)
| |
Collapse
|
28
|
Fujimoto D, Goi T, Hirono Y. Expression of ribophorine II is a promising prognostic factor in human gastric adenocarcinoma. Int J Oncol 2016; 50:448-456. [PMID: 28035352 DOI: 10.3892/ijo.2016.3822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/19/2016] [Indexed: 11/06/2022] Open
Abstract
The increased invasiveness of gastric adenocarcinoma is important for progression and metastasis. In recent molecular biological studies, ribophorine II (RPN2) induced epithelial-mesenchymal transition and metastatic activity. However, no studies have evaluated the relationship between RPN2 expression, ability of cancer to invade/metastasis, and patient prognosis in gastric adenocarcinoma. Therefore, we have examined these factors. Immunohistochemical staining was performed to detect RPN2 and p53 in the primary lesion and adjacent normal gastric mucosa of 242 gastric adenocarcinoma patients who underwent resection surgery. We conducted clinicopathologic examinations and analyzed patient prognoses with the Kaplan-Meier method. Further, multivariate analysis was conducted using a Cox hazard model. Also, we analyzed the ability of invasion under inhibited RPN2 expression in vitro. RPN2 expression was observed in 119 of 242 cases of gastric adenocarcinoma patients. RPN2 expression was associated with a higher incidence of depth of wall invasion, lymph node metastasis, lymphatic invasion, venous invasion, peritoneal dissemination, histopathological stage, and p53 expression. In stage II and III curative resection cases, where recurrence is the most serious problem, cases that expressed RPN2 had a significantly lower 5-year survival rate and higher recurrence rate compared to the cases with no RPN2 expression. In the multivariate analysis for prognosis, RPN2 expression was found to be an independent factor. Also, gastric adenocarcinoma cell, had mutant-type p53, reduced the ability of invasion by knockout of RPN2 expression in vitro. RPN2 expression correlates with gastric adenocarcinoma cell invasion and shows promise as a new prognostic factor in human gastric adenocarcinoma.
Collapse
Affiliation(s)
- Daisuke Fujimoto
- Department of Surgery 1, Faculty of Medicine, University of Fukui, Fukui 910-1193, Japan
| | - Takanori Goi
- Department of Surgery 1, Faculty of Medicine, University of Fukui, Fukui 910-1193, Japan
| | - Yasuo Hirono
- Department of Surgery 1, Faculty of Medicine, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
29
|
Okumura F, Joo-Okumura A, Nakatsukasa K, Kamura T. The role of cullin 5-containing ubiquitin ligases. Cell Div 2016; 11:1. [PMID: 27030794 PMCID: PMC4812663 DOI: 10.1186/s13008-016-0016-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/02/2016] [Indexed: 01/01/2023] Open
Abstract
The suppressor of cytokine signaling (SOCS) box consists of the BC box and the cullin 5 (Cul5) box, which interact with Elongin BC and Cul5, respectively. SOCS box-containing proteins have ubiquitin ligase activity mediated by the formation of a complex with the scaffold protein Cul5 and the RING domain protein Rbx2, and are thereby members of the cullin RING ligase superfamily. Cul5-type ubiquitin ligases have a variety of substrates that are targeted for polyubiquitination and proteasomal degradation. Here, we review the current knowledge on the identification of Cul5 and the regulation of its expression, as well as the signaling pathways regulated by Cul5 and how viruses highjack the Cul5 system to overcome antiviral responses.
Collapse
Affiliation(s)
- Fumihiko Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| | - Akiko Joo-Okumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| | - Kunio Nakatsukasa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| | - Takumi Kamura
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602 Japan
| |
Collapse
|
30
|
Abstract
Secretion is the cellular process present in every organism that delivers soluble proteins and cargoes to the extracellular space. In eukaryotes, conventional protein secretion (CPS) is the trafficking route that secretory proteins undertake when are transported from the endoplasmic reticulum (ER) to the Golgi apparatus (GA), and subsequently to the plasma membrane (PM) via secretory vesicles or secretory granules. This book chapter recalls the fundamental steps in cell biology research contributing to the elucidation of CPS; it describes the most prominent examples of conventionally secreted proteins in eukaryotic cells and the molecular mechanisms necessary to regulate each step of this process.
