1
|
Yin Y, He GJ, Hu S, Tse EHY, Cheung TH. Muscle stem cell niche dynamics during muscle homeostasis and regeneration. Curr Top Dev Biol 2024; 158:151-177. [PMID: 38670704 DOI: 10.1016/bs.ctdb.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The process of skeletal muscle regeneration involves a coordinated interplay of specific cellular and molecular interactions within the injury site. This review provides an overview of the cellular and molecular components in regenerating skeletal muscle, focusing on how these cells or molecules in the niche regulate muscle stem cell functions. Dysfunctions of muscle stem cell-to-niche cell communications during aging and disease will also be discussed. A better understanding of how niche cells coordinate with muscle stem cells for muscle repair will greatly aid the development of therapeutic strategies for treating muscle-related disorders.
Collapse
Affiliation(s)
- Yishu Yin
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China
| | - Gary J He
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China
| | - Shenyuan Hu
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China
| | - Erin H Y Tse
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, HKUST-Nan Fung Life Sciences Joint Laboratory, State Key Laboratory of Molecular Neuroscience, Molecular Neuroscience Center, The Hong Kong University of Science and Technology, Hong Kong, P.R. China; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, P.R. China; Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, Shenzhen-Hong Kong Institute of Brain Science, HKUST Shenzhen Research Institute, Shenzhen, P.R. China.
| |
Collapse
|
2
|
Hicks MR, Saleh KK, Clock B, Gibbs DE, Yang M, Younesi S, Gane L, Gutierrez-Garcia V, Xi H, Pyle AD. Regenerating human skeletal muscle forms an emerging niche in vivo to support PAX7 cells. Nat Cell Biol 2023; 25:1758-1773. [PMID: 37919520 PMCID: PMC10709143 DOI: 10.1038/s41556-023-01271-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 09/26/2023] [Indexed: 11/04/2023]
Abstract
Skeletal muscle stem and progenitor cells including those derived from human pluripotent stem cells (hPSCs) offer an avenue towards personalized therapies and readily fuse to form human-mouse myofibres in vivo. However, skeletal muscle progenitor cells (SMPCs) inefficiently colonize chimeric stem cell niches and instead associate with human myofibres resembling foetal niches. We hypothesized competition with mouse satellite cells (SCs) prevented SMPC engraftment into the SC niche and thus generated an SC ablation mouse compatible with human engraftment. Single-nucleus RNA sequencing of SC-ablated mice identified the absence of a transient myofibre subtype during regeneration expressing Actc1. Similarly, ACTC1+ human myofibres supporting PAX7+ SMPCs increased in SC-ablated mice, and after re-injury we found SMPCs could now repopulate into chimeric niches. To demonstrate ACTC1+ myofibres are essential to supporting PAX7 SMPCs, we generated caspase-inducible ACTC1 depletion human pluripotent stem cells, and upon SMPC engraftment we found a 90% reduction in ACTC1+ myofibres and a 100-fold decrease in PAX7 cell numbers compared with non-induced controls. We used spatial RNA sequencing to identify key factors driving emerging human niche formation between ACTC1+ myofibres and PAX7+ SMPCs in vivo. This revealed that transient regenerating human myofibres are essential for emerging niche formation in vivo to support PAX7 SMPCs.
Collapse
Affiliation(s)
- Michael R Hicks
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA.
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA.
- Physiology and Biophysics, University of California, Irvine, CA, USA.
| | - Kholoud K Saleh
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, CA, USA
| | - Ben Clock
- Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Devin E Gibbs
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Mandee Yang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Shahab Younesi
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Lily Gane
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | | | - Haibin Xi
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - April D Pyle
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA.
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Jonnson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
| |
Collapse
|
3
|
Ashraf M, Tipparaju SM, Kim JW, Xuan W. Chemokine/ITGA4 Interaction Directs iPSC-Derived Myogenic Progenitor Migration to Injury Sites in Aging Muscle for Regeneration. Cells 2023; 12:1837. [PMID: 37508502 PMCID: PMC10378040 DOI: 10.3390/cells12141837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The failure of muscle to repair after injury during aging may be a major contributor to muscle mass loss. We recently generated muscle progenitor cells (MPCs) from human-induced pluripotent stem-cell (iPSC) cell lines using small molecules, CHIR99021 and Givinostat (Givi-MPCs) sequentially. Here, we test whether the chemokines overexpressed in injured endothelial cells direct MPC migration to the site by binding to their receptor, ITGA4. ITGA4 was heavily expressed in Givi-MPCs. To study the effects on the mobilization of Givi-MPCs, ITGA4 was knocked down by an ITGA4 shRNA lentiviral vector. With and without ITGA4 knocked down, cell migration in vitro and cell mobilization in vivo using aged NOD scid gamma (NSG) mice and mdx/scid mice were analyzed. The migration of shITGA4-Givi-MPCs was significantly impaired, as shown in a wound-healing assay. The knockdown of ITGA4 impaired the migration of Givi-MPCs towards human aortic endothelial cells (HAECs), in which CX3CL1 and VCAM-1 were up-regulated by the treatment of TNF-α compared with scramble ones using a transwell system. MPCs expressing ITGA4 sensed chemokines secreted by endothelial cells at the injury site as a chemoattracting signal to migrate to the injured muscle. The mobilization of Givi-MPCs was mediated by the ligand-receptor interaction, which facilitated their engraftment for repairing the sarcopenic muscle with injury.
Collapse
|
4
|
Liu Y, Wang R, Ding S, Deng L, Zhang Y, Li J, Shi Z, Wu Z, Liang K, Yan X, Liu W, Du Y. Engineered meatballs via scalable skeletal muscle cell expansion and modular micro-tissue assembly using porous gelatin micro-carriers. Biomaterials 2022; 287:121615. [PMID: 35679644 DOI: 10.1016/j.biomaterials.2022.121615] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
Abstract
The emerging field of cultured meat faces several technical hurdles, including the scale-up production of quality muscle and adipose progenitor cells, and the differentiation and bioengineering of these cellular materials into large, meat-like tissue. Here, we present edible, 3D porous gelatin micro-carriers (PoGelat-MCs), as efficient cell expansion scaffolds, as well as modular tissue-engineering building blocks for lab-grown meat. PoGelat-MC culture in spinner flasks, not only facilitated the scalable expansion of porcine skeletal muscle satellite cells and murine myoblasts, but also triggered their spontaneous myogenesis, in the absence of myogenic reagents. Using 3D-printed mold and transglutaminase, we bio-assembled pork muscle micro-tissues into centimeter-scale meatballs, which exhibited similar mechanical property and higher protein content compared to conventional ground pork meatballs. PoGelat-MCs also supported the expansion and differentiation of 3T3L1 murine pre-adipocytes into mature adipose micro-tissues, which could be used as modular assembly unit for engineered fat-containing meat products. Together, our results highlight PoGelat-MCs, in combination with dynamic bioreactors, as a scalable culture system to produce large quantity of highly-viable muscle and fat micro-tissues, which could be further bio-assembled into ground meat analogues.
Collapse
Affiliation(s)
- Ye Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 10084, China
| | - Rui Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 10084, China
| | - Shijie Ding
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Liping Deng
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 10084, China
| | - Yuanyuan Zhang
- Beijing CytoNiche Biotechnology Co. Ltd, Beijing, 100195, China
| | - Junyang Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 10084, China
| | - Ziao Shi
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 10084, China
| | - Zhongyuan Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 10084, China
| | - Xiaojun Yan
- Beijing CytoNiche Biotechnology Co. Ltd, Beijing, 100195, China
| | - Wei Liu
- Beijing CytoNiche Biotechnology Co. Ltd, Beijing, 100195, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 10084, China.
| |
Collapse
|
5
|
You Z, Huang X, Xiang Y, Dai J, Jiang J, Xu J. Molecular feature of neutrophils in immune microenvironment of muscle atrophy. J Cell Mol Med 2022; 26:4658-4665. [PMID: 35899367 PMCID: PMC9443939 DOI: 10.1111/jcmm.17495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 12/16/2022] Open
Abstract
Homeostasis in skeletal muscle is sustained by the balance of functional and physical interactions between muscle and myofibre microenvironment. Various factors, such as ageing, disuse and denervation, tip the balance and induce skeletal muscle atrophy. Skeletal muscle atrophy, which involves complex physiological and biochemical changes, is accompanied by adverse outcomes and even increased mortality. Multiple studies have investigated the role of neutrophils in atrophied skeletal muscles; however, neutrophil intrusion in muscle is still a polemical knot. As technical obstacles have been overcome, people have gradually discovered new functions of neutrophils. The classical view of neutrophils is no longer applicable to their biological characteristics. To date, no clear association between the hidden injurious effect of neutrophil intrusion and muscle atrophy has been convincingly proven. Throughout this review, we have discussed the neutrophil activities that mediate muscle atrophy for distinct disease occurrences. Hopefully, this review will help both clinicians and researchers of skeletal muscle atrophy with relevant targets to further explore efficient medical interventions and treatments.
Collapse
Affiliation(s)
- Zongqi You
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Xinying Huang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Yaoxian Xiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Junxi Dai
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Junjian Jiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Jianguang Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Zofkie W, Southard SM, Braun T, Lepper C. Fibroblast growth factor 6 regulates sizing of the muscle stem cell pool. Stem Cell Reports 2021; 16:2913-2927. [PMID: 34739848 PMCID: PMC8693628 DOI: 10.1016/j.stemcr.2021.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/25/2022] Open
Abstract
Skeletal muscle stem cells, i.e., satellite cells (SCs), are the essential source of new myonuclei for skeletal muscle regeneration following injury or chronic degenerative myopathies. Both SC number and regenerative capacity diminish during aging. However, molecular regulators that govern sizing of the initial SC pool are unknown. We demonstrate that fibroblast growth factor 6 (FGF6) is critical for SC pool scaling. Mice lacking FGF6 have reduced SCs of early postnatal origin and impaired regeneration. By contrast, increasing FGF6 during the early postnatal period is sufficient for SC expansion. Together, these data support that FGF6 is necessary and sufficient to modulate SC numbers during a critical postnatal period to establish the quiescent adult muscle stem cell pool. Our work highlights postnatal development as a time window receptive for scaling a somatic stem cell population via growth factor signaling, which might be relevant for designing new biomedical strategies to enhance tissue regeneration.
