1
|
Signorello MG, Leoncini G. The Cortisol Effect on the NO/cGMP Pathway. Int J Mol Sci 2025; 26:1421. [PMID: 40003888 PMCID: PMC11855650 DOI: 10.3390/ijms26041421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Previously, it has been shown that cortisol induces oxidative stress in human platelets, stimulating reactive oxygen species production, superoxide anion formation, lipid peroxidation, and depleting antioxidant defenses. In this study, the cortisol effect on platelet function has been described. Results demonstrate that cortisol stimulates platelet activation and aggregation, leading to CD62P surface exposure and intracellular calcium elevation. Cortisol potentiates its aggregating effect, reducing the level of the powerful anti-aggregating agent nitric oxide (NO). Likewise, cortisol reduces cGMP levels. Moreover, specific inhibitors of the Src/Syk/PI3K/AKT pathways reverse the inhibiting effect of cortisol, partially restoring NO and cGMP levels. Unexpectedly, cortisol stimulates endothelial nitric oxide synthase (eNOS) activity, measured in platelet lysates prepared by whole cells treated with the hormone. The phosphorylation of the Ser1177 eNOS activating-residue is increased by cortisol. The Src/Syk/PI3K/AKT pathways appear to be involved in the phosphorylation of this residue. Moreover, cortisol induces the formation of nitrotyrosine, that can be considered a biomarker for reactive nitrogen species, including peroxynitrite. In conclusion, through these mechanisms, cortisol potentiates its capacity to induce oxidative stress in human platelets.
Collapse
|
2
|
McRae HM, Leong MPY, Bergamasco MI, Garnham AL, Hu Y, Corbett MA, Whitehead L, El-Saafin F, Sheikh BN, Wilcox S, Hannan AJ, Gécz J, Smyth GK, Thomas T, Voss AK. Loss of PHF6 causes spontaneous seizures, enlarged brain ventricles and altered transcription in the cortex of a mouse model of the Börjeson-Forssman-Lehmann intellectual disability syndrome. PLoS Genet 2024; 20:e1011428. [PMID: 39405291 PMCID: PMC11478892 DOI: 10.1371/journal.pgen.1011428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Börjeson-Forssman-Lehmann syndrome (BFLS) is an X-linked intellectual disability and endocrine disorder caused by pathogenic variants of plant homeodomain finger gene 6 (PHF6). An understanding of the role of PHF6 in vivo in the development of the mammalian nervous system is required to advance our knowledge of how PHF6 mutations cause BFLS. Here, we show that PHF6 protein levels are greatly reduced in cells derived from a subset of patients with BFLS. We report the phenotypic, anatomical, cellular and molecular characterization of the brain in males and females in two mouse models of BFLS, namely loss of Phf6 in the germline and nervous system-specific deletion of Phf6. We show that loss of PHF6 resulted in spontaneous seizures occurring via a neural intrinsic mechanism. Histological and morphological analysis revealed a significant enlargement of the lateral ventricles in adult Phf6-deficient mice, while other brain structures and cortical lamination were normal. Phf6 deficient neural precursor cells showed a reduced capacity for self-renewal and increased differentiation into neurons. Phf6 deficient cortical neurons commenced spontaneous neuronal activity prematurely suggesting precocious neuronal maturation. We show that loss of PHF6 in the foetal cortex and isolated cortical neurons predominantly caused upregulation of genes, including Reln, Nr4a2, Slc12a5, Phip and ZIC family transcription factor genes, involved in neural development and function, providing insight into the molecular effects of loss of PHF6 in the developing brain.
Collapse
Affiliation(s)
- Helen M. McRae
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Melody P. Y. Leong
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Maria I. Bergamasco
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Alexandra L. Garnham
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Yifang Hu
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Mark A. Corbett
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lachlan Whitehead
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Farrah El-Saafin
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Bilal N. Sheikh
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephen Wilcox
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Anthony J. Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Jozef Gécz
- Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Gordon K. Smyth
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Tim Thomas
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Anne K. Voss
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Kumar S, Mehan S, Khan Z, Das Gupta G, Narula AS. Guggulsterone Selectively Modulates STAT-3, mTOR, and PPAR-Gamma Signaling in a Methylmercury-Exposed Experimental Neurotoxicity: Evidence from CSF, Blood Plasma, and Brain Samples. Mol Neurobiol 2024; 61:5161-5193. [PMID: 38170440 DOI: 10.1007/s12035-023-03902-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a paralytic disease that damages the brain and spinal cord motor neurons. Several clinical and preclinical studies have found that methylmercury (MeHg+) causes ALS. In ALS, MeHg+-induced neurotoxicity manifests as oligodendrocyte destruction; myelin basic protein (MBP) deficiency leads to axonal death. ALS development has been connected to an increase in signal transducer and activator of transcription-3 (STAT-3), a mammalian target of rapamycin (mTOR), and a decrease in peroxisome proliferator-activated receptor (PPAR)-gamma. Guggulsterone (GST), a plant-derived chemical produced from Commiphorawhighitii resin, has been found to protect against ALS by modulating these signaling pathways. Vitamin D3 (VitD3) deficiency has been related to oligodendrocyte precursor cells (OPC) damage, demyelination, and white matter deterioration, which results in motor neuron death. As a result, the primary goal of this work was to investigate the therapeutic potential of GST by altering STAT-3, mTOR, and PPAR-gamma levels in a MeHg+-exposed experimental model of ALS in adult rats. The GST30 and 60 mg/kg oral treatments significantly improved the behavioral, motor, and cognitive dysfunctions and increased remyelination, as proven by the Luxol Fast Blue stain (LFB), and reduced neuroinflammation as measured by histological examinations. Furthermore, the co-administration of VitD3 exhibits moderate efficacy when administered in combination with GST60. Our results show that GST protects neurons by decreasing STAT-3 and mTOR levels while increasing PPAR-gamma protein levels in ALS rats.
Collapse
Affiliation(s)
- Sumit Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), NAAC Accredited "A" Grade College, GT Road, Ghal-Kalan, Moga, 142 001, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), NAAC Accredited "A" Grade College, GT Road, Ghal-Kalan, Moga, 142 001, Punjab, India.
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), NAAC Accredited "A" Grade College, GT Road, Ghal-Kalan, Moga, 142 001, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Ghanshyam Das Gupta
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| |
Collapse
|
4
|
Feng T, Du H, Yang C, Wang Y, Hu F. Loss of TMEM106B exacerbates Tau pathology and neurodegeneration in PS19 mice. Acta Neuropathol 2024; 147:62. [PMID: 38526799 PMCID: PMC11924916 DOI: 10.1007/s00401-024-02702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/27/2024]
Abstract
TMEM106B, a gene encoding a lysosome membrane protein, is tightly associated with brain aging, hypomyelinating leukodystrophy, and multiple neurodegenerative diseases, including frontotemporal lobar degeneration with TDP-43 aggregates (FTLD-TDP). Recently, TMEM106B polymorphisms have been associated with tauopathy in chronic traumatic encephalopathy (CTE) and FTLD-TDP patients. However, how TMEM106B influences Tau pathology and its associated neurodegeneration, is unclear. Here we show that loss of TMEM106B enhances the accumulation of pathological Tau, especially in the neuronal soma in the hippocampus, resulting in severe neuronal loss in the PS19 Tau transgenic mice. Moreover, Tmem106b-/- PS19 mice develop significantly increased abnormalities in the neuronal cytoskeleton, autophagy-lysosome activities, as well as glial activation, compared with PS19 and Tmem106b-/- mice. Together, our findings demonstrate that loss of TMEM106B drastically exacerbates Tau pathology and its associated disease phenotypes, and provide new insights into the roles of TMEM106B in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tuancheng Feng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Huan Du
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Cha Yang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Ya Wang
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, 345 Weill Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
5
|
Truong HP, Saleh OA. Magnetic tweezers characterization of the entropic elasticity of intrinsically disordered proteins and peptoids. Methods Enzymol 2024; 694:209-236. [PMID: 38492952 DOI: 10.1016/bs.mie.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Understanding the conformational behavior of biopolymers is essential to unlocking knowledge of their biophysical mechanisms and functional roles. Single-molecule force spectroscopy can provide a unique perspective on this by exploiting entropic elasticity to uncover key biopolymer structural parameters. A particularly powerful approach involves the use of magnetic tweezers, which can easily generate lower stretching forces (0.1-20 pN). For forces at the low end of this range, the elastic response of biopolymers is sensitive to excluded volume effects, and they can be described by Pincus blob elasticity model that allow robust extraction of the Flory polymer scaling exponent. Here, we detail protocols for the use of magnetic tweezers for force-extension measurements of intrinsically disordered proteins and peptoids. We also discuss procedures for fitting low-force elastic curves to the predictions of polymer physics models to extract key conformational parameters.
Collapse
Affiliation(s)
- Hoang P Truong
- Materials Department, University of California, Santa Barbara, CA, United States
| | - Omar A Saleh
- Materials Department, University of California, Santa Barbara, CA, United States; Biomolecular Sciences and Engineering Program, University of California, Santa Barbara, CA, United States; Physics Department, University of California, Santa Barbara, CA, United States.
| |
Collapse
|
6
|
López-Erauskin J, Bravo-Hernandez M, Presa M, Baughn MW, Melamed Z, Beccari MS, Agra de Almeida Quadros AR, Arnold-Garcia O, Zuberi A, Ling K, Platoshyn O, Niño-Jara E, Ndayambaje IS, McAlonis-Downes M, Cabrera L, Artates JW, Ryan J, Hermann A, Ravits J, Bennett CF, Jafar-Nejad P, Rigo F, Marsala M, Lutz CM, Cleveland DW, Lagier-Tourenne C. Stathmin-2 loss leads to neurofilament-dependent axonal collapse driving motor and sensory denervation. Nat Neurosci 2024; 27:34-47. [PMID: 37996528 PMCID: PMC10842032 DOI: 10.1038/s41593-023-01496-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/16/2023] [Indexed: 11/25/2023]
Abstract
The mRNA transcript of the human STMN2 gene, encoding for stathmin-2 protein (also called SCG10), is profoundly impacted by TAR DNA-binding protein 43 (TDP-43) loss of function. The latter is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Using a combination of approaches, including transient antisense oligonucleotide-mediated suppression, sustained shRNA-induced depletion in aging mice, and germline deletion, we show that stathmin-2 has an important role in the establishment and maintenance of neurofilament-dependent axoplasmic organization that is critical for preserving the caliber and conduction velocity of myelinated large-diameter axons. Persistent stathmin-2 loss in adult mice results in pathologies found in ALS, including reduced interneurofilament spacing, axonal caliber collapse that drives tearing within outer myelin layers, diminished conduction velocity, progressive motor and sensory deficits, and muscle denervation. These findings reinforce restoration of stathmin-2 as an attractive therapeutic approach for ALS and other TDP-43-dependent neurodegenerative diseases.
Collapse
Affiliation(s)
- Jone López-Erauskin
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Mariana Bravo-Hernandez
- Department of Anesthesiology and Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
- Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | | | - Michael W Baughn
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Ze'ev Melamed
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Department of Medical Neurobiology, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Melinda S Beccari
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Ana Rita Agra de Almeida Quadros
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Olatz Arnold-Garcia
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Department of Neurosciences, Biodonostia Health Research Institute, San Sebastián, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Madrid, Spain
| | | | - Karen Ling
- Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - Oleksandr Platoshyn
- Department of Anesthesiology and Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Elkin Niño-Jara
- Department of Anesthesiology and Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - I Sandra Ndayambaje
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa McAlonis-Downes
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Larissa Cabrera
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Jonathan W Artates
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | | | - Anita Hermann
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - John Ravits
- Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | | | | | - Frank Rigo
- Ionis Pharmaceuticals Inc., Carlsbad, CA, USA
| | - Martin Marsala
- Department of Anesthesiology and Stem Cell Program and Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | | | - Don W Cleveland
- Ludwig Institute and Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
7
|
Feng T, Du H, Hu F. Loss of TMEM106B exacerbates Tau pathology and neurodegeneration in PS19 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.11.566707. [PMID: 38014238 PMCID: PMC10680640 DOI: 10.1101/2023.11.11.566707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
TMEM106B, a gene encoding a lysosome membrane protein, is tightly associated with brain aging, hypomyelinating leukodystrophy, and multiple neurodegenerative diseases, including frontotemporal lobar degeneration with TDP-43 aggregates (FTLD-TDP). Recently, TMEM106B polymorphisms have been associated with tauopathy in chronic traumatic encephalopathy (CTE) and FTLD-TDP patients. However, how TMEM106B influences Tau pathology and its associated neurodegeneration, is unclear. Here we show that loss of TMEM106B enhances the accumulation of pathological Tau, especially in the neuronal soma in the hippocampus, resulting in severe neuronal loss in the PS19 Tau transgenic mice. Moreover, Tmem106b-/- PS19 mice develop significantly increased disruption of the neuronal cytoskeleton, autophagy-lysosomal function, and lysosomal trafficking along the axon as well as enhanced gliosis compared with PS19 and Tmem106b-/- mice. Together, our findings demonstrate that loss of TMEM106B drastically exacerbates Tau pathology and its associated disease phenotypes, and provide new insights into the roles of TMEM106B in neurodegenerative diseases.