Collapse
|
31
|
Zhao J, Bulek K, Gulen MF, Zepp JA, Karagkounis G, Martin BN, Zhou H, Yu M, Liu X, Huang E, Fox PL, Kalady MF, Markowitz SD, Li X. Human Colon Tumors Express a Dominant-Negative Form of SIGIRR That Promotes Inflammation and Colitis-Associated Colon Cancer in Mice. Gastroenterology 2015; 149:1860-1871.e8. [PMID: 26344057 PMCID: PMC5308447 DOI: 10.1053/j.gastro.2015.08.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 08/03/2015] [Accepted: 08/24/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Single immunoglobulin and toll-interleukin 1 receptor (SIGIRR), a negative regulator of the Toll-like and interleukin-1 receptor (IL-1R) signaling pathways, controls intestinal inflammation and suppresses colon tumorigenesis in mice. However, the importance of SIGIRR in human colorectal cancer development has not been determined. We investigated the role of SIGIRR in development of human colorectal cancer. METHODS We performed RNA sequence analyses of pairs of colon tumor and nontumor tissues, each collected from 68 patients. Immunoblot and immunofluorescence analyses were used to determine levels of SIGIRR protein in primary human colonic epithelial cells, tumor tissues, and colon cancer cell lines. We expressed SIGIRR and mutant forms of the protein in Vaco cell lines. We created and analyzed mice that expressed full-length (control) or a mutant form of Sigirr (encoding SIGIRR(N86/102S), which is not glycosylated) specifically in the intestinal epithelium. Some mice were given azoxymethane (AOM) and dextran sulfate sodium to induce colitis-associated cancer. Intestinal tissues were collected and analyzed by immunohistochemical and gene expression profile analyses. RESULTS RNA sequence analyses revealed increased expression of a SIGIRR mRNA isoform, SIGIRR(ΔE8), in colorectal cancer tissues compared to paired nontumor tissues. SIGIRR(ΔE8) is not modified by complex glycans and is therefore retained in the cytoplasm-it cannot localize to the cell membrane or reduce IL1R signaling. SIGIRR(ΔE8) interacts with and has a dominant-negative effect on SIGIRR, reducing its glycosylation, localization to the cell surface, and function. Most SIGIRR detected in human colon cancer tissues was cytoplasmic, whereas in nontumor tissues it was found at the cell membrane. Mice that expressed SIGIRR(N86/102S) developed more inflammation and formed larger tumors after administration of azoxymethane and dextran sulfate sodium than control mice; colon tissues from these mutant mice expressed higher levels of the inflammatory cytokines IL-17A and IL-6 had activation of the transcription factors STAT3 and NFκB. SIGIRR(N86/102S) expressed in colons of mice did not localize to the epithelial cell surface. CONCLUSION Levels of SIGIRR are lower in human colorectal tumors, compared with nontumor tissues; tumors contain the dominant-negative isoform SIGIRR(ΔE8). This mutant protein blocks localization of full-length SIGIRR to the surface of colon epithelial cells and its ability to downregulate IL1R signaling. Expression of SIGIRR(N86/102S) in the colonic epithelium of mice increases expression of inflammatory cytokines and formation and size of colitis-associated tumors.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland Clinic Foundation, Cleveland, OH, USA, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Katarzyna Bulek
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Muhammet Fatih Gulen
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Jarod A. Zepp
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA, Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Georgio Karagkounis
- Department of stem cell biology and regenerative medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Bradley N Martin
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Hao Zhou
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Minjia Yu
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Xiuli Liu
- Department of Anatomic Pathology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Emina Huang
- Department of stem cell biology and regenerative medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA, Department of Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Paul L. Fox
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Matthew F. Kalady
- Department of stem cell biology and regenerative medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA, Department of Colorectal Surgery, Digestive Disease Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sanford D. Markowitz
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Xiaoxia Li
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
32
|
Yuan TM, Liang RY, Chueh PJ, Chuang SM. Role of ribophorin II in the response to anticancer drugs in gastric cancer cell lines. Oncol Lett 2015; 9:1861-1868. [PMID: 25789057 PMCID: PMC4356382 DOI: 10.3892/ol.2015.2900] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 12/19/2014] [Indexed: 01/07/2023] Open
Abstract
The identification of prognostic markers and establishing their value as therapeutic targets improves therapeutic efficacy against human cancers. Ribophorin II (RPN2) has been demonstrated to be a prognostic marker of human cancer, including breast and pancreatic cancers. The present study aimed to evaluate RPN2 expression in gastric cancer and to examine the possible correlation between RPN2 expression and the response of cells to clinical anticancer drugs, which has received little research attention at present. The gastric cancer AGS, TMC-1, SNU-1, TMK-1, SCM-1, MKN-45 and KATO III cell lines were used as a model to elucidate the role of RPN2 in the response of cells to six common chemotherapeutic agents, comprising oxaliplatin, irinotecan, doxorubicin, docetaxel, cisplatin and 5-fluorouricil. The functional role of RPN2 was assessed by silencing RPN2 using small interfering RNA (siRNA), and the cytotoxicity was determined by an MTS assay and analysis of apoptosis. Molecular events were evaluated by western blotting. All the anticancer drugs were found to exert a concentration-dependent decrease on the cell survival rate of each of the cell lines tested, although the RPN2 levels in the various cell lines were not directly correlated with responsiveness to clinical anticancer drugs, based on the calculated IC50 values. siRNA-mediated RPN2 downregulation enhanced cisplatin-induced apoptosis in AGS cells, but did not markedly decrease the cell survival rates of these cells in response to the tested drugs. Furthermore, RPN2 silencing in MKN-45 cells resulted in no additional increase in the cisplatin-induced apoptosis and survival rates. It was also found that RPN2 depletion increased anticancer drug-mediated cytotoxicity in gastric cancer cell lines. However, the predictive value of RPN2 expression in cancer therapy is questionable in gastric cancer models.
