1
|
Lee C, Kim MJ, Kumar A, Lee HW, Yang Y, Kim Y. Vascular endothelial growth factor signaling in health and disease: from molecular mechanisms to therapeutic perspectives. Signal Transduct Target Ther 2025; 10:170. [PMID: 40383803 PMCID: PMC12086256 DOI: 10.1038/s41392-025-02249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/09/2025] [Accepted: 04/21/2025] [Indexed: 05/20/2025] Open
Abstract
Vascular endothelial growth factor (VEGF) signaling is a critical regulator of vasculogenesis, angiogenesis, and lymphangiogenesis, processes that are vital for the development of vascular and lymphatic systems, tissue repair, and the maintenance of homeostasis. VEGF ligands and their receptors orchestrate endothelial cell proliferation, migration, and survival, playing a pivotal role in dynamic vascular remodeling. Dysregulated VEGF signaling drives diverse pathological conditions, including tumor angiogenesis, cardiovascular diseases, and ocular disorders. Excessive VEGF activity promotes tumor growth, invasion, and metastasis, while insufficient signaling contributes to impaired wound healing and ischemic diseases. VEGF-targeted therapies, such as monoclonal antibodies and tyrosine kinase inhibitors, have revolutionized the treatment of diseases involving pathological angiogenesis, offering significant clinical benefits in oncology and ophthalmology. These therapies inhibit angiogenesis and slow disease progression, but they often face challenges such as therapeutic resistance, suboptimal efficacy, and adverse effects. To further explore these issues, this review provides a comprehensive overview of VEGF ligands and receptors, elucidating their molecular mechanisms and regulatory networks. It evaluates the latest progress in VEGF-targeted therapies and examines strategies to address current challenges, such as resistance mechanisms. Moreover, the discussion includes emerging therapeutic strategies such as innovative drug delivery systems and combination therapies, highlighting the continuous efforts to improve the effectiveness and safety of VEGF-targeted treatments. This review highlights the translational potential of recent discoveries in VEGF biology for improving patient outcomes.
Collapse
Affiliation(s)
- Chunsik Lee
- Department of R&D, GEMCRO Inc, Seoul, Republic of Korea.
| | - Myung-Jin Kim
- Department of Biological Sciences and Research Institute of Women's Health, Sookmyung Women's University, Seoul, Republic of Korea
| | - Anil Kumar
- Center for Research and Innovations, Adichunchanagiri University, Mandya, Karnataka, India
| | - Han-Woong Lee
- Department of R&D, GEMCRO Inc, Seoul, Republic of Korea
| | - Yunlong Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yonghwan Kim
- Department of Biological Sciences and Research Institute of Women's Health, Sookmyung Women's University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Zhang Y, Li J, Zhang L, Zhang Y. Vascular endothelial growth factors in airway allergic diseases: pathophysiological functions and therapeutic prospects. Expert Rev Clin Immunol 2025; 21:577-586. [PMID: 40286021 DOI: 10.1080/1744666x.2025.2499597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/27/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025]
Abstract
INTRODUCTION Vascular endothelial growth factors (VEGFs) play a crucial role in regulating physiological angiogenesis and homeostasis during growth and development. Recent advancements in our knowledge of VEGFs have revealed their complex role in coordinating vascular homeostasis and pathological role in various airway allergic reactions and structural remodeling, especially in allergic asthma and allergic rhinitis (AR), which has become more apparent. AREAS COVERED After an extensive search of PubMed and Web of Science databases, our review covered articles published from 1989 to 2024. The purpose of this review was to review previous studies on VEGFs involved in inflammatory progression and tissue remodeling in airway allergic diseases, to summarize the relevant pathways. This article further reviews that VEGFs and their receptors can also be potential targets for treating airway allergic diseases. EXPERT OPINION The prevalence of airway allergic diseases is increasing, which has caused a serious economic burden. VEGFs and their receptors have been recognized as potential targets for therapeutic interventions, which have been effectively applied in the treatment of tumors and other diseases. Fully elucidating the involvement of VEGFs in the disease process will help us understand their mechanisms of action and develop targeted therapies for allergic diseases.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingyun Li
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Luo Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Liu N, Nakano H, Nakano A. Mutual Regulation of Cardiovascular and Hematopoietic Development. Curr Cardiol Rep 2025; 27:86. [PMID: 40261519 PMCID: PMC12014711 DOI: 10.1007/s11886-025-02236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/03/2025] [Indexed: 04/24/2025]
Abstract
PURPOSE OF REVIEW The cardiovascular and hematopoietic systems share molecular mechanisms and regulatory interactions across species. Endocardial hematopoiesis, a debated topic in mice, is actually an evolutionarily conserved process from Drosophila. This review explores the origins and significance of endocardial hematopoiesis, highlighting its role in cardiac development and macrophage formation. RECENT FINDINGS Despite extensive lineage-tracing and transcriptome studies, it remained unclear until single-cell RNA sequencing (scRNA-seq) identified that endocardial cells possess an intrinsic hematopoietic program independent of known hematopoietic organs. These endocardial-derived macrophages contribute uniquely to cardiac morphogenesis, supporting valve maturation and tissue remodeling. Endocardial hematopoiesis is an evolutionarily conserved phenomenon that is essential for developmental process. The heterogeneity of tissue-resident macrophages and their specialized functions in cardiac development have been further unraveled by single-cell analysis. This review provides an evolutionary perspective on endocardial hematopoiesis and highlights its critical contributions of hematopoietic cells to heart formation and homeostasis.
Collapse
Affiliation(s)
- Norika Liu
- International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjyo, Chuou-ku, Kumamoto-Shi, Kumamoto, 860-0811, Japan.
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, USA.
| | - Haruko Nakano
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, USA
| | - Atsushi Nakano
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, USA
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
- David Geffen Department of Medicine, Division of Cardiology, University of California Los Angeles, Los Angeles, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, USA
| |
Collapse
|
4
|
Nehme E, Panda A, Migeotte I, Pasque V. Extra-embryonic mesoderm during development and in in vitro models. Development 2025; 152:DEV204624. [PMID: 40085077 DOI: 10.1242/dev.204624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Indexed: 03/16/2025]
Abstract
Extra-embryonic tissues provide protection and nutrition in vertebrates, as well as a connection to the maternal tissues in mammals. The extra-embryonic mesoderm is an essential and understudied germ layer present in amniotes. It is involved in hematopoiesis, as well as in the formation of extra-embryonic structures such as the amnion, umbilical cord and placenta. The origin and specification of extra-embryonic mesoderm are not entirely conserved across species, and the molecular mechanisms governing its formation and function are not fully understood. This Review begins with an overview of the embryonic origin and function of extra-embryonic mesoderm in vertebrates from in vivo studies. We then compare in vitro models that generate extra-embryonic mesoderm-like cells. Finally, we discuss how insights from studying both embryos and in vitro systems can aid in designing even more advanced stem cell-based embryo models.
Collapse
Affiliation(s)
- Eliana Nehme
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Amitesh Panda
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| | - Isabelle Migeotte
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Vincent Pasque
- Department of Development and Regeneration, Leuven Stem Cell Institute, Leuven Institute for Single-cell Omics (LISCO), KU Leuven-University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
5
|
Kang JI, Choi YK, Han SC, Hyun JW, Koh YS, Oh J, Boo HJ, Yoo ES, Kang HK. 5-Fluorouracil induces hair loss by inhibiting β-catenin signaling and angiogenesis. Chem Biol Interact 2025; 408:111416. [PMID: 39922517 DOI: 10.1016/j.cbi.2025.111416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
Chemotherapy-induced alopecia (CIA) is a side effect of the anticancer drug 5-fluorouracil (5-FU). However, the mechanism of action in hair follicle cells is unclear. This study investigated the mechanism of action of 5-FU on the hair cycle and growth in vitro and in vivo. Intraperitoneal injection of 5-FU into C57BL/6 mice delayed anagen initiation, resulting in small hair follicles. 5-FU inhibited angiogenesis by reducing cluster of differentiation 31+ cells, vascular endothelial growth factor, and fetal liver kinase-1 expression in mouse skin tissue and rat vibrissa dermal papilla (rDP) cells. 5-FU induced cell death in rDP cells and keratinocytes by enhancing cell cycle arrest or reducing the ratio of B-cell lymphoma 2 (Bcl-2) to Bcl-2-associated X levels. Immunoblotting and confocal microscopy showed that 5-FU inhibited the nuclear translocation of β-catenin in rDP cells and decreased fibroblast growth factor 7 and 10 secretion. Conversely, molecule-specific inhibitors did not prevent rDP cell death despite protein kinase B and Jun N-terminal kinase activation by 5-FU, indicating their indirect involvement. These results suggest that 5-FU inhibits wingless-related integration site/β-catenin signaling and angiogenesis, resulting in anagen-to-catagen transition and delaying anagen initiation. This study provides foundational data for developing treatments against CIA in patients with cancer undergoing 5-FU chemotherapy.
Collapse
Affiliation(s)
- Jung-Il Kang
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea; Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea
| | - Youn Kyung Choi
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea; Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea
| | - Sang-Chul Han
- Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea
| | - Jin Won Hyun
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea; Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea
| | - Young-Sang Koh
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea; Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea
| | - Jaeseong Oh
- Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea
| | - Hye-Jin Boo
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea; Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea
| | - Eun-Sook Yoo
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea; Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea
| | - Hee-Kyoung Kang
- Jeju Research Center for Natural Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea; Department of Medicine, College of Medicine, Jeju National University, 102 Jejudaehakno, Jeju, 63243, South Korea.
| |
Collapse
|
6
|
Khouri-Farah N, Winchester EW, Schilder BM, Robinson K, Curtis SW, Skene NG, Leslie-Clarkson EJ, Cotney J. Gene expression patterns of the developing human face at single cell resolution reveal cell type contributions to normal facial variation and disease risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.18.633396. [PMID: 39868299 PMCID: PMC11761091 DOI: 10.1101/2025.01.18.633396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Craniofacial development gives rise to the complex structures of the face and involves the interplay of diverse cell types. Despite its importance, our understanding of human-specific craniofacial developmental mechanisms and their genetic underpinnings remains limited. Here, we present a comprehensive single-nucleus RNA sequencing (snRNA-seq) atlas of human craniofacial development from craniofacial tissues of 24 embryos that span six key time points during the embryonic period (4-8 post-conception weeks). This resource resolves the transcriptional dynamics of seven major cell types and uncovers distinct major cell types, including muscle progenitors and cranial neural crest cells (CNCCs), as well as dozens of subtypes of ectoderm and mesenchyme. Comparative analyses reveal substantial conservation of major cell types, alongside human biased differences in gene expression programs. CNCCs, which play a crucial role in craniofacial morphogenesis, exhibit the lowest marker gene conservation, underscoring their evolutionary plasticity. Spatial transcriptomics further localizes cell populations, providing a detailed view of their developmental roles and anatomical context. We also link these developmental processes to genetic variation, identifying cell type-specific enrichments for common variants associated with facial morphology and rare variants linked to orofacial clefts. Intriguingly, Neanderthal-introgressed sequences are enriched near genes with biased expression in cartilage and specialized ectodermal subtypes, suggesting their contribution to modern human craniofacial features. This atlas offers unprecedented insights into the cellular and genetic mechanisms shaping the human face, highlighting conserved and distinctly human aspects of craniofacial biology. Our findings illuminate the developmental origins of craniofacial disorders, the genetic basis of facial variation, and the evolutionary legacy of ancient hominins. This work provides a foundational resource for exploring craniofacial biology, with implications for developmental genetics, evolutionary biology, and clinical research into congenital anomalies.