Collapse
Affiliation(s)
- Tuancheng Feng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Huan Du
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Otis JP, Mowry KL. Hitting the mark: Localization of mRNA and biomolecular condensates in health and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1807. [PMID: 37393916 PMCID: PMC10758526 DOI: 10.1002/wrna.1807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
Subcellular mRNA localization is critical to a multitude of biological processes such as development of cellular polarity, embryogenesis, tissue differentiation, protein complex formation, cell migration, and rapid responses to environmental stimuli and synaptic depolarization. Our understanding of the mechanisms of mRNA localization must now be revised to include formation and trafficking of biomolecular condensates, as several biomolecular condensates that transport and localize mRNA have recently been discovered. Disruptions in mRNA localization can have catastrophic effects on developmental processes and biomolecular condensate biology and have been shown to contribute to diverse diseases. A fundamental understanding of mRNA localization is essential to understanding how aberrations in this biology contribute the etiology of numerous cancers though support of cancer cell migration and biomolecular condensate dysregulation, as well as many neurodegenerative diseases, through misregulation of mRNA localization and biomolecular condensate biology. This article is categorized under: RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jessica P. Otis
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States, 02912
| | - Kimberly L. Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States, 02912
| |
Collapse
|
9
|
Fang T, Yue L, Longlong Z, Longda M, Fang H, Yehui L, Yang L, Yiwu Z. Peripherin: A proposed biomarker of traumatic axonal injury triggered by mechanical force. Eur J Neurosci 2023; 58:3206-3225. [PMID: 37574217 DOI: 10.1111/ejn.16111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
Traumatic axonal injury (TAI) is one of the most common pathological features of severe traumatic brain injury (TBI). Our previous study using proteomics suggested that peripherin (PRPH) should be a potential candidate as a biomarker for TAI diagnosis. This study is to further elucidate the role and association of PRPH with TAI. In the animal study, we performed immunohistochemistry, ELISA and morphological analysis to evaluate PRPH level and distribution following a severe impact. PRPH-positive regions were widely distributed in the axonal tract throughout the whole brain. Axonal injuries with PRPH inclusion were observed post-TBI. Besides, PRPH was significantly increased in both cerebral spinal fluid and plasma at the early phase post-TBI. Colocalization analysis based on microscopy revealed that PRPH represents an immunohistological biomarker in the neuropathological diagnosis of TAI. Brain samples from patients with TBI were included to further test whether PRPH is feasible in the real practice of neuropathology. Immunohistochemistry of PRPH, NFH, APP and NFL on human brain tissues further confirmed PRPH as an immunohistological biomarker that could be applied in practice. Collectively, we conclude that PRPH mirrors the cytoskeleton injury of axons and could represent a neuropathological biomarker for TAI.
Collapse
Affiliation(s)
- Tong Fang
- Department of Neurology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Physiology and Biochemistry, College of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Yue
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathology, Shanghai Medicilon Inc., Shanghai, China
| | - Zhu Longlong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ma Longda
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huang Fang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lv Yehui
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Human Anatomy and Histology, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Li Yang
- Institute of Forensic Science, Ministry of Public Security, People's Republic of China, Beijing, China
| | - Zhou Yiwu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Lefebvre-Omar C, Liu E, Dalle C, d'Incamps BL, Bigou S, Daube C, Karpf L, Davenne M, Robil N, Jost Mousseau C, Blanchard S, Tournaire G, Nicaise C, Salachas F, Lacomblez L, Seilhean D, Lobsiger CS, Millecamps S, Boillée S, Bohl D. Neurofilament accumulations in amyotrophic lateral sclerosis patients' motor neurons impair axonal initial segment integrity. Cell Mol Life Sci 2023; 80:150. [PMID: 37184603 DOI: 10.1007/s00018-023-04797-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron (MN) disease in adults with no curative treatment. Neurofilament (NF) level in patient' fluids have recently emerged as the prime biomarker of ALS disease progression, while NF accumulation in MNs of patients is the oldest and one of the best pathological hallmarks. However, the way NF accumulations could lead to MN degeneration remains unknown. To assess NF accumulations and study the impact on MNs, we compared MNs derived from induced pluripotent stem cells (iPSC) of patients carrying mutations in C9orf72, SOD1 and TARDBP genes, the three main ALS genetic causes. We show that in all mutant MNs, light NF (NF-L) chains rapidly accumulate in MN soma, while the phosphorylated heavy/medium NF (pNF-M/H) chains pile up in axonal proximal regions of only C9orf72 and SOD1 MNs. Excitability abnormalities were also only observed in these latter MNs. We demonstrate that the integrity of the MN axonal initial segment (AIS), the region of action potential initiation and responsible for maintaining axonal integrity, is impaired in the presence of pNF-M/H accumulations in C9orf72 and SOD1 MNs. We establish a strong correlation between these pNF-M/H accumulations, an AIS distal shift, increased axonal calibers and modified repartition of sodium channels. The results expand our understanding of how NF accumulation could dysregulate components of the axonal cytoskeleton and disrupt MN homeostasis. With recent cumulative evidence that AIS alterations are implicated in different brain diseases, preserving AIS integrity could have important therapeutic implications for ALS.
Collapse
Affiliation(s)
- Cynthia Lefebvre-Omar
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Elise Liu
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Carine Dalle
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Boris Lamotte d'Incamps
- Université Paris-Cité, CNRS, Saints-Pères Paris Institute for the Neurosciences, Paris, France
| | - Stéphanie Bigou
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Clément Daube
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Léa Karpf
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marc Davenne
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | | | - Coline Jost Mousseau
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Stéphane Blanchard
- Institut Pasteur, INSERM U1115, Unité Biothérapies pour les Maladies Neurodégénératives, Paris, France
| | - Guillaume Tournaire
- Institut Pasteur, INSERM U1115, Unité Biothérapies pour les Maladies Neurodégénératives, Paris, France
| | | | - François Salachas
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Département de Neurologie, Assistance Publique Hôpitaux de Paris (APHP), Centre de Référence SLA Ile de France, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Lucette Lacomblez
- Département de Neurologie, Assistance Publique Hôpitaux de Paris (APHP), Centre de Référence SLA Ile de France, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Danielle Seilhean
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Département de Neuropathologie, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Christian S Lobsiger
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Stéphanie Millecamps
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Séverine Boillée
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
11
|
Rao MV, Darji S, Stavrides PH, Goulbourne CN, Kumar A, Yang DS, Yoo L, Peddy J, Lee JH, Yuan A, Nixon RA. Autophagy is a novel pathway for neurofilament protein degradation in vivo. Autophagy 2023; 19:1277-1292. [PMID: 36131358 PMCID: PMC10012948 DOI: 10.1080/15548627.2022.2124500] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
How macroautophagy/autophagy influences neurofilament (NF) proteins in neurons, a frequent target in neurodegenerative diseases and injury, is not known. NFs in axons have exceptionally long half-lives in vivo enabling formation of large stable supporting networks, but they can be rapidly degraded during Wallerian degeneration initiated by a limited calpain cleavage. Here, we identify autophagy as a previously unrecognized pathway for NF subunit protein degradation that modulates constitutive and inducible NF turnover in vivo. Levels of NEFL/NF-L, NEFM/NF-M, and NEFH/NF-H subunits rise substantially in neuroblastoma (N2a) cells after blocking autophagy either with the phosphatidylinositol 3-kinase (PtdIns3K) inhibitor 3-methyladenine (3-MA), by depleting ATG5 expression with shRNA, or by using both treatments. In contrast, activating autophagy with rapamycin significantly lowers NF levels in N2a cells. In the mouse brain, NF subunit levels increase in vivo after intracerebroventricular infusion of 3-MA. Furthermore, using tomographic confocal microscopy, immunoelectron microscopy, and biochemical fractionation, we demonstrate the presence of NF proteins intra-lumenally within autophagosomes (APs), autolysosomes (ALs), and lysosomes (LYs). Our findings establish a prominent role for autophagy in NF proteolysis. Autophagy may regulate axon cytoskeleton size and responses of the NF cytoskeleton to injury and disease.
Collapse
Affiliation(s)
- Mala V Rao
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Sandipkumar Darji
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Philip H Stavrides
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Chris N Goulbourne
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Asok Kumar
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Dun-Sheng Yang
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Lang Yoo
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - James Peddy
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Ju-Hyun Lee
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA
| | - Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA.,Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA.,Cell Biology, NewYork University Langone Medical Center, NY, USA.,NYU Neuroscience Institute, New York University, New York, NY, USA
| |
Collapse
|
12
|
Yadav A, Matson KJE, Li L, Hua I, Petrescu J, Kang K, Alkaslasi MR, Lee DI, Hasan S, Galuta A, Dedek A, Ameri S, Parnell J, Alshardan MM, Qumqumji FA, Alhamad SM, Wang AP, Poulen G, Lonjon N, Vachiery-Lahaye F, Gaur P, Nalls MA, Qi YA, Maric D, Ward ME, Hildebrand ME, Mery PF, Bourinet E, Bauchet L, Tsai EC, Phatnani H, Le Pichon CE, Menon V, Levine AJ. A cellular taxonomy of the adult human spinal cord. Neuron 2023; 111:328-344.e7. [PMID: 36731429 PMCID: PMC10044516 DOI: 10.1016/j.neuron.2023.01.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023]
Abstract
The mammalian spinal cord functions as a community of cell types for sensory processing, autonomic control, and movement. While animal models have advanced our understanding of spinal cellular diversity, characterizing human biology directly is important to uncover specialized features of basic function and human pathology. Here, we present a cellular taxonomy of the adult human spinal cord using single-nucleus RNA sequencing with spatial transcriptomics and antibody validation. We identified 29 glial clusters and 35 neuronal clusters, organized principally by anatomical location. To demonstrate the relevance of this resource to human disease, we analyzed spinal motoneurons, which degenerate in amyotrophic lateral sclerosis (ALS) and other diseases. We found that compared with other spinal neurons, human motoneurons are defined by genes related to cell size, cytoskeletal structure, and ALS, suggesting a specialized molecular repertoire underlying their selective vulnerability. We include a web resource to facilitate further investigations into human spinal cord biology.
Collapse
Affiliation(s)
- Archana Yadav
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Kaya J E Matson
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Johns Hopkins University Department of Biology, Baltimore, MD 21218, USA
| | - Li Li
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Isabelle Hua
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Joana Petrescu
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA; Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY, USA
| | - Kristy Kang
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA; Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY, USA
| | - Mor R Alkaslasi
- Unit on the Development of Neurodegeneration, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA; Department of Neuroscience, Brown University, Providence, RI, USA
| | - Dylan I Lee
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Saadia Hasan
- Inherited Neurodegenerative Diseases Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ahmad Galuta
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Annemarie Dedek
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Sara Ameri
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jessica Parnell
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | | | | - Saud M Alhamad
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Alick Pingbei Wang
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Gaetan Poulen
- Department of Neurosurgery, Gui de Chauliac Hospital, and Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Nicolas Lonjon
- Department of Neurosurgery, Gui de Chauliac Hospital, and Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Florence Vachiery-Lahaye
- Department of Neurosurgery, Gui de Chauliac Hospital, and Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France
| | - Pallavi Gaur
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA; Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International LLC, Glen Echo, MD, USA
| | - Yue A Qi
- Center for Alzheimer's and Related Dementias, National Institutes of Health, Bethesda, MD, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke; Bethesda, MD, USA
| | - Michael E Ward
- Inherited Neurodegenerative Diseases Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Michael E Hildebrand
- Inherited Neurodegenerative Diseases Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Pierre-Francois Mery
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier, France
| | - Emmanuel Bourinet
- Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier, France
| | - Luc Bauchet
- Department of Neurosurgery, Gui de Chauliac Hospital, and Donation and Transplantation Coordination Unit, Montpellier University Medical Center, Montpellier, France; Institute of Functional Genomics, Montpellier University, CNRS, INSERM, Montpellier, France
| | - Eve C Tsai
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Hemali Phatnani
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA; Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY, USA
| | - Claire E Le Pichon
- Unit on the Development of Neurodegeneration, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Vilas Menon
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY, USA.
| | - Ariel J Levine
- Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
13
|
Allison RL, Adelman JW, Abrudan J, Urrutia RA, Zimmermann MT, Mathison AJ, Ebert AD. Microglia Influence Neurofilament Deposition in ALS iPSC-Derived Motor Neurons. Genes (Basel) 2022; 13:241. [PMID: 35205286 PMCID: PMC8871895 DOI: 10.3390/genes13020241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which upper and lower motor neuron loss is the primary phenotype, leading to muscle weakness and wasting, respiratory failure, and death. Although a portion of ALS cases are linked to one of over 50 unique genes, the vast majority of cases are sporadic in nature. However, the mechanisms underlying the motor neuron loss in either familial or sporadic ALS are not entirely clear. Here, we used induced pluripotent stem cells derived from a set of identical twin brothers discordant for ALS to assess the role of astrocytes and microglia on the expression and accumulation of neurofilament proteins in motor neurons. We found that motor neurons derived from the affected twin which exhibited increased transcript levels of all three neurofilament isoforms and increased expression of phosphorylated neurofilament puncta. We further found that treatment of the motor neurons with astrocyte-conditioned medium and microglial-conditioned medium significantly impacted neurofilament deposition. Together, these data suggest that glial-secreted factors can alter neurofilament pathology in ALS iPSC-derived motor neurons.