Collapse
Affiliation(s)
- Tein-Ming Yuan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C. ; Department of Surgery, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung 42055, Taiwan, R.O.C
| | - Ruei-Yue Liang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| | - Show-Mei Chuang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 40227, Taiwan, R.O.C
| |
Collapse
|
33
|
Cherepanova NA, Shrimal S, Gilmore R. Oxidoreductase activity is necessary for N-glycosylation of cysteine-proximal acceptor sites in glycoproteins. ACTA ACUST UNITED AC 2014; 206:525-39. [PMID: 25135935 PMCID: PMC4137057 DOI: 10.1083/jcb.201404083] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stabilization of protein tertiary structure by disulfides can interfere with glycosylation of acceptor sites (NXT/S) in nascent polypeptides. Here, we show that MagT1, an ER-localized thioredoxin homologue, is a subunit of the STT3B isoform of the oligosaccharyltransferase (OST). The lumenally oriented active site CVVC motif in MagT1 is required for glycosylation of STT3B-dependent acceptor sites including those that are closely bracketed by disulfides or contain cysteine as the internal residue (NCT/S). The MagT1- and STT3B-dependent glycosylation of cysteine-proximal acceptor sites can be reduced by eliminating cysteine residues. The predominant form of MagT1 in vivo is oxidized, which is consistent with transient formation of mixed disulfides between MagT1 and a glycoprotein substrate to facilitate access of STT3B to unmodified acceptor sites. Cotranslational N-glycosylation by the STT3A isoform of the OST, which lacks MagT1, allows efficient modification of acceptor sites in cysteine-rich protein domains before disulfide bond formation. Thus, mammalian cells use two mechanisms to achieve N-glycosylation of cysteine proximal acceptor sites.
Collapse
Affiliation(s)
- Natalia A Cherepanova
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Shiteshu Shrimal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Reid Gilmore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
34
|
Takeda K, Qin SY, Matsumoto N, Yamamoto K. Association of malectin with ribophorin I is crucial for attenuation of misfolded glycoprotein secretion. Biochem Biophys Res Commun 2014; 454:436-40. [DOI: 10.1016/j.bbrc.2014.10.102] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 10/20/2014] [Indexed: 10/24/2022]
|
35
|
Ding Y, Dellisanti CD, Ko MH, Czajkowski C, Puglielli L. The endoplasmic reticulum-based acetyltransferases, ATase1 and ATase2, associate with the oligosaccharyltransferase to acetylate correctly folded polypeptides. J Biol Chem 2014; 289:32044-32055. [PMID: 25301944 DOI: 10.1074/jbc.m114.585547] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The endoplasmic reticulum (ER) has two membrane-bound acetyltransferases responsible for the endoluminal N(ϵ)-lysine acetylation of ER-transiting and -resident proteins. Mutations that impair the ER-based acetylation machinery are associated with developmental defects and a familial form of spastic paraplegia. Deficient ER acetylation in the mouse leads to defects of the immune and nervous system. Here, we report that both ATase1 and ATase2 form homo- and heterodimers and associate with members of the oligosaccharyltransferase (OST) complex. In contrast to the OST, the ATases only modify correctly folded polypetides. Collectively, our studies suggest that one of the functions of the ATases is to work in concert with the OST and "select" correctly folded from unfolded/misfolded transiting polypeptides.
Collapse
Affiliation(s)
- Yun Ding
- Departments of Medicine and University of Wisconsin-Madison, Madison, Wisconsin 53705; Departments of Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53705 and
| | - Cosma D Dellisanti
- Departments of Neuroscience and University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Mi Hee Ko
- Departments of Medicine and University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Cynthia Czajkowski
- Departments of Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53705 and; Departments of Neuroscience and University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Luigi Puglielli
- Departments of Medicine and University of Wisconsin-Madison, Madison, Wisconsin 53705; Departments of Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53705 and; Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, Wisconsin 53705.
| |
Collapse
|
36
|
Jagannathan S, Hsu JCC, Reid DW, Chen Q, Thompson WJ, Moseley AM, Nicchitta CV. Multifunctional roles for the protein translocation machinery in RNA anchoring to the endoplasmic reticulum. J Biol Chem 2014; 289:25907-24. [PMID: 25063809 DOI: 10.1074/jbc.m114.580688] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Signal sequence-encoding mRNAs undergo translation-dependent localization to the endoplasmic reticulum (ER) and at the ER are anchored via translation on Sec61-bound ribosomes. Recent investigations into the composition and membrane association characteristics of ER-associated mRNAs have, however, revealed both ribosome-dependent (indirect) and ribosome-independent (direct) modes of mRNA association with the ER. These findings raise important questions regarding our understanding of how mRNAs are selected, localized, and anchored to the ER. Using semi-intact tissue culture cells, we performed a polysome solubilization screen and identified conditions that distinguish polysomes engaged in the translation of distinct cohorts of mRNAs. To gain insight into the molecular basis of direct mRNA anchoring to the ER, we performed RNA-protein UV photocross-linking studies in rough microsomes and demonstrate that numerous ER integral membrane proteins display RNA binding activity. Quantitative proteomic analyses of HeLa cytosolic and ER-bound polysome fractions identified translocon components as selective polysome-interacting proteins. Notably, the Sec61 complex was highly enriched in polysomes engaged in the translation of endomembrane organelle proteins, whereas translocon accessory proteins, such as ribophorin I, were present in all subpopulations of ER-associated polysomes. Analyses of the protein composition of oligo(dT)-selected UV photocross-linked ER protein-RNA adducts identified Sec61α,β and ribophorin I as ER-poly(A) mRNA-binding proteins, suggesting unexpected roles for the protein translocation and modification machinery in mRNA anchoring to the ER. In summary, we propose that multiple mechanisms of mRNA and ribosome association with ER operate to enable an mRNA transcriptome-wide function for the ER in protein synthesis.