Collapse
Affiliation(s)
- William Zofkie
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | | | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Christoph Lepper
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Taylor L, Wankell M, Saxena P, McFarlane C, Hebbard L. Cell adhesion an important determinant of myogenesis and satellite cell activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119170. [PMID: 34763027 DOI: 10.1016/j.bbamcr.2021.119170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Skeletal muscles represent a complex and highly organised tissue responsible for all voluntary body movements. Developed through an intricate and tightly controlled process known as myogenesis, muscles form early in development and are maintained throughout life. Due to the constant stresses that muscles are subjected to, skeletal muscles maintain a complex course of regeneration to both replace and repair damaged myofibers and to form new functional myofibers. This process, made possible by a pool of resident muscle stem cells, termed satellite cells, and controlled by an array of transcription factors, is additionally reliant on a diverse range of cell adhesion molecules and the numerous signaling cascades that they initiate. This article will review the literature surrounding adhesion molecules and their roles in skeletal muscle myogenesis and repair.
Collapse
Affiliation(s)
- Lauren Taylor
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia
| | - Miriam Wankell
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia
| | - Pankaj Saxena
- Department of Cardiothoracic Surgery, The Townsville University Hospital, Townsville, Queensland, Australia; College of Medicine, Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Craig McFarlane
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia.
| | - Lionel Hebbard
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Centre for Molecular Therapeutics, Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland, Australia; Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
8
|
Archacka K, Grabowska I, Mierzejewski B, Graffstein J, Górzyńska A, Krawczyk M, Różycka AM, Kalaszczyńska I, Muras G, Stremińska W, Jańczyk-Ilach K, Walczak P, Janowski M, Ciemerych MA, Brzoska E. Hypoxia preconditioned bone marrow-derived mesenchymal stromal/stem cells enhance myoblast fusion and skeletal muscle regeneration. Stem Cell Res Ther 2021; 12:448. [PMID: 34372911 PMCID: PMC8351116 DOI: 10.1186/s13287-021-02530-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
Background The skeletal muscle reconstruction occurs thanks to unipotent stem cells, i.e., satellite cells. The satellite cells remain quiescent and localized between myofiber sarcolemma and basal lamina. They are activated in response to muscle injury, proliferate, differentiate into myoblasts, and recreate myofibers. The stem and progenitor cells support skeletal muscle regeneration, which could be disturbed by extensive damage, sarcopenia, cachexia, or genetic diseases like dystrophy. Many lines of evidence showed that the level of oxygen regulates the course of cell proliferation and differentiation. Methods In the present study, we analyzed hypoxia impact on human and pig bone marrow-derived mesenchymal stromal cell (MSC) and mouse myoblast proliferation, differentiation, and fusion. Moreover, the influence of the transplantation of human bone marrow-derived MSCs cultured under hypoxic conditions on skeletal muscle regeneration was studied. Results We showed that bone marrow-derived MSCs increased VEGF expression and improved myogenesis under hypoxic conditions in vitro. Transplantation of hypoxia preconditioned bone marrow-derived MSCs into injured muscles resulted in the improved cell engraftment and formation of new vessels. Conclusions We suggested that SDF-1 and VEGF secreted by hypoxia preconditioned bone marrow-derived MSCs played an essential role in cell engraftment and angiogenesis. Importantly, hypoxia preconditioned bone marrow-derived MSCs more efficiently engrafted injured muscles; however, they did not undergo myogenic differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02530-3.
Collapse
Affiliation(s)
- Karolina Archacka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Bartosz Mierzejewski
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Joanna Graffstein
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Alicja Górzyńska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Marta Krawczyk
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Anna M Różycka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Ilona Kalaszczyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004, Warsaw, Poland.,Laboratory for Cell Research and Application, Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Gabriela Muras
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Władysława Stremińska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Katarzyna Jańczyk-Ilach
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Piotr Walczak
- Department of Pathophysiology, Faculty of Medical Sciences, University of Warmia and Mazury, Warszawska 30 St, 10-082, Olsztyn, Poland.,Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mirosław Janowski
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, 21201, USA.,NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 St, 02-106, Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland.
| |
Collapse
|
9
|
Fukada SI, Nakamura A. Exercise/Resistance Training and Muscle Stem Cells. Endocrinol Metab (Seoul) 2021; 36:737-744. [PMID: 34372625 PMCID: PMC8419599 DOI: 10.3803/enm.2021.401] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
Skeletal muscle has attracted attention as endocrine organ, because exercise-dependent cytokines called myokines/exerkines are released from skeletal muscle and are involved in systemic functions. While, local mechanical loading to skeletal muscle by exercise or resistance training alters myofiber type and size and myonuclear number. Skeletal muscle-resident stem cells, known as muscle satellite cells (MuSCs), are responsible for the increased number of myonuclei. Under steady conditions, MuSCs are maintained in a mitotically quiescent state but exit from that state and start to proliferate in response to high physical activity. Alterations in MuSC behavior occur when myofibers are damaged, but the lethal damage to myofibers does not seem to evoke mechanical loading-dependent MuSC activation and proliferation. Given that MuSCs proliferate without damage, it is unclear how the different behaviors of MuSCs are controlled by different physical activities. Recent studies demonstrated that myonuclear number reflects the size of myofibers; hence, it is crucial to know the properties of MuSCs and the mechanism of myonuclear accretion by MuSCs. In addition, the elucidation of mechanical load-dependent changes in muscle resident cells, including MuSCs, will be necessary for the discovery of new myokines/exerkines and understating skeletal muscle diseases.
Collapse
Affiliation(s)
- So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Ayasa Nakamura
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| |
Collapse
|
10
|
do Carmo Costa A, Copola AGL, Carvalho E Souza C, Nogueira JM, Silva GAB, Jorge EC. RGMa can induce skeletal muscle cell hyperplasia via association with neogenin signalling pathway. In Vitro Cell Dev Biol Anim 2021; 57:415-427. [PMID: 33748906 DOI: 10.1007/s11626-021-00555-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/15/2021] [Indexed: 11/29/2022]
Abstract
Although originally discovered inducing important biological functions in the nervous system, repulsive guidance molecule a (RGMa) has now been identified as a player in many other processes and diseases, including in myogenesis. RGMa is known to be expressed in skeletal muscle cells, from somites to the adult. Functional in vitro studies have revealed that RGMa overexpression could promote skeletal muscle cell hypertrophy and hyperplasia, as higher efficiency in cell fusion was observed. Here, we extend the potential role of RGMa during C2C12 cell differentiation in vitro. Our results showed that RGMa administrated as a recombinant protein during late stages of C2C12 myogenic differentiation could induce myoblast cell fusion and the downregulation of different myogenic markers, while its administration at early stages induced the expression of myogenic markers with no detectable morphological effects. We also found that RGMa effects on skeletal muscle hyperplasia are performed via neogenin receptor, possibly as part of a complex with other proteins. Additionally, we observed that RGMa-neogenin is not playing a role as an inhibitor of the BMP signalling in skeletal muscle cells. This work contributes to placing RGMa as a component of the mechanisms that determine skeletal cell fusion via neogenin receptor.
Collapse
Affiliation(s)
- Alinne do Carmo Costa
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brazil
| | - Aline Gonçalves Lio Copola
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brazil
| | - Clara Carvalho E Souza
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brazil
| | - Júlia Meireles Nogueira
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brazil
| | - Gerluza Aparecida Borges Silva
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brazil
| | - Erika Cristina Jorge
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Av Antonio Carlos, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31.270-901, Brazil.
| |
Collapse
|
11
|
Hamada Y, Tanaka S, Fujishita Y, Cho JS, Usuki T, Yokoyama Y, Wu X, Mori S, Yamamoto H, Kogo M. The synthetic peptide SVVYGLR promotes myogenic cell motility via the TGFβ1/Smad signaling pathway and facilitates skeletal myogenic differentiation in vitro. Dent Mater J 2021; 40:957-963. [PMID: 33716279 DOI: 10.4012/dmj.2020-354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the present study, we investigated the possible involvement of the TGF-β/Smad signaling pathway in the osteopontin-derived SVVYGLR (SV) peptide-mediated migratory activities of myogenic cells and evaluated the facilitative effects of the SV peptide on the differentiation of myogenic cells in vitro. The SV peptide-induced migration in both human-derived satellite cells and myoblasts was substantially suppressed by the TGF-β1 receptor inhibitor SB431542 or SB505124. Besides, the expression level of the Smad3 phosphorylation was further enhanced by the addition of the SV peptide in comparison with control groups. Furthermore, an increase in the expression of myogenin-positive nuclei and a higher number of nascent myotubes with myosin heavy chain expression was confirmed in cultured myoblasts supplemented with the SV peptide. These results suggest that the involvement of the TGF-β/Smad signaling pathway in the SV peptide-mediated migration and the facilitative effect of the SV peptide on the differentiation of myogenic cells into myotubes.
Collapse
Affiliation(s)
- Yoshinosuke Hamada
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University.,Department of Health Economics and Management, Graduate School of Medicine, Osaka University.,Department of Pediatric Dentistry, Osaka Dental University
| | - Susumu Tanaka
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Yohei Fujishita
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Jung-Soo Cho
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Takasuke Usuki
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University
| | - Xin Wu
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University
| | - Seiji Mori
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University.,Department of Medical Technology, Faculty of Health Sciences, Morinomiya University of Medical Sciences
| | - Hirofumi Yamamoto
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University
| | - Mikihiko Kogo
- The 1st Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University
| |
Collapse
|
12
|
Rodríguez-Pérez F, Manford AG, Pogson A, Ingersoll AJ, Martínez-González B, Rape M. Ubiquitin-dependent remodeling of the actin cytoskeleton drives cell fusion. Dev Cell 2021; 56:588-601.e9. [PMID: 33609460 DOI: 10.1016/j.devcel.2021.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/14/2020] [Accepted: 01/24/2021] [Indexed: 12/11/2022]
Abstract
Cell-cell fusion is a frequent and essential event during development, and its dysregulation causes diseases ranging from infertility to muscle weakness. Fusing cells need to repeatedly remodel their plasma membrane through orchestrated formation and disassembly of actin filaments, but how the dynamic reorganization of the cortical actin cytoskeleton is controlled is still poorly understood. Here, we identified a ubiquitin-dependent toggle switch that establishes reversible actin bundling during mammalian cell fusion. We found that EPS8-IRSp53 complexes stabilize cortical actin bundles at sites of cell contact to promote close membrane alignment. EPS8 monoubiquitylation by CUL3KCTD10 displaces EPS8-IRSp53 from membranes and counteracts actin bundling, a dual activity that restricts actin bundling to allow paired cells to progress with fusion. We conclude that cytoskeletal rearrangements during development are precisely controlled by ubiquitylation, raising the possibility of modulating the efficiency of cell-cell fusion for therapeutic benefit.