Collapse
Affiliation(s)
- Reilly L. Allison
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.L.A.); (J.W.A.)
| | - Jacob W. Adelman
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.L.A.); (J.W.A.)
| | - Jenica Abrudan
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA; (J.A.); (R.A.U.); (M.T.Z.); (A.J.M.)
| | - Raul A. Urrutia
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA; (J.A.); (R.A.U.); (M.T.Z.); (A.J.M.)
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael T. Zimmermann
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA; (J.A.); (R.A.U.); (M.T.Z.); (A.J.M.)
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Angela J. Mathison
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI 53226, USA; (J.A.); (R.A.U.); (M.T.Z.); (A.J.M.)
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (R.L.A.); (J.W.A.)
| |
Collapse
|
14
|
Dhasmana S, Dhasmana A, Narula AS, Jaggi M, Yallapu MM, Chauhan SC. The panoramic view of amyotrophic lateral sclerosis: A fatal intricate neurological disorder. Life Sci 2022; 288:120156. [PMID: 34801512 DOI: 10.1016/j.lfs.2021.120156] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurological disease affecting both upper and lower motor neurons. In the United States alone, there are 16,000-20,000 established cases of ALS. The early disease diagnosis is challenging due to many overlapping pathophysiologies with other neurological diseases. The etiology of ALS is unknown; however, it is divided into two categories: familial ALS (fALS) which occurs due to gene mutations & contributes to 5-10% of ALS, and sporadic ALS (sALS) which is due to environmental factors & contributes to 90-95% of ALS. There is still no curative treatment for ALS: palliative care and symptomatic treatment are therefore essential components in the management of these patients. In this review, we provide a panoramic view of ALS, which includes epidemiology, risk factors, pathophysiologies, biomarkers, diagnosis, therapeutics (natural, synthetic, gene-based, pharmacological, stem cell, extracellular vesicles, and physical therapy), controversies (in the clinical trials of ALS), the scope of nanomedicine in ALS, and future perspectives.
Collapse
Affiliation(s)
- Swati Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Acharan S Narula
- Narula Research LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Subhash C Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA.
| |
Collapse
|
15
|
Sferruzza G, Bosco L, Falzone YM, Russo T, Domi T, Quattrini A, Filippi M, Riva N. Neurofilament light chain as a biological marker for amyotrophic lateral sclerosis: a meta-analysis study. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:446-457. [PMID: 34874217 DOI: 10.1080/21678421.2021.2007952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Aim: The aim of the present metanalysis is to evaluate blood and CSF Neurofilament light chain (NfL) concentrations in ALS patients, compared to healthy controls, ALS mimic disorders (ALSmd) and other neurological diseases (OND), and to evaluate their diagnostic yield against ALSmd. Methods: Search engines were systematically investigated for relevant studies. A random effect model was applied to estimate the pooled standard mean difference in NfL levels between ALS and controls and a bivariate mixed-effects model was applied to estimate their diagnostic accuracy on blood and CSF. Results and conclusions: NfL CSF levels were higher in ALS compared with all other control groups. On blood, NfL levels were significantly higher in ALS patients compared with healthy controls and ALSmd. In a subgroup analysis, the use of SIMOA yielded to a better differentiation between ALS and controls on blood, compared with ELISA. Studies performed on CSF (AUC = 0.90) yielded to better diagnostic performances compared with those conducted on blood (AUC = 0.78). Further prospective investigations are needed to determine a diagnostic cutoff, exploitable in clinical practice.
Collapse
Affiliation(s)
- Giacomo Sferruzza
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Bosco
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Yuri Matteo Falzone
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy and.,Neuropathology Unit, Institute of Experimental Neurology (INSP E), San Raffaele Scientific Institute, Milan, Italy
| | - Tommaso Russo
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy and.,Neuropathology Unit, Institute of Experimental Neurology (INSP E), San Raffaele Scientific Institute, Milan, Italy
| | - Teuta Domi
- Neuropathology Unit, Institute of Experimental Neurology (INSP E), San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Quattrini
- Neuropathology Unit, Institute of Experimental Neurology (INSP E), San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy and
| | - Nilo Riva
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuropathology Unit, Institute of Experimental Neurology (INSP E), San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
16
|
Zhou YN, Chen YH, Dong SQ, Yang WB, Qian T, Liu XN, Cheng Q, Wang JC, Chen XJ. Role of Blood Neurofilaments in the Prognosis of Amyotrophic Lateral Sclerosis: A Meta-Analysis. Front Neurol 2021; 12:712245. [PMID: 34690913 PMCID: PMC8526968 DOI: 10.3389/fneur.2021.712245] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Neurofilaments in cerebrospinal fluid (CSF) and in blood are considered promising biomarkers of amyotrophic lateral sclerosis (ALS) because their levels can be significantly increased in patients with ALS. However, the roles of neurofilaments, especially blood neurofilaments, in the prognosis of ALS are inconsistent. We performed a meta-analysis to explore the prognostic roles of blood neurofilaments in ALS patients. Methods: We searched all relevant studies on the relationship between blood neurofilament levels and the prognosis of ALS patients in PubMed, Embase, Scopus, and Web of Science before February 2, 2021. The quality of the included articles was assessed using the Quality in Prognosis Studies (QUIPS) scale, and R (version 4.02) was used for statistical analysis. Results: Fourteen articles were selected, covering 1,619 ALS patients. The results showed that higher blood neurofilament light chain (NfL) levels in ALS patients were associated with a higher risk of death [medium vs. low NfL level: HR = 2.43, 95% CI (1.34-4.39), p < 0.01; high vs. low NfL level: HR = 4.51, 95% CI (2.45-8.32), p < 0.01]. There was a positive correlation between blood phosphorylated neurofilament heavy chain (pNfH) levels and risk of death in ALS patients [HR = 1.87, 95% CI (1.35-2.59), p < 0.01]. The levels of NfL and pNfH in blood positively correlated with disease progression rate (DPR) of ALS patients [NfL: summary r = 0.53, 95% CI (0.45-0.60), p < 0.01; pNfH: summary r = 0.51, 95% CI (0.24-0.71), p < 0.01]. Conclusion: The blood neurofilament levels can predict the prognosis of ALS patients; specifically, higher levels of blood neurofilaments are associated with a greater risk of death.
Collapse
Affiliation(s)
- Yan-ni Zhou
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
- Department of Neurology, Huashan Hospital, Institute of Neurology, Fudan University and National Center Neurological Disorders, Shanghai, China
| | - You-hong Chen
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Si-qi Dong
- Department of Neurology, Huashan Hospital, Institute of Neurology, Fudan University and National Center Neurological Disorders, Shanghai, China
| | - Wen-bo Yang
- Department of Neurology, Huashan Hospital, Institute of Neurology, Fudan University and National Center Neurological Disorders, Shanghai, China
| | - Ting Qian
- Department of Neurology, Huashan Hospital, Institute of Neurology, Fudan University and National Center Neurological Disorders, Shanghai, China
| | - Xiao-ni Liu
- Department of Neurology, Huashan Hospital, Institute of Neurology, Fudan University and National Center Neurological Disorders, Shanghai, China
| | - Qi Cheng
- Department of Neurology, Ruijin Hospital Affiliated With the School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiu-cun Wang
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Xiang-jun Chen
- Department of Neurology, Huashan Hospital, Institute of Neurology, Fudan University and National Center Neurological Disorders, Shanghai, China
- Department of Dermatology, Huashan Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Yuan A, Nixon RA. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Front Neurosci 2021; 15:689938. [PMID: 34646114 PMCID: PMC8503617 DOI: 10.3389/fnins.2021.689938] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
Biomarkers of neurodegeneration and neuronal injury have the potential to improve diagnostic accuracy, disease monitoring, prognosis, and measure treatment efficacy. Neurofilament proteins (NfPs) are well suited as biomarkers in these contexts because they are major neuron-specific components that maintain structural integrity and are sensitive to neurodegeneration and neuronal injury across a wide range of neurologic diseases. Low levels of NfPs are constantly released from neurons into the extracellular space and ultimately reach the cerebrospinal fluid (CSF) and blood under physiological conditions throughout normal brain development, maturation, and aging. NfP levels in CSF and blood rise above normal in response to neuronal injury and neurodegeneration independently of cause. NfPs in CSF measured by lumbar puncture are about 40-fold more concentrated than in blood in healthy individuals. New ultra-sensitive methods now allow minimally invasive measurement of these low levels of NfPs in serum or plasma to track disease onset and progression in neurological disorders or nervous system injury and assess responses to therapeutic interventions. Any of the five Nf subunits - neurofilament light chain (NfL), neurofilament medium chain (NfM), neurofilament heavy chain (NfH), alpha-internexin (INA) and peripherin (PRPH) may be altered in a given neuropathological condition. In familial and sporadic Alzheimer's disease (AD), plasma NfL levels may rise as early as 22 years before clinical onset in familial AD and 10 years before sporadic AD. The major determinants of elevated levels of NfPs and degradation fragments in CSF and blood are the magnitude of damaged or degenerating axons of fiber tracks, the affected axon caliber sizes and the rate of release of NfP and fragments at different stages of a given neurological disease or condition directly or indirectly affecting central nervous system (CNS) and/or peripheral nervous system (PNS). NfPs are rapidly emerging as transformative blood biomarkers in neurology providing novel insights into a wide range of neurological diseases and advancing clinical trials. Here we summarize the current understanding of intracellular NfP physiology, pathophysiology and extracellular kinetics of NfPs in biofluids and review the value and limitations of NfPs and degradation fragments as biomarkers of neurodegeneration and neuronal injury.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
- Department of Cell Biology, New York University Grossman School of Medicine, (NYU), Neuroscience Institute, New York, NY, United States
| |
Collapse
|
18
|
Atkinson R, Leung J, Bender J, Kirkcaldie M, Vickers J, King A. TDP-43 mislocalization drives neurofilament changes in a novel model of TDP-43 proteinopathy. Dis Model Mech 2021; 14:dmm.047548. [PMID: 33408125 PMCID: PMC7888715 DOI: 10.1242/dmm.047548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
Mislocalization of the TAR DNA-binding protein 43 (TDP-43) from the nucleus to the cytoplasm is a common feature of neurodegenerative conditions such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). The downstream in vivo cellular effects of this mislocalization are not well understood. To investigate the impact of mislocalized TDP-43 on neuronal cell bodies, axons and axonal terminals, we utilized the mouse visual system to create a new model of TDP-43 proteinopathy. Mouse (C57BL/6J) retinal ganglion cells (RGCs) were transduced with GFP-tagged human wildtype TDP-43 (hTDP-WT-GFP) and human TDP-43 with a mutation in the nuclear localization sequence (hTDP-ΔNLS-GFP), to cause TDP-43 mislocalization, with ∼60% transduction efficiency achieved. Expression of both hTDP-WT-GFP and hTDP-ΔNLS-GFP resulted in changes to neurofilament expression, with cytoplasmic TDP-43 being associated with significantly (p<0.05) increased neurofilament heavy expression in the cell soma, and both forms of altered TDP-43 leading to significantly (p<0.05) decreased numbers of neurofilament-positive axons within the optic nerve. Alterations to neurofilament proteins were associated with significantly (p<0.05) increased microglial density in the optic nerve and retina. Furthermore expression of hTDP-WT-GFP was associated with a significant (p<0.05) increase in pre-synaptic input into RGCs in the retina. The current study has developed a new model allowing detailed examination of alterations to TDP-43 and will contribute to the knowledge of TDP-43-mediated neuronal alterations and degeneration.