Collapse
Affiliation(s)
| | | | | | - Qiang Chen
- From the Departments of Cell Biology and
| | - Will J Thompson
- the Duke Proteomics Core Facility, Duke University Medical Center, Durham, North Carolina 27710
| | - Arthur M Moseley
- the Duke Proteomics Core Facility, Duke University Medical Center, Durham, North Carolina 27710
| | | |
Collapse
|
37
|
Ott C, Jacobs K, Haucke E, Navarrete Santos A, Grune T, Simm A. Role of advanced glycation end products in cellular signaling. Redox Biol 2014; 2:411-29. [PMID: 24624331 PMCID: PMC3949097 DOI: 10.1016/j.redox.2013.12.016] [Citation(s) in RCA: 831] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 12/18/2022] Open
Abstract
Improvements in health care and lifestyle have led to an elevated lifespan and increased focus on age-associated diseases, such as neurodegeneration, cardiovascular disease, frailty and arteriosclerosis. In all these chronic diseases protein, lipid or nucleic acid modifications are involved, including cross-linked and non-degradable aggregates, such as advanced glycation end products (AGEs). Formation of endogenous or uptake of dietary AGEs can lead to further protein modifications and activation of several inflammatory signaling pathways. This review will give an overview of the most prominent AGE-mediated signaling cascades, AGE receptor interactions, prevention of AGE formation and the impact of AGEs during pathophysiological processes.
Collapse
Key Words
- ADAMST, a disintegrin and metalloproteinase with a thrombospondin type 1 motif
- AGE, advanced glycation end products
- AGE-receptors
- Advanced glycation end products
- Age-associated diseases
- Aggregates
- Aging
- E, from embryonic day
- EGFR, epidermal growth factor receptor
- ERK, extracellular-signal regulated kinase
- F3NK, fructosamine 3-phosphokinase
- FKHRL1, forkhead transcription factor
- HDL, high density lipoprotein
- HMGB1, high-mobility-group-protein B1
- HNE, 4-hydroxy-trans-2-nonenal
- Jak1/2, Janus kinase 1/2
- LDL, low density lipoprotein
- MDA, malondialdehyde
- MEKK, mitogen-activated protein/ERK kinase kinases
- MnSOD, manganese superoxide dismutase
- NF-κB
- Nf-κB, nuclear factor-light-chain-enhancer of activated B
- Oxidative stress
- PIK3, phosphoinositol 3 kinase
- RAGE
- RAGE, receptor of AGEs
- RCC, reactive carbonyl compounds
- Reactive carbonyl compounds
- S100B, S100 calcium binding protein B
- SIRt1, NAD+-dependent deacetylase and survival factor 1
- SR-A, scavenger receptor class A
- Signaling
- Stat 1/2, signal transducers and activators of transcription 1/2
- VSMC, vascular smooth muscle cells
Collapse
Affiliation(s)
- Christiane Ott
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Kathleen Jacobs
- Clinic for Cardiothoracic Surgery, University Hospital Halle (Saale), Martin-Luther-University of Halle-Wittenberg, Ernst-Grube Strasse 40, D-06120 Halle (Saale), Germany
| | - Elisa Haucke
- Institute for Anatomy and Cell Biology, Faculty of Medicine, Martin-Luther-University of Halle-Wittenberg, 06108 Halle (Saale), Germany
| | - Anne Navarrete Santos
- Institute for Anatomy and Cell Biology, Faculty of Medicine, Martin-Luther-University of Halle-Wittenberg, 06108 Halle (Saale), Germany
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Andreas Simm
- Clinic for Cardiothoracic Surgery, University Hospital Halle (Saale), Martin-Luther-University of Halle-Wittenberg, Ernst-Grube Strasse 40, D-06120 Halle (Saale), Germany
| |
Collapse
|
38
|
Bieberich E. Synthesis, Processing, and Function of N-glycans in N-glycoproteins. ADVANCES IN NEUROBIOLOGY 2014; 9:47-70. [PMID: 25151374 DOI: 10.1007/978-1-4939-1154-7_3] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Many membrane-resident and secrected proteins, including growth factors and their receptors, are N-glycosylated. The initial N-glycan structure is synthesized in the endoplasmic reticulum (ER) as a branched structure on a lipid anchor (dolichol pyrophosphate) and then co-translationally, "en bloc" transferred and linked via N-acetylglucosamine to asparagine within a specific N-glycosylation acceptor sequence of the nascent recipient protein. In the ER and then the Golgi apparatus, the N-linked glycan structure is modified by hydrolytic removal of sugar residues ("trimming") followed by re-glycosylation with additional sugar residues ("processing") such as galactose, fucose, or sialic acid to form complex N-glycoproteins. While the sequence of the reactions leading to biosynthesis, "en bloc" transfer and processing of N-glycans is well investigated, it is still not completely understood how N-glycans affect the biological fate and function of N-glycoproteins. This review discusses the biology of N-glycoprotein synthesis, processing, and function with specific reference to the physiology and pathophysiology of the nervous system.