Collapse
Affiliation(s)
| | | | - Brian M Schilder
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0BZ, UK
- UK Dementia Research Institute at Imperial College London, London, W12 0BZ, UK
| | - Kelsey Robinson
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sarah W Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nathan G Skene
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, W12 0BZ, UK
- UK Dementia Research Institute at Imperial College London, London, W12 0BZ, UK
| | | | - Justin Cotney
- Department of Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
7
|
Wang ZY, Mehra A, Wang QC, Gupta S, Ribeiro da Silva A, Juan T, Günther S, Looso M, Detleffsen J, Stainier DYR, Marín-Juez R. flt1 inactivation promotes zebrafish cardiac regeneration by enhancing endothelial activity and limiting the fibrotic response. Development 2024; 151:dev203028. [PMID: 39612288 PMCID: PMC11634031 DOI: 10.1242/dev.203028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/22/2024] [Indexed: 12/01/2024]
Abstract
VEGFA administration has been explored as a pro-angiogenic therapy for cardiovascular diseases including heart failure for several years, but with little success. Here, we investigate a different approach to augment VEGFA bioavailability: by deleting the VEGFA decoy receptor VEGFR1 (also known as FLT1), one can achieve more physiological VEGFA concentrations. We find that after cryoinjury, zebrafish flt1 mutant hearts display enhanced coronary revascularization and endocardial expansion, increased cardiomyocyte dedifferentiation and proliferation, and decreased scarring. Suppressing Vegfa signaling in flt1 mutants abrogates these beneficial effects of flt1 deletion. Transcriptomic analyses of cryoinjured flt1 mutant hearts reveal enhanced endothelial MAPK/ERK signaling and downregulation of the transcription factor gene egr3. Using newly generated genetic tools, we observe egr3 upregulation in the regenerating endocardium, and find that Egr3 promotes myofibroblast differentiation. These data indicate that with enhanced Vegfa bioavailability, the endocardium limits myofibroblast differentiation via egr3 downregulation, thereby providing a more permissive microenvironment for cardiomyocyte replenishment after injury.
Collapse
Affiliation(s)
- Zhen-Yu Wang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Armaan Mehra
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Qian-Chen Wang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Savita Gupta
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Agatha Ribeiro da Silva
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Thomas Juan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Stefan Günther
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Mario Looso
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Jan Detleffsen
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Rhine-Main, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Rubén Marín-Juez
- Centre Hospitalier Universitaire Sainte-Justine Research Center, 3175 Chemin de la Côte-Sainte-Catherine, H3T 1C5 Montréal, QC, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, H3T 1J4 Montréal, QC, Canada
| |
Collapse
|
8
|
Hassan RM, Ali IH, El Kerdawy AM, Abo-Elfadl MT, Ghannam IAY. Novel benzenesulfonamides as dual VEGFR2/FGFR1 inhibitors targeting breast cancer: Design, synthesis, anticancer activity and in silico studies. Bioorg Chem 2024; 152:107728. [PMID: 39178704 DOI: 10.1016/j.bioorg.2024.107728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 08/26/2024]
Abstract
In the current study, a new series of benzenesulfonamides 6a-r was designed and synthesized as dual VEGFR-2 and FGFR1 kinase inhibitors with anti-cancer activity. The 4-trifluoromethyl benzenesulfonamide 6l exhibited the highest dual VEGFR-2/FGFR1 inhibitory activity with IC50 values of 0.025 and 0.026 µM, respectively. It showed a higher activity than sorafenib and staurosporine by 1.8- and 1.3-fold, respectively. Furthermore, compound 6l was further tested on EGFR and PDGFR-β kinases showing IC50 values of 0.106 and 0.077 µM, respectively. The target compounds were tested for their anticancer activity against NCI-60 panel of cancer cell lines at 10 µM concentration, where compound 6l displayed the highest mean growth inhibition percent % (GI%) of 60.38%. Compounds 6a, 6b, 6e, 6f, 6h-l, and 6n-r revealed promising GI% on breast cancer cell lines (MCF-7, T-47D, and MDA-MB-231), and were subjected to IC50 determination on these cell lines. The tested compounds showed a higher activity on T-47D and MCF-7 cell lines over MDA-MB-231 cell line compared to the used reference standard; sorafenib. Compounds 6e, 6h-j, 6l and 6o revealed IC50 values ≤ 20 µM against T-47D cell line, furthermore, they were found to be non-cytotoxic on Vero normal cell line. Furthermore, the effect of the most active compounds 6i, and 6l in T-47D cells on cell cycle analysis progression, cell apoptosis, and apoptosis markers was investigated. Both compounds arrested cell cycle progression at G1 phase, furthermore, they enhanced early and late apoptosis, as well as necrosis. The capability of compounds 6i, and 6l to induce apoptosis was further confirmed by their ability to raise BAX/BCl-2 ratio and caspase-3 level in the treated cells. Cell migration assay revealed that both compounds 6i and 6l have anti-migratory effects compared to control T-47D cells after 24, and 48 h. Molecular docking studies for compounds 6a-r on VEGFR-2 and FGFR1 binding sites showed that they exhibit an analogous binding mode in both target kinases which agrees with that of type II kinase inhibitors.
Collapse
Affiliation(s)
- Rasha M Hassan
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (ID: 60014618), P.O. 12622, Dokki, Giza, Egypt
| | - Islam H Ali
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Ahmed M El Kerdawy
- School of Pharmacy, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mahmoud T Abo-Elfadl
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo 12622, Egypt; Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Cairo, Egypt
| | - Iman A Y Ghannam
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt.
| |
Collapse
|
9
|
Mitchell AK, Bliss RR, Church FC. Exercise, Neuroprotective Exerkines, and Parkinson's Disease: A Narrative Review. Biomolecules 2024; 14:1241. [PMID: 39456173 PMCID: PMC11506540 DOI: 10.3390/biom14101241] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease in which treatment often includes an exercise regimen. Exercise is neuroprotective in animal models of PD, and, more recently, human clinical studies have verified exercise's disease-modifying effect. Aerobic exercise and resistance training improve many of PD's motor and non-motor symptoms, while neuromotor therapy and stretching/flexibility exercises positively contribute to the quality of life in people with PD. Therefore, understanding the role of exercise in managing this complex disorder is crucial. Exerkines are bioactive substances that are synthesized and released during exercise and have been implicated in several positive health outcomes, including neuroprotection. Exerkines protect neuronal cells in vitro and rodent PD models in vivo. Aerobic exercise and resistance training both increase exerkine levels in the blood, suggesting a role for exerkines in the neuroprotective theory. Many exerkines demonstrate the potential for protecting the brain against pathological missteps caused by PD. Every person (people) with Parkinson's (PwP) needs a comprehensive exercise plan tailored to their unique needs and abilities. Here, we provide an exercise template to help PwP understand the importance of exercise for treating PD, describe barriers confronting many PwP in their attempt to exercise, provide suggestions for overcoming these barriers, and explore the role of exerkines in managing PD. In conclusion, exercise and exerkines together create a powerful neuroprotective system that should contribute to slowing the chronic progression of PD.
Collapse
Affiliation(s)
- Alexandra K. Mitchell
- Department of Health Sciences, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | | | - Frank C. Church
- Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Zedde M, Pascarella R. The Cerebrovascular Side of Plasticity: Microvascular Architecture across Health and Neurodegenerative and Vascular Diseases. Brain Sci 2024; 14:983. [PMID: 39451997 PMCID: PMC11506257 DOI: 10.3390/brainsci14100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The delivery of nutrients to the brain is provided by a 600 km network of capillaries and microvessels. Indeed, the brain is highly energy demanding and, among a total amount of 100 billion neurons, each neuron is located just 10-20 μm from a capillary. This vascular network also forms part of the blood-brain barrier (BBB), which maintains the brain's stable environment by regulating chemical balance, immune cell transport, and blocking toxins. Typically, brain microvascular endothelial cells (BMECs) have low turnover, indicating a stable cerebrovascular structure. However, this structure can adapt significantly due to development, aging, injury, or disease. Temporary neural activity changes are managed by the expansion or contraction of arterioles and capillaries. Hypoxia leads to significant remodeling of the cerebrovascular architecture and pathological changes have been documented in aging and in vascular and neurodegenerative conditions. These changes often involve BMEC proliferation and the remodeling of capillary segments, often linked with local neuronal changes and cognitive function. Cerebrovascular plasticity, especially in arterioles, capillaries, and venules, varies over different time scales in development, health, aging, and diseases. Rapid changes in cerebral blood flow (CBF) occur within seconds due to increased neural activity. Prolonged changes in vascular structure, influenced by consistent environmental factors, take weeks. Development and aging bring changes over months to years, with aging-associated plasticity often improved by exercise. Injuries cause rapid damage but can be repaired over weeks to months, while neurodegenerative diseases cause slow, varied changes over months to years. In addition, if animal models may provide useful and dynamic in vivo information about vascular plasticity, humans are more complex to investigate and the hypothesis of glymphatic system together with Magnetic Resonance Imaging (MRI) techniques could provide useful clues in the future.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy;
| |
Collapse
|
11
|
Liu Y, Liang JM, Guo GX, Qiu YH, Yu LL, Tsim KWK, Qin QW, Chan GKL, Hu WH. Screening of herbal extracts binding with vascular endothelial growth factor by applying HerboChip platform. Chin Med 2024; 19:122. [PMID: 39252102 PMCID: PMC11382504 DOI: 10.1186/s13020-024-00987-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Traditional Chinese medicine (TCM) has been hailed as a rich source of medicine, but many types of herbs and their functions still need to be rapidly discovered and elucidated. HerboChip, a target-based drug screening platform, is an array of different fractions deriving from herbal extracts. This study was designed to identify effective components from TCM that interact with vascular endothelial growth factor (VEGF) as a target using HerboChip. METHODS Selected TCMs that are traditionally used as remedies for cancer prevention and wound healing were determined and extracted with 50% ethanol. Biotinylated-VEGF was hybridized with over 500 chips coated with different HPLC-separated fractions from TCM extracts and straptavidin-Cy5 was applied to identify plant extracts containing VEGF-binding fractions. Cytotoxicity of selected herbal extracts and their activities on VEGF-mediated angiogenic functions were evaluated. RESULTS Over 500 chips were screened within a week, and ten positive hits were identified. The interaction of the identified herbal extracts with VEGF was confirmed in cultured endothelial cells. The identified herbs promoted or inhibited VEGF-mediated cell proliferation, migration and tube formation. Results from western blotting analysis demonstrated the identified herbal extracts significantly affected VEGF-triggered phosphorylations of eNOS, Akt and Erk. Five TCMs demonstrated potentiating activities on the VEGF response and five TCMs revealed suppressive activities. CONCLUSIONS The current results demonstrated the applicability of the HerboChip platform and systematically elucidated the activity of selected TCMs on angiogenesis and its related signal transduction mechanisms.
Collapse
Affiliation(s)
- Yang Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jia-Ming Liang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Guo-Xia Guo
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Huan Qiu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China
| | - Le-Le Yu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Karl Wah-Keung Tsim
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Gallant Biotechnology Limited, Hong Kong, China
| | - Qi-Wei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China
| | - Gallant Kar-Lun Chan
- Gallant Biotechnology Limited, Hong Kong, China.
- Yingli (Zhongshan) Biotechnology Limited, Zhongshan, China.
| | - Wei-Hui Hu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| |
Collapse
|
12
|
Liu T, Hao J, Lei H, Chen Y, Liu L, Jia L, Gu J, Kang H, Shi J, He J, Song Y, Tang Y, Fan D. Recombinant collagen for the repair of skin wounds and photo-aging damage. Regen Biomater 2024; 11:rbae108. [PMID: 39323745 PMCID: PMC11422187 DOI: 10.1093/rb/rbae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/01/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024] Open
Abstract
The skin, being the body's primary defense mechanism, is susceptible to various injuries such as epidermal wounds, natural aging, and ultraviolet-induced damage. As a result, there is growing interest in researching skin repair methods. Traditional animal-derived collagen, widely available on the market, poses risks due to its immunogenicity and potential for viral contamination. In contrast, recombinant collagen sourced from human genes offers a safer alternative. To investigate the potential of human recombinant collagen in skin repair, our research team applied two types, type I human collagen (Col I) and CF-1552(I), to two different skin injury models: a wound-healing model and a photo-aging model. Our findings indicate that both Col I and CF-1552(I) effectively enhance wound healing and repair skin damaged by ultraviolet exposure. Notably, CF-1552(I) showed effects comparable to Col I in promoting cell proliferation in the wound-healing model and increasing malondialdehyde content in the photo-aging model, suggesting that CF-1552(I) may offer greater potential for skin repair compared to the larger Col I molecule.