Collapse
Affiliation(s)
- Rachel Atkinson
- Wicking Dementia Research and Education Centre, University of Tasmania, Medical Science Precinct, 17, Liverpool Street, Hobart, Tasmania, Australia 7000, Australia
| | - Jacqueline Leung
- Wicking Dementia Research and Education Centre, University of Tasmania, Medical Science Precinct, 17, Liverpool Street, Hobart, Tasmania, Australia 7000, Australia
| | - James Bender
- Wicking Dementia Research and Education Centre, University of Tasmania, Medical Science Precinct, 17, Liverpool Street, Hobart, Tasmania, Australia 7000, Australia
| | - Matthew Kirkcaldie
- Wicking Dementia Research and Education Centre, University of Tasmania, Medical Science Precinct, 17, Liverpool Street, Hobart, Tasmania, Australia 7000, Australia
| | - James Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Medical Science Precinct, 17, Liverpool Street, Hobart, Tasmania, Australia 7000, Australia
| | - Anna King
- Wicking Dementia Research and Education Centre, University of Tasmania, Medical Science Precinct, 17, Liverpool Street, Hobart, Tasmania, Australia 7000, Australia
| |
Collapse
|
19
|
Jiang L, Cao Y, Yin X, Ni S, Li M, Li C, Luo Z, Lu H, Hu J. A combinatorial method to visualize the neuronal network in the mouse spinal cord: combination of a modified Golgi-Cox method and synchrotron radiation micro-computed tomography. Histochem Cell Biol 2021; 155:477-489. [PMID: 33398435 PMCID: PMC8062354 DOI: 10.1007/s00418-020-01949-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 12/23/2022]
Abstract
Exploring the three-dimensional (3D) morphology of neurons is essential to understanding spinal cord function and associated diseases comprehensively. However, 3D imaging of the neuronal network in the broad region of the spinal cord at cellular resolution remains a challenge in the field of neuroscience. In this study, to obtain high-resolution 3D imaging of a detailed neuronal network in the mass of the spinal cord, the combination of synchrotron radiation micro-computed tomography (SRμCT) and the Golgi-cox staining were used. We optimized the Golgi-Cox method (GCM) and developed a modified GCM (M-GCM), which improved background staining, reduced the number of artefacts, and diminished the impact of incomplete vasculature compared to the current GCM. Moreover, we achieved high-resolution 3D imaging of the detailed neuronal network in the spinal cord through the combination of SRμCT and M-GCM. Our results showed that the M-GCM increased the contrast between the neuronal structure and its surrounding extracellular matrix. Compared to the GCM, the M-GCM also diminished the impact of the artefacts and incomplete vasculature on the 3D image. Additionally, the 3D neuronal architecture was successfully quantified using a combination of SRμCT and M-GCM. The SRμCT was shown to be a valuable non-destructive tool for 3D visualization of the neuronal network in the broad 3D region of the spinal cord. Such a combinatorial method will, therefore, transform the presentation of Golgi staining from 2 to 3D, providing significant improvements in the 3D rendering of the neuronal network.
Collapse
Affiliation(s)
- Liyuan Jiang
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Road No. 87, Changsha, 410008, Hunan, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, People's Republic of China.,Hunan Engineering Research Center of Sport and Health, Changsha, People's Republic of China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Road No. 87, Changsha, 410008, Hunan, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, People's Republic of China.,Hunan Engineering Research Center of Sport and Health, Changsha, People's Republic of China
| | - Xianzhen Yin
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, People's Republic of China
| | - Shuangfei Ni
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Road No. 87, Changsha, 410008, Hunan, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, People's Republic of China.,Hunan Engineering Research Center of Sport and Health, Changsha, People's Republic of China
| | - Miao Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Road No. 87, Changsha, 410008, Hunan, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, People's Republic of China.,Hunan Engineering Research Center of Sport and Health, Changsha, People's Republic of China
| | - Chengjun Li
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Road No. 87, Changsha, 410008, Hunan, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, People's Republic of China.,Hunan Engineering Research Center of Sport and Health, Changsha, People's Republic of China
| | - Zixiang Luo
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Road No. 87, Changsha, 410008, Hunan, People's Republic of China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China.,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, People's Republic of China.,Hunan Engineering Research Center of Sport and Health, Changsha, People's Republic of China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China. .,Department of Sports Medicine, Xiangya Hospital, Central South University, Xiangya Road No. 87, Changsha, 410008, Hunan, People's Republic of China. .,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, People's Republic of China. .,Hunan Engineering Research Center of Sport and Health, Changsha, People's Republic of China.
| | - Jianzhong Hu
- Department of Spine Surgery, Xiangya Hospital, Central South University, Xiangya Road No. 87, Changsha, 410008, Hunan, People's Republic of China. .,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, People's Republic of China. .,Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, People's Republic of China. .,Hunan Engineering Research Center of Sport and Health, Changsha, People's Republic of China.
| |
Collapse
|
20
|
Zucchi E, Bonetto V, Sorarù G, Martinelli I, Parchi P, Liguori R, Mandrioli J. Neurofilaments in motor neuron disorders: towards promising diagnostic and prognostic biomarkers. Mol Neurodegener 2020; 15:58. [PMID: 33059698 PMCID: PMC7559190 DOI: 10.1186/s13024-020-00406-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Motor neuron diseases (MNDs) are etiologically and biologically heterogeneous diseases. The pathobiology of motor neuron degeneration is still largely unknown, and no effective therapy is available. Heterogeneity and lack of specific disease biomarkers have been appointed as leading reasons for past clinical trial failure, and biomarker discovery is pivotal in today's MND research agenda.In the last decade, neurofilaments (NFs) have emerged as promising biomarkers for the clinical assessment of neurodegeneration. NFs are scaffolding proteins with predominant structural functions contributing to the axonal cytoskeleton of myelinated axons. NFs are released in CSF and peripheral blood as a consequence of axonal degeneration, irrespective of the primary causal event. Due to the current availability of highly-sensitive automated technologies capable of precisely quantify proteins in biofluids in the femtomolar range, it is now possible to reliably measure NFs not only in CSF but also in blood.In this review, we will discuss how NFs are impacting research and clinical management in ALS and other MNDs. Besides contributing to the diagnosis at early stages by differentiating between MNDs with different clinical evolution and severity, NFs may provide a useful tool for the early enrolment of patients in clinical trials. Due to their stability across the disease, NFs convey prognostic information and, on a larger scale, help to stratify patients in homogenous groups. Shortcomings of NFs assessment in biofluids will also be discussed according to the available literature in the attempt to predict the most appropriate use of the biomarker in the MND clinic.
Collapse
Affiliation(s)
- Elisabetta Zucchi
- Department of Biomedical, Metabolic and Neural Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Bonetto
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Gianni Sorarù
- Neuromuscular Center, Department of Neurosciences, University of Padova, Padua, Italy.,Clinica Neurologica, Azienda Ospedaliera di Padova, Padua, Italy
| | - Ilaria Martinelli
- Department of Neurosciences, Azienda Ospedaliero Universitaria Modena, Modena, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche, Ospedale Bellaria, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Jessica Mandrioli
- Department of Neurosciences, Azienda Ospedaliero Universitaria Modena, Modena, Italy.
| |
Collapse
|
21
|
Lin WW, Johnson LR, Friedman MA, Abou-Donia MB. In VitroStudies of Acrylamide Neurotoxicity in Rat Pheochromocytoma (PC12) Cells. Altern Lab Anim 2020. [DOI: 10.1177/026119299602400309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This review discusses our studies on molecular mechanisms of acrylamide neurotoxicity by using the rat pheochromocytoma (PC12) cell line. The results showed that: a) acrylamide altered the gross morphology of PC12 cells; b) acrylamide induced neurofilament accumulation in PC12 cells; c) the effects of acrylamide on PC12 cells are consistent with its neurotoxicity in vivo; d) acrylamide stimulated neurofilament protein synthesis in PC12 cells; e) acrylamide did not act via nerve growth factor (NGF) receptor gp140trk to regulate neurofilament synthesis in PC12 cells; f) dexamethasone antagonised NGF and/or acrylamide-induced neurofilament protein synthesis and expression; and g) acrylamide differentially regulated the mRNA levels of three neurofilament subunit genes in PC12 cells. These molecular studies provide the first evidence that: a) there are distinctive and convergent signalling pathways for NGF-regulated and acrylamide-regulated neurofilament expression; b) acrylamide may differentially regulate the expression of each subunit, resulting in aberrant accumulation of neurofilament proteins; and c) there is a dexamethasone-sensitive signalling step common to NGF and acrylamide. These results could partially explain the mechanisms of neurofilament accumulation in distal axonal swellings, a pathognomonic feature of acrylamide neurotoxicity.
Collapse
Affiliation(s)
- Weiquan W. Lin
- Laboratory of Neurotoxicology, Department of Pharmacology, Duke University Medical Centre, P.O. Box 3813, Durham, NC 27710, USA
| | - Larry R. Johnson
- Cytec Industries, 5 Garret Mountain Plaza, West Paterson, NJ 07424, USA
| | | | | |
Collapse
|
22
|
Demy DL, Campanari ML, Munoz-Ruiz R, Durham HD, Gentil BJ, Kabashi E. Functional Characterization of Neurofilament Light Splicing and Misbalance in Zebrafish. Cells 2020; 9:E1238. [PMID: 32429483 PMCID: PMC7291018 DOI: 10.3390/cells9051238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Neurofilaments (NFs), a major cytoskeletal component of motor neurons, play a key role in the differentiation, establishment and maintenance of their morphology and mechanical strength. The de novo assembly of these neuronal intermediate filaments requires the presence of the neurofilament light subunit (NEFL), whose expression is reduced in motor neurons in amyotrophic lateral sclerosis (ALS). This study used zebrafish as a model to characterize the NEFL homologue neflb, which encodes two different isoforms via a splicing of the primary transcript (neflbE4 and neflbE3). In vivo imaging showed that neflb is crucial for proper neuronal development, and that disrupting the balance between its two isoforms specifically affects the NF assembly and motor axon growth, with resultant motor deficits. This equilibrium is also disrupted upon the partial depletion of TDP-43 (TAR DNA-binding protein 43), an RNA-binding protein encoded by the gene TARDBP that is mislocalized into cytoplasmic inclusions in ALS. The study supports the interaction of the NEFL expression and splicing with TDP-43 in a common pathway, both biologically and pathogenetically.
Collapse
Affiliation(s)
- Doris Lou Demy
- Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, 24, boulevard du Montparnasse, 75015 Paris, France; (D.L.D.); (M.L.C.); (R.M.-R.)
- Sorbonne Universités Paris VI, UMR INSERM U 1127, CNRS 1127 UPMC, Institut du Cerveau et de la Moelle épinière—ICM, 75015 Paris, France
| | - Maria Letizia Campanari
- Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, 24, boulevard du Montparnasse, 75015 Paris, France; (D.L.D.); (M.L.C.); (R.M.-R.)
- Sorbonne Universités Paris VI, UMR INSERM U 1127, CNRS 1127 UPMC, Institut du Cerveau et de la Moelle épinière—ICM, 75015 Paris, France
| | - Raphael Munoz-Ruiz
- Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, 24, boulevard du Montparnasse, 75015 Paris, France; (D.L.D.); (M.L.C.); (R.M.-R.)
- Sorbonne Universités Paris VI, UMR INSERM U 1127, CNRS 1127 UPMC, Institut du Cerveau et de la Moelle épinière—ICM, 75015 Paris, France
| | - Heather D. Durham
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; (H.D.D.); (B.J.G.)
| | - Benoit J. Gentil
- Department of Neurology and Neurosurgery and Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada; (H.D.D.); (B.J.G.)