Collapse
Affiliation(s)
- Erhard Bieberich
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, 1120 15th Street Room CA4012, Augusta, GA, 30912, USA,
| |
Collapse
|
39
|
YAMAMOTO K. Intracellular lectins are involved in quality control of glycoproteins. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2014; 90:67-82. [PMID: 24522156 PMCID: PMC3948941 DOI: 10.2183/pjab.90.67] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Glycoprotein quality control is categorized into three kinds of reactions; the folding of nascent glycoproteins, ER-associated degradation of misfolded or unassembled glycoproteins, and transport and sorting of correctly folded glycoproteins. In all three processes, N-glycans on the glycoproteins are used as tags that are recognized by intracellular lectins. We analyzed the functions of these intracellular lectins and their sugar-binding specificities. The results clearly showed that the A, B, and C-arms of high mannose-type glycans participate in the folding, transport and sorting, and degradation, respectively, of newly synthesized peptides. After correctly folded glycoproteins are transported to the Golgi apparatus, N-glycans are trimmed into Man3GlcNAc2 and then rebuilt into various complex-type glycans in the Golgi, resulting in the addition of diverse sugar structures that allow glycoproteins to play various roles outside of the cells.
Collapse
Affiliation(s)
- Kazuo YAMAMOTO
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Corresponding should be addressed: K. Yamamoto, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan (e-mail: )
| |
Collapse
|
40
|
Profiling of the mammalian mitotic spindle proteome reveals an ER protein, OSTD-1, as being necessary for cell division and ER morphology. PLoS One 2013; 8:e77051. [PMID: 24130834 PMCID: PMC3794981 DOI: 10.1371/journal.pone.0077051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022] Open
Abstract
Cell division is important for many cellular processes including cell growth, reproduction, wound healing and stem cell renewal. Failures in cell division can often lead to tumors and birth defects. To identify factors necessary for this process, we implemented a comparative profiling strategy of the published mitotic spindle proteome from our laboratory. Of the candidate mammalian proteins, we determined that 77% had orthologs in Caenorhabditis elegans and 18% were associated with human disease. Of the C. elegans candidates (n=146), we determined that 34 genes functioned in embryonic development and 56% of these were predicted to be membrane trafficking proteins. A secondary, visual screen to detect distinct defects in cell division revealed 21 genes that were necessary for cytokinesis. One of these candidates, OSTD-1, an ER resident protein, was further characterized due to the aberrant cleavage furrow placement and failures in division. We determined that OSTD-1 plays a role in maintaining the dynamic morphology of the ER during the cell cycle. In addition, 65% of all ostd-1 RNAi-treated embryos failed to correctly position cleavage furrows, suggesting that proper ER morphology plays a necessary function during animal cell division.
Collapse
|
41
|
Shrimal S, Gilmore R. Glycosylation of closely spaced acceptor sites in human glycoproteins. J Cell Sci 2013; 126:5513-23. [PMID: 24105266 DOI: 10.1242/jcs.139584] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Asparagine-linked glycosylation of proteins by the oligosaccharyltransferase (OST) occurs when acceptor sites or sequons (N-x≠P-T/S) on nascent polypeptides enter the lumen of the rough endoplasmic reticulum. Metazoan organisms assemble two isoforms of the OST that have different catalytic subunits (STT3A or STT3B) and partially non-overlapping cellular roles. Potential glycosylation sites move past the STT3A complex, which is associated with the translocation channel, at the protein synthesis elongation rate. Here, we investigated whether close spacing between acceptor sites in a nascent protein promotes site skipping by the STT3A complex. Biosynthetic analysis of four human glycoproteins revealed that closely spaced sites are efficiently glycosylated by an STT3B-independent process unless the sequons contain non-optimal sequence features, including extreme close spacing between sequons (e.g. NxTNxT) or the presence of paired NxS sequons (e.g. NxSANxS). Many, but not all, glycosylation sites that are skipped by the STT3A complex can be glycosylated by the STT3B complex. Analysis of a murine glycoprotein database revealed that closely spaced sequons are surprisingly common, and are enriched for paired NxT sites when the gap between sequons is less than three residues.