Collapse
Affiliation(s)
- Fernando Rodríguez-Pérez
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Andrew G Manford
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Angela Pogson
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Andrew J Ingersoll
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Brenda Martínez-González
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Michael Rape
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
13
|
Canitz J, Kirschbaum F, Tiedemann R. Transcriptome-wide single nucleotide polymorphisms related to electric organ discharge differentiation among African weakly electric fish species. PLoS One 2020; 15:e0240812. [PMID: 33108393 PMCID: PMC7591079 DOI: 10.1371/journal.pone.0240812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
African weakly electric fish of the mormyrid genus Campylomormyrus generate pulse-type electric organ discharges (EODs) for orientation and communication. Their pulse durations are species-specific and elongated EODs are a derived trait. So far, differential gene expression among tissue-specific transcriptomes across species with different pulses and point mutations in single ion channel genes indicate a relation of pulse duration and electrocyte geometry/excitability. However, a comprehensive assessment of expressed Single Nucleotide Polymorphisms (SNPs) throughout the entire transcriptome of African weakly electric fish, with the potential to identify further genes influencing EOD duration, is still lacking. This is of particular value, as discharge duration is likely based on multiple cellular mechanisms and various genes. Here we provide the first transcriptome-wide SNP analysis of African weakly electric fish species (genus Campylomormyrus) differing by EOD duration to identify candidate genes and cellular mechanisms potentially involved in the determination of an elongated discharge of C. tshokwe. Non-synonymous substitutions specific to C. tshokwe were found in 27 candidate genes with inferred positive selection among Campylomormyrus species. These candidate genes had mainly functions linked to transcriptional regulation, cell proliferation and cell differentiation. Further, by comparing gene annotations between C. compressirostris (ancestral short EOD) and C. tshokwe (derived elongated EOD), we identified 27 GO terms and 2 KEGG pathway categories for which C. tshokwe significantly more frequently exhibited a species-specific expressed substitution than C. compressirostris. The results indicate that transcriptional regulation as well cell proliferation and differentiation take part in the determination of elongated pulse durations in C. tshokwe. Those cellular processes are pivotal for tissue morphogenesis and might determine the shape of electric organs supporting the observed correlation between electrocyte geometry/tissue structure and discharge duration. The inferred expressed SNPs and their functional implications are a valuable resource for future investigations on EOD durations.
Collapse
Affiliation(s)
- Julia Canitz
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Frank Kirschbaum
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Department of Crop and Animal Science, Faculty of Life Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ralph Tiedemann
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
14
|
Wurmser M, Chaverot N, Madani R, Sakai H, Negroni E, Demignon J, Saint-Pierre B, Mouly V, Amthor H, Tapscott S, Birchmeier C, Tajbakhsh S, Le Grand F, Sotiropoulos A, Maire P. SIX1 and SIX4 homeoproteins regulate PAX7+ progenitor cell properties during fetal epaxial myogenesis. Development 2020; 147:dev.185975. [PMID: 32591430 DOI: 10.1242/dev.185975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/18/2020] [Indexed: 01/09/2023]
Abstract
Pax7 expression marks stem cells in developing skeletal muscles and adult satellite cells during homeostasis and muscle regeneration. The genetic determinants that control the entrance into the myogenic program and the appearance of PAX7+ cells during embryogenesis are poorly understood. SIX homeoproteins are encoded by the sine oculis-related homeobox Six1-Six6 genes in vertebrates. Six1, Six2, Six4 and Six5 are expressed in the muscle lineage. Here, we tested the hypothesis that Six1 and Six4 could participate in the genesis of myogenic stem cells. We show that fewer PAX7+ cells occupy a satellite cell position between the myofiber and its associated basal lamina in Six1 and Six4 knockout mice (s1s4KO) at E18. However, PAX7+ cells are detected in remaining muscle masses present in the epaxial region of the double mutant embryos and are able to divide and contribute to muscle growth. To further characterize the properties of s1s4KO PAX7+ cells, we analyzed their transcriptome and tested their properties after transplantation in adult regenerating tibialis anterior muscle. Mutant stem cells contribute to hypotrophic myofibers that are not innervated but retain the ability to self-renew.
Collapse
Affiliation(s)
- Maud Wurmser
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Nathalie Chaverot
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Rouba Madani
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Hiroshi Sakai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime, 791-0295, Japan.,Stem Cells and Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, 75015, Paris, France.,CNRS UMR 3738, Institut Pasteur, 75015 Paris, France
| | - Elisa Negroni
- Sorbonne Université, Institut de Myologie, INSERM, 75013 Paris, France
| | - Josiane Demignon
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Benjamin Saint-Pierre
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Vincent Mouly
- Sorbonne Université, Institut de Myologie, INSERM, 75013 Paris, France
| | - Helge Amthor
- INSERM U1179, LIA BAHN CSM, Université de Versailles Saint-Quentin-en-Yvelines, Montigny-le-Bretonneux, France
| | | | | | - Shahragim Tajbakhsh
- Stem Cells and Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, 75015, Paris, France.,CNRS UMR 3738, Institut Pasteur, 75015 Paris, France
| | - Fabien Le Grand
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France.,Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS, INSERM, 69008 Lyon, France
| | - Athanassia Sotiropoulos
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| | - Pascal Maire
- Université de Paris, Institut Cochin, INSERM, CNRS, 24 rue du Fg St Jacques, F-75014 Paris, France
| |
Collapse
|
15
|
Chen B, You W, Wang Y, Shan T. The regulatory role of Myomaker and Myomixer-Myomerger-Minion in muscle development and regeneration. Cell Mol Life Sci 2020; 77:1551-1569. [PMID: 31642939 PMCID: PMC11105057 DOI: 10.1007/s00018-019-03341-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
Skeletal muscle plays essential roles in motor function, energy, and glucose metabolism. Skeletal muscle formation occurs through a process called myogenesis, in which a crucial step is the fusion of mononucleated myoblasts to form multinucleated myofibers. The myoblast/myocyte fusion is triggered and coordinated in a muscle-specific way that is essential for muscle development and post-natal muscle regeneration. Many molecules and proteins have been found and demonstrated to have the capacity to regulate the fusion of myoblast/myocytes. Interestingly, two newly discovered muscle-specific membrane proteins, Myomaker and Myomixer (also called Myomerger and Minion), have been identified as fusogenic regulators in vertebrates. Both Myomaker and Myomixer-Myomerger-Minion have the capacity to directly control the myogenic fusion process. Here, we review and discuss the latest studies related to these two proteins, including the discovery, structure, expression pattern, functions, and regulation of Myomaker and Myomixer-Myomerger-Minion. We also emphasize and discuss the interaction between Myomaker and Myomixer-Myomerger-Minion, as well as their cooperative regulatory roles in cell-cell fusion. Moreover, we highlight the areas for exploration of Myomaker and Myomixer-Myomerger-Minion in future studies and consider their potential application to control cell fusion for cell-therapy purposes.
Collapse
Affiliation(s)
- Bide Chen
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Wenjing You
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China.
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China.
| |
Collapse
|
16
|
Mechanisms regulating myoblast fusion: A multilevel interplay. Semin Cell Dev Biol 2020; 104:81-92. [PMID: 32063453 DOI: 10.1016/j.semcdb.2020.02.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 02/07/2023]
Abstract
Myoblast fusion into myotubes is one of the crucial steps of skeletal muscle development (myogenesis). The fusion is preceded by specification of a myogenic lineage (mesodermal progenitors) differentiating into myoblasts and is followed by myofiber-type specification and neuromuscular junction formation. Similarly to other processes of myogenesis, the fusion requires a very precise spatial and temporal regulation occuring both during embryonic development as well as regeneration and repair of the muscle. A plethora of genes and their products is involved in regulation of myoblast fusion and a precise multilevel interplay between them is crucial for myogenic cells to fuse. In this review, we describe both cellular events taking place during myoblast fusion (migration, adhesion, elongation, cell-cell recognition, alignment, and fusion of myoblast membranes enabling formation of myotubes) as well as recent findings on mechanisms regulating this process. Also, we present muscle disorders in humans that have been associated with defects in genes involved in regulation of myoblast fusion.
Collapse
|
17
|
Hou X, Pu L, Wang L, Liu X, Gao H, Yan H, Zhang J, Zhang Y, Yue J, Zhang L, Wang L. Transcriptome Analysis of Skeletal Muscle in Pigs with Divergent Residual Feed Intake Phenotypes. DNA Cell Biol 2020; 39:404-416. [PMID: 32004088 DOI: 10.1089/dna.2019.4878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Residual feed intake (RFI) is defined as the difference between the observed and expected feed intake for maintenance and growth requirements. In this study, the expression profiles of mRNAs and long noncoding RNAs (lncRNAs) from skeletal muscle in Duroc pigs with divergent RFI phenotypes were investigated by Illumina sequencing. Finally, a total of 2195 annotated lncRNAs and 1976 novel lncRNAs were obtained. About 210 mRNAs and 43 lncRNAs were differentially expressed among high and low RFI pigs. The differentially expressed mRNAs were potentially involved in the biological processes of lipid metabolism, extracellular matrix organization, cell proliferation, and cell adhesion. The lipolysis in skeletal muscle was increased in high RFI pigs, suggesting that high RFI pigs might need more energy than low RFI pigs. However, skeletal muscle development was increased in low RFI pigs. These results suggested that low RFI pigs might be more efficient in energy utilization during skeletal muscle growth. The function of lncRNA was also analyzed by target prediction. Nine lncRNAs might be candidate lncRNAs for the determination of RFI phenotype, by the regulation of the biological processes of lipid metabolism, cell proliferation, and cell adhesion. This study should facilitate a further understanding of the molecular mechanism for the determination of RFI phenotype in pigs.