Collapse
Affiliation(s)
- Taishan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| | - Jiayun Hao
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| | - Huan Lei
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| | - Yanru Chen
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| | - Lin Liu
- Xi'an Giant Biotechnology Co. Ltd., Xi'an 710100, China
| | - Liping Jia
- Xi'an Giant Biotechnology Co. Ltd., Xi'an 710100, China
| | - Juan Gu
- Shaanxi Giant Biotechnology Co. Ltd., Xi'an 710076, China
| | - Huaping Kang
- Shaanxi Giant Biotechnology Co. Ltd., Xi'an 710076, China
| | - Jingjing Shi
- Shaanxi Giant Biotechnology Co. Ltd., Xi'an 710076, China
| | - Jing He
- Xi'an Giant Biotechnology Co. Ltd., Xi'an 710100, China
| | - Yangbin Song
- Shaanxi Giant Biotechnology Co. Ltd., Xi'an 710076, China
| | - Yuqi Tang
- Shaanxi Giant Biotechnology Co. Ltd., Xi'an 710076, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| |
Collapse
|
13
|
Tanke NT, Liu Z, Gore MT, Bougaran P, Linares MB, Marvin A, Sharma A, Oatley M, Yu T, Quigley K, Vest S, Cook JG, Bautch VL. Endothelial Cell Flow-Mediated Quiescence Is Temporally Regulated and Utilizes the Cell Cycle Inhibitor p27. Arterioscler Thromb Vasc Biol 2024; 44:1265-1282. [PMID: 38602102 PMCID: PMC11238946 DOI: 10.1161/atvbaha.124.320671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Endothelial cells regulate their cell cycle as blood vessels remodel and transition to quiescence downstream of blood flow-induced mechanotransduction. Laminar blood flow leads to quiescence, but how flow-mediated quiescence is established and maintained is poorly understood. METHODS Primary human endothelial cells were exposed to laminar flow regimens and gene expression manipulations, and quiescence depth was analyzed via time-to-cell cycle reentry after flow cessation. Mouse and zebrafish endothelial expression patterns were examined via scRNA-seq (single-cell RNA sequencing) analysis, and mutant or morphant fish lacking p27 were analyzed for endothelial cell cycle regulation and in vivo cellular behaviors. RESULTS Arterial flow-exposed endothelial cells had a distinct transcriptome, and they first entered a deep quiescence, then transitioned to shallow quiescence under homeostatic maintenance conditions. In contrast, venous flow-exposed endothelial cells entered deep quiescence early that did not change with homeostasis. The cell cycle inhibitor p27 (CDKN1B) was required to establish endothelial flow-mediated quiescence, and expression levels positively correlated with quiescence depth. p27 loss in vivo led to endothelial cell cycle upregulation and ectopic sprouting, consistent with loss of quiescence. HES1 and ID3, transcriptional repressors of p27 upregulated by arterial flow, were required for quiescence depth changes and the reduced p27 levels associated with shallow quiescence. CONCLUSIONS Endothelial cell flow-mediated quiescence has unique properties and temporal regulation of quiescence depth that depends on the flow stimulus. These findings are consistent with a model whereby flow-mediated endothelial cell quiescence depth is temporally regulated downstream of p27 transcriptional regulation by HES1 and ID3. The findings are important in understanding endothelial cell quiescence misregulation that leads to vascular dysfunction and disease.
Collapse
Affiliation(s)
- Natalie T Tanke
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ziqing Liu
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Michaelanthony T Gore
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Pauline Bougaran
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Mary B Linares
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Allison Marvin
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Arya Sharma
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Morgan Oatley
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Tianji Yu
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kaitlyn Quigley
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Sarah Vest
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
14
|
Kabirova E, Ryzhkova A, Lukyanchikova V, Khabarova A, Korablev A, Shnaider T, Nuriddinov M, Belokopytova P, Smirnov A, Khotskin NV, Kontsevaya G, Serova I, Battulin N. TAD border deletion at the Kit locus causes tissue-specific ectopic activation of a neighboring gene. Nat Commun 2024; 15:4521. [PMID: 38806452 PMCID: PMC11133455 DOI: 10.1038/s41467-024-48523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
Topologically associated domains (TADs) restrict promoter-enhancer interactions, thereby maintaining the spatiotemporal pattern of gene activity. However, rearrangements of the TADs boundaries do not always lead to significant changes in the activity pattern. Here, we investigated the consequences of the TAD boundaries deletion on the expression of developmentally important genes encoding tyrosine kinase receptors: Kit, Kdr, Pdgfra. We used genome editing in mice to delete the TADs boundaries at the Kit locus and characterized chromatin folding and gene expression in pure cultures of fibroblasts, mast cells, and melanocytes. We found that although Kit is highly active in both mast cells and melanocytes, deletion of the TAD boundary between the Kit and Kdr genes results in ectopic activation only in melanocytes. Thus, the epigenetic landscape, namely the mutual arrangement of enhancers and actively transcribing genes, is important for predicting the consequences of the TAD boundaries removal. We also found that mice without a TAD border between the Kit and Kdr genes have a phenotypic manifestation of the mutation - a lighter coloration. Thus, the data obtained shed light on the principles of interaction between the 3D chromatin organization and epigenetic marks in the regulation of gene activity.
Collapse
Affiliation(s)
- Evelyn Kabirova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | | | | - Anna Khabarova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Alexey Korablev
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | | | | | - Polina Belokopytova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | | | | | | | - Irina Serova
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Nariman Battulin
- Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
15
|
Ceci C, Lacal PM, Barbaccia ML, Mercuri NB, Graziani G, Ledonne A. The VEGFs/VEGFRs system in Alzheimer's and Parkinson's diseases: Pathophysiological roles and therapeutic implications. Pharmacol Res 2024; 201:107101. [PMID: 38336311 DOI: 10.1016/j.phrs.2024.107101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
The vascular endothelial growth factors (VEGFs) and their cognate receptors (VEGFRs), besides their well-known involvement in physiological angiogenesis/lymphangiogenesis and in diseases associated to pathological vessel formation, play multifaceted functions in the central nervous system (CNS). In addition to shaping brain development, by controlling cerebral vasculogenesis and regulating neurogenesis as well as astrocyte differentiation, the VEGFs/VEGFRs axis exerts essential functions in the adult brain both in physiological and pathological contexts. In this article, after describing the physiological VEGFs/VEGFRs functions in the CNS, we focus on the VEGFs/VEGFRs involvement in neurodegenerative diseases by reviewing the current literature on the rather complex VEGFs/VEGFRs contribution to the pathogenic mechanisms of Alzheimer's (AD) and Parkinson's (PD) diseases. Thereafter, based on the outcome of VEGFs/VEGFRs targeting in animal models of AD and PD, we discuss the factual relevance of pharmacological VEGFs/VEGFRs modulation as a novel and potential disease-modifying approach for these neurodegenerative pathologies. Specific VEGFRs targeting, aimed at selective VEGFR-1 inhibition, while preserving VEGFR-2 signal transduction, appears as a promising strategy to hit the molecular mechanisms underlying AD pathology. Moreover, therapeutic VEGFs-based approaches can be proposed for PD treatment, with the aim of fine-tuning their brain levels to amplify neurotrophic/neuroprotective effects while limiting an excessive impact on vascular permeability.
Collapse
Affiliation(s)
- Claudia Ceci
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Maria Luisa Barbaccia
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- Neurology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; IRCCS Santa Lucia Foundation, Department of Experimental Neuroscience, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Grazia Graziani
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - Ada Ledonne
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; IRCCS Santa Lucia Foundation, Department of Experimental Neuroscience, Rome, Italy; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
16
|
Meijer EM, van Dijk CGM, Giles R, Gijsen K, Chrifi I, Verhaar MC, Cheng C. Induction of Fenestrae in Human Induced Pluripotent Stem Cell-Derived Endothelial Cells for Disease Modeling. Tissue Eng Part A 2024; 30:168-180. [PMID: 38126303 DOI: 10.1089/ten.tea.2023.0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
The endothelial linings of capillaries, such as those in the kidney and small intestines, possess fenestrae that facilitate fluid and exchange of small molecules. Alterations in the size and number of endothelial fenestrae have been implicated in the pathogenesis of various diseases. The re-creation of fenestrated endothelium using human induced pluripotent stem cells (hiPSCs) provides a promising avenue to investigate the involvement of fenestrae in disease mechanisms and pharmacodynamics. In this project, we aim to induce the formation of fenestrae in nonfenestrated hiPSCs-derived endothelial cells (hiPSC-ECs). Vascular endothelial growth factor A (VEGFA) and phorbol myristate acetate (PMA) were used as inducers of fenestrae in hiPSC-ECs. The assessment of fenestrae formation included gene-expression analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and immunofluorescent staining. Endothelial monolayer functionality was evaluated by dextran permeability assays. Stimulation with VEGFA and PMA significantly induced expression of the diaphragmed fenestrae-associated marker, plasmalemmal vesicle-associated protein (PLVAP), in hiPSC-ECs at the mRNA, and protein levels. SEM analysis revealed VEGFA- and PMA-induced fenestrae structures on the cell membrane of hiPSC-ECs. The increased membrane localization of PLVAP visualized by TEM and immunofluorescent staining supported these findings. The induced fenestrated endothelium in hiPSC-ECs demonstrated selective passage of small solutes across a confluent monolayer with intact cell junctions, confirming functional competence. In conclusion, we present a novel methodology for inducing and regulating fenestrated endothelium in hiPSC-ECs. This innovative approach paves the way for the development of fenestrated microvasculature in human organ-on-a-chip systems, enabling complex disease modeling and physiologically relevant investigations of pharmacodynamics.
Collapse
Affiliation(s)
- Elana M Meijer
- Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christian G M van Dijk
- Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rachel Giles
- Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Karlijn Gijsen
- Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ihsan Chrifi
- Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
- Experimental Cardiology, Department of Cardiology, Thoraxcenter Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marianne C Verhaar
- Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline Cheng
- Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
- Experimental Cardiology, Department of Cardiology, Thoraxcenter Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Tanke NT, Liu Z, Gore MT, Bougaran P, Linares MB, Marvin A, Sharma A, Oatley M, Yu T, Quigley K, Vest S, Cook JG, Bautch VL. Endothelial cell flow-mediated quiescence is temporally regulated and utilizes the cell cycle inhibitor p27. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.09.544403. [PMID: 37662222 PMCID: PMC10473767 DOI: 10.1101/2023.06.09.544403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Endothelial cells regulate their cell cycle as blood vessels remodel and transition to quiescence downstream of blood flow-induced mechanotransduction. Laminar blood flow leads to quiescence, but how flow-mediated quiescence is established and maintained is poorly understood. Methods Primary human endothelial cells were exposed to laminar flow regimens and gene expression manipulations, and quiescence depth was analyzed via time to cell cycle re-entry after flow cessation. Mouse and zebrafish endothelial expression patterns were examined via scRNA seq analysis, and mutant or morphant fish lacking p27 were analyzed for endothelial cell cycle regulation and in vivo cellular behaviors. Results Arterial flow-exposed endothelial cells had a distinct transcriptome, and they first entered a deep quiescence, then transitioned to shallow quiescence under homeostatic maintenance conditions. In contrast, venous-flow exposed endothelial cells entered deep quiescence early that did not change with homeostasis. The cell cycle inhibitor p27 (CDKN1B) was required to establish endothelial flow-mediated quiescence, and expression levels positively correlated with quiescence depth. p27 loss in vivo led to endothelial cell cycle upregulation and ectopic sprouting, consistent with loss of quiescence. HES1 and ID3, transcriptional repressors of p27 upregulated by arterial flow, were required for quiescence depth changes and the reduced p27 levels associated with shallow quiescence. Conclusions Endothelial cell flow-mediated quiescence has unique properties and temporal regulation of quiescence depth that depends on the flow stimulus. These findings are consistent with a model whereby flow-mediated endothelial cell quiescence depth is temporally regulated downstream of p27 transcriptional regulation by HES1 and ID3. The findings are important in understanding endothelial cell quiescence mis-regulation that leads to vascular dysfunction and disease.