Collapse
Affiliation(s)
- Shiteshu Shrimal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
42
|
Elucidating the role of carbohydrate determinants in regulating hemostasis: insights and opportunities. Blood 2013; 121:3801-10. [DOI: 10.1182/blood-2012-10-415000] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent improvement in modern analytical technologies has stimulated an explosive growth in the study of glycobiology. In turn, this has lead to a richer understanding of the crucial role of N- and O-linked carbohydrates in dictating the properties of the proteins to which they are attached and, in particular, their centrality in the control of protein synthesis, longevity, and activity. Given their importance, it is unsurprising that both gross and subtle defects in glycosylation often contribute to human disease pathology. In this review, we discuss the accumulating evidence for the significance of glycosylation in mediating the functions of the plasma glycoproteins involved in hemostasis and thrombosis. In particular, the role of naturally occurring coagulation protein glycoforms and inherited defects in carbohydrate attachment in modulating coagulation is considered. Finally, we describe the therapeutic opportunities presented by new insights into the role of attached carbohydrates in shaping coagulation protein function and the promise of carbohydrate modification in the delivery of novel therapeutic biologics with enhanced functional properties for the treatment of hemostatic disorders.
Collapse
|
43
|
Dumax-Vorzet A, Roboti P, High S. OST4 is a subunit of the mammalian oligosaccharyltransferase required for efficient N-glycosylation. J Cell Sci 2013; 126:2595-606. [PMID: 23606741 PMCID: PMC3687696 DOI: 10.1242/jcs.115410] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The eukaryotic oligosaccharyltransferase (OST) is a membrane-embedded protein complex that catalyses the N-glycosylation of nascent polypeptides in the lumen of the endoplasmic reticulum (ER), a highly conserved biosynthetic process that enriches protein structure and function. All OSTs contain a homologue of the catalytic STT3 subunit, although in many cases this is assembled with several additional components that influence function. In S. cerevisiae, one such component is Ost4p, an extremely small membrane protein that appears to stabilise interactions between subunits of assembled OST complexes. OST4 has been identified as a putative human homologue, but to date neither its relationship to the OST complex, nor its role in protein N-glycosylation, have been directly addressed. Here, we establish that OST4 is assembled into native OST complexes containing either the catalytic STT3A or STT3B isoforms. Co-immunoprecipitation studies suggest that OST4 associates with both STT3 isoforms and with ribophorin I, an accessory subunit of mammalian OSTs. These presumptive interactions are perturbed by a single amino acid change in the transmembrane region of OST4. Using siRNA knockdowns and native gel analysis, we show that OST4 plays an important role in maintaining the stability of native OST complexes. Hence, upon OST4 depletion well-defined OST complexes are partially destabilised and a novel ribophorin I-containing subcomplex can be detected. Strikingly, cells depleted of either OST4 or STT3A show a remarkably similar defect in the N-glycosylation of endogenous prosaposin. We conclude that OST4 most likely promotes co-translational N-glycosylation by stabilising STT3A-containing OST isoforms.
Collapse
Affiliation(s)
- Audrey Dumax-Vorzet
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
44
|
Shrimal S, Trueman SF, Gilmore R. Extreme C-terminal sites are posttranslocationally glycosylated by the STT3B isoform of the OST. ACTA ACUST UNITED AC 2013; 201:81-95. [PMID: 23530066 PMCID: PMC3613688 DOI: 10.1083/jcb.201301031] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycosylation in the C-terminal 50–55 residues of proteins is mediated posttranslocationally by the STT3B isoform of oligosaccharyltransferase, with a preference for NXT sites. Metazoan organisms assemble two isoforms of the oligosaccharyltransferase (OST) that have different catalytic subunits (STT3A or STT3B) and partially nonoverlapping roles in asparagine-linked glycosylation. The STT3A isoform of the OST is primarily responsible for co-translational glycosylation of the nascent polypeptide as it enters the lumen of the endoplasmic reticulum. The C-terminal 65–75 residues of a glycoprotein will not contact the translocation channel–associated STT3A isoform of the OST complex before chain termination. Biosynthetic pulse labeling of five human glycoproteins showed that extreme C-terminal glycosylation sites were modified by an STT3B-dependent posttranslocational mechanism. The boundary for STT3B-dependent glycosylation of C-terminal sites was determined to fall between 50 and 55 residues from the C terminus of a protein. C-terminal NXT sites were glycosylated more rapidly and efficiently than C-terminal NXS sites. Bioinformatics analysis of glycopeptide databases from metazoan organisms revealed a lower density of C-terminal acceptor sites in glycoproteins because of reduced positive selection of NXT sites and negative selection of NXS sites.
Collapse
Affiliation(s)
- Shiteshu Shrimal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | |
Collapse
|
45
|
Qin C, Li Y, Gan J, Wang W, Zhang H, Liu Y, Wu P. OsDGL1, a homolog of an oligosaccharyltransferase complex subunit, is involved in N-glycosylation and root development in rice. PLANT & CELL PHYSIOLOGY 2013; 54:129-37. [PMID: 23220823 DOI: 10.1093/pcp/pcs159] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A leaky rice mutant was isolated from an ethylmethane sulfonate (EMS)-mutagenized rice library based on its short root phenotype. The map-based cloning results showed that the mutant was due to a point mutation in the intron of OsDGL1 (LOC_Os07g10830), which encodes the dolichyl-diphosphooligosaccharide-protein glycosyltransferase 48 kDa subunit precursor. The mutation results in premature termination of protein synthesis. OsDGL1 is an ortholog of Arabidopsis DGL1, human OST48 and yeast WBP1, an essential protein subunit of the oligosaccharyltransferase (OST) complex, which is involved in N-glycosylation in eukaryotes. The leaky rice mutant, Osdgl1, displayed a change of matrix polysaccharides in its root cell wall, shorter root cell length, smaller root meristem and cell death in the root. Consistent with the known function of the OST complex in eukaryotes, the Osdgl1 mutation leads to a defect in N-glycosylation in the root. It was also found that reactive oxygen species (ROS) may be involved in this process.