Collapse
Affiliation(s)
- Xinhua Hou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Pu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Ligang Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongmei Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua Yan
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinshan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuebo Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingwei Yue
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Longchao Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lixian Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
18
|
Mierzejewski B, Archacka K, Grabowska I, Florkowska A, Ciemerych MA, Brzoska E. Human and mouse skeletal muscle stem and progenitor cells in health and disease. Semin Cell Dev Biol 2020; 104:93-104. [PMID: 32005567 DOI: 10.1016/j.semcdb.2020.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/25/2022]
Abstract
The proper functioning of tissues and organs depends on their ability to self-renew and repair. Some of the tissues, like epithelia, renew almost constantly while in the others this process is induced by injury or diseases. The stem or progenitor cells responsible for tissue homeostasis have been identified in many organs. Some of them, such as hematopoietic or intestinal epithelium stem cells, are multipotent and can differentiate into various cell types. Others are unipotent. The skeletal muscle tissue does not self-renew spontaneously, however, it presents unique ability to regenerate in response to the injury or disease. Its repair almost exclusively relies on unipotent satellite cells. However, multiple lines of evidence document that some progenitor cells present in the muscle can be supportive for skeletal muscle regeneration. Here, we summarize the current knowledge on the complicated landscape of stem and progenitor cells that exist in skeletal muscle and support its regeneration. We compare the cells from two model organisms, i.e., mouse and human, documenting their similarities and differences and indicating methods to test their ability to undergo myogenic differentiation.
Collapse
Affiliation(s)
- Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Karolina Archacka
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Anita Florkowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1St, 02-096 Warsaw, Poland.
| |
Collapse
|
19
|
Gene expression profiling of skeletal myogenesis in human embryonic stem cells reveals a potential cascade of transcription factors regulating stages of myogenesis, including quiescent/activated satellite cell-like gene expression. PLoS One 2019; 14:e0222946. [PMID: 31560727 PMCID: PMC6764674 DOI: 10.1371/journal.pone.0222946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/10/2019] [Indexed: 01/05/2023] Open
Abstract
Human embryonic stem cell (hESC)-derived skeletal muscle progenitors (SMP)—defined as PAX7-expressing cells with myogenic potential—can provide an abundant source of donor material for muscle stem cell therapy. As in vitro myogenesis is decoupled from in vivo timing and 3D-embryo structure, it is important to characterize what stage or type of muscle is modeled in culture. Here, gene expression profiling is analyzed in hESCs over a 50 day skeletal myogenesis protocol and compared to datasets of other hESC-derived skeletal muscle and adult murine satellite cells. Furthermore, day 2 cultures differentiated with high or lower concentrations of CHIR99021, a GSK3A/GSK3B inhibitor, were contrasted. Expression profiling of the 50 day time course identified successively expressed gene subsets involved in mesoderm/paraxial mesoderm induction, somitogenesis, and skeletal muscle commitment/formation which could be regulated by a putative cascade of transcription factors. Initiating differentiation with higher CHIR99021 concentrations significantly increased expression of MSGN1 and TGFB-superfamily genes, notably NODAL, resulting in enhanced paraxial mesoderm and reduced ectoderm/neuronal gene expression. Comparison to adult satellite cells revealed that genes expressed in 50-day cultures correlated better with those expressed by quiescent or early activated satellite cells, which have the greatest therapeutic potential. Day 50 cultures were similar to other hESC-derived skeletal muscle and both expressed known and novel SMP surface proteins. Overall, a putative cascade of transcription factors has been identified which regulates four stages of myogenesis. Subsets of these factors were upregulated by high CHIR99021 or their binding sites were significantly over-represented during SMP activation, ranging from quiescent to late-activated stages. This analysis serves as a resource to further study the progression of in vitro skeletal myogenesis and could be mined to identify novel markers of pluripotent-derived SMPs or regulatory transcription/growth factors. Finally, 50-day hESC-derived SMPs appear similar to quiescent/early activated satellite cells, suggesting they possess therapeutic potential.
Collapse
|
20
|
Interleukin 4 Moderately Affects Competence of Pluripotent Stem Cells for Myogenic Conversion. Int J Mol Sci 2019; 20:ijms20163932. [PMID: 31412558 PMCID: PMC6720909 DOI: 10.3390/ijms20163932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022] Open
Abstract
Pluripotent stem cells convert into skeletal muscle tissue during teratoma formation or chimeric animal development. Thus, they are characterized by naive myogenic potential. Numerous attempts have been made to develop protocols enabling efficient and safe conversion of pluripotent stem cells into functional myogenic cells in vitro. Despite significant progress in the field, generation of myogenic cells from pluripotent stem cells is still challenging—i.e., currently available methods require genetic modifications, animal-derived reagents, or are long lasting—and, therefore, should be further improved. In the current study, we investigated the influence of interleukin 4, a factor regulating inter alia migration and fusion of myogenic cells and necessary for proper skeletal muscle development and maintenance, on pluripotent stem cells. We assessed the impact of interleukin 4 on proliferation, selected gene expression, and ability to fuse in case of both undifferentiated and differentiating mouse embryonic stem cells. Our results revealed that interleukin 4 slightly improves fusion of pluripotent stem cells with myoblasts leading to the formation of hybrid myotubes. Moreover, it increases the level of early myogenic genes such as Mesogenin1, Pax3, and Pax7 in differentiating embryonic stem cells. Thus, interleukin 4 moderately enhances competence of mouse pluripotent stem cells for myogenic conversion.
Collapse
|
21
|
Abreu P. Bioenergetics mechanisms regulating muscle stem cell self-renewal commitment and function. Biomed Pharmacother 2018; 103:463-472. [DOI: 10.1016/j.biopha.2018.04.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 11/25/2022] Open
|
22
|
Pulkka OP, Mpindi JP, Tynninen O, Nilsson B, Kallioniemi O, Sihto H, Joensuu H. Clinical relevance of integrin alpha 4 in gastrointestinal stromal tumours. J Cell Mol Med 2018; 22:2220-2230. [PMID: 29377440 PMCID: PMC5867167 DOI: 10.1111/jcmm.13502] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/15/2017] [Indexed: 12/20/2022] Open
Abstract
The molecular mechanisms for the dissemination and metastasis of gastrointestinal stromal tumours (GIST) are incompletely understood. The purpose of the study was to investigate the clinical relevance of integrin alpha 4 (ITGA4) expression in GIST. GIST transcriptomes were first compared with transcriptomes of other types of cancer and histologically normal gastrointestinal tract tissue in the MediSapiens in silico database. ITGA4 was identified as an unusually highly expressed gene in GIST. Therefore, the effects of ITGA4 knock‐down and selective integrin alpha 4 beta 1 (VLA‐4) inhibitors on tumour cell proliferation and invasion were investigated in three GIST cell lines. In addition, the prognostic role of ITGA4 expression in cancer cells was investigated in a series of 147 GIST patients with immunohistochemistry. Inhibition of ITGA4‐related signalling decreased GIST cell invasion in all investigated GIST cell lines. ITGA4 protein was expressed in 62 (42.2%) of the 147 GISTs examined, and expression was significantly associated with distant metastases during the course of the disease and several adverse prognostic features. Patients whose GIST expressed strongly ITGA4 had unfavourable GIST‐specific survival and overall survival compared to patients with low or no ITGA4 expression. Taken together, ITGA4 is an important integrin in the molecular pathogenesis of GIST and may influence their clinical behaviour.
Collapse
Affiliation(s)
- Olli-Pekka Pulkka
- Laboratory of Molecular Oncology, Translational Cancer Biology Program, Department of Oncology, University of Helsinki, Helsinki, Finland
| | - John-Patrick Mpindi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Olli Tynninen
- Department of Pathology, University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | | | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Science for Life Laboratory, Department of Oncology & Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Harri Sihto
- Laboratory of Molecular Oncology, Translational Cancer Biology Program, Department of Oncology, University of Helsinki, Helsinki, Finland
| | - Heikki Joensuu
- Laboratory of Molecular Oncology, Translational Cancer Biology Program, Department of Oncology, University of Helsinki, Helsinki, Finland.,Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
23
|
Deng S, Azevedo M, Baylies M. Acting on identity: Myoblast fusion and the formation of the syncytial muscle fiber. Semin Cell Dev Biol 2017; 72:45-55. [PMID: 29101004 DOI: 10.1016/j.semcdb.2017.10.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 12/25/2022]
Abstract
The study of Drosophila muscle development dates back to the middle of the last century. Since that time, Drosophila has proved to be an ideal system for studying muscle development, differentiation, function, and disease. As in humans, Drosophila muscle forms via a series of conserved steps, starting with muscle specification, myoblast fusion, attachment to tendon cells, interactions with motorneurons, and sarcomere and myofibril formation. The genes and mechanisms required for these processes share striking similarities to those found in humans. The highly tractable genetic system and imaging approaches available in Drosophila allow for an efficient interrogation of muscle biology and for application of what we learn to other systems. In this article, we review our current understanding of muscle development in Drosophila, with a focus on myoblast fusion, the process responsible for the generation of syncytial muscle cells. We also compare and contrast those genes required for fusion in Drosophila and vertebrates.
Collapse
Affiliation(s)
- Su Deng
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY 10065, United States
| | - Mafalda Azevedo
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY 10065, United States; Graduate Program in Basic and Applied Biology (GABBA), Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Mary Baylies
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY 10065, United States.
| |
Collapse
|
24
|
Abstract
Skeletal muscle is the largest tissue in the body and loss of its function or its regenerative properties results in debilitating musculoskeletal disorders. Understanding the mechanisms that drive skeletal muscle formation will not only help to unravel the molecular basis of skeletal muscle diseases, but also provide a roadmap for recapitulating skeletal myogenesis in vitro from pluripotent stem cells (PSCs). PSCs have become an important tool for probing developmental questions, while differentiated cell types allow the development of novel therapeutic strategies. In this Review, we provide a comprehensive overview of skeletal myogenesis from the earliest premyogenic progenitor stage to terminally differentiated myofibers, and discuss how this knowledge has been applied to differentiate PSCs into muscle fibers and their progenitors in vitro.
Collapse
Affiliation(s)
- Jérome Chal
- Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Olivier Pourquié
- Department of Pathology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, Boston, MA 02115, USA .,Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Harvard Stem Cell Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
25
|
Choo HJ, Canner JP, Vest KE, Thompson Z, Pavlath GK. A tale of two niches: differential functions for VCAM-1 in satellite cells under basal and injured conditions. Am J Physiol Cell Physiol 2017; 313:C392-C404. [PMID: 28701357 DOI: 10.1152/ajpcell.00119.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 11/22/2022]
Abstract
Cell-cell adhesion molecules play key roles in maintaining quiescence or promoting activation of various stem cells in their niche. Muscle stem cells called satellite cells (SC) are critical for skeletal muscle regeneration after injury, but little is known about the role of adhesion molecules in regulating the behavior of these stem cells. Vascular cell adhesion molecule-1 (VCAM-1) is a cell-cell adhesion protein expressed on quiescent and activated SC whose function is unknown in this context. We deleted Vcam1 from SC using an inducible Cre recombinase in young mice. In the injured niche, Vcam1-/- SC underwent premature lineage progression to a more differentiated state as well as apoptosis leading to a transient delay in myofiber growth during regeneration. Apoptosis was also increased in Vcam1-/- SC in vitro concomitant with decreased levels of phosphorylated Akt, a prosurvival signal activated by VCAM-1 signaling in other cell types. During muscle regeneration, we observed an influx of immune cells expressing α4 integrin, a component of the major, high-affinity VCAM-1 ligand, α4β1 integrin. Furthermore, α4 integrin mRNA and protein were induced in SC 2 days after injury. These results suggest that SC interact with other SC as well as immune cells through α4β1 integrin in the injured niche to promote expansion of SC. In the uninjured niche, multiple cell types also expressed α4 integrin. However, only basal fusion of Vcam1-/- SC with myofibers was decreased, contributing to decreased myofiber growth. These studies define differential roles for VCAM-1 in SC depending on the state of their niche.