Collapse
Affiliation(s)
- Natalie T Tanke
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ziqing Liu
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Michaelanthony T Gore
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Pauline Bougaran
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Mary B Linares
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Allison Marvin
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Arya Sharma
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Morgan Oatley
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Tianji Yu
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kaitlyn Quigley
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Sarah Vest
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Jeanette Gowen Cook
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
18
|
Kim JH, Yang HJ, Lee HJ, Song YS. Decreased Angiopoietin Expression in Underactive Bladder Induced by Long-term Bladder Outlet Obstruction. Int Neurourol J 2023; 27:271-279. [PMID: 38171327 PMCID: PMC10762367 DOI: 10.5213/inj.2346296.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
PURPOSE Ischemia of the bladder can occur if neovascular formation cannot keep pace with hypoxia induced by chronic bladder outlet obstruction (BOO). The aim of this study was to examine changes in angiogenesis growth factor expression generated by chronic BOO in a rat model of underactive bladder. METHODS Twenty female Sprague-Dawley rats aged 6 weeks were assigned to 4 groups (5 rats per group). Group 1 was the control. Group 2 underwent sham surgery. The rats in groups 3 and 4 underwent BOO and were followed up for 1 week and 8 weeks. Cystometry was carried out together with bladder tissue analysis at 1 week and 8 weeks postoperatively. Real-time polymerase chain reaction (PCR) assays were conducted to determine the expression level of angiogenesis-related growth factors. A hypoxia signaling pathway PCR array was additionally carried out. RESULTS The group that underwent BOO for 8 weeks showed abnormal bladder function, with a diminished intercontraction interval, decreased maximal voiding pressure, and higher volume of residual urine (P<0.05). Hypoxia-inducible factor-1 alpha expression was elevated in this group. The expression levels of vascular endothelial growth factor (VEGF) and VEGF receptor messenger RNA (mRNA) in the BOO group were comparable to those in the control group. However, angiotensin/tie receptor mRNA expression levels increased at 1 week after BOO, but decreased at 8 weeks after BOO. In animals that underwent BOO, fewer blood vessels exhibited positive immunofluorescent staining for von Willebrand factor. Alterations were also seen in the hypoxia signaling pathway PCR array. CONCLUSION In a rat model of underactive bladder caused by surgical BOO, reduced angiopoietin expression was demonstrated. This observation might underlie visceral ischemia and fibrosis associated with the procedure. The findings of this study might offer an improved understanding of the disease processes underlying BOO and facilitate selection of the appropriate time to repair the organ in this condition.
Collapse
Affiliation(s)
- Jae Heon Kim
- Department of Urology, Soonchunhyang University Seoul Hospital, Soonchunhyang University School of Medicine, Seoul, Korea
| | - Hee Jo Yang
- Department of Urology, Soonchunhyang University Cheonan Hospital, Soonchunhyang University School of Medicine, Cheonan, Korea
| | - Hong Jun Lee
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Yun Seob Song
- Department of Urology, Soonchunhyang University Seoul Hospital, Soonchunhyang University School of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Zhang SW, Wang H, Ding XH, Xiao YL, Shao ZM, You C, Gu YJ, Jiang YZ. Bidirectional crosstalk between therapeutic cancer vaccines and the tumor microenvironment: Beyond tumor antigens. FUNDAMENTAL RESEARCH 2023; 3:1005-1024. [PMID: 38933006 PMCID: PMC11197801 DOI: 10.1016/j.fmre.2022.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 11/20/2022] Open
Abstract
Immunotherapy has rejuvenated cancer therapy, especially after anti-PD-(L)1 came onto the scene. Among the many therapeutic options, therapeutic cancer vaccines are one of the most essential players. Although great progress has been made in research on tumor antigen vaccines, few phase III trials have shown clinical benefits. One of the reasons lies in obstruction from the tumor microenvironment (TME). Meanwhile, the therapeutic cancer vaccine reshapes the TME in an ambivalent way, leading to immune stimulation or immune escape. In this review, we summarize recent progress on the interaction between therapeutic cancer vaccines and the TME. With respect to vaccine resistance, innate immunosuppressive TME components and acquired resistance caused by vaccination are both involved. Understanding the underlying mechanism of this crosstalk provides insight into the treatment of cancer by directly targeting the TME or synergizing with other therapeutics.
Collapse
Affiliation(s)
- Si-Wei Zhang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Han Wang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Xiao-Hong Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu-Ling Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Chao You
- Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 200032, China
| | - Ya-Jia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 200032, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
20
|
Mehdizadeh R, Ansari AM, Forouzesh F, Ghadirian R, Shahriari F, Shariatpanahi SP, Javidi MA. Cross-talk between non-ionizing electromagnetic fields and metastasis; EMT and hybrid E/M may explain the anticancer role of EMFs. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023:S0079-6107(23)00060-3. [PMID: 37302516 DOI: 10.1016/j.pbiomolbio.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/06/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
Recent studies have shown that non-ionizing electromagnetic fields (NIEMFs) in a specific frequency, intensity, and exposure time can have anti-cancer effects on various cancer cells; however, the underlying precise mechanism of action is not transparent. Most cancer deaths are due to metastasis. This important phenomenon plays an inevitable role in different steps of cancer including progression and development. It has different stages including invasion, intravasation, migration, extravasation, and homing. Epithelial-mesenchymal transition (EMT), as well as hybrid E/M state, are biological processes, that involve both natural embryogenesis and tissue regeneration, and abnormal conditions including organ fibrosis or metastasis. In this context, some evidence reveals possible footprints of the important EMT-related pathways which may be affected in different EMFs treatments. In this article, critical EMT molecules and/or pathways which can be potentially affected by EMFs (e.g., VEGFR, ROS, P53, PI3K/AKT, MAPK, Cyclin B1, and NF-кB) are discussed to shed light on the mechanism of EMFs anti-cancer effect.
Collapse
Affiliation(s)
- Romina Mehdizadeh
- Department of Genetics, Faculty of Advanced Science, and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Madjid Ansari
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Flora Forouzesh
- Department of Genetics, Faculty of Advanced Science, and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reyhane Ghadirian
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Shahriari
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohammad Amin Javidi
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran; Department of Genetics, Faculty of Advanced Science, and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
21
|
Bhardwaj V, Zhang X, Pandey V, Garg M. Neo-vascularization-based therapeutic perspectives in advanced ovarian cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188888. [PMID: 37001618 DOI: 10.1016/j.bbcan.2023.188888] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/30/2023]
Abstract
The process of angiogenesis is well described for its potential role in the development of normal ovaries, and physiological functions as well as in the initiation, progression, and metastasis of ovarian cancer (OC). In advanced stages of OC, cancer cells spread outside the ovary to the pelvic, abdomen, lung, or multiple secondary sites. This seriously limits the efficacy of therapeutic options contributing to fatal clinical outcomes. Notably, a variety of angiogenic effectors are produced by the tumor cells to initiate angiogenic processes leading to the development of new blood vessels, which provide essential resources for tumor survival, dissemination, and dormant micro-metastasis of tumor cells. Multiple proangiogenic effectors and their signaling axis have been discovered and functionally characterized for potential clinical utility in OC. In this review, we have provided the current updates on classical and emerging proangiogenic effectors, their signaling axis, and the immune microenvironment contributing to the pathogenesis of OC. Moreover, we have comprehensively reviewed and discussed the significance of the preclinical strategies, drug repurposing, and clinical trials targeting the angiogenic processes that hold promising perspectives for the better management of patients with OC.
Collapse
Affiliation(s)
- Vipul Bhardwaj
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute of Biopharmaceutical and Bioengineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, PR China
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China; Institute of Biopharmaceutical and Bioengineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University Uttar Pradesh, Sector-125, Noida 201301, India.
| |
Collapse
|
22
|
Poniedziałek-Czajkowska E, Mierzyński R, Leszczyńska-Gorzelak B. Preeclampsia and Obesity-The Preventive Role of Exercise. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1267. [PMID: 36674022 PMCID: PMC9859423 DOI: 10.3390/ijerph20021267] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 06/10/2023]
Abstract
Obesity is now recognized as a worldwide epidemic. An inadequate diet and reduced physical activity are acknowledged as the leading causes of excess body weight. Despite growing evidence that obesity is a risk factor for unsuccessful pregnancies, almost half of all women who become pregnant today are overweight or obese. Common complications of pregnancy in this group of women are preeclampsia and gestational hypertension. These conditions are also observed more frequently in women with excessive weight gain during pregnancy. Preeclampsia is one of the most serious pregnancy complications with an unpredictable course, which in its most severe forms, threatens the life and health of the mother and her baby. The early identification of the risk factors for preeclampsia development, including obesity, allows for the implementation of prophylaxis and a reduction in maternal and fetal complications risk. Additionally, preeclampsia and obesity are the recognized risk factors for developing cardiovascular disease in later life, so prophylaxis and treating obesity are paramount for their prevention. Thus, a proper diet and physical activity might play an essential role in the prophylaxis of preeclampsia in this group of women. Limiting weight gain during pregnancy and modifying the metabolic risk factors with regular physical exercise creates favorable metabolic conditions for pregnancy development and benefits the elements of the pathogenetic sequence for preeclampsia development. In addition, it is inexpensive, readily available and, in the absence of contraindications to its performance, safe for the mother and fetus. However, for this form of prevention to be effective, it should be applied early in pregnancy and, for overweight and obese women, proposed as an essential part of planning pregnancy. This paper aims to present the mechanisms of the development of hypertension in pregnancy in obese women and the importance of exercise in its prevention.
Collapse
|
23
|
Regression of Human Breast Carcinoma in Nude Mice after Ad sflt Gene Therapy Is Mediated by Tumor Vascular Endothelial Cell Apoptosis. Cancers (Basel) 2022; 14:cancers14246175. [PMID: 36551660 PMCID: PMC9777034 DOI: 10.3390/cancers14246175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Two vascular endothelial growth factor (VEGF) receptors, FLT-1 and KDR, are expressed preferentially in proliferating endothelium. There is increasing evidence that recombinant, soluble VEGF receptor domains interfering with VEGF signaling may inhibit in vivo neoangiogenesis, tumor growth and metastatic spread. We hypothesized that a soluble form of FLT-1 receptor (sFLT-1) could inhibit the growth of pre-established tumors via an anti-angiogenic mechanism. A replication-deficient adenovirus (Ad) vector carrying the sflt-1 cDNA (Adsflt) was used to overexpress the sFLT-1 receptor in a breast cancer animal model. MCF-7 cells, which produce VEGF, were used to establish solid tumors in the mammary fat pads of female nude mice. After six weeks, tumors were injected either with Adsflt or a negative control virus (AdCMV.βgal). After six months, average tumor volume in the Adsflt-infected group (33 ± 22 mm3) decreased by 91% relative to that of the negative control group (388 ± 94 mm3; p < 0.05). Moreover, 10 of 15 Adsflt-infected tumors exhibited complete regression. The vascular density of Adsflt-infected tumors was reduced by 50% relative to that of negative controls (p < 0.05), which is consistent with sFLT-1-mediated tumor regression through an anti-angiogenic mechanism. Moreover, cell necrosis and fibrosis associated with long-term regression of Adsflt−infected tumors were preceded by apoptosis of tumor vascular endothelial cells. Mice treated with Adsflt intratumorally showed no delay in the healing of cutaneous wounds, providing preliminary evidence that Ad-mediated sFLT-1 overexpression may be an effective anti-angiogenic therapy for cancer without the risk of systemic anti-angiogenic effects.
Collapse
|
24
|
Ramchandran R. Endothelial cells and their role in the vasculature: Past, present and future. Front Cell Dev Biol 2022; 10:994133. [PMID: 36187473 PMCID: PMC9520988 DOI: 10.3389/fcell.2022.994133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/11/2022] [Indexed: 12/03/2022] Open
|
25
|
Cao S, Wang X, Liu X, Li J, Duan L, Gao Z, Lun S, Zhu Y, Yang H, Zhang H, Zhou F. Integrative Analysis of Angiogenesis-Related Long Non-Coding RNA and Identification of a Six-DEARlncRNA Signature Associated with Prognosis and Therapeutic Response in Esophageal Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14174195. [PMID: 36077731 PMCID: PMC9454540 DOI: 10.3390/cancers14174195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a lethal gastrointestinal malignancy worldwide. We aimed to identify an angiogenesis-related lncRNAs (ARlncRNAs) signature that could predict the prognosis in ESCC. The GSE53624 and GSE53622 datasets were derived from the GEO database. The differently expressed ARlncRNAs (DEARlncRNAs) were retrieved by the weighted gene co-expression network analysis (WGCNA), differential expression analysis, and correlation analysis. Optimal lncRNA biomarkers were screened from the training set and the six-DEARlncRNA signature comprising AP000696.2, LINC01711, RP11-70C1.3, AP000487.5, AC011997.1, and RP11-225N10.1 could separate patients into high- and low-risk groups with markedly different survival. The validation of the reliability of the risk model was performed by the Kaplan-Meier test, ROC curves, and risk curves in the test set and validation set. Predictive independence analysis indicated that risk score is an independent prognostic biomarker for predicting the prognosis of ESCC patients. Subsequently, a ceRNA regulatory network and functional enrichment analysis were performed. The IC50 test revealed that patients in the high-risk group were resistant to Gefitinib and Lapatinib. Finally, the six DEARlncRNAs were detected by qRT-PCR. In conclusion, we demonstrated a novel ARlncRNA signature as an independent prognostic factor to distinguish the risk of ESCC patients and benefit the personalized clinical applications.