- Department of Kinesiology and Physical Education McGill University, Montreal, QC H3A 2B4, Canada
| | - Edor Kabashi
- Institut Imagine, UMR-1163 INSERM et Université Paris Descartes, Hôpital Universitaire Necker-Enfants Malades, 24, boulevard du Montparnasse, 75015 Paris, France; (D.L.D.); (M.L.C.); (R.M.-R.)
- Sorbonne Universités Paris VI, UMR INSERM U 1127, CNRS 1127 UPMC, Institut du Cerveau et de la Moelle épinière—ICM, 75015 Paris, France
| |
Collapse
|
23
|
Chen Y, Xie HQ, Sha R, Xu T, Zhang S, Fu H, Xia Y, Liu Y, Xu L, Zhao B. 2,3,7,8-Tetrachlorodibenzo-p-dioxin and up-regulation of neurofilament expression in neuronal cells: Evaluation of AhR and MAPK pathways. ENVIRONMENT INTERNATIONAL 2020; 134:105193. [PMID: 31775093 DOI: 10.1016/j.envint.2019.105193] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/25/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Dioxin exposure is reported to affect nervous system development and increase the risk of neurodegenerative diseases. Generally, dioxin exerts its neurotoxicity via aryl hydrocarbon receptor (AhR). Neurofilament (NF) light (NFL) protein is a biomarker for both neuronal differentiation and neurodegeneration and its expression is controlled by the mitogen-activated protein kinase (MAPK) pathway. However, the effects of dioxin on NFL expression and involved mechanisms are incompletely understood. We aimed to investigate the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on NFL expression and elucidate the underlining signaling pathways and their potential crosstalk, specifically between MAPK and AhR pathway. We employed primary cultured rat cortical neurons to evaluate the effect of TCDD exposure on NFL expression. We also used nerve growth factor (NGF)-treated PC12 cells with specific inhibitors to investigate the involvement of and potential crosstalk between the MAPK pathway and the AhR pathway in mediating the effects of TCDD on NFL expression. After TCDD exposure, NFL mRNA and protein levels were upregulated in cultured neurons. NFL protein was preferentially found in the cell body compared with neurites of the cultured neurons. In PC12 cells, TCDD enhanced both NGF-induced NFL expression and phosphorylation of ERK1/2 and p38. The addition of MAPK-pathway inhibitors (PD98059 and SB230580) partially blocked the TCDD-induced NFL upregulation. CH223191, an AhR antagonist, reversed the upregulation of NFL and phosphorylation of ERK1/2 and p38 induced by TCDD. This study demonstrated TCDD-induced upregulation of NFL in cultured neurons, with protein retained in the cell body. TCDD action was dependent on activation of AhR and MAPK, while crosstalk was found between these two signaling pathways.
Collapse
Affiliation(s)
- Yangsheng Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Rui Sha
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Tuan Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Songyan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hualing Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Yingjie Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Yiyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100085, China
| | - Li Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100085, China.
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; University of Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
24
|
Kline RA, Dissanayake KN, Hurtado ML, Martínez NW, Ahl A, Mole AJ, Lamont DJ, Court FA, Ribchester RR, Wishart TM, Murray LM. Altered mitochondrial bioenergetics are responsible for the delay in Wallerian degeneration observed in neonatal mice. Neurobiol Dis 2019; 130:104496. [PMID: 31176719 PMCID: PMC6704473 DOI: 10.1016/j.nbd.2019.104496] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/26/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023] Open
Abstract
Neurodegenerative and neuromuscular disorders can manifest throughout the lifespan of an individual, from infant to elderly individuals. Axonal and synaptic degeneration are early and critical elements of nearly all human neurodegenerative diseases and neural injury, however the molecular mechanisms which regulate this process are yet to be fully elucidated. Furthermore, how the molecular mechanisms governing degeneration are impacted by the age of the individual is poorly understood. Interestingly, in mice which are under 3 weeks of age, the degeneration of axons and synapses following hypoxic or traumatic injury is significantly slower. This process, known as Wallerian degeneration (WD), is a molecularly and morphologically distinct subtype of neurodegeneration by which axons and synapses undergo distinct fragmentation and death following a range of stimuli. In this study, we first use an ex-vivo model of axon injury to confirm the significant delay in WD in neonatal mice. We apply tandem mass-tagging quantitative proteomics to profile both nerve and muscle between P12 and P24 inclusive. Application of unbiased in silico workflows to relevant protein identifications highlights a steady elevation in oxidative phosphorylation cascades corresponding to the accelerated degeneration rate. We demonstrate that inhibition of Complex I prevents the axotomy-induced rise in reactive oxygen species and protects axons following injury. Furthermore, we reveal that pharmacological activation of oxidative phosphorylation significantly accelerates degeneration at the neuromuscular junction in neonatal mice. In summary, we reveal dramatic changes in the neuromuscular proteome during post-natal maturation of the neuromuscular system, and demonstrate that endogenous dynamics in mitochondrial bioenergetics during this time window have a functional impact upon regulating the stability of the neuromuscular system.
Collapse
Affiliation(s)
- Rachel A Kline
- Centre for Discovery Brain Science, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK; Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK; The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | - Kosala N Dissanayake
- Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK; Centre for Cognitive and Neural Systems, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Maica Llavero Hurtado
- Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK; The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | - Nicolás W Martínez
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Alexander Ahl
- Centre for Discovery Brain Science, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - Alannah J Mole
- Centre for Discovery Brain Science, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK; Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| | - Douglas J Lamont
- Fingerprints Proteomics Facility, Dundee University, Dundee DD1 4HN, United Kingdom
| | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile; The Buck Institute for Research on Aging, Novato, CA, United States
| | - Richard R Ribchester
- Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK; Centre for Cognitive and Neural Systems, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Thomas M Wishart
- Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK; The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, EH25 9RG, UK
| | - Lyndsay M Murray
- Centre for Discovery Brain Science, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK; Euan McDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK.
| |
Collapse
|
25
|
|
26
|
Didonna A, Opal P. The role of neurofilament aggregation in neurodegeneration: lessons from rare inherited neurological disorders. Mol Neurodegener 2019; 14:19. [PMID: 31097008 PMCID: PMC6524292 DOI: 10.1186/s13024-019-0318-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Many neurodegenerative disorders, including Parkinson's, Alzheimer's, and amyotrophic lateral sclerosis, are well known to involve the accumulation of disease-specific proteins. Less well known are the accumulations of another set of proteins, neuronal intermediate filaments (NFs), which have been observed in these diseases for decades. NFs belong to the family of cytoskeletal intermediate filament proteins (IFs) that give cells their shape; they determine axonal caliber, which controls signal conduction; and they regulate the transport of synaptic vesicles and modulate synaptic plasticity by binding to neurotransmitter receptors. In the last two decades, a number of rare disorders caused by mutations in genes that encode NFs or regulate their metabolism have been discovered. These less prevalent disorders are providing novel insights into the role of NF aggregation in the more common neurological disorders.
Collapse
Affiliation(s)
- Alessandro Didonna
- Department of Neurology and Weill Institute for Neurosciences, University of California at San Francisco, San Francisco, CA, 94158, USA
| | - Puneet Opal
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
27
|
Martin CA, Radhakrishnan S, Nagarajan S, Muthukoori S, Dueñas JMM, Gómez Ribelles JL, Lakshmi BS, E A K N, Gómez-Tejedor JA, Reddy MS, Sellathamby S, Rela M, Subbaraya NK. An innovative bioresorbable gelatin based 3D scaffold that maintains the stemness of adipose tissue derived stem cells and the plasticity of differentiated neurons. RSC Adv 2019; 9:14452-14464. [PMID: 35519343 PMCID: PMC9064131 DOI: 10.1039/c8ra09688k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 04/05/2019] [Indexed: 12/02/2022] Open
Abstract
Neural tissue engineering aims at producing a simulated environment using a matrix that is suitable to grow specialized neurons/glial cells pertaining to CNS/PNS which replace damaged or lost tissues. The primary goal of this study is to design a compatible scaffold that supports the development of neural-lineage cells which aids in neural regeneration. The fabricated, freeze-dried scaffolds consisted of biocompatible, natural and synthetic polymers: gelatin and polyvinyl pyrrolidone. Physiochemical characterization was carried out using Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) imaging. The 3D construct retains good swelling proficiency and holds the integrated structure that supports cell adhesion and proliferation. The composite of PVP-gelatin is blended in such a way that it matches the mechanical strength of the brain tissue. The cytocompatibility analysis shows that the scaffolds are compatible and permissible for the growth of both stem cells as well as differentiated neurons. A change in the ratios of the scaffold components resulted in varied sizes of pores giving diverse surface morphology, greatly influencing the properties of the neurons. However, there is no change in stem cell properties. Different types of neurons are characterized by the type of gene associated with the neurotransmitter secreted by them. The change in the neuron properties could be attributed to neuroplasticity. The plasticity of the neurons was analyzed using quantitative gene expression studies. It has been observed that the gelatin-rich construct supports the prolonged proliferation of stem cells and multiple neurons along with their plasticity.
Collapse
Affiliation(s)
- Catherine Ann Martin
- Crystal Growth Centre, Anna University Chennai India
- National Foundation for Liver Research, Global Hospitals & Health City Chennai India
| | - Subathra Radhakrishnan
- National Foundation for Liver Research, Global Hospitals & Health City Chennai India
- Department of Biomedicine, Bharathidasan University India
| | | | | | - J M Meseguer Dueñas
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València Camino de Vera s/n. 46022 Valencia Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Spain
| | - José Luis Gómez Ribelles
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València Camino de Vera s/n. 46022 Valencia Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Spain
| | | | | | - José Antonio Gómez-Tejedor
- Center for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València Camino de Vera s/n. 46022 Valencia Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Spain
| | - Mettu Srinivas Reddy
- National Foundation for Liver Research, Global Hospitals & Health City Chennai India
| | | | - Mohamed Rela
- National Foundation for Liver Research, Global Hospitals & Health City Chennai India
| | | |
Collapse
|
28
|
Butti Z, Patten SA. RNA Dysregulation in Amyotrophic Lateral Sclerosis. Front Genet 2019; 9:712. [PMID: 30723494 PMCID: PMC6349704 DOI: 10.3389/fgene.2018.00712] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common adult-onset motor neuron disease and is characterized by the degeneration of upper and lower motor neurons. It has become increasingly clear that RNA dysregulation is a key contributor to ALS pathogenesis. The major ALS genes SOD1, TARDBP, FUS, and C9orf72 are involved in aspects of RNA metabolism processes such as mRNA transcription, alternative splicing, RNA transport, mRNA stabilization, and miRNA biogenesis. In this review, we highlight the current understanding of RNA dysregulation in ALS pathogenesis involving these major ALS genes and discuss the potential of therapeutic strategies targeting disease RNAs for treating ALS.
Collapse
Affiliation(s)
- Zoe Butti
- INRS-Institut Armand-Frappier, National Institute of Scientific Research, Laval, QC, Canada
| | - Shunmoogum A Patten
- INRS-Institut Armand-Frappier, National Institute of Scientific Research, Laval, QC, Canada
| |
Collapse
|
29
|
Kounakis K, Tavernarakis N. The Cytoskeleton as a Modulator of Aging and Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1178:227-245. [PMID: 31493230 DOI: 10.1007/978-3-030-25650-0_12] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cytoskeleton consists of filamentous protein polymers that form organized structures, contributing to a multitude of cell life aspects. It includes three types of polymers: the actin microfilaments, the microtubules and the intermediate filaments. Decades of research have implicated the cytoskeleton in processes that regulate cellular and organismal aging, as well as neurodegeneration associated with injury or neurodegenerative disease, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic Lateral Sclerosis, or Charcot Marie Tooth disease. Here, we provide a brief overview of cytoskeletal structure and function, and discuss experimental evidence linking cytoskeletal function and dynamics with aging and neurodegeneration.