Collapse
Affiliation(s)
- Hyo-Jung Choo
- Department of Pharmacology, Emory University, Atlanta, Georgia; and.,Department of Cell Biology, Emory University, Atlanta, Georgia
| | - James P Canner
- Department of Pharmacology, Emory University, Atlanta, Georgia; and
| | - Katherine E Vest
- Department of Pharmacology, Emory University, Atlanta, Georgia; and
| | - Zachary Thompson
- Department of Pharmacology, Emory University, Atlanta, Georgia; and
| | - Grace K Pavlath
- Department of Pharmacology, Emory University, Atlanta, Georgia; and
| |
Collapse
|
26
|
Pizza FX, Martin RA, Springer EM, Leffler MS, Woelmer BR, Recker IJ, Leaman DW. Intercellular adhesion molecule-1 augments myoblast adhesion and fusion through homophilic trans-interactions. Sci Rep 2017; 7:5094. [PMID: 28698658 PMCID: PMC5506053 DOI: 10.1038/s41598-017-05283-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/25/2017] [Indexed: 01/01/2023] Open
Abstract
The overall objective of the study was to identify mechanisms through which intercellular adhesion molecule-1 (ICAM-1) augments the adhesive and fusogenic properties of myogenic cells. Hypotheses were tested using cultured myoblasts and fibroblasts, which do not constitutively express ICAM-1, and myoblasts and fibroblasts forced to express full length ICAM-1 or a truncated form lacking the cytoplasmic domain of ICAM-1. ICAM-1 mediated myoblast adhesion and fusion were quantified using novel assays and cell mixing experiments. We report that ICAM-1 augments myoblast adhesion to myoblasts and myotubes through homophilic trans-interactions. Such adhesive interactions enhanced levels of active Rac in adherent and fusing myoblasts, as well as triggered lamellipodia, spreading, and fusion of myoblasts through the signaling function of the cytoplasmic domain of ICAM-1. Rac inhibition negated ICAM-1 mediated lamellipodia, spreading, and fusion of myoblasts. The fusogenic property of ICAM-1-ICAM-1 interactions was restricted to myogenic cells, as forced expression of ICAM-1 by fibroblasts did not augment their fusion to ICAM-1+ myoblasts/myotubes. We conclude that ICAM-1 augments myoblast adhesion and fusion through its ability to self-associate and initiate Rac-mediated remodeling of the actin cytoskeleton.
Collapse
Affiliation(s)
- Francis X Pizza
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA.
| | - Ryan A Martin
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA
| | - Evan M Springer
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA
| | - Maxwell S Leffler
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA
| | - Bryce R Woelmer
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA
| | - Isaac J Recker
- School of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA
| | - Douglas W Leaman
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, USA.,Wright State University, 4035 Colonel Glenn Hwy., Suite 300, Beavercreek, OH, 45431, USA
| |
Collapse
|
27
|
Molecular and functional heterogeneity of early postnatal porcine satellite cell populations is associated with bioenergetic profile. Sci Rep 2017; 7:45052. [PMID: 28344332 PMCID: PMC5366807 DOI: 10.1038/srep45052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/20/2017] [Indexed: 12/19/2022] Open
Abstract
During postnatal development, hyperplastic and hypertrophic processes of skeletal muscle growth depend on the activation, proliferation, differentiation, and fusion of satellite cells (SC). Therefore, molecular and functional SC heterogeneity is an important component of muscle plasticity and will greatly affect long-term growth performance and muscle health. However, its regulation by cell intrinsic and extrinsic factors is far from clear. In particular, there is only minor information on the early postnatal period which is critical for muscle maturation and the establishment of adult SC pools. Here, we separated two SC subpopulations (P40/50, P50/70) from muscle of 4-day-old piglets. Our results characterize P40/50 as homogeneous population of committed (high expression of Myf5), fast-proliferating muscle progenitors. P50/70 constituted a slow-proliferating phenotype and contains high numbers of differentiated SC progeny. During culture, P50/70 is transformed to a population with lower differentiation potential that contains 40% Pax7-positive cells. A reversible state of low mitochondrial activity that results from active down-regulation of ATP-synthase is associated with the transition of some of the P50/70 cells to this more primitive fate typical for a reserve cell population. We assume that P40/50 and P50/70 subpopulations contribute unequally in the processes of myofiber growth and maintenance of the SC pool.
Collapse
|
28
|
S Said R, G Mustafa A, A Asfour H, I Shaqoura E. Myogenic Satellite Cells: Biological Milieu and Possible Clinical Applications. Pak J Biol Sci 2017; 20:1-11. [PMID: 29023009 DOI: 10.3923/pjbs.2017.1.11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Adult skeletal muscle is a post-mitotic terminally differentiated tissue that possesses an immense potential for regeneration after injury. This regeneration can be achieved by adult stem cells named satellite cells that inhabit the muscular tissue. These cells were first identified in 1961 and were described as being wedged between the plasma membrane of the muscle fiber and the surrounding basement membrane. Since their discovery, many researchers investigated their embryological origin and the exact role they play in muscle regeneration and repair. Under normal conditions, satellite cells are retained in a quiescent state and when required, these cells are activated to proliferate and differentiate to repair pre-existing muscle fibers or to a lesser extent fuse with each other to form new myofibers. During skeletal muscle regeneration, satellite cell actions are regulated through a cascade of complex signaling pathways that are influenced by multiple extrinsic factors within the satellite cell micro-environment. Here, the basic concepts were studied about satellite cells, their development, function, distribution and the different cellular and molecular mechanisms that regulate these cells. The recent findings about some of their clinical applications and potential therapeutic use were also discussed.
Collapse
Affiliation(s)
- Raed S Said
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, 22110 Irbid, Jorda
| | - Ayman G Mustafa
- Department of Anatomy, Faculty of Medicine, Jordan University of Science and Technology, 22110 Irbid, Jorda
| | - Hasan A Asfour
- Department of Anatomy, Faculty of Medicine, Jordan Un iversity of Science and Technology, 22110 Irbid, Jorda
| | - Emad I Shaqoura
- Department of Anatomy, Faculty of Medicine, Jordan Un iversity of Science and Technology, 22110 Irbid, Jorda
| |
Collapse
|
29
|
Abstract
Primary myoblasts can be isolated from mouse muscle cell extracts and cultured in vitro. Muscle cells are usually dissociated manually by mincing with razor blades or scissors in a collagenase/dispase solution. Primary myoblasts are then gradually enriched by pre-plating on collagen-coated plates, based on the observation that mouse fibroblasts attach quickly to collagen-coated plates, and are less adherent. Here, we describe an automated muscle dissociation protocol. We also propose an alternative to pre-plating using magnetic bead separation of primary myoblasts, which improve myoblast purity by minimizing fibroblast contamination.
Collapse
Affiliation(s)
- Marie Claude Sincennes
- Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, 501 Smyth, Box 511, Ottawa, ON, Canada, K1H 8L6
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Yu Xin Wang
- Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, 501 Smyth, Box 511, Ottawa, ON, Canada, K1H 8L6
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael A Rudnicki
- Sprott Center For Stem Cell Research, Ottawa Hospital Research Institute, Regenerative Medicine Program, 501 Smyth, Box 511, Ottawa, ON, Canada, K1H 8L6.
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
30
|
Robson MI, de Las Heras JI, Czapiewski R, Lê Thành P, Booth DG, Kelly DA, Webb S, Kerr ARW, Schirmer EC. Tissue-Specific Gene Repositioning by Muscle Nuclear Membrane Proteins Enhances Repression of Critical Developmental Genes during Myogenesis. Mol Cell 2016; 62:834-847. [PMID: 27264872 PMCID: PMC4914829 DOI: 10.1016/j.molcel.2016.04.035] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/21/2015] [Accepted: 04/28/2016] [Indexed: 12/28/2022]
Abstract
Whether gene repositioning to the nuclear periphery during differentiation adds another layer of regulation to gene expression remains controversial. Here, we resolve this by manipulating gene positions through targeting the nuclear envelope transmembrane proteins (NETs) that direct their normal repositioning during myogenesis. Combining transcriptomics with high-resolution DamID mapping of nuclear envelope-genome contacts, we show that three muscle-specific NETs, NET39, Tmem38A, and WFS1, direct specific myogenic genes to the nuclear periphery to facilitate their repression. Retargeting a NET39 fragment to nucleoli correspondingly repositioned a target gene, indicating a direct tethering mechanism. Being able to manipulate gene position independently of other changes in differentiation revealed that repositioning contributes ⅓ to ⅔ of a gene’s normal repression in myogenesis. Together, these NETs affect 37% of all genes changing expression during myogenesis, and their combined knockdown almost completely blocks myotube formation. This unequivocally demonstrates that NET-directed gene repositioning is critical for developmental gene regulation. Tissue-specific NETs direct repositioning of critical muscle genes during myogenesis Expression changes for NET-repositioned genes depend on cell differentiation state Isolating position from differentiation reveals its contribution to gene expression Three NETs together affect 37% of all genes normally changing in myogenesis
Collapse
Affiliation(s)
- Michael I Robson
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Jose I de Las Heras
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Rafal Czapiewski
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Phú Lê Thành
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Daniel G Booth
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - David A Kelly
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Shaun Webb
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Alastair R W Kerr
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Eric C Schirmer
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
31
|
Juhas M, Ye J, Bursac N. Design, evaluation, and application of engineered skeletal muscle. Methods 2016; 99:81-90. [PMID: 26455485 PMCID: PMC4821818 DOI: 10.1016/j.ymeth.2015.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/03/2015] [Accepted: 10/04/2015] [Indexed: 12/17/2022] Open
Abstract
For over two decades, research groups have been developing methods to engineer three-dimensional skeletal muscle tissues. These tissues hold great promise for use in disease modeling and pre-clinical drug development, and have potential to serve as therapeutic grafts for functional muscle repair. Recent advances in the field have resulted in the engineering of regenerative muscle constructs capable of survival, vascularization, and functional maturation in vivo as well as the first-time creation of functional human engineered muscles for screening of therapeutics in vitro. In this review, we will discuss the methodologies that have progressed work in the muscle tissue engineering field to its current state. The emphasis will be placed on the existing procedures to generate myogenic cell sources and form highly functional muscle tissues in vitro, techniques to monitor and evaluate muscle maturation and performance in vitro and in vivo, and surgical strategies to both create diseased environments and ensure implant survival and rapid integration into the host. Finally, we will suggest the most promising methodologies that will enable continued progress in the field.