Collapse
Affiliation(s)
- Shasha Cao
- Henan Medical Key Laboratory, Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Xiaomin Wang
- Henan Medical Key Laboratory, Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Xiaohui Liu
- Henan Medical Key Laboratory, Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Junkuo Li
- Henan Medical Key Laboratory, Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Lijuan Duan
- Henan Medical Key Laboratory, Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Zhaowei Gao
- Henan Medical Key Laboratory, Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Shumin Lun
- Henan Medical Key Laboratory, Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Yanju Zhu
- Henan Medical Key Laboratory, Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Haijun Yang
- Henan Medical Key Laboratory, Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
| | - Hao Zhang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China
- Correspondence: (H.Z.); (F.Z.)
| | - Fuyou Zhou
- Henan Medical Key Laboratory, Precise Prevention and Treatment of Esophageal Cancer, Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang 455000, China
- Correspondence: (H.Z.); (F.Z.)
| |
Collapse
|
26
|
Decoding Functional High-Density Lipoprotein Particle Surfaceome Interactions. Int J Mol Sci 2022; 23:ijms23169506. [PMID: 36012766 PMCID: PMC9409371 DOI: 10.3390/ijms23169506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
High-density lipoprotein (HDL) is a mixture of complex particles mediating reverse cholesterol transport (RCT) and several cytoprotective activities. Despite its relevance for human health, many aspects of HDL-mediated lipid trafficking and cellular signaling remain elusive at the molecular level. During HDL’s journey throughout the body, its functions are mediated through interactions with cell surface receptors on different cell types. To characterize and better understand the functional interplay between HDL particles and tissue, we analyzed the surfaceome-residing receptor neighborhoods with which HDL potentially interacts. We applied a combination of chemoproteomic technologies including automated cell surface capturing (auto-CSC) and HATRIC-based ligand–receptor capturing (HATRIC-LRC) on four different cellular model systems mimicking tissues relevant for RCT. The surfaceome analysis of EA.hy926, HEPG2, foam cells, and human aortic endothelial cells (HAECs) revealed the main currently known HDL receptor scavenger receptor B1 (SCRB1), as well as 155 shared cell surface receptors representing potential HDL interaction candidates. Since vascular endothelial growth factor A (VEGF-A) was recently found as a regulatory factor of transendothelial transport of HDL, we next analyzed the VEGF-modulated surfaceome of HAEC using the auto-CSC technology. VEGF-A treatment led to the remodeling of the surfaceome of HAEC cells, including the previously reported higher surfaceome abundance of SCRB1. In total, 165 additional receptors were found on HAEC upon VEGF-A treatment representing SCRB1 co-regulated receptors potentially involved in HDL function. Using the HATRIC-LRC technology on human endothelial cells, we specifically aimed for the identification of other bona fide (co-)receptors of HDL beyond SCRB1. HATRIC-LRC enabled, next to SCRB1, the identification of the receptor tyrosine-protein kinase Mer (MERTK). Through RNA interference, we revealed its contribution to endothelial HDL binding and uptake. Furthermore, subsequent proximity ligation assays (PLAs) demonstrated the spatial vicinity of MERTK and SCRB1 on the endothelial cell surface. The data shown provide direct evidence for a complex and dynamic HDL receptome and that receptor nanoscale organization may influence binding and uptake of HDL.
Collapse
|
27
|
Anterior Mandibular Displacement in Growing Rats—A Systematic Review. Animals (Basel) 2022; 12:ani12162059. [PMID: 36009649 PMCID: PMC9405253 DOI: 10.3390/ani12162059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Mandibular deficiency is a very common orthodontic problem. Many different types of appliances have been utilized to correct such malocclusions. Most are appliances that alter the function of the mandible resulting in a more forward positioning of the lower jaw. Many researchers state that such an alteration results in a different rate of mandibular growth, due to condyle endochondral ossification, thus correcting the orthodontic anomaly. Their effect though remains controversial. The aim of the present study was to investigate the effect of such functional appliances in the mandible of growing rats by reviewing the existing literature up to March of 2022. Most of them stated that true condylar growth is observed, although there are many limitations due to the nature of such experiments. Abstract Skeletal Class II malocclusion is the most common skeletal anomaly in orthodontics. Growth in the body of the deficient mandible is induced by periosteal apposition and endochondral ossification in the condyle. Functional appliances have been used in the correction of Class II malocclusions by inducing mandibular growth. Despite their utilization though, their effect still remains controversial. The aim of the present study is to review the existing literature regarding the effects of mandibular protrusion in mandibular growth of growing rats. A protocol was followed according to the guidelines of the Cohrane Handbook for Systematic Reviews. Databases were searched using a specific algorithm. From the ten studies finally analyzed, we conclude that the use of a functional appliance in growing rats induces cell proliferation and bone formation in their condyles, resulting in mandibular growth.
Collapse
|
28
|
Yang H, He C, Bi Y, Zhu X, Deng D, Ran T, Ji X. Synergistic effect of VEGF and SDF-1α in endothelial progenitor cells and vascular smooth muscle cells. Front Pharmacol 2022; 13:914347. [PMID: 35910392 PMCID: PMC9335858 DOI: 10.3389/fphar.2022.914347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is a potent agonist of angiogenesis that induces proliferation and differentiation of endothelial progenitor cells (EPCs) after vascular injury. Previous studies have suggested that stromal cell-derived factor 1-alpha (SDF-1α) and VEGF have a synergistic effect on vascular stenosis. The aim of the present study was to investigate whether VEGF and SDF-1α act synergistically in EPCs and vascular smooth muscle cells (VSMCs). In this study, EPCs were isolated from rat bone marrow and their morphology and function were studied. Subsequently, VEGF was delivered into EPCs using an adenoviral vector. Tube formation, migration, proliferation, and apoptosis of VEGF-overexpressing EPCs was analyzed. Then, EPCs were co-cultured with VSMCs in the presence or absence of SDF-1α, the migration, proliferation, apoptosis, and differentiation capacity of EPCs and VSMCs were analyzed respectively. The isolated EPCs showed typical morphological features, phagocytic capacity, and expressed surface proteins. While stable expression of VEGF remarkably enhanced tube formation, migration, and proliferation capacity of EPCs, apoptosis was decreased. Moreover, the proliferation, migration, and differentiation capacity of EPCs in the co-cultured model was enhanced in the presence of SDF-1α, and apoptosis was decreased. However, these effects were reversed in VSMCs. Therefore, our results showed that VEGF and SDF-1α synergistically increased the migration, differentiation, and proliferation capabilities of EPCs, but not VSMCs. This study suggests a promising strategy to prevent vascular stenosis.
Collapse
Affiliation(s)
- Haiyan Yang
- Department of Ultrasound, Chongqing General Hospital, Chongqing, China
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China
| | - Cancan He
- Department of Pediatrics, The Affiliated Hospital of Zunyi Medical University, Guizhou Children’s Hospital, Zunyi, GZ, China
| | - Yang Bi
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical and Research Center of Child Health and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Department of Ultrasound, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xu Zhu
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical and Research Center of Child Health and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Department of Ultrasound, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Deng
- School of Medical Imaging, Changsha Medical University, Changsha, China
| | - Tingting Ran
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical and Research Center of Child Health and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Department of Ultrasound, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojuan Ji
- Department of Ultrasound, Chongqing General Hospital, Chongqing, China
- *Correspondence: Xiaojuan Ji,
| |
Collapse
|
29
|
Ben-Zvi A, Liebner S. Developmental regulation of barrier- and non-barrier blood vessels in the CNS. J Intern Med 2022; 292:31-46. [PMID: 33665890 DOI: 10.1111/joim.13263] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/01/2021] [Indexed: 12/22/2022]
Abstract
The blood-brain barrier (BBB) is essential for creating and maintaining tissue homeostasis in the central nervous system (CNS), which is key for proper neuronal function. In most vertebrates, the BBB is localized to microvascular endothelial cells that acquire barrier properties during angiogenesis of the neuroectoderm. Complex and continuous tight junctions, and the lack of fenestrae combined with low pinocytotic activity render the BBB endothelium a tight barrier for water-soluble molecules that may only enter the CNS via specific transporters. The differentiation of these unique endothelial properties during embryonic development is initiated by endothelial-specific flavours of the Wnt/β-catenin pathway in a precise spatiotemporal manner. In this review, we summarize the currently known cellular (neural precursor and endothelial cells) and molecular (VEGF and Wnt/β-catenin) mechanisms mediating brain angiogenesis and barrier formation. Moreover, we introduce more recently discovered crosstalk with cellular and acellular elements within the developing CNS such as the extracellular matrix. We discuss recent insights into the downstream molecular mechanisms of Wnt/β-catenin in particular, the recently identified target genes like Foxf2, Foxl2, Foxq1, Lef1, Ppard, Zfp551, Zic3, Sox17, Apcdd1 and Fgfbp1 that are involved in refining and maintaining barrier characteristics in the mature BBB endothelium. Additionally, we elute to recent insight into barrier heterogeneity and differential endothelial barrier properties within the CNS, focussing on the circumventricular organs as well as on the neurogenic niches in the subventricular zone and the hippocampus. Finally, open questions and future BBB research directions are highlighted in the context of taking benefit from understanding BBB development for strategies to modulate BBB function under pathological conditions.
Collapse
Affiliation(s)
- A Ben-Zvi
- From the, The Department of Developmental Biology and Cancer Research, Institute for Medical Research IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - S Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.,Excellence Cluster Cardio-Pulmonary Systems (ECCPS), Partner Site Frankfurt, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Frankfurt am Main, Germany
| |
Collapse
|
30
|
Kim BG, Choi SH, Letterio JJ, Song JY, Huang AY. Overexpression of VEGF in the MOPC 315 Plasmacytoma Induces Tumor Immunity in Mice. Int J Mol Sci 2022; 23:5235. [PMID: 35563626 PMCID: PMC9104487 DOI: 10.3390/ijms23095235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 12/10/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) has important effects on hematopoietic and immune cells. A link between VEGF expression, tumor progression, and metastasis has been established in various solid tumors; however, the impact of VEGF expression by hematopoietic neoplasias remains unclear. Here, we investigated the role of VEGF in plasma cell neoplasia. Overexpression of VEGF in MOPC 315 tumor cells (MOPCSVm) had no effect on their growth in vitro. However, constitutive ectopic expression of VEGF dramatically reduced tumorigenicity of MOPC 315 when implanted subcutaneously into BALB/c mice. Mice implanted with MOPCSVm effectively rejected tumor grafts and showed strong cytotoxic T lymphocyte (CTL) activity against parental MOPC 315 cells. MOPCSVm implants were not rejected in nude mice, suggesting the process is T-cell-dependent. Adoptive transfer of splenocytes from recipients inoculated with MOPCSVm cells conferred immunity to naïve BALB/c mice, and mice surviving inoculation with MOPCSVm rejected the parental MOPC 315 tumor cells following a second inoculation. Immunohistochemical analysis showed that MOPCSVm induced a massive infiltration of CD3+ cells and MHC class II+ cells in vivo. In addition, exogenous VEGF induced the expression of CCR3 in T cells in vitro. Together, these data are the first to demonstrate that overexpression of VEGF in plasmacytoma inhibits tumor growth and enhances T-cell-mediated antitumor immune response.
Collapse
Affiliation(s)
- Byung-Gyu Kim
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (S.H.C.); (J.J.L.); (A.Y.H.)
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Sung Hee Choi
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (S.H.C.); (J.J.L.); (A.Y.H.)
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - John J. Letterio
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (S.H.C.); (J.J.L.); (A.Y.H.)