Collapse
Affiliation(s)
- Konstantinos Kounakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.,Department of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece. .,Department of Basic Sciences, Medical School, University of Crete, Heraklion, Greece.
| |
Collapse
|
30
|
Gentil BJ, Lai GT, Menade M, Larivière R, Minotti S, Gehring K, Chapple JP, Brais B, Durham HD. Sacsin, mutated in the ataxia ARSACS, regulates intermediate filament assembly and dynamics. FASEB J 2018; 33:2982-2994. [DOI: 10.1096/fj.201801556r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Benoit J. Gentil
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
- Department of Kinesiology and Physical EducationMcGill UniversityMontrealQuébecCanada
| | - Gia-Thanh Lai
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
- Department of Kinesiology and Physical EducationMcGill UniversityMontrealQuébecCanada
| | - Marie Menade
- Department of BiochemistryGroupe de Recherche axé sur la Structure des ProtéinesMcGill UniversityMontrealQuébecCanada
| | - Roxanne Larivière
- Laboratory of Neurogenetics of MotionMontreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
| | - Sandra Minotti
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
| | - Kalle Gehring
- Department of BiochemistryGroupe de Recherche axé sur la Structure des ProtéinesMcGill UniversityMontrealQuébecCanada
| | - J.-Paul Chapple
- William Harvey Research InstituteBarts and the London School of Medicine and DentistryQueen Mary University of LondonLondonUnited Kingdom
| | - Bernard Brais
- Laboratory of Neurogenetics of MotionMontreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
| | - Heather D. Durham
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill UniversityMontrealQuébecCanada
| |
Collapse
|
31
|
Tang NH, Jin Y. Shaping neurodevelopment: distinct contributions of cytoskeletal proteins. Curr Opin Neurobiol 2018; 51:111-118. [PMID: 29574219 PMCID: PMC6066413 DOI: 10.1016/j.conb.2018.02.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/20/2018] [Accepted: 02/27/2018] [Indexed: 12/28/2022]
Abstract
Development of a neuron critically depends on the organization of its cytoskeleton. Cytoskeletal components, such as tubulins and actins, have the remarkable ability to organize themselves into filaments and networks to support specialized and compartmentalized functions. Alterations in cytoskeletal proteins have long been associated with a variety of neurodevelopmental disorders. This review focuses on recent findings, primarily from forward genetic screens in Caenorhabditis elegans that illustrate how different tubulin protein isotypes can play distinct roles in neuronal development and function. Additionally, we discuss studies revealing new regulators of the actin cytoskeleton, and highlight recent technological advances in in vivo imaging and functional dissection of the neuronal cytoskeleton.
Collapse
Affiliation(s)
- Ngang Heok Tang
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| | - Yishi Jin
- Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
32
|
Lancaster E, Li J, Hanania T, Liem R, Scheideler MA, Scherer SS. Myelinated axons fail to develop properly in a genetically authentic mouse model of Charcot-Marie-Tooth disease type 2E. Exp Neurol 2018; 308:13-25. [PMID: 29940160 DOI: 10.1016/j.expneurol.2018.06.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 11/25/2022]
Abstract
We have analyzed a mouse model of Charcot-Marie-Tooth disease 2E (CMT2E) harboring a heterozygous p.Asn98Ser (p.N98S) Nefl mutation, whose human counterpart results in a severe, early-onset neuropathy. Behavioral, electrophysiological, and pathological analyses were done on separate cohorts of NeflN98S/+ mutant mice and their wild type Nefl+/+ littermates between 8 and 48 weeks of age. The motor performance of NeflN98S/+ mice, as evidenced by altered balance and gait measures, was impaired at every age examined (from 6 to 25 weeks of age). At all times examined, myelinated axons were smaller and contained markedly fewer neurofilaments in NeflN98S/+ mice, in all examined aspects of the PNS, from the nerve roots to the distal ends of the sciatic and caudal nerves. Similarly, the myelinated axons in the various tracts of the spinal cord and in the optic nerves were smaller and contained fewer neurofilaments in mutant mice. The myelinated axons in both the PNS and the CNS of mutant mice had relatively thicker myelin sheaths. The amplitude and the nerve conduction velocity of the caudal nerves were reduced in proportion with the diminished sizes of myelinated axons. Conspicuous aggregations of neurofilaments were only seen in primary sensory and motor neurons, and were largely confined to the cell bodies and proximal axons. There was evidence of axonal degeneration and regeneration of myelinated axons, mostly in distal nerves. In summary, the p.N98S mutation causes a profound reduction of neurofilaments in the myelinated axons of the PNS and CNS, resulting in substantially reduced axonal diameters, particularly of large myelinated axons, and distal axon loss in the PNS.
Collapse
Affiliation(s)
- Eunjoo Lancaster
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Jian Li
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Taleen Hanania
- Psychogenics Inc 215 College Road Paramus, NJ 07652, United States
| | - Ronald Liem
- Department of Pathology, Columbia University College of Physicians & Surgeons, New York, NY 10032, United States
| | | | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
33
|
Gong ZY, Lv GP, Gao LN, Lu Y, Guo J, Zang DW. Neurofilament Subunit L Levels in the Cerebrospinal Fluid and Serum of Patients with Amyotrophic Lateral Sclerosis. NEURODEGENER DIS 2018; 18:165-172. [PMID: 29898446 DOI: 10.1159/000488681] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 03/20/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND There are no reliable biomarkers that could evaluate the disease burden in amyotrophic lateral sclerosis (ALS). OBJECTIVES The aim of our study is to evaluate the changes in cerebrospinal fluid (CSF) and serum neurofilament subunit L (NF-L) in patients with ALS and to analyze the correlations between the levels of NF-L and clinical parameters. METHOD CSF and serum samples were obtained from 80 ALS patients and 40 controls. The levels of NF-L in CSF and serum were assessed, and disease progression parameters including duration, revised ALS Functional Rating Scale (ALSFRS-r) score, disease progression rate (DPR), upper motor neuron (UMN) score, and survival were analyzed by registered neurologists. All samples were measured using a commercial enzyme-linked immunosorbent assay. Statistical analyses were performed using Prism software. RESULTS Compared to the controls, the ALS patients displayed significantly increased levels of NF-L; these values were negatively correlated with the ALSFRS-r score and positively correlated with the decrease in ALSFRS-r score, DPR, and UMN score. There was no correlation between levels of NF-L and duration. In addition, the cumulative survival rate in ALS patients with a low level of NF-L was higher than in patients with a high level of NF-L. CONCLUSIONS NF-L levels increased in CSF and serum of patients with ALS. NF-L may thus be a neurodegenerative biomarker for predicting ALS severity and progression, and the survival of patients with this disease.
Collapse
Affiliation(s)
- Zhong-Ying Gong
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurology, Tianjin First Center Hospital, Tianjin Medical University, Tianjin, China
| | - Gao-Peng Lv
- Department of Neurology, Tianjin First Center Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li-Na Gao
- Department of Neurology, Tianjin First Center Hospital, Tianjin Medical University, Tianjin, China
| | - Yi Lu
- Department of Neurology, Tianjin First Center Hospital, Tianjin Medical University, Tianjin, China
| | - Jie Guo
- Department of Neurology, Tianjin First Center Hospital, Tianjin Medical University, Tianjin, China
| | - Da-Wei Zang
- Department of Neurology, Tianjin First Center Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
34
|
Intermediate filament accumulation can stabilize microtubules in Caenorhabditis elegans motor neurons. Proc Natl Acad Sci U S A 2018; 115:3114-3119. [PMID: 29511101 DOI: 10.1073/pnas.1721930115] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neural circuits utilize a coordinated cellular machinery to form and eliminate synaptic connections, with the neuronal cytoskeleton playing a prominent role. During larval development of Caenorhabditis elegans, synapses of motor neurons are stereotypically rewired through a process facilitated by dynamic microtubules (MTs). Through a genetic suppressor screen on mutant animals that fail to rewire synapses, and in combination with live imaging and ultrastructural studies, we find that intermediate filaments (IFs) stabilize MTs to prevent synapse rewiring. Genetic ablation of IFs or pharmacological disruption of IF networks restores MT growth and rescues synapse rewiring defects in the mutant animals, indicating that IF accumulation directly alters MT stability. Our work sheds light on the impact of IFs on MT dynamics and axonal transport, which is relevant to the mechanistic understanding of several human motor neuron diseases characterized by IF accumulation in axonal swellings.
Collapse
|
35
|
Genome-wide RNA-seq of iPSC-derived motor neurons indicates selective cytoskeletal perturbation in Brown-Vialetto disease that is partially rescued by riboflavin. Sci Rep 2017; 7:46271. [PMID: 28382968 PMCID: PMC5382781 DOI: 10.1038/srep46271] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022] Open
Abstract
Riboflavin is essential in numerous cellular oxidation/reduction reactions but is not synthesized by mammalian cells. Riboflavin absorption occurs through the human riboflavin transporters RFVT1 and RFVT3 in the intestine and RFVT2 in the brain. Mutations in these genes are causative for the Brown–Vialetto–Van Laere (BVVL), childhood-onset syndrome characterized by a variety of cranial nerve palsies as well as by spinal cord motor neuron (MN) degeneration. Why mutations in RFVTs result in a neural cell–selective disorder is unclear. As a novel tool to gain insights into the pathomechanisms underlying the disease, we generated MNs from induced pluripotent stem cells (iPSCs) derived from BVVL patients as an in vitro disease model. BVVL-MNs explained a reduction in axon elongation, partially improved by riboflavin supplementation. RNA sequencing profiles and protein studies of the cytoskeletal structures showed a perturbation in the neurofilament composition in BVVL-MNs. Furthermore, exploring the autophagy–lysosome pathway, we observed a reduced autophagic/mitophagic flux in patient MNs. These features represent emerging pathogenetic mechanisms in BVVL-associated neurodegeneration, partially rescued by riboflavin supplementation. Our data showed that this therapeutic strategy could have some limits in rescuing all of the disease features, suggesting the need to develop complementary novel therapeutic strategies.
Collapse
|
36
|
Yuan A, Rao MV, Veeranna, Nixon RA. Neurofilaments and Neurofilament Proteins in Health and Disease. Cold Spring Harb Perspect Biol 2017; 9:9/4/a018309. [PMID: 28373358 DOI: 10.1101/cshperspect.a018309] [Citation(s) in RCA: 495] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SUMMARYNeurofilaments (NFs) are unique among tissue-specific classes of intermediate filaments (IFs) in being heteropolymers composed of four subunits (NF-L [neurofilament light]; NF-M [neurofilament middle]; NF-H [neurofilament heavy]; and α-internexin or peripherin), each having different domain structures and functions. Here, we review how NFs provide structural support for the highly asymmetric geometries of neurons and, especially, for the marked radial expansion of myelinated axons crucial for effective nerve conduction velocity. NFs in axons extensively cross-bridge and interconnect with other non-IF components of the cytoskeleton, including microtubules, actin filaments, and other fibrous cytoskeletal elements, to establish a regionally specialized network that undergoes exceptionally slow local turnover and serves as a docking platform to organize other organelles and proteins. We also discuss how a small pool of oligomeric and short filamentous precursors in the slow phase of axonal transport maintains this network. A complex pattern of phosphorylation and dephosphorylation events on each subunit modulates filament assembly, turnover, and organization within the axonal cytoskeleton. Multiple factors, and especially turnover rate, determine the size of the network, which can vary substantially along the axon. NF gene mutations cause several neuroaxonal disorders characterized by disrupted subunit assembly and NF aggregation. Additional NF alterations are associated with varied neuropsychiatric disorders. New evidence that subunits of NFs exist within postsynaptic terminal boutons and influence neurotransmission suggests how NF proteins might contribute to normal synaptic function and neuropsychiatric disease states.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Mala V Rao
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Veeranna
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| | - Ralph A Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962.,Department of Psychiatry, New York University School of Medicine, New York, New York 10016.,Cell Biology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
37
|
Bonafede R, Mariotti R. ALS Pathogenesis and Therapeutic Approaches: The Role of Mesenchymal Stem Cells and Extracellular Vesicles. Front Cell Neurosci 2017; 11:80. [PMID: 28377696 PMCID: PMC5359305 DOI: 10.3389/fncel.2017.00080] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/08/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive muscle paralysis determined by the degeneration of motoneurons in the motor cortex brainstem and spinal cord. The ALS pathogenetic mechanisms are still unclear, despite the wealth of studies demonstrating the involvement of several altered signaling pathways, such as mitochondrial dysfunction, glutamate excitotoxicity, oxidative stress and neuroinflammation. To date, the proposed therapeutic strategies are targeted to one or a few of these alterations, resulting in only a minimal effect on disease course and survival of ALS patients. The involvement of different mechanisms in ALS pathogenesis underlines the need for a therapeutic approach targeted to multiple aspects. Mesenchymal stem cells (MSC) can support motoneurons and surrounding cells, reduce inflammation, stimulate tissue regeneration and release growth factors. On this basis, MSC have been proposed as promising candidates to treat ALS. However, due to the drawbacks of cell therapy, the possible therapeutic use of extracellular vesicles (EVs) released by stem cells is raising increasing interest. The present review summarizes the main pathological mechanisms involved in ALS and the related therapeutic approaches proposed to date, focusing on MSC therapy and their preclinical and clinical applications. Moreover, the nature and characteristics of EVs and their role in recapitulating the effect of stem cells are discussed, elucidating how and why these vesicles could provide novel opportunities for ALS treatment.