Collapse
Affiliation(s)
- Mark Juhas
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Jean Ye
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, United States.
| |
Collapse
|
32
|
Muscle Satellite Cells: Exploring the Basic Biology to Rule Them. Stem Cells Int 2016; 2016:1078686. [PMID: 27042182 PMCID: PMC4794588 DOI: 10.1155/2016/1078686] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/24/2016] [Indexed: 12/12/2022] Open
Abstract
Adult skeletal muscle is a postmitotic tissue with an enormous capacity to regenerate upon injury. This is accomplished by resident stem cells, named satellite cells, which were identified more than 50 years ago. Since their discovery, many researchers have been concentrating efforts to answer questions about their origin and role in muscle development, the way they contribute to muscle regeneration, and their potential to cell-based therapies. Satellite cells are maintained in a quiescent state and upon requirement are activated, proliferating, and fusing with other cells to form or repair myofibers. In addition, they are able to self-renew and replenish the stem pool. Every phase of satellite cell activity is highly regulated and orchestrated by many molecules and signaling pathways; the elucidation of players and mechanisms involved in satellite cell biology is of extreme importance, being the first step to expose the crucial points that could be modulated to extract the optimal response from these cells in therapeutic strategies. Here, we review the basic aspects about satellite cells biology and briefly discuss recent findings about therapeutic attempts, trying to raise questions about how basic biology could provide a solid scaffold to more successful use of these cells in clinics.
Collapse
|
33
|
Londhe P, Guttridge DC. Inflammation induced loss of skeletal muscle. Bone 2015; 80:131-142. [PMID: 26453502 PMCID: PMC4600538 DOI: 10.1016/j.bone.2015.03.015] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 03/03/2015] [Accepted: 03/18/2015] [Indexed: 12/21/2022]
Abstract
Inflammation is an important contributor to the pathology of diseases implicated in skeletal muscle dysfunction. A number of diseases and disorders including inflammatory myopathies and Chronic Obstructive Pulmonary Disorder (COPD) are characterized by chronic inflammation or elevation of the inflammatory mediators. While these disease states exhibit different pathologies, all have in common the loss of skeletal muscle mass and a deregulated skeletal muscle physiology. Pro-inflammatory cytokines are key contributors to chronic inflammation found in many of these diseases. This section of the review focuses on some of the known inflammatory disorders like COPD, Rheumatoid Arthritis (RA) and inflammatory myopathies that display skeletal muscle atrophy and also provides the reader an overview of the mediators of inflammation, their signaling pathways, and mechanisms of action. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Priya Londhe
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Denis C Guttridge
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
34
|
Ozawa M. E-cadherin cytoplasmic domain inhibits cell surface localization of endogenous cadherins and fusion of C2C12 myoblasts. Biol Open 2015; 4:1427-35. [PMID: 26453620 PMCID: PMC4728358 DOI: 10.1242/bio.013938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myoblast fusion is a highly regulated process that is essential for skeletal muscle formation during muscle development and regeneration in mammals. Much remains to be elucidated about the molecular mechanism of myoblast fusion although cadherins, which are Ca(2+)-dependent cell-cell adhesion molecules, are thought to play a critical role in this process. Mouse myoblasts lacking either N-cadherin or M-cadherin can still fuse to form myotubes, indicating that they have no specific function in this process and may be functionally replaced by either M-cadherin or N-cadherin, respectively. In this study, we show that expressing the E-cadherin cytoplasmic domain ectopically in C2C12 myoblasts inhibits cell surface localization of endogenous M-cadherin and N-cadherin, as well as cell-cell fusion. This domain, however, does not inhibit myoblast differentiation according to microarray-based gene expression analysis. In contrast, expressing a dominant-negative β-catenin mutant ectopically, which suppresses Wnt/β-catenin signaling, did not inhibit cell-cell fusion. Therefore, the E-cadherin cytoplasmic domain inhibits cell-cell fusion by inhibiting cell surface localization of endogenous cadherins and not by inhibiting Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Masayuki Ozawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
35
|
Randolph ME, Pavlath GK. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups. Front Aging Neurosci 2015; 7:190. [PMID: 26500547 PMCID: PMC4595652 DOI: 10.3389/fnagi.2015.00190] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/21/2015] [Indexed: 12/22/2022] Open
Abstract
The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease.
Collapse
|
36
|
Kostallari E, Baba-Amer Y, Alonso-Martin S, Ngoh P, Relaix F, Lafuste P, Gherardi RK. Pericytes in the myovascular niche promote post-natal myofiber growth and satellite cell quiescence. Development 2015; 142:1242-53. [PMID: 25742797 DOI: 10.1242/dev.115386] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The satellite cells, which serve as adult muscle stem cells, are both located beneath myofiber basement membranes and closely associated with capillary endothelial cells. We observed that 90% of capillaries were associated with pericytes in adult mouse and human muscle. During post-natal growth, newly formed vessels with their neuroglial 2 proteoglycan (NG2)-positive pericytes became progressively associated with the post-natal muscle stem cells, as myofibers increased in size and satellite cells entered into quiescence. In vitro, human muscle-derived pericytes promoted myogenic cell differentiation through insulin-like growth factor 1 (IGF1) and myogenic cell quiescence through angiopoietin 1 (ANGPT1). Diphtheria toxin-induced ablation of muscle pericytes in growing mice led both to myofiber hypotrophy and to impaired establishment of stem cells quiescence. Similar effects were observed following conditional in vivo deletion of pericyte Igf1 and Angpt1 genes, respectively. Our data therefore demonstrate that, by promoting post-natal myogenesis and stem cell quiescence, pericytes play a key role in the microvascular niche of satellite cells.
Collapse
Affiliation(s)
- Enis Kostallari
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10, Faculté de Médecine, 8 rue du Général Sarrail, Créteil F-94010, France Université Paris-Est, 5 boulevard Descartes, Marne-la-Vallée cedex 2 F-77454, France
| | - Yasmine Baba-Amer
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10, Faculté de Médecine, 8 rue du Général Sarrail, Créteil F-94010, France Université Paris-Est Créteil, 62 avenue du Général de Gaulle, Créteil F-94000, France
| | - Sonia Alonso-Martin
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10, Faculté de Médecine, 8 rue du Général Sarrail, Créteil F-94010, France Université Paris-Est Créteil, 62 avenue du Général de Gaulle, Créteil F-94000, France
| | - Pamela Ngoh
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10, Faculté de Médecine, 8 rue du Général Sarrail, Créteil F-94010, France Université d'Evry-Val d'Essonne, Boulevard François Mitterrand, Evry F-91000, France
| | - Frederic Relaix
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10, Faculté de Médecine, 8 rue du Général Sarrail, Créteil F-94010, France Université Paris-Est Créteil, 62 avenue du Général de Gaulle, Créteil F-94000, France Etablissement Français du Sang, Créteil 94017, France Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort 94700, France Hôpital Henri Mondor, Département de Pathologie, 51 avenue du Maréchal de Lattre de Tassigny, Créteil F-94010, France
| | - Peggy Lafuste
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10, Faculté de Médecine, 8 rue du Général Sarrail, Créteil F-94010, France Université Paris-Est Créteil, 62 avenue du Général de Gaulle, Créteil F-94000, France
| | - Romain K Gherardi
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10, Faculté de Médecine, 8 rue du Général Sarrail, Créteil F-94010, France Université Paris-Est Créteil, 62 avenue du Général de Gaulle, Créteil F-94000, France Hôpital Henri Mondor, Département de Pathologie, 51 avenue du Maréchal de Lattre de Tassigny, Créteil F-94010, France
| |
Collapse
|
37
|
Gene coexpression networks reveal key drivers of phenotypic divergence in porcine muscle. BMC Genomics 2015; 16:50. [PMID: 25651817 PMCID: PMC4328970 DOI: 10.1186/s12864-015-1238-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/12/2015] [Indexed: 01/12/2023] Open
Abstract
Background Domestication of the wild pig has led to obese and lean phenotype breeds, and evolutionary genome research has sought to identify the regulatory mechanisms underlying this phenotypic diversity. However, revealing the molecular mechanisms underlying muscle phenotype variation based on differentially expressed genes has proved to be difficult. To characterize the mechanisms regulating muscle phenotype variation under artificial selection, we aimed to provide an integrated view of genome organization by weighted gene coexpression network analysis. Results Our analysis was based on 20 publicly available next-generation sequencing datasets of lean and obese pig muscle generated from 10 developmental stages. The evolution of the constructed coexpression modules was examined using the genome resequencing data of 37 domestic pigs and 11 wild boars. Our results showed the regulation of muscle development might be more complex than had been previously acknowledged, and is regulated by the coordinated action of muscle, nerve and immunity related genes. Breed-specific modules that regulated muscle phenotype divergence were identified, and hundreds of hub genes with major roles in muscle development were determined to be responsible for key functional distinctions between breeds. Our evolutionary analysis showed that the role of changes in the coding sequence under positive selection in muscle phenotype divergence was minor. Conclusions Muscle phenotype divergence was found to be regulated by the divergence of coexpression network modules under artificial selection, and not by changes in the coding sequence of genes. Our results present multiple lines of evidence suggesting links between modules and muscle phenotypes, and provide insights into the molecular bases of genome organization in muscle development and phenotype variation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1238-5) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Intercellular adhesion molecule-1 expression by skeletal muscle cells augments myogenesis. Exp Cell Res 2014; 331:292-308. [PMID: 25281303 DOI: 10.1016/j.yexcr.2014.09.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/16/2014] [Accepted: 09/23/2014] [Indexed: 02/04/2023]
Abstract
We previously demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) by skeletal muscle cells after muscle overload contributes to ensuing regenerative and hypertrophic processes in skeletal muscle. The objective of the present study is to reveal mechanisms through which skeletal muscle cell expression of ICAM-1 augments regenerative and hypertrophic processes of myogenesis. This was accomplished by genetically engineering C2C12 myoblasts to stably express ICAM-1, and by inhibiting the adhesive and signaling functions of ICAM-1 through the use of a neutralizing antibody or cell penetrating peptide, respectively. Expression of ICAM-1 by cultured skeletal muscle cells augmented myoblast-myoblast adhesion, myotube formation, myonuclear number, myotube alignment, myotube-myotube fusion, and myotube size without influencing the ability of myoblasts to proliferate or differentiate. ICAM-1 augmented myotube formation, myonuclear accretion, and myotube alignment through a mechanism involving adhesion-induced activation of ICAM-1 signaling, as these dependent measures were reduced via antibody and peptide inhibition of ICAM-1. The adhesive and signaling functions of ICAM-1 also facilitated myotube hypertrophy through a mechanism involving myotube-myotube fusion, protein synthesis, and Akt/p70s6k signaling. Our findings demonstrate that ICAM-1 expression by skeletal muscle cells augments myogenesis, and establish a novel mechanism through which the inflammatory response facilitates growth processes in skeletal muscle.