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Center for Pediatric Immunotherapy, Angie Fowler AYA Cancer Institute, UH Rainbow Babies & Children’s Hospital, Cleveland, OH 44106, USA
| | - Jie-Young Song
- Division of Applied Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea;
| | - Alex Y. Huang
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (S.H.C.); (J.J.L.); (A.Y.H.)
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Center for Pediatric Immunotherapy, Angie Fowler AYA Cancer Institute, UH Rainbow Babies & Children’s Hospital, Cleveland, OH 44106, USA
| |
Collapse
|
31
|
Angiopoietin-2-induced lymphatic endothelial cell migration drives lymphangiogenesis via the β1 integrin-RhoA-formin axis. Angiogenesis 2022; 25:373-396. [PMID: 35103877 DOI: 10.1007/s10456-022-09831-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/08/2021] [Indexed: 11/01/2022]
Abstract
Lymphangiogenesis is an essential physiological process but also a determining factor in vascular-related pathological conditions. Angiopoietin-2 (Ang2) plays an important role in lymphatic vascular development and function and its upregulation has been reported in several vascular-related diseases, including cancer. Given the established role of the small GTPase RhoA on cytoskeleton-dependent endothelial functions, we investigated the relationship between RhoA and Ang2-induced cellular activities. This study shows that Ang2-driven human dermal lymphatic endothelial cell migration depends on RhoA. We demonstrate that Ang2-induced migration is independent of the Tie receptors, but dependent on β1 integrin-mediated RhoA activation with knockdown, pharmacological approaches, and protein sequencing experiments. Although the key proteins downstream of RhoA, Rho kinase (ROCK) and myosin light chain, were activated, blockade of ROCK did not abrogate the Ang2-driven migratory effect. However, formins, an alternative target of RhoA, were identified as key players, and especially FHOD1. The Ang2-RhoA relationship was explored in vivo, where lymphatic endothelial RhoA deficiency blocked Ang2-induced lymphangiogenesis, highlighting RhoA as an important target for anti-lymphangiogenic treatments.
Collapse
|
32
|
Karaman S, Paavonsalo S, Heinolainen K, Lackman MH, Ranta A, Hemanthakumar KA, Kubota Y, Alitalo K. Interplay of vascular endothelial growth factor receptors in organ-specific vessel maintenance. J Exp Med 2022; 219:212969. [PMID: 35050301 PMCID: PMC8785977 DOI: 10.1084/jem.20210565] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/31/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are quintessential for the development and maintenance of blood and lymphatic vessels. However, genetic interactions between the VEGFRs are poorly understood. VEGFR2 is the dominant receptor that is required for the growth and survival of the endothelium, whereas deletion of VEGFR1 or VEGFR3 was reported to induce vasculature overgrowth. Here we show that vascular regression induced by VEGFR2 deletion in postnatal and adult mice is aggravated by additional deletion of VEGFR1 or VEGFR3 in the intestine, kidney, and pancreas, but not in the liver or kidney glomeruli. In the adult mice, hepatic and intestinal vessels regressed within a few days after gene deletion, whereas vessels in skin and retina remained stable for at least four weeks. Our results show changes in endothelial transcriptomes and organ-specific vessel maintenance mechanisms that are dependent on VEGFR signaling pathways and reveal previously unknown functions of VEGFR1 and VEGFR3 in endothelial cells.
Collapse
Affiliation(s)
- Sinem Karaman
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Satu Paavonsalo
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Krista Heinolainen
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Madeleine H. Lackman
- Individualized Drug Therapy Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Amanda Ranta
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | | | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kari Alitalo
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Ye X, Gaucher JF, Vidal M, Broussy S. A Structural Overview of Vascular Endothelial Growth Factors Pharmacological Ligands: From Macromolecules to Designed Peptidomimetics. Molecules 2021; 26:6759. [PMID: 34833851 PMCID: PMC8625919 DOI: 10.3390/molecules26226759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/27/2022] Open
Abstract
The vascular endothelial growth factor (VEGF) family of cytokines plays a key role in vasculogenesis, angiogenesis, and lymphangiogenesis. VEGF-A is the main member of this family, alongside placental growth factor (PlGF), VEGF-B/C/D in mammals, and VEGF-E/F in other organisms. To study the activities of these growth factors under physiological and pathological conditions, resulting in therapeutic applications in cancer and age-related macular degeneration, blocking ligands have been developed. These have mostly been large biomolecules like antibodies. Ligands with high affinities, at least in the nanomolar range, and accurate structural data from X-ray crystallography and NMR spectroscopy have been described. They constitute the main focus of this overview, which evidences similarities and differences in their binding modes. For VEGF-A ligands, and to a limited extent also for PlGF, a transition is now observed towards developing smaller ligands like nanobodies and peptides. These include unnatural amino acids and chemical modifications for designed and improved properties, such as serum stability and greater affinity. However, this review also highlights the scarcity of such small molecular entities and the striking lack of small organic molecule ligands. It also shows the gap between the rather large array of ligands targeting VEGF-A and the general absence of ligands binding other VEGF members, besides some antibodies. Future developments in these directions are expected in the upcoming years, and the study of these growth factors and their promising therapeutic applications will be welcomed.
Collapse
Affiliation(s)
- Xiaoqing Ye
- Faculté de Pharmacie de Paris, Université de Paris, CiTCoM, 8038 CNRS, U 1268 INSERM, 75006 Paris, France; (X.Y.); (M.V.)
| | - Jean-François Gaucher
- Laboratoire de Cristallographie et RMN Biologiques, Faculté de Pharmacie de Paris, Université de Paris, CiTCoM, 8038 CNRS, 75006 Paris, France;
| | - Michel Vidal
- Faculté de Pharmacie de Paris, Université de Paris, CiTCoM, 8038 CNRS, U 1268 INSERM, 75006 Paris, France; (X.Y.); (M.V.)
- Service Biologie du Médicament, Toxicologie, AP-HP, Hôpital Cochin, 75014 Paris, France
| | - Sylvain Broussy
- Faculté de Pharmacie de Paris, Université de Paris, CiTCoM, 8038 CNRS, U 1268 INSERM, 75006 Paris, France; (X.Y.); (M.V.)
| |
Collapse
|
34
|
Wang X, Wang R, Jiang L, Xu Q, Guo X. Endothelial repair by stem and progenitor cells. J Mol Cell Cardiol 2021; 163:133-146. [PMID: 34743936 DOI: 10.1016/j.yjmcc.2021.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 12/19/2022]
Abstract
The integrity of the endothelial barrier is required to maintain vascular homeostasis and fluid balance between the circulatory system and surrounding tissues and to prevent the development of vascular disease. However, the origin of the newly developed endothelial cells is still controversial. Stem and progenitor cells have the potential to differentiate into endothelial cell lines and stimulate vascular regeneration in a paracrine/autocrine fashion. The one source of new endothelial cells was believed to come from the bone marrow, which was challenged by the recent findings. By administration of new techniques, including genetic cell lineage tracing and single cell RNA sequencing, more solid data were obtained that support the concept of stem/progenitor cells for regenerating damaged endothelium. Specifically, it was found that tissue resident endothelial progenitors located in the vessel wall were crucial for endothelial repair. In this review, we summarized the latest advances in stem and progenitor cell research in endothelial regeneration through findings from animal models and discussed clinical data to indicate the future direction of stem cell therapy.
Collapse
Affiliation(s)
- Xuyang Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruilin Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liujun Jiang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
35
|
Poniedziałek-Czajkowska E, Mierzyński R. Could Vitamin D Be Effective in Prevention of Preeclampsia? Nutrients 2021; 13:nu13113854. [PMID: 34836111 PMCID: PMC8621759 DOI: 10.3390/nu13113854] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
Prevention of preeclampsia (PE) remains one of the most significant problems in perinatal medicine. Due to the possible unpredictable course of hypertension in pregnancy, primarily PE and the high complication rate for the mother and fetus/newborn, it is urgent to offer pregnant women in high-risk groups effective methods of preventing the PE development or delaying its appearance. In addition, due to the association of PE with an increased risk of developing cardiovascular diseases (CVD) in later life, effective preeclampsia prevention could also be important in reducing their incidence. Ideal PE prophylaxis should target the pathogenetic changes leading to the development of PE and be safe for the mother and fetus, inexpensive and freely available. Currently, the only recognized method of PE prevention recommended by many institutions around the world is the use of a small dose of acetylsalicylic acid in pregnant women with risk factors. Unfortunately, some cases of PE are diagnosed in women without recognized risk factors and in those in whom prophylaxis with acetylsalicylic acid is not adequate. Hence, new drugs which would target pathogenetic elements in the development of preeclampsia are studied. Vitamin D (Vit D) seems to be a promising agent due to its beneficial effect on placental implantation, the immune system, and angiogenic factors. Studies published so far emphasize the relationship of its deficiency with the development of PE, but the data on the benefits of its supplementation to reduce the risk of PE are inconclusive. In the light of current research, the key issue is determining the protective concentration of Vit D in a pregnant woman. The study aims to present the possibility of using Vit D to prevent PE, emphasizing its impact on the pathogenetic elements of preeclampsia development.
Collapse
|
36
|
Guo Y, Bian Z, Xu Q, Wen X, Kang J, Lin S, Wang X, Mi Z, Cui J, Zhang Z, Chen Z, Chen F. Novel tissue-engineered skin equivalent from recombinant human collagen hydrogel and fibroblasts facilitated full-thickness skin defect repair in a mouse model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112469. [PMID: 34702544 DOI: 10.1016/j.msec.2021.112469] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/15/2021] [Accepted: 09/25/2021] [Indexed: 11/24/2022]
Abstract
Tissue-engineered skin equivalent (TESE) is an optimized alternative for the treatment of skin defects. Designing and fabricating biomaterials with desired properties to load cells is critical for the approach. In this study, we aim to develop a novel TESE with recombinant human collagen (rHC) hydrogel and fibroblasts to improve full-thickness skin defect repair. First, the bioactive effect of rHC on fibroblast proliferation, migration and phenotype was assayed. The results showed that rHC had good biocompatibility and could stimulate fibroblasts migration and secrete various growth factors. Then, rHC was cross-linked with transglutaminase (TG) to prepare rHC hydrogel. Rheometer tests indicated that 10% rHC/TG hydrogel could reach a oscillate stress of 251 Pa and remained stable. Fibroblasts were seeded into rHC/TG hydrogel to prepare TESE. Confocal microscope and scanning electronic microscope observation showed that seeded fibroblasts survived well in the hydrogel. Finally, the therapeutic effect of the newly prepared TESE was tested in a mouse full-thickness skin defect model. The results demonstrated that TESE could significantly improve skin defect repair in vivo. Conclusively, TESE prepared from rHC and fibroblasts in this study exhibits great potential for clinical application in the future.
Collapse
Affiliation(s)
- Yayuan Guo
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Zhengyue Bian
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Qian Xu
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Xiaomin Wen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Juan Kang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Shuai Lin
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Xue Wang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Zhaoxiang Mi
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Jihong Cui
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Zhen Zhang
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China
| | - Zhuoyue Chen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China.
| | - Fulin Chen
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China; Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 North TaiBai Road, Xi'an, Shaanxi Province 710069, PR China.
| |
Collapse
|
37
|
Linton AE, Weekman EM, Wilcock DM. Pathologic sequelae of vascular cognitive impairment and dementia sheds light on potential targets for intervention. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100030. [PMID: 36324710 PMCID: PMC9616287 DOI: 10.1016/j.cccb.2021.100030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/11/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) is one of the leading causes of dementia along with Alzheimer's disease (AD) and, importantly, VCID often manifests as a comorbidity of AD(Vemuri and Knopman 2016; Schneider and Bennett 2010)(Vemuri and Knopman 2016; Schneider and Bennett 2010). Despite its common clinical manifestation, the mechanisms underlying VCID disease progression remains elusive. In this review, existing knowledge is used to propose a novel hypothesis linking well-established risk factors of VCID with the distinct neurodegenerative cascades of neuroinflammation and chronic hypoperfusion. It is hypothesized that these two synergistic signaling cascades coalesce to initiate aberrant angiogenesis and induce blood brain barrier breakdown trough a mechanism mediated by vascular growth factors and matrix metalloproteinases respectively. Finally, this review concludes by highlighting several potential therapeutic interventions along this neurodegenerative sequalae providing diverse opportunities for future translational study.