Collapse
Affiliation(s)
- Roberta Bonafede
- Department of Neuroscience, Biomedicine and Movement Sciences, University of VeronaVerona, Italy
| | - Raffaella Mariotti
- Department of Neuroscience, Biomedicine and Movement Sciences, University of VeronaVerona, Italy
| |
Collapse
|
38
|
Abstract
Amyotrophic lateral sclerosis (ALS) is a highly heterogeneous disease with no effective treatment. Drug development has been hampered by the lack of biomarkers that aid in early diagnosis, demonstrate target engagement, monitor disease progression, and can serve as surrogate endpoints to assess the efficacy of treatments. Fluid-based biomarkers may potentially address these issues. An ideal biomarker should exhibit high specificity and sensitivity for distinguishing ALS from control (appropriate disease mimics and other neurologic diseases) populations and monitor disease progression within individual patients. Significant progress has been made using cerebrospinal fluid, serum, and plasma in the search for ALS biomarkers, with urine and saliva biomarkers still in earlier stages of development. A few of these biomarker candidates have demonstrated use in patient stratification, predicting disease course (fast vs slow progression) and severity, or have been used in preclinical and clinical applications. However, while ALS biomarker discovery has seen tremendous advancements in the last decade, validating biomarkers and moving them towards the clinic remains more elusive. In this review, we highlight biomarkers that are moving towards clinical utility and the challenges that remain in order to implement biomarkers at all stages of the ALS drug development process.
Collapse
Affiliation(s)
- Lucas T Vu
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ, 85013, USA
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ, 85013, USA
| | - Robert Bowser
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ, 85013, USA.
- Department of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ, 85013, USA.
| |
Collapse
|
39
|
Characterization of novel dystonia musculorum mutant mice: Implications for central nervous system abnormality. Neurobiol Dis 2016; 96:271-283. [DOI: 10.1016/j.nbd.2016.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/20/2016] [Accepted: 09/24/2016] [Indexed: 11/19/2022] Open
|
40
|
Neurofilament depletion improves microtubule dynamics via modulation of Stat3/stathmin signaling. Acta Neuropathol 2016; 132:93-110. [PMID: 27021905 PMCID: PMC4911381 DOI: 10.1007/s00401-016-1564-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/31/2022]
Abstract
In neurons, microtubules form a dense array within axons, and the stability and function of this microtubule network is modulated by neurofilaments. Accumulation of neurofilaments has been observed in several forms of neurodegenerative diseases, but the mechanisms how elevated neurofilament levels destabilize axons are unknown so far. Here, we show that increased neurofilament expression in motor nerves of pmn mutant mice, a model of motoneuron disease, causes disturbed microtubule dynamics. The disease is caused by a point mutation in the tubulin-specific chaperone E (Tbce) gene, leading to an exchange of the most C-terminal amino acid tryptophan to glycine. As a consequence, the TBCE protein becomes instable which then results in destabilization of axonal microtubules and defects in axonal transport, in particular in motoneurons. Depletion of neurofilament increases the number and regrowth of microtubules in pmn mutant motoneurons and restores axon elongation. This effect is mediated by interaction of neurofilament with the stathmin complex. Accumulating neurofilaments associate with stathmin in axons of pmn mutant motoneurons. Depletion of neurofilament by Nefl knockout increases Stat3–stathmin interaction and stabilizes the microtubules in pmn mutant motoneurons. Consequently, counteracting enhanced neurofilament expression improves axonal maintenance and prolongs survival of pmn mutant mice. We propose that this mechanism could also be relevant for other neurodegenerative diseases in which neurofilament accumulation and loss of microtubules are prominent features.
Collapse
|
41
|
Longo FM. Transgenic mice: What are we learning about gene function and neurological disease? Neuroscientist 2016. [DOI: 10.1177/107385849500100601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Frank M. Longo
- Department of Neurology UCSF School of Medicine and
VA Medical Center San Francisco, California
| |
Collapse
|
42
|
Obál I, Klausz G, Mándi Y, Deli M, Siklós L, Engelhardt JI. Intraperitoneally administered IgG from patients with amyotrophic lateral sclerosis or from an immune-mediated goat model increase the levels of TNF-α, IL-6, and IL-10 in the spinal cord and serum of mice. J Neuroinflammation 2016; 13:121. [PMID: 27220674 PMCID: PMC4879728 DOI: 10.1186/s12974-016-0586-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/17/2016] [Indexed: 01/21/2023] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that involves the selective loss of the upper and lower motor neurons (MNs). Neuroinflammation has been implicated in the pathogenesis of the sporadic form of the disease. We earlier developed immune-mediated animal models of ALS and demonstrated humoral and cellular immune reactions in the nervous system and in the sera of patients and animals. The accumulation of immunoglobulin G (IgG), an elevated intracellular level of calcium, ultrastructural alterations in the MNs, and activation of the microglia were noted in the spinal cord of ALS patients. Similar alterations developed in mice inoculated intraperitoneally with IgG from ALS patients or from an immune-mediated goat model. Methods We have now examined whether the intraperitoneal injection of mice with IgG from sporadic ALS patients or from immunized goats with the homogenate of the anterior horn of the bovine spinal cord is associated with changes in the pro-inflammatory (TNF-α and IL-6) and anti-inflammatory (IL-10) cytokines in the spinal cord and serum of the mice. The levels of cytokines were measured by ELISA. Results Intraperitoneally administered IgG from the ALS patients induced subclinical signs of MN disease, while the injection of IgG from immunized goats resulted in a severe respiratory dysfunction and limb paralysis 24 h after the injections. Significantly increased levels of TNF-α and IL-10 were detected in the spinal cord of the mice injected with the human ALS IgG. The level of IL-6 increased primarily in the serum. The IgG from the immunized goats induced highly significant increases in the levels of all three cytokines in the serum and the spinal cord of mice. Conclusions Our earlier experiments had proved that when ALS IgG or IgG from immune-mediated animal models was inoculated into mice, it was taken up in the MNs and had the ability to initiate damage in them. The pathological process was paralleled by microglia recruitment and activation in the spinal cord. The present experiment revealed that these forms of IgG cause significant increases in certain cytokine levels locally in the spinal cord and in the serum of the inoculated mice. These results suggest that IgG directed to the MNs may be an initial element in the damage to the MNs both in human ALS and in its immune-mediated animal models.
Collapse
Affiliation(s)
- Izabella Obál
- Department of Neurology, University of Szeged, Szeged, Hungary
| | - Gergely Klausz
- Second Department of Internal Medicine and Cardiology Center, University of Szeged, Szeged, Hungary
| | - Yvette Mándi
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | - Mária Deli
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | - László Siklós
- Laboratory of Molecular Neurobiology, Institute of Biophysics, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| | | |
Collapse
|
43
|
Neurofilament light gene deletion exacerbates amyloid, dystrophic neurite, and synaptic pathology in the APP/PS1 transgenic model of Alzheimer's disease. Neurobiol Aging 2015; 36:2757-67. [DOI: 10.1016/j.neurobiolaging.2015.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 07/02/2015] [Accepted: 07/02/2015] [Indexed: 01/10/2023]
|
44
|
Abstract
ABSTRACT:In recognition of the 100th anniversary of Charcot’s death we have reviewed possible pathogenic mechanisms in amyotrophic lateral sclerosis (ALS). Advances in the last 5 years in molecular biology and genetics have identified mutations in the cytosolic dismutase (SODI) gene in some patients with familial ALS raising the possibility that oxidative stress may be involved in the pathogenesis. An excitotoxic pathogenesis has been implicated based on elevated plasma and CSF levels of amino acids and altered contents of amino acids in the nervous system of ALS patients and changes in the number of excitatory amino acid receptors. ALS sera containing antibodies to L-type calcium channels and the development of immune mediated lower and upper and lower motor neuron models have revitalized research efforts focusing on an immune basis for ALS. Other pathogenic mechanisms which have been the subject of recent research include elemental toxicity, apoptosis and programmed cell death and possibly a deficiency or abnormality in growth factors. Pathogenic processes for ALS must account for an increasing incidence of ALS, male preponderance, and the selective vulnerability of the corticomotoneuronal system.
Collapse
|
45
|
Verdes JM, Márquez M, Calliari A, Battes D, Moraña JA, Gimeno EJ, Odriozola E, Giannitti F, Guerrero F, Fidalgo LE, Pumarola M. A novel pathogenic mechanism for cerebellar lesions produced by Solanum bonariense in cattle. J Vet Diagn Invest 2015; 27:278-86. [PMID: 25901005 DOI: 10.1177/1040638715582048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Intoxication with Solanum bonariense in cattle causes cerebellar cortical degeneration with perikaryal vacuolation, axonal swelling, and death primarily of Purkinje cells, with accumulation of electron-dense residual storage bodies in membrane-bound vesicles. The pathogenesis of this disease is not fully understood. Previously, we proposed that inhibition of protein synthesis in Purkinje cells among other altered metabolic pathways could lead to cytoskeletal alterations, subsequently altering cell-specific axonal transport. In the present study, immunohistochemical and histochemical methods were used to identify neuronal cytoskeletal alterations and axonal loss, demyelination, and astrogliosis in the cerebellum of intoxicated bovines. Samples of cerebellum from 3 natural and 4 experimental cases and 2 control bovines were studied. Immunoreactivity against neurofilament (NF)-200KDa confirmed marked loss of Purkinje neurons, and phospho-NF protein, β-tubulin, and affinity reaction against phalloidin revealed an altered perikaryal distribution of neuronal cytoskeletal proteins in the remaining Purkinje cells in intoxicated cattle. Reactive astrogliosis in every layer of the cerebellar cortex was also observed with anti-glial fibrillary acidic protein immunohistochemistry. In affected cattle, demyelination and axonal loss in the cerebellar white matter, as well as basket cell loss were demonstrated with Klüver-Barrera and Bielschowsky stains, respectively. Based on these results, we propose that neuronal cytoskeletal alterations with subsequent interference of the axonal transport in Purkinje cells may play a relevant role in the pathogenesis of this neurodegenerative disorder, and also that demyelination and axonal loss in the cerebellar white matter, as well as astrogliosis in the gray matter, likely occur secondarily to Purkinje cell degeneration and death.