Collapse
|
39
|
Grassot V, Da Silva A, Saliba J, Maftah A, Dupuy F, Petit JM. Highlights of glycosylation and adhesion related genes involved in myogenesis. BMC Genomics 2014; 15:621. [PMID: 25051993 PMCID: PMC4223822 DOI: 10.1186/1471-2164-15-621] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Myogenesis is initiated by myoblast differentiation and fusion to form myotubes and muscle fibres. A population of myoblasts, known as satellite cells, is responsible for post-natal growth of muscle and for its regeneration. This differentiation requires many changes in cell behaviour and its surrounding environment. These modifications are tightly regulated over time and can be characterized through the study of changes in gene expression associated with this process. During the initial myogenesis steps, using the myoblast cell line C2C12 as a model, Janot et al. (2009) showed significant variations in expression for genes involved in pathways of glycolipid synthesis. In this study we used murine satellite cells (MSC) and their ability to differentiate into myotubes or early fat storage cells to select glycosylation related genes whose variation of expression is myogenesis specific. RESULTS The comparison of variant genes in both MSC differentiation pathways identified 67 genes associated with myogenesis. Comparison with data obtained for C2C12 revealed that only 14 genes had similar expression profiles in both cell types and that 17 genes were specifically regulated in MSC. Results were validated statistically by without a priori clustering. Classification according to protein function encoded by these 31 genes showed that the main regulated cellular processes during this differentiation were (i) remodeling of the extracellular matrix, particularly, sulfated structures, (ii) down-regulation of O-mannosyl glycan biosynthesis, and (iii) an increase in adhesion protein expression. A functional study was performed on Itga11 and Chst5 encoding two highly up-regulated proteins. The inactivation of Chst5 by specific shRNA delayed the fusion of MSC. By contrast, the inactivation of Itga11 by specific shRNA dramatically decreased the fusion ability of MSC. This result was confirmed by neutralization of Itga11 product by specific antibodies. CONCLUSIONS Our screening method detected 31 genes specific for myogenic differentiation out of the 383 genes studied. According to their function, interaction networks of the products of these selected genes converged to cell fusion. Functional studies on Itga11 and Chst5 demonstrated the robustness of this screening.
Collapse
Affiliation(s)
- Vincent Grassot
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - Anne Da Silva
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - James Saliba
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - Abderrahman Maftah
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - Fabrice Dupuy
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| | - Jean-Michel Petit
- INRA, UMR 1061 Unité de Génétique Moléculaire Animale, Université de Limoges, Faculté des Sciences et Techniques, 123 Avenue A. Thomas, Limoges 87060, France
| |
Collapse
|
40
|
Archacka K, Denkis A, Brzóska E, Świerczek B, Tarczyluk M, Jańczyk-Ilach K, Ciemerych MA, Moraczewski J. Competence of in vitro cultured mouse embryonic stem cells for myogenic differentiation and fusion with myoblasts. Stem Cells Dev 2014; 23:2455-68. [PMID: 24940624 DOI: 10.1089/scd.2013.0582] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pluripotent stem cells are a potential source of various cell types for use in regenerative medicine. Despite accumulating knowledge, there is currently no efficient and reproducible protocol that does not require genetic manipulation for generation of myogenic cells from pluripotent stem cells. Here, we examined whether mouse embryonic stem (ES) cells are able to undergo myogenic differentiation and fusion in response to signals released by differentiating myoblasts. Using ES cells expressing the histone 2B-green fluorescent fusion protein, we were able to detect hybrid myotubes formed by ES cells and differentiating myoblasts. ES cells that fused with myoblasts downregulated the expression of pluripotency markers and induced the expression of myogenic markers, while unfused ES cells did not exhibit this expression pattern. Thus, the signals released by myoblasts were not sufficient to induce myogenic differentiation of ES cells. Although ES cells synthesize many proteins involved in myoblast adhesion and fusion, we did not observe any myotubes formed exclusively by ES cells. We found that ES cells lacked M-cadherin and vascular cell adhesion molecule-1, which may account for the low frequency of hybrid myotube formation in ES cell-myoblast co-cultures and the inability of ES cells alone to form myotubes.
Collapse
Affiliation(s)
- Karolina Archacka
- Department of Cytology, Faculty of Biology, University of Warsaw , Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Shigemoto T, Kuroda Y, Wakao S, Dezawa M. A novel approach to collecting satellite cells from adult skeletal muscles on the basis of their stress tolerance. Stem Cells Transl Med 2013; 2:488-98. [PMID: 23748608 DOI: 10.5966/sctm.2012-0130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Stem cells are generally collected using flow cytometry, but this method is not applicable when the cell surface marker is not well determined. Satellite cells, which are skeletal muscle stem cells, have the ability to regenerate damaged muscles and are expected to be applicable for treatment of muscle degeneration. Although the transcription factor Pax7 is a known specific marker of satellite cells, it is not located on the cell surface and therefore flow cytometry is not directly applicable. In the present study, we turned our attention to the stress tolerance of adult stem cells, and we propose long-term trypsin incubation (LTT) as a novel approach to collecting satellite cells from mouse and human skeletal muscles. LTT led to a remarkable increase in the ratio of Pax7(+) cells that retain normal myogenic stem cell function. In particular, human Pax7(+) cells made up approximately 30% of primary cultured cells, whereas after LTT, the ratio of Pax7(+) cells increased up to ∼80%, and the ratio of Pax7(+) and/or MyoD(+) myogenic cells increased to ∼95%. Once transplanted, LTT-treated cells contributed to subsequent muscle regeneration following repetitive muscle damage without additional cell transplantation. The stress tolerance of Pax7(+) cells is related to heat shock protein 27 and αB-crystallin, members of the small heat shock protein family. This approach, based on the stress resistance of adult stem cells, is a safe and inexpensive method of efficiently collecting human satellite cells and may also be used for collecting other tissue stem cells whose surface marker is unknown.
Collapse
Affiliation(s)
- Taeko Shigemoto
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | | | | | | |
Collapse
|
42
|
Critical role of exosomes in sperm-egg fusion and virus-induced cell-cell fusion. Reprod Med Biol 2013; 12:117-126. [PMID: 29699139 DOI: 10.1007/s12522-013-0152-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/27/2013] [Indexed: 10/26/2022] Open
Abstract
In mammals, two integral membrane proteins, sperm IZUMO1 and egg CD9, regulate sperm-egg fusion, and their roles are critical, but yet unclear. Recent studies, however, indicate interesting connections between the sperm-egg fusion and virus-induced cell-cell fusion. First, CD9-containing exosome-like vesicles, which are released from wild-type eggs, can induce the fusion between sperm and CD9-deficient egg, even though CD9-deficient eggs are highly refractory to the fusion with sperm. This finding provides strong evidence for the involvement of CD9-containing, fusion-facilitating vesicles in the sperm-egg fusion. Secondly, there are similarities between the generation of retroviruses in the host cells and the formation of small cellular vesicles, termed exosomes, in mammalian cells. The exosomes are involved in intercellular communication through transfer of proteins and ribonucleic acids (RNAs) including mRNAs and microRNAs. These collective studies provide an insight into the molecular mechanism of membrane fusion events.
Collapse
|
43
|
Adhesion proteins--an impact on skeletal myoblast differentiation. PLoS One 2013; 8:e61760. [PMID: 23671573 PMCID: PMC3645998 DOI: 10.1371/journal.pone.0061760] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 03/13/2013] [Indexed: 11/19/2022] Open
Abstract
Formation of mammalian skeletal muscle myofibers, that takes place during embryogenesis, muscle growth or regeneration, requires precise regulation of myoblast adhesion and fusion. There are few evidences showing that adhesion proteins play important role in both processes. To follow the function of these molecules in myoblast differentiation we analysed integrin alpha3, integrin beta1, ADAM12, CD9, CD81, M-cadherin, and VCAM-1 during muscle regeneration. We showed that increase in the expression of these proteins accompanies myoblast fusion and myotube formation in vivo. We also showed that during myoblast fusion in vitro integrin alpha3 associates with integrin beta1 and ADAM12, and also CD9 and CD81, but not with M-cadherin or VCAM-1. Moreover, we documented that experimental modification in the expression of integrin alpha3 lead to the modification of myoblast fusion in vitro. Underexpression of integrin alpha3 decreased myoblasts' ability to fuse. This phenomenon was not related to the modifications in the expression of other adhesion proteins, i.e. integrin beta1, CD9, CD81, ADAM12, M-cadherin, or VCAM-1. Apparently, aberrant expression only of one partner of multiprotein adhesion complexes necessary for myoblast fusion, in this case integrin alpha3, prevents its proper function. Summarizing, we demonstrated the importance of analysed adhesion proteins in myoblast fusion both in vivo and in vitro.