Collapse
Affiliation(s)
- Alexandria E. Linton
- University of Kentucky, College of Medicine, Sanders-Brown Center on Aging, Department of Physiology, Lexington KY 40536, USA
| | - Erica M. Weekman
- University of Kentucky, College of Medicine, Sanders-Brown Center on Aging, Department of Physiology, Lexington KY 40536, USA
| | - Donna M. Wilcock
- University of Kentucky, College of Medicine, Sanders-Brown Center on Aging, Department of Physiology, Lexington KY 40536, USA
| |
Collapse
|
38
|
Liu J, Chen B, Zhao B, Luo X, Li J, Xie Y, Li B, Chen H, Zhao M, Yan H. Effect of hirudin on arterialized venous flap survival in rabbits. Biomed Pharmacother 2021; 142:111981. [PMID: 34364044 DOI: 10.1016/j.biopha.2021.111981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/04/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022] Open
Abstract
Arterialized venous flap (AVF) is limited in clinical application because its survival remains inconsistent and its exact survival mechanism is still unclear. Hirudin is an effective thrombin specific inhibitor, which is isolated from the salivary gland secretions of the leech. Our study evaluated the impact of hirudin on the viability of AVFs in rabbits. Thirty-six rabbits were randomly divided into three groups: sham group (physiological perfusion), control group (AVF), and hirudin group (AVF + hirudin). In hirudin group, 20 antithrombin units (ATU) hirudin (2.5 ml) were injected into each flap. In sham group and control group, the same amount of normal saline was injected into each flap. Status of flap survival, water content, vascular perfusion, histopathology, expression of CD34, VEGF, eNOS and HIF-1α were analyzed in each group. Analysis of oxidative stress was performed by measuring the activity of superoxide dismutase (SOD) and malondialdehyde (MDA). Compared with flaps in sham group with physiological perfusion mode, results of survival rate, perfusion status, SOD activity, expression of CD34, VEGF, and eNOS of AVFs in control group were significantly lower, while water content, MDA level and expression of HIF-1α were higher. The flap condition of AVFs injected with hirudin in hirudin group was improved significantly, and the results were similar to sham group. Our findings revealed that hirudin can effectively improve survival of AVF.
Collapse
Affiliation(s)
- Junling Liu
- Department of Hand and Microsurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University; the Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China
| | - Baoxia Chen
- Department of Post Anaesthesia Care Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China
| | - Bin Zhao
- Department of Post Anaesthesia Care Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaobin Luo
- Department of Hand and Microsurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University; the Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China
| | - Jiafeng Li
- Department of Hand and Microsurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University; the Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China
| | - Yutong Xie
- The Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China
| | - Baolong Li
- Department of Hand and Microsurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University; the Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China
| | - Hongyu Chen
- Department of Hand and Microsurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University; the Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China
| | - Mengyao Zhao
- Department of Hand and Microsurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University; the Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China
| | - Hede Yan
- Department of Hand and Microsurgery, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University; the Second School of Medicine, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
39
|
Sorri A, Järventausta K, Kampman O, Lehtimäki K, Björkqvist M, Tuohimaa K, Hämäläinen M, Moilanen E, Leinonen E. Electroconvulsive therapy increases temporarily plasma vascular endothelial growth factor in patients with major depressive disorder. Brain Behav 2021; 11:e02001. [PMID: 34342142 PMCID: PMC8413728 DOI: 10.1002/brb3.2001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/05/2020] [Accepted: 12/02/2020] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Vascular endothelial growth factor (VEGF) has been related to the etiology of major depressive disorder (MDD). The findings involving the effects of electroconvulsive therapy (ECT) on the VEGF levels have been conflicting. The aim was to examine the possible changes in the VEGF levels and their associations with clinical outcome in patients with MDD during ECT. METHODS The study comprised 30 patients suffering from MDD. Their plasma VEGF levels were measured at baseline and 2 and 4 hr after the first, fifth, and last ECT session. The severity of depression was quantified by the Montgomery-Asberg Depression Rating Scale (MADRS). RESULTS The VEGF levels increased between the 2-hr and 4-hr measurements during the first (p = .003) and the fifth (p = .017) sessions. The baseline VEGF levels between individual ECT sessions remained unchanged during the ECT series. No correlations were found between the increased VEGF levels and the clinical outcome. CONCLUSIONS Electroconvulsive therapy increased the VEGF levels repeatedly at the same time point in two different ECT sessions. These increases had no association with the response to ECT. Consequently, VEGF may act as a mediator in the mechanism of action of ECT.
Collapse
Affiliation(s)
- Annamari Sorri
- Department of PsychiatryTampere University HospitalTampereFinland
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Kaija Järventausta
- Department of PsychiatryTampere University HospitalTampereFinland
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Olli Kampman
- Department of PsychiatryTampere University HospitalTampereFinland
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Kai Lehtimäki
- Department of Neurosurgery, Neurology and RehabilitationTampere University HospitalTampereFinland
| | - Minna Björkqvist
- Department of PsychiatryTampere University HospitalTampereFinland
| | - Kati Tuohimaa
- Department of PsychiatryTampere University HospitalTampereFinland
| | - Mari Hämäläinen
- The Immunopharmacology Research GroupFaculty of Medicine and Health TechnologyTampere University and Tampere University HospitalTampereFinland
| | - Eeva Moilanen
- The Immunopharmacology Research GroupFaculty of Medicine and Health TechnologyTampere University and Tampere University HospitalTampereFinland
| | - Esa Leinonen
- Department of PsychiatryTampere University HospitalTampereFinland
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| |
Collapse
|
40
|
Wörsdörfer P, Ergün S. The Impact of Oxygen Availability and Multilineage Communication on Organoid Maturation. Antioxid Redox Signal 2021; 35:217-233. [PMID: 33334234 DOI: 10.1089/ars.2020.8195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: An optimal supply with oxygen is of high importance during embryogenesis and a prerequisite for proper organ development. Different tissues require varying amounts of oxygen, and even within single organs, different phases of development go alongside with either physiological hypoxia or the need for sufficient oxygen supply. Recent Advances: Human induced pluripotent stem cell-derived organoid models are state of the art cell culture platforms for the investigation of developmental processes, disease modeling, and drug testing. Organoids modeling the development of multiple tissues were developed within the past years. Critical Issues: Until now, optimization of oxygen supply and its role during organoid growth, differentiation, and maturation have only rarely been addressed. Recent publications indicate that hypoxia-induced processes play an important role in three-dimensional tissue cultures, triggering multilineage communication between mesenchymal cells, the endothelium, as well as organotypic cells. Later in culture, a sufficient supply with oxygen is of high importance to allow larger organoid sizes. Moreover, cellular stress is reduced and tissue maturation is improved. Therefore, a functional blood vessel network is required. Future Directions: In this review, we will briefly summarize aspects of the role of oxygen during embryonic development and organogenesis, present an update on novel organoid models with a special focus on organoid vascularization, and discuss the importance of complex organoids involving parenchymal cells, mesenchymal cells, inflammatory cells, and functional blood vessels for the generation of mature and fully functional tissues in vitro. Antioxid. Redox Signal. 35, 217-233.
Collapse
Affiliation(s)
- Philipp Wörsdörfer
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
41
|
Poniedziałek-Czajkowska E, Mierzyński R, Dłuski D, Leszczyńska-Gorzelak B. Prevention of Hypertensive Disorders of Pregnancy-Is There a Place for Metformin? J Clin Med 2021; 10:jcm10132805. [PMID: 34202343 PMCID: PMC8268471 DOI: 10.3390/jcm10132805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
The possibility of prophylaxis of hypertensive disorders of pregnancy (HDPs) such as preeclampsia (PE) and pregnancy-induced hypertension is of interest due to the unpredictable course of these diseases and the risks they carry for both mother and fetus. It has been proven that their development is associated with the presence of the placenta, and the processes that initiate it begin at the time of the abnormal invasion of the trophoblast in early pregnancy. The ideal HDP prophylaxis should alleviate the influence of risk factors and, at the same time, promote physiological trophoblast invasion and maintain the physiologic endothelium function without any harm to both mother and fetus. So far, aspirin is the only effective and recommended pharmacological agent for the prevention of HDPs in high-risk groups. Metformin is a hypoglycemic drug with a proven protective effect on the cardiovascular system. Respecting the anti-inflammatory properties of metformin and its favorable impact on the endothelium, it seems to be an interesting option for HDP prophylaxis. The results of previous studies on such use of metformin are ambiguous, although they indicate that in a certain group of pregnant women, it might be effective in preventing hypertensive complications. The aim of this study is to present the possibility of metformin in the prevention of hypertensive disorders of pregnancy with respect to its impact on the pathogenic elements of development
Collapse
|
42
|
Huang Z, Huang S, Song T, Yin Y, Tan C. Placental Angiogenesis in Mammals: A Review of the Regulatory Effects of Signaling Pathways and Functional Nutrients. Adv Nutr 2021; 12:2415-2434. [PMID: 34167152 PMCID: PMC8634476 DOI: 10.1093/advances/nmab070] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Normal placental development and proper angiogenesis are essential for fetal growth during pregnancy. Angiogenesis involves the regulatory action of many angiogenic factors and a series of signal transduction processes inside and outside the cell. The obstruction of placental angiogenesis causes fetal growth restriction and serious pregnancy complications, even leading to fetal loss and pregnancy cessation. In this review, the effects of placental angiogenesis on fetal development are described, and several signaling pathways related to placental angiogenesis and their key regulatory mediators are summarized. These factors, which include vascular endothelial growth factor (VEGF)-VEGF receptor, delta-like ligand 4 (DLL-4)-Notch, Wnt, and Hedgehog, may affect the placental angiogenesis process. Moreover, the degree of vascularization depends on cell proliferation, migration, and differentiation, which is affected by the synthesis and secretion of metabolites or intermediates and mutual coordination or inhibition in these pathways. Furthermore, we discuss recent advances regarding the role of functional nutrients (including amino acids and fatty acids) in regulating placental angiogenesis. Understanding the specific mechanism of placental angiogenesis and its influence on fetal development may facilitate the establishment of new therapeutic strategies for the treatment of preterm birth, pre-eclampsia, or intrauterine growth restriction, and provide a theoretical basis for formulating nutritional regulation strategies during pregnancy.
Collapse
Affiliation(s)
- Zihao Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shuangbo Huang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tongxing Song
- Huazhong Agricultural University, College of Animal Science and Technology, Wuhan, China
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | | |
Collapse
|
43
|
Groblewska M, Mroczko B. Pro- and Antiangiogenic Factors in Gliomas: Implications for Novel Therapeutic Possibilities. Int J Mol Sci 2021; 22:ijms22116126. [PMID: 34200145 PMCID: PMC8201226 DOI: 10.3390/ijms22116126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 02/07/2023] Open
Abstract
Angiogenesis, a complex, multistep process of forming new blood vessels, plays crucial role in normal development, embryogenesis, and wound healing. Malignant tumors characterized by increased proliferation also require new vasculature to provide an adequate supply of oxygen and nutrients for developing tumor. Gliomas are among the most frequent primary tumors of the central nervous system (CNS), characterized by increased new vessel formation. The processes of neoangiogenesis, necessary for glioma development, are mediated by numerous growth factors, cytokines, chemokines and other proteins. In contrast to other solid tumors, some biological conditions, such as the blood–brain barrier and the unique interplay between immune microenvironment and tumor, represent significant challenges in glioma therapy. Therefore, the objective of the study was to present the role of various proangiogenic factors in glioma angiogenesis as well as the differences between normal and tumoral angiogenesis. Another goal was to present novel therapeutic options in oncology approaches. We performed a thorough search via the PubMed database. In this paper we describe various proangiogenic factors in glioma vasculature development. The presented paper also reviews various antiangiogenic factors necessary in maintaining equilibrium between pro- and antiangiogenic processes. Furthermore, we present some novel possibilities of antiangiogenic therapy in this type of tumors.