Collapse
Affiliation(s)
- José Manuel Verdes
- Departments of Molecular and Cellular Biology (Biophysics) (Verdes, Calliari, Battes) and Pathology (Verdes, Moraña), Facultad de Veterinaria, Universidad de la República, Montevideo, UruguayDepartment of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay (Calliari, Verdes)Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (Márquez, Pumarola)Institute of Pathology, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina (Gimeno)Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina (Odriozola)Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota and the "Instituto Nacional de Investigación Agropecuaria", La Estanzuela, Colonia, Uruguay (Giannitti)Departments of Anatomy and Animal Production (Guerrero), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, SpainVeterinary Clinical Sciences (Fidalgo), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Mercedes Márquez
- Departments of Molecular and Cellular Biology (Biophysics) (Verdes, Calliari, Battes) and Pathology (Verdes, Moraña), Facultad de Veterinaria, Universidad de la República, Montevideo, UruguayDepartment of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay (Calliari, Verdes)Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (Márquez, Pumarola)Institute of Pathology, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina (Gimeno)Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina (Odriozola)Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota and the "Instituto Nacional de Investigación Agropecuaria", La Estanzuela, Colonia, Uruguay (Giannitti)Departments of Anatomy and Animal Production (Guerrero), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, SpainVeterinary Clinical Sciences (Fidalgo), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Aldo Calliari
- Departments of Molecular and Cellular Biology (Biophysics) (Verdes, Calliari, Battes) and Pathology (Verdes, Moraña), Facultad de Veterinaria, Universidad de la República, Montevideo, UruguayDepartment of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay (Calliari, Verdes)Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (Márquez, Pumarola)Institute of Pathology, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina (Gimeno)Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina (Odriozola)Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota and the "Instituto Nacional de Investigación Agropecuaria", La Estanzuela, Colonia, Uruguay (Giannitti)Departments of Anatomy and Animal Production (Guerrero), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, SpainVeterinary Clinical Sciences (Fidalgo), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Daniel Battes
- Departments of Molecular and Cellular Biology (Biophysics) (Verdes, Calliari, Battes) and Pathology (Verdes, Moraña), Facultad de Veterinaria, Universidad de la República, Montevideo, UruguayDepartment of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay (Calliari, Verdes)Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (Márquez, Pumarola)Institute of Pathology, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina (Gimeno)Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina (Odriozola)Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota and the "Instituto Nacional de Investigación Agropecuaria", La Estanzuela, Colonia, Uruguay (Giannitti)Departments of Anatomy and Animal Production (Guerrero), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, SpainVeterinary Clinical Sciences (Fidalgo), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - José Antonio Moraña
- Departments of Molecular and Cellular Biology (Biophysics) (Verdes, Calliari, Battes) and Pathology (Verdes, Moraña), Facultad de Veterinaria, Universidad de la República, Montevideo, UruguayDepartment of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay (Calliari, Verdes)Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (Márquez, Pumarola)Institute of Pathology, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina (Gimeno)Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina (Odriozola)Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota and the "Instituto Nacional de Investigación Agropecuaria", La Estanzuela, Colonia, Uruguay (Giannitti)Departments of Anatomy and Animal Production (Guerrero), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, SpainVeterinary Clinical Sciences (Fidalgo), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Eduardo Juan Gimeno
- Departments of Molecular and Cellular Biology (Biophysics) (Verdes, Calliari, Battes) and Pathology (Verdes, Moraña), Facultad de Veterinaria, Universidad de la República, Montevideo, UruguayDepartment of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay (Calliari, Verdes)Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (Márquez, Pumarola)Institute of Pathology, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina (Gimeno)Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina (Odriozola)Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota and the "Instituto Nacional de Investigación Agropecuaria", La Estanzuela, Colonia, Uruguay (Giannitti)Departments of Anatomy and Animal Production (Guerrero), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, SpainVeterinary Clinical Sciences (Fidalgo), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Ernesto Odriozola
- Departments of Molecular and Cellular Biology (Biophysics) (Verdes, Calliari, Battes) and Pathology (Verdes, Moraña), Facultad de Veterinaria, Universidad de la República, Montevideo, UruguayDepartment of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay (Calliari, Verdes)Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (Márquez, Pumarola)Institute of Pathology, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina (Gimeno)Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina (Odriozola)Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota and the "Instituto Nacional de Investigación Agropecuaria", La Estanzuela, Colonia, Uruguay (Giannitti)Departments of Anatomy and Animal Production (Guerrero), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, SpainVeterinary Clinical Sciences (Fidalgo), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Federico Giannitti
- Departments of Molecular and Cellular Biology (Biophysics) (Verdes, Calliari, Battes) and Pathology (Verdes, Moraña), Facultad de Veterinaria, Universidad de la República, Montevideo, UruguayDepartment of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay (Calliari, Verdes)Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (Márquez, Pumarola)Institute of Pathology, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina (Gimeno)Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina (Odriozola)Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota and the "Instituto Nacional de Investigación Agropecuaria", La Estanzuela, Colonia, Uruguay (Giannitti)Departments of Anatomy and Animal Production (Guerrero), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, SpainVeterinary Clinical Sciences (Fidalgo), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Florentina Guerrero
- Departments of Molecular and Cellular Biology (Biophysics) (Verdes, Calliari, Battes) and Pathology (Verdes, Moraña), Facultad de Veterinaria, Universidad de la República, Montevideo, UruguayDepartment of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay (Calliari, Verdes)Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (Márquez, Pumarola)Institute of Pathology, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina (Gimeno)Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina (Odriozola)Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota and the "Instituto Nacional de Investigación Agropecuaria", La Estanzuela, Colonia, Uruguay (Giannitti)Departments of Anatomy and Animal Production (Guerrero), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, SpainVeterinary Clinical Sciences (Fidalgo), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Luis Eusebio Fidalgo
- Departments of Molecular and Cellular Biology (Biophysics) (Verdes, Calliari, Battes) and Pathology (Verdes, Moraña), Facultad de Veterinaria, Universidad de la República, Montevideo, UruguayDepartment of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay (Calliari, Verdes)Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (Márquez, Pumarola)Institute of Pathology, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina (Gimeno)Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina (Odriozola)Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota and the "Instituto Nacional de Investigación Agropecuaria", La Estanzuela, Colonia, Uruguay (Giannitti)Departments of Anatomy and Animal Production (Guerrero), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, SpainVeterinary Clinical Sciences (Fidalgo), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| | - Martí Pumarola
- Departments of Molecular and Cellular Biology (Biophysics) (Verdes, Calliari, Battes) and Pathology (Verdes, Moraña), Facultad de Veterinaria, Universidad de la República, Montevideo, UruguayDepartment of Proteins and Nucleic Acids, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay (Calliari, Verdes)Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain (Márquez, Pumarola)Institute of Pathology, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina (Gimeno)Estación Experimental Agropecuaria Balcarce, Instituto Nacional de Tecnología Agropecuaria, Balcarce, Argentina (Odriozola)Veterinary Diagnostic Laboratory, Veterinary Population Medicine Department, College of Veterinary Medicine, University of Minnesota and the "Instituto Nacional de Investigación Agropecuaria", La Estanzuela, Colonia, Uruguay (Giannitti)Departments of Anatomy and Animal Production (Guerrero), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, SpainVeterinary Clinical Sciences (Fidalgo), Facultad de Veterinaria, Universidad de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
46
|
Ahuja A, Dev K, Tanwar RS, Selwal KK, Tyagi PK. Copper mediated neurological disorder: visions into amyotrophic lateral sclerosis, Alzheimer and Menkes disease. J Trace Elem Med Biol 2015; 29:11-23. [PMID: 24975171 DOI: 10.1016/j.jtemb.2014.05.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/16/2014] [Accepted: 05/08/2014] [Indexed: 12/31/2022]
Abstract
Copper (Cu) is a vital redox dynamic metal that is possibly poisonous in superfluous. Metals can traditionally or intricately cause propagation in reactive oxygen species (ROS) accretion in cells and this may effect in programmed cell death. Accumulation of Cu causes necrosis that looks to be facilitated by DNA damage, followed by activation of P53. Cu dyshomeostasis has also been concerned in neurodegenerative disorders such as Alzheimer, Amyotrophic lateral sclerosis (ALS) or Menkes disease and is directly related to neurodegenerative syndrome that usually produces senile dementia. These mortal syndromes are closely related with an immense damage of neurons and synaptic failure in the brain. This review focuses on copper mediated neurological disorders with insights into amyotrophic lateral sclerosis, Alzheimer and Menkes disease.
Collapse
Affiliation(s)
- Anami Ahuja
- Department of Biotechnology, NIMS University, Jaipur, India.
| | - Kapil Dev
- Faculty of Medicine in Hradec Kralove, University of Charles, Prague, Czech Republic
| | - Ranjeet S Tanwar
- Department of Biotechnology, N.C. College of Engineering, Israna, India
| | - Krishan K Selwal
- Department of Biotechnology, Deenbandhu Chotu Ram University of Science and Technology, Murthal, India
| | - Pankaj K Tyagi
- Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut, India
| |
Collapse
|
47
|
Aung KH, Tsukahara S, Maekawa F, Nohara K, Nakamura K, Tanoue A. Role of Environmental Chemical Insult in Neuronal Cell Death and Cytoskeleton Damage. Biol Pharm Bull 2015; 38:1109-12. [DOI: 10.1248/bpb.b14-00890] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kyaw Htet Aung
- Department of Pharmacology, National Research Institute for Child Health and Development
- Division of Life Science, Graduate School of Science and Engineering, Saitama University
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University
| | - Fumihiko Maekawa
- Molecular Toxicology Section, Center for Environmental Health Sciences, National Institute for Environmental Studies
| | - Keiko Nohara
- Molecular Toxicology Section, Center for Environmental Health Sciences, National Institute for Environmental Studies
| | - Kazuaki Nakamura
- Department of Pharmacology, National Research Institute for Child Health and Development
| | - Akito Tanoue
- Department of Pharmacology, National Research Institute for Child Health and Development
| |
Collapse
|
48
|
Han F, Bulman DE, Panisset M, Grimes DA. Neurofilament M gene in a French-Canadian Population with Parkinson’s Disease. Can J Neurol Sci 2014; 32:68-70. [PMID: 15825549 DOI: 10.1017/s0317167100016905] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background:Recently, a single base pair substitution (G1747A) mutation of the neurofilament M (NF-M) gene was reported in a French-Canadian patient with early onset Parkinson’s disease (PD). Three unaffected siblings were found to be heterozygotes for the NF-M Gly336Ser mutation but, to date, no other affected PD individuals have been found with a similar mutation. No other individuals with Parkinson’s disease and of similar ethnic background have been screened for this mutation.Methods:We screened 102 French-Canadian patients with definite PD and 45 French-Canadian controls for this substitution in the NF-M gene using a PCR-restriction enzyme digestion method.Results:None of the patients or controls carried this mutation.Conclusion:Our results would indicate that this mutation is not common even in a PD population of similar ethnic background and suggest this change represents a rare variant. However, these results do not exclude the possibility that other mutations in this gene could be present.
Collapse
Affiliation(s)
- F Han
- Ottawa Health Research Institute, University of Ottawa, Centre for Neuromuscular Disease, Ottawa, Canada
| | | | | | | |
Collapse
|
49
|
Louis ED. From neurons to neuron neighborhoods: the rewiring of the cerebellar cortex in essential tremor. CEREBELLUM (LONDON, ENGLAND) 2014; 13:501-12. [PMID: 24435423 PMCID: PMC4077904 DOI: 10.1007/s12311-013-0545-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Remarkably little has been written on the biology of essential tremor (ET), despite its high prevalence. The olivary model, first proposed in the 1970s, is the traditional disease model for ET; however, the model is problematic for a number of reasons. Recently, intensive tissue-based studies have identified a series of structural changes in the brains of most ET cases, and nearly all of the observed changes are located in the cerebellar cortex. These studies suggest that Purkinje cells are central to the pathogenesis of ET and may thus provide a focus for the development of novel therapeutic strategies. Arising from these studies, a new model of ET proposes that the population of Purkinje cells represents the site of the initial molecular/cellular events leading to ET. Furthermore, a number of secondary changes/remodeling observed in the molecular and granular layers (i.e., in the Purkinje cell "neighborhood") are likely to be of additional mechanistic importance. On a physiological level, the presence of remodeling indicates the likely formation of aberrant synapses and the creation of new/abnormal cortical circuits in ET. Specific efforts need to be devoted to understanding the cascade of biochemical and cellular events occurring in the Purkinje cell layer in ET and its neuron neighborhood, as well as the physiological effects of secondary remodeling/rewiring that are likely to be occurring in this brain region in ET.
Collapse
Affiliation(s)
- Elan D Louis
- GH Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA,
| |
Collapse
|
50
|
Chen H, Qian K, Du Z, Cao J, Petersen A, Liu H, Blackbourn LW, Huang CL, Errigo A, Yin Y, Lu J, Ayala M, Zhang SC. Modeling ALS with iPSCs reveals that mutant SOD1 misregulates neurofilament balance in motor neurons. Cell Stem Cell 2014; 14:796-809. [PMID: 24704493 DOI: 10.1016/j.stem.2014.02.004] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 01/12/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) presents motoneuron (MN)-selective protein inclusions and axonal degeneration but the underlying mechanisms of such are unknown. Using induced pluripotent cells (iPSCs) from patients with mutation in the Cu/Zn superoxide dismutase (SOD1) gene, we show that spinal MNs, but rarely non-MNs, exhibited neurofilament (NF) aggregation followed by neurite degeneration when glia were not present. These changes were associated with decreased stability of NF-L mRNA and binding of its 3' UTR by mutant SOD1 and thus altered protein proportion of NF subunits. Such MN-selective changes were mimicked by expression of a single copy of the mutant SOD1 in human embryonic stem cells and were prevented by genetic correction of the SOD1 mutation in patient's iPSCs. Importantly, conditional expression of NF-L in the SOD1 iPSC-derived MNs corrected the NF subunit proportion, mitigating NF aggregation and neurite degeneration. Thus, NF misregulation underlies mutant SOD1-mediated NF aggregation and axonal degeneration in ALS MNs.
Collapse
Affiliation(s)
- Hong Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Kun Qian
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Zhongwei Du
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Jingyuan Cao
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Andrew Petersen
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Huisheng Liu
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | | | | | - Anthony Errigo
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Yingnan Yin
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Jianfeng Lu
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Melvin Ayala
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA
| | - Su-Chun Zhang
- Waisman Center, University of Wisconsin, Madison, WI 53705, USA; Department of Neuroscience and Department of Neurology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|