Collapse
|
44
|
Abstract
Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Hang Yin
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
45
|
Kim E, Cook-Mills J, Morgan G, Sredni ST, Pachman LM. Increased expression of vascular cell adhesion molecule 1 in muscle biopsy samples from juvenile dermatomyositis patients with short duration of untreated disease is regulated by miR-126. ARTHRITIS AND RHEUMATISM 2012; 64:3809-17. [PMID: 22740338 PMCID: PMC3469762 DOI: 10.1002/art.34606] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To evaluate the effect of duration of untreated disease on vascular cell adhesion molecule 1 (VCAM-1) and microRNA (miRNA) expression in muscle biopsy samples from children with juvenile dermatomyositis (DM) as well as its effect on soluble VCAM-1 (sVCAM-1) and tumor necrosis factor α (TNFα) concentrations in sera from these children. METHODS We enrolled 28 untreated children with juvenile DM and 8 pediatric controls. Eleven children with juvenile DM had short duration of untreated disease (symptoms for ≤2 months before muscle biopsy), and 17 had long duration of untreated disease (symptoms for >2 months before muscle biopsy). Vascular structures, characterized by immunofluorescence using antibodies against von Willebrand factor, VCAM-1, and α-smooth muscle actin, were measured for total area and intensity. Circulating sVCAM-1 and TNFα levels were determined in patients with short duration of untreated disease, patients with long duration of untreated disease, and controls. Differential expression of microRNA-126 (miR-126) in muscle biopsy samples from the 2 patient groups and the control group was detected by miRNA expression profiling and confirmed by quantitative reverse transcription-polymerase chain reaction in muscle biopsy samples from the 3 groups. RESULTS Juvenile DM patients with short duration of untreated disease had significantly higher total positive area and intensity/high power field of VCAM-1 expression than did juvenile DM patients with long duration of untreated disease (P = 0.043 and P = 0.015, respectively) or controls (P = 0.004 and P = 0.001, respectively). Von Willebrand factor antigen-positive vasculature displayed greater VCAM-1 intensity in patients with short duration of untreated disease than in patients with long duration of untreated disease (P = 0.001). Circulating levels of sVCAM-1 and TNFα were significantly higher in patients with short duration of untreated disease than in controls (P = 0.013 and P = 0.048, respectively). The miRNA miR-126, a negative regulator of VCAM-1 expression, was significantly decreased (3.39-fold; P < 0.006) in patients with short duration of untreated disease compared to controls, while miR-126 expression in patients with long duration of untreated disease did not differ significantly compared to controls. CONCLUSION In patients with short duration of untreated disease, miR-126 down-regulation is associated with increased VCAM-1 in both muscle and blood, suggesting that VCAM-1 plays a critical role early in juvenile DM disease pathophysiology, augmented by TNFα.
Collapse
Affiliation(s)
- Erin Kim
- Cure JM Program of Excellence in Myositis Research, Children’s Hospital of Chicago Research Center, Chicago, IL
| | - Joan Cook-Mills
- Allergy/Immunology, Dept of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Gabrielle Morgan
- Cure JM Program of Excellence in Myositis Research, Children’s Hospital of Chicago Research Center, Chicago, IL
| | - Simone T. Sredni
- Neurosurgery Research Program, Children's Hospital of Chicago Research Center, Chicago, IL
| | - Lauren M. Pachman
- Cure JM Program of Excellence in Myositis Research, Children’s Hospital of Chicago Research Center, Chicago, IL
- Division of Rheumatology, Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University, Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
46
|
Gurriarán-Rodríguez U, Santos-Zas I, Al-Massadi O, Mosteiro CS, Beiroa D, Nogueiras R, Crujeiras AB, Seoane LM, Señarís J, García-Caballero T, Gallego R, Casanueva FF, Pazos Y, Camiña JP. The obestatin/GPR39 system is up-regulated by muscle injury and functions as an autocrine regenerative system. J Biol Chem 2012; 287:38379-89. [PMID: 22992743 DOI: 10.1074/jbc.m112.374926] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The maintenance and repair of skeletal muscle are attributable to an elaborate interaction between extrinsic and intrinsic regulatory signals that regulate the myogenic process. In the present work, we showed that obestatin, a 23-amino acid peptide encoded by the ghrelin gene, and the GPR39 receptor are expressed in rat skeletal muscle and are up-regulated upon experimental injury. To define their roles in muscle regeneration, L6E9 cells were used to perform in vitro assays. For the in vivo assays, skeletal muscle tissue was obtained from male rats and maintained under continuous subcutaneous infusion of obestatin. In differentiating L6E9 cells, preproghrelin expression and correspondingly obestatin increased during myogenesis being sustained throughout terminal differentiation. Autocrine action was demonstrated by neutralization of the endogenous obestatin secreted by differentiating L6E9 cells using a specific anti-obestatin antibody. Knockdown experiments by preproghrelin siRNA confirmed the contribution of obestatin to the myogenic program. Furthermore, GPR39 siRNA reduced obestatin action and myogenic differentiation. Exogenous obestatin stimulation was also shown to regulate myoblast migration and proliferation. Furthermore, the addition of obestatin to the differentiation medium increased myogenic differentiation of L6E9 cells. The relevance of the actions of obestatin was confirmed in vivo by the up-regulation of Pax-7, MyoD, Myf5, Myf6, myogenin, and myosin heavy chain (MHC) in obestatin-infused rats when compared with saline-infused rats. These data elucidate a novel mechanism whereby the obestatin/GPR39 system is coordinately regulated as part of the myogenic program and operates as an autocrine signal regulating skeletal myogenesis.
Collapse
Affiliation(s)
- Uxía Gurriarán-Rodríguez
- Área de Endocrinología Molecular y Celular, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bröhl D, Vasyutina E, Czajkowski M, Griger J, Rassek C, Rahn HP, Purfürst B, Wende H, Birchmeier C. Colonization of the Satellite Cell Niche by Skeletal Muscle Progenitor Cells Depends on Notch Signals. Dev Cell 2012; 23:469-81. [DOI: 10.1016/j.devcel.2012.07.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 06/19/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
|
48
|
Nakamura K, Nakano SI, Miyoshi T, Yamanouchi K, Matsuwaki T, Nishihara M. Age-related resistance of skeletal muscle-derived progenitor cells to SPARC may explain a shift from myogenesis to adipogenesis. Aging (Albany NY) 2012; 4:40-8. [PMID: 22289652 PMCID: PMC3292904 DOI: 10.18632/aging.100426] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aging causes phenotypic changes in skeletal muscle progenitor cells (SMPCs) that lead to the loss of myogenicity and adipogenesis. Secreted protein acidic and rich in cysteine (SPARC), which is secreted from SMPCs, stimulates myogenesis and inhibits adipogenesis. The present study aimed to examine whether changes in SPARC expression, its signaling pathway, or both are involved in age-related phenotypic changes in SMPCs. SPARC expression levels were comparable in SMPCs derived from young and old rats. However, when SPARC expression was reduced by a SPARC-specific siRNA, SMPCs from young rats showed reduced myogenesis and increased adipogenesis. In striking contrast, old rats showed little changes in these functions. Recombinant SPARC was effective in inhibiting adipogenesis and promoting myogenesis of SMPCs from young rats but had no effect on SMPCs from old rats when endogenous SPARC levels were reduced by the SPARC-siRNA. Further, the level of integrin α5, a subunit of the putative SPARC receptor, was decreased in SMPCs from old rats, and its inhibition in SMPCs from young rats by siRNA reduced adipogenesis in response to SPARC. These results suggest that, although SPARC plays a role in regulating SMPC function, SMPCs become refractory to the action of SPARC with age. Our data may explain an age-related shift from myogenesis to adipogenesis, associated with sarcopenia.
Collapse
Affiliation(s)
- Katsuyuki Nakamura
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Fibronectin promotes migration, alignment and fusion in an in vitro myoblast cell model. Cell Tissue Res 2012; 348:569-78. [PMID: 22427060 DOI: 10.1007/s00441-012-1364-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 01/29/2012] [Indexed: 12/22/2022]
Abstract
Myogenesis is a complex process in which committed myogenic cells differentiate and fuse into myotubes that mature into the muscle fibres of adult organisms. This process is initiated by a cascade of myogenic regulatory factors expressed upon entry of the cells into the myogenic differentiation programme. However, external signals such as those provided by the extracellular matrix (ECM) are also important in regulating muscle differentiation and morphogenesis. In the present work, we have addressed the role of various ECM substrata on C2C12 myoblast behaviour in vitro. Cells grown on fibronectin align and fuse earlier than cells on laminin or gelatine. Live imaging of C2C12 myoblasts on fibronectin versus gelatine has revealed that fibronectin promotes a directional collective migratory behaviour favouring cell-cell alignment and fusion. We further demonstrate that this effect of fibronectin is mediated by RGD-binding integrins expressed on myoblasts, that N-cadherin contributes to this behaviour, and that it does not involve enhanced myogenic differentiation. Therefore, we suggest that the collective migration and alignment of cells seen on fibronectin leads to a more predictable movement and a positioning that facilitates subsequent fusion of myoblasts. This study highlights the importance of addressing the role of fibronectin, an abundant component of the interstitial ECM during embryogenesis and tissue repair, in the context of myogenesis and muscle regeneration.
Collapse
|
50
|
Johnston APW, Bellamy LM, Lisio MD, Parise G. Captopril treatment induces hyperplasia but inhibits myonuclear accretion following severe myotrauma in murine skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2011; 301:R363-9. [DOI: 10.1152/ajpregu.00766.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of ANG II in skeletal muscle and satellite cell regulation is largely unknown. Cardiotoxin (CTX) was used to investigate whether muscle injury activates a local ANG II signaling system. Following injury, immunohistochelmistry (IHC) analysis revealed a robust increase in the intensity of angiotensinogen and angiotensin type 1 (AT1) receptor expression. As regeneration proceeded, however, AT1 and angiotensinogen were downregulated. Nuclear accretion and fiber formation were also assessed during muscle regeneration in mice treated with captopril (an angiotensin-converting enzyme inhibitor). When ANG II formation was blocked through the use of captopril, we observed a significantly reduced accretion of nuclei into myofibers (−25%), while tibialis anterior total fiber number was significantly increased +37%. This phenotype appeared to be due to alterations in satellite cell differentiation kinetics; captopril treatment led to sustained mRNA expression of markers associated with quiescence and proliferation (Myf5, Pax7) and simultaneously delayed or inhibited the expression of myogenin. IHC staining supported these findings, revealing that captopril treatment resulted in a strong trend ( P = 0.06) for a decrease in the proportion of myogenin-positive myoblasts. Furthermore, these observations were associated with a delay in muscle fiber maturation; captopril treatment resulted in sustained expression of embryonic myosin heavy chain. Collectively, these findings demonstrate that localized skeletal muscle angiotensin signaling is important to muscle fiber formation, myonuclear accretion, and satellite cell function.
Collapse
Affiliation(s)
| | | | | | - Gianni Parise
- Departments of 1Kinesiology and Medical Physics and
- Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|