Collapse
Affiliation(s)
- Cheng Qin
- The State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, PR China
| | | | | | | | | | | | | |
Collapse
|
46
|
Gangalum RK, Horwitz J, Kohan SA, Bhat SP. αA-crystallin and αB-crystallin reside in separate subcellular compartments in the developing ocular lens. J Biol Chem 2012; 287:42407-16. [PMID: 23071119 DOI: 10.1074/jbc.m112.414854] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
αA-Crystallin (αA) and αB-crystallin (αB), the two prominent members of the small heat shock family of proteins are considered to be two subunits of one multimeric protein, α-crystallin, within the ocular lens. Outside of the ocular lens, however, αA and αB are known to be two independent proteins, with mutually exclusive expression in many tissues. This dichotomous view is buoyed by the high expression of αA and αB in the lens and their co-fractionation from lens extracts as one multimeric entity, α-crystallin. To understand the biological function(s) of each of these two proteins, it is important to investigate the biological basis of this perceived dichotomy; in this report, we address the question whether αA and αB exist as independent proteins in the ocular lens. Discontinuous sucrose density gradient fractionation and immunoconfocal localization reveal that in early developing rat lens αA is a membrane-associated small heat shock protein similar to αB but with remarkable differences. Employing an established protocol, we demonstrate that αB predominantly sediments with rough endoplasmic reticulum, whereas αA fractionates with smooth membranes. These biochemical observations were corroborated with immunogold labeling and transmission electron microscopy. Importantly, in the rat heart also, which does not contain αA, αB fractionates with rough endoplasmic reticulum, suggesting that αA has no influence on the distribution of αB. These data demonstrate presence of αA and αB in two separate subcellular membrane compartments, pointing to their independent existence in the developing ocular lens.
Collapse
Affiliation(s)
- Rajendra K Gangalum
- Jules Stein Eye Institute, Geffen School of Medicine, UCLA, Los Angeles, California 90095-70019, USA
| | | | | | | |
Collapse
|
47
|
Qin SY, Hu D, Matsumoto K, Takeda K, Matsumoto N, Yamaguchi Y, Yamamoto K. Malectin forms a complex with ribophorin I for enhanced association with misfolded glycoproteins. J Biol Chem 2012; 287:38080-9. [PMID: 22988243 DOI: 10.1074/jbc.m112.394288] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Malectin is an endoplasmic reticulum-resident lectin, which recognizes di-glucosylated Glc(2)Man(9)GlcNAc(2) (G2M9) N-glycans on newly synthesized glycoproteins. We previously demonstrated that malectin preferentially associates with misfolded glycoproteins and inhibits their secretion (Chen, Y., Hu, D., Yabe, R., Tateno, H., Qin, S. Y., Matsumoto, N., Hirabayashi, J., and Yamamoto, K. (2011) Mol. Biol. Cell 22, 3559-3570). The sugar binding activity of malectin is required for this process. However, because G2M9 N-glycans are generated at the very early stage of processing and are typically found on both misfolded glycoproteins and glycoproteins undergoing folding, other mechanisms must underlie the preference of malectin for misfolded glycoproteins. Here, we searched for proteins that were co-immunoprecipitated with malectin, and we found that malectin formed a stable complex with an endoplasmic reticulum-resident transmembrane protein, ribophorin I. Co-expression of malectin and ribophorin I significantly enhanced the association between malectin and a folding-defective α1-antitrypsin variant (null Hong Kong) and reduced its secretion; however, secretion of wild-type α1-antitrypsin was not affected. The enhanced association and reduced secretion were counteracted by siRNA-mediated down-regulation of ribophorin I. Also, a reporter assay revealed that ribophorin I preferentially interacted with misfolded ribonuclease A but not with the native form, suggesting that ribophorin I may function as a chaperone that recognizes misfolded proteins inside cells. These results provide the first evidence of the mechanism by which malectin preferentially associates with misfolded glycoproteins.