Collapse
Affiliation(s)
- Magdalena Groblewska
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-269 Białystok, Poland
- Correspondence: ; Tel.: +48-858318785
| |
Collapse
|
44
|
Wang Y, Li Z, Zhang Z, Chen X. Identification ACTA2 and KDR as key proteins for prognosis of PD-1/PD-L1 blockade therapy in melanoma. Animal Model Exp Med 2021; 4:138-150. [PMID: 34179721 PMCID: PMC8212820 DOI: 10.1002/ame2.12154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death protein 1 (PD-1) /programmed cell death ligand 1 (PD-L1) blockade is an important therapeutic strategy for melanoma, despite its low clinical response. It is important to identify genes and pathways that may reflect the clinical outcomes of this therapy in patients. We analyzed clinical dataset GSE96619, which contains clinical information from five melanoma patients before and after anti-PD-1 therapy (five pairs of data). We identified 704 DEGs using these five pairs of data, and then the number of DEGs was narrowed down to 286 in patients who responded to treatment. Next, we performed KEGG pathway enrichment and constructed a DEG-associated protein-protein interaction network. Smooth muscle actin 2 (ACTA2) and tyrosine kinase growth factor receptor (KDR) were identified as the hub genes, which were significantly downregulated in the tumor tissue of the two patients who responded to treatment. To confirm our analysis, we demonstrated similar expression tendency to the clinical data for the two hub genes in a B16F10 subcutaneous xenograft model. This study demonstrates that ACTA2 and KDR are valuable responsive markers for PD-1/PD-L1 blockade therapy.
Collapse
Affiliation(s)
- Yuchen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation StudyInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhaojun Li
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation StudyInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhihui Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation StudyInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural MedicinesInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation StudyInstitute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
45
|
Boldeanu L, Dijmărescu AL, Radu M, Siloşi CA, Popescu-Drigă MV, Poenariu IS, Siloşi I, Boldeanu MV, Novac MB, Novac LV. The role of mediating factors involved in angiogenesis during implantation. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:665-672. [PMID: 33817707 PMCID: PMC8112745 DOI: 10.47162/rjme.61.3.04] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis is a critical component of normal implantation and placentation and underlines the importance of vascularization in early pregnancy. Differentiated expression of angiogenesis factors in different decision tissues during different stages of implantation, indicates their involvement in the regulation of vascular remodeling and angiogenesis. Disorders in vascular development may play a role in the pathogenesis of recurrent abortions. The success of implantation, placentation and subsequent pregnancy evolution requires coordination of vascular development and adaptations at both sides of the maternal–fetal interface. The human implantation process is a continuous process, which begins with the apposition and attachment of the blastocyst to the apical surface of the luminal endometrial epithelium and continues throughout the first trimester of pregnancy until the extravillous trophoblast invades and remodels maternal vascularization. Numerous regulatory molecules play functional roles in many processes, including preparation of the endometrial stroma (decidualization), epithelium for implantation, control of trophoblastic adhesion and invasion. These regulatory molecules include cytokines, chemokines, and proteases, many of which are expressed by different cell types, having slightly different functions as the implant progresses
Collapse
Affiliation(s)
- Lidia Boldeanu
- Department of Immunology, Department of Anesthesiology and Intensive Care, University of Medicine and Pharmacy of Craiova, Romania; , ,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Guo Z, Mo Z. Regulation of endothelial cell differentiation in embryonic vascular development and its therapeutic potential in cardiovascular diseases. Life Sci 2021; 276:119406. [PMID: 33785330 DOI: 10.1016/j.lfs.2021.119406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 12/17/2022]
Abstract
During vertebrate development, the cardiovascular system begins operating earlier than any other organ in the embryo. Endothelial cell (EC) forms the inner lining of blood vessels, and its extensive proliferation and migration are requisite for vasculogenesis and angiogenesis. Many aspects of cellular biology are involved in vasculogenesis and angiogenesis, including the tip versus stalk cell specification. Recently, epigenetics has attracted growing attention in regulating embryonic vascular development and controlling EC differentiation. Some proteins that regulate chromatin structure have been shown to be directly implicated in human cardiovascular diseases. Additionally, the roles of important EC signaling such as vascular endothelial growth factor and its receptors, angiopoietin-1 and tyrosine kinase containing immunoglobulin and epidermal growth factor homology domain-2, and transforming growth factor-β in EC differentiation during embryonic vasculature development are briefly discussed in this review. Recently, the transplantation of human induced pluripotent stem cell (iPSC)-ECs are promising approaches for the treatment of ischemic cardiovascular disease including myocardial infarction. Patient-specific iPSC-derived EC is a potential new target to study differences in gene expression or response to drugs. However, clinical application of the iPSC-ECs in regenerative medicine is often limited by the challenges of maintaining cell viability and function. Therefore, novel insights into the molecular mechanisms underlying EC differentiation might provide a better understanding of embryonic vascular development and bring out more effective EC-based therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Zi Guo
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaohui Mo
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
47
|
Girolamo F, de Trizio I, Errede M, Longo G, d'Amati A, Virgintino D. Neural crest cell-derived pericytes act as pro-angiogenic cells in human neocortex development and gliomas. Fluids Barriers CNS 2021; 18:14. [PMID: 33743764 PMCID: PMC7980348 DOI: 10.1186/s12987-021-00242-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
Central nervous system diseases involving the parenchymal microvessels are frequently associated with a ‘microvasculopathy’, which includes different levels of neurovascular unit (NVU) dysfunction, including blood–brain barrier alterations. To contribute to the understanding of NVU responses to pathological noxae, we have focused on one of its cellular components, the microvascular pericytes, highlighting unique features of brain pericytes with the aid of the analyses carried out during vascularization of human developing neocortex and in human gliomas. Thanks to their position, centred within the endothelial/glial partition of the vessel basal lamina and therefore inserted between endothelial cells and the perivascular and vessel-associated components (astrocytes, oligodendrocyte precursor cells (OPCs)/NG2-glia, microglia, macrophages, nerve terminals), pericytes fulfil a central role within the microvessel NVU. Indeed, at this critical site, pericytes have a number of direct and extracellular matrix molecule- and soluble factor-mediated functions, displaying marked phenotypical and functional heterogeneity and carrying out multitasking services. This pericytes heterogeneity is primarily linked to their position in specific tissue and organ microenvironments and, most importantly, to their ontogeny. During ontogenesis, pericyte subtypes belong to two main embryonic germ layers, mesoderm and (neuro)ectoderm, and are therefore expected to be found in organs ontogenetically different, nonetheless, pericytes of different origin may converge and colonize neighbouring areas of the same organ/apparatus. Here, we provide a brief overview of the unusual roles played by forebrain pericytes in the processes of angiogenesis and barriergenesis by virtue of their origin from midbrain neural crest stem cells. A better knowledge of the ontogenetic subpopulations may support the understanding of specific interactions and mechanisms involved in pericyte function/dysfunction, including normal and pathological angiogenesis, thereby offering an alternative perspective on cell subtype-specific therapeutic approaches. ![]()
Collapse
Affiliation(s)
- Francesco Girolamo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy.
| | - Ignazio de Trizio
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy.,Intensive Care Unit, Department of Intensive Care, Regional Hospital of Lugano, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Mariella Errede
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| | - Giovanna Longo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Molecular Biology Unit, University of Bari School of Medicine, Bari, Italy
| | - Antonio d'Amati
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy.,Department of Emergency and Organ Transplantation, Pathology Section, University of Bari School of Medicine, Bari, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, Human Anatomy and Histology Unit, University of Bari School of Medicine, Bari, Italy
| |
Collapse
|
48
|
Girolamo F, de Trizio I, Errede M, Longo G, d’Amati A, Virgintino D. Neural crest cell-derived pericytes act as pro-angiogenic cells in human neocortex development and gliomas. Fluids Barriers CNS 2021. [DOI: 10.1186/s12987-021-00242-7 union select null--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractCentral nervous system diseases involving the parenchymal microvessels are frequently associated with a ‘microvasculopathy’, which includes different levels of neurovascular unit (NVU) dysfunction, including blood–brain barrier alterations. To contribute to the understanding of NVU responses to pathological noxae, we have focused on one of its cellular components, the microvascular pericytes, highlighting unique features of brain pericytes with the aid of the analyses carried out during vascularization of human developing neocortex and in human gliomas. Thanks to their position, centred within the endothelial/glial partition of the vessel basal lamina and therefore inserted between endothelial cells and the perivascular and vessel-associated components (astrocytes, oligodendrocyte precursor cells (OPCs)/NG2-glia, microglia, macrophages, nerve terminals), pericytes fulfil a central role within the microvessel NVU. Indeed, at this critical site, pericytes have a number of direct and extracellular matrix molecule- and soluble factor-mediated functions, displaying marked phenotypical and functional heterogeneity and carrying out multitasking services. This pericytes heterogeneity is primarily linked to their position in specific tissue and organ microenvironments and, most importantly, to their ontogeny. During ontogenesis, pericyte subtypes belong to two main embryonic germ layers, mesoderm and (neuro)ectoderm, and are therefore expected to be found in organs ontogenetically different, nonetheless, pericytes of different origin may converge and colonize neighbouring areas of the same organ/apparatus. Here, we provide a brief overview of the unusual roles played by forebrain pericytes in the processes of angiogenesis and barriergenesis by virtue of their origin from midbrain neural crest stem cells. A better knowledge of the ontogenetic subpopulations may support the understanding of specific interactions and mechanisms involved in pericyte function/dysfunction, including normal and pathological angiogenesis, thereby offering an alternative perspective on cell subtype-specific therapeutic approaches.
Collapse
|
49
|
Das D, Saikia PJ, Gowala U, Sarma HN. Cell Specific Expression of Vascular Endothelial Growth Factor Receptor-2 (Flk-1/KDR) in Developing Mice Embryo and Supporting Maternal Uterine Tissue during Early Gestation (D4-D7). INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2021; 15:148-157. [PMID: 33687169 PMCID: PMC8052796 DOI: 10.22074/ijfs.2021.134530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 09/26/2020] [Indexed: 11/04/2022]
Abstract
Background Vascular endothelial growth factor (VEGF) and the corresponding receptors play key role in vasculogenesis and angiogenesis processes. VEGF is one of the prime candidates in regulating embryo implantation by increasing vascular permeability. VEGF receptor-2, also called Flk-1/KDR, is one of the prime receptor which is actively involved in the execution of various functions of VEGF. However, precise role of this receptor during early gestation period is yet to be addressed. In the present study, expression of Flk-1/KDR during peri-implantation mice uterus as well as fetal-maternal tissues from day 4-day 7 (D4-D7) of gestation was investigated. Materials and Methods In this experimental study, localization of Flk-1/KDR was investigated by immunohistochemistry and immunofluorescence techniques, in paraffin embedded tissue sections. Flk-1/KDR protein and mRNA expressions were investigated by western blotting and quantitative reverse transcription polymerase chain reaction (qRT-PCR), respectively. Effects of ovarian steroids on expression of Flk-1/KDR were also assessed by estrogen and progesterone antagonist treatment. Results Uterine tissue on D4 showed strong expression of Flk-1/KDR in luminal and uterine glandular epithelium. On D5 and D6, differential expression of Flk-1/KDR was evidenced in certain cell types of the embryo, maternal tissues and fetal-maternal interface with varied intensity. Flk-1/KDR was specifically expressed in the ectoplacental cone (EPC) and various cells of the embryo on D7. Flk-1/KDR expression was not evidenced in the estradiol-17β (E2) and progesterone (P4) antagonist treated uterus. Western blotting result revealed presence of Flk-1/KDR protein in the all gestation days, except antagonist treated uterus. qRT-PCR analysis showed significant increase of Flk-1/KDR mRNA transcript on D6 and D7. Conclusion Spatial-temporal expression of Flk-1/KDR during peri-implntation period in mice uterus especially in the feto-maternal interface was observed. This spatio-temporal specificity as well as increased expression of Flk-1/KDR could be one of the determinants for establishment of fetal-maternal cross talk during the critical period of development.
Collapse
Affiliation(s)
- Dimpimoni Das
- Molecular Endocrinology and Reproductive Biology Research Laboratory, Department of Zoology, Rajiv Gandhi University, Itanagar, Arunachal Pradesh, India
| | - Purba J Saikia
- Department of Zoology, Dhemaji College, Dhemaji, Assam, India.
| | - Upasa Gowala
- Molecular Endocrinology and Reproductive Biology Research Laboratory, Department of Zoology, Rajiv Gandhi University, Itanagar, Arunachal Pradesh, India
| | - Hirendra N Sarma