Collapse
Affiliation(s)
- Sheng-Ying Qin
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Zhu J, He J, Liu Y, Simeone DM, Lubman DM. Identification of glycoprotein markers for pancreatic cancer CD24+CD44+ stem-like cells using nano-LC-MS/MS and tissue microarray. J Proteome Res 2012; 11:2272-81. [PMID: 22335271 DOI: 10.1021/pr201059g] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pancreatic adenocarcinoma is characterized by late diagnosis due to lack of early symptoms, extensive metastasis, and high resistance to chemo/radiation therapy. Recently, a subpopulation of cells within pancreatic cancers, termed cancer stem cells (CSCs), has been characterized and postulated to be the drivers for pancreatic cancer and responsible for metastatic spread. Further studies on pancreatic CSCs are therefore of particular importance to identify novel diagnosis markers and therapeutic targets for this dismal disease. Herein, the malignant phenotype of pancreatic cancer stem-like CD24+CD44+ cells was isolated from a human pancreatic carcinoma cell line (PANC-1) and demonstrated 4-fold increased invasion ability compared to CD24-CD44+ cells. Using lectin microarray and nano LC-MS/MS, we identified a differentially expressed set of glycoproteins between these two subpopulations. Lectin microarray analysis revealed that fucose- and galactose-specific lectins, UEA-1 and DBA, respectively, exhibit distinctly strong binding to CD24+CD44+ cells. The glycoproteins extracted by multilectin affinity chromatography were consequently analyzed by LC-MS/MS. Seventeen differentially expressed glycoproteins were identified, including up-regulated Cytokeratin 8/CK8, Integrin β1/CD29, ICAM1/CD54, and Ribophorin 2/RPN2 and down-regulated Aminopeptidase N/CD13. Immunohistochemical analysis of tissue microarrays showed that CD24 was significantly associated with late-stage pancreatic adenocarcinomas, and RPN2 was exclusively coexpressed with CD24 in a small population of CD24-positive cells. However, CD13 expression was dramatically decreased along with tumor progression, preferentially present on the apical membrane of ductal cells and vessels in early stage tumors. Our findings suggest that these glycoproteins may provide potential therapeutic targets and promising prognostic markers for pancreatic cancer.
Collapse
Affiliation(s)
- Jianhui Zhu
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0656, United States
| | | | | | | | | |
Collapse
|
49
|
Roboti P, High S. Keratinocyte-associated protein 2 is a bona fide subunit of the mammalian oligosaccharyltransferase. J Cell Sci 2012; 125:220-32. [PMID: 22266900 DOI: 10.1242/jcs.094599] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The oligosaccharyltransferase (OST) complex catalyses the N-glycosylation of polypeptides entering the endoplasmic reticulum, a process essential for the productive folding and trafficking of many secretory and membrane proteins. In eukaryotes, the OST typically comprises a homologous catalytic STT3 subunit complexed with several additional components that are usually conserved, and that often function to modulate N-glycosylation efficiency. By these criteria, the status of keratinocyte-associated protein 2 (KCP2) was unclear: it was found to co-purify with the canine OST suggesting it is part of the complex but, unlike most other subunits, no potential homologues are apparent in Saccharomyces cerevisiae. In this study we have characterised human KCP2 and show that the predominant species results from an alternative initiation of translation to form an integral membrane protein with three transmembrane spans. KCP2 localises to the endoplasmic reticulum, consistent with a role in protein biosynthesis, and has a functional KKxx retrieval signal at its cytosolic C-terminus. Native gel analysis suggests that the majority of KCP2 assembles into a distinct ~500 kDa complex that also contains several bona fide OST subunits, most notably the catalytic STT3A isoform. Co-immunoprecipitation studies confirmed a robust and specific physical interaction between KCP2 and STT3A, and revealed weaker associations with both STT3B and OST48. Taken together, these data strongly support the proposal that KCP2 is a newly identified subunit of the N-glycosylation machinery present in a subset of eukaryotes.
Collapse
Affiliation(s)
- Peristera Roboti
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | | |
Collapse
|
50
|
Mohorko E, Glockshuber R, Aebi M. Oligosaccharyltransferase: the central enzyme of N-linked protein glycosylation. J Inherit Metab Dis 2011; 34:869-78. [PMID: 21614585 DOI: 10.1007/s10545-011-9337-1] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 04/01/2011] [Accepted: 04/07/2011] [Indexed: 01/07/2023]
Abstract
N-linked glycosylation is one of the most abundant modifications of proteins in eukaryotic organisms. In the central reaction of the pathway, oligosaccharyltransferase (OST), a multimeric complex located at the membrane of the endoplasmic reticulum, transfers a preassembled oligosaccharide to selected asparagine residues within the consensus sequence asparagine-X-serine/threonine. Due to the high substrate specificity of OST, alterations in the biosynthesis of the oligosaccharide substrate result in the hypoglycosylation of many different proteins and a multitude of symptoms observed in the family of congenital disorders of glycosylation (CDG) type I. This review covers our knowledge of human OST and describes enzyme composition. The Stt3 subunit of OST harbors the catalytic center of the enzyme, but the function of the other, highly conserved, subunits are less well defined. Some components seem to be involved in the recognition and utilization of glycosylation sites in specific glycoproteins. Indeed, mutations in the subunit paralogs N33/Tusc3 and IAP do not yield the pleiotropic phenotypes typical for CDG type I but specifically result in nonsyndromic mental retardation, suggesting that the oxidoreductase activity of these subunits is required for glycosylation of a subset of proteins essential for brain development.
Collapse
Affiliation(s)
- Elisabeth Mohorko
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, Schafmatt 20, CH, 8093, Zürich, Switzerland
| | | | | |
Collapse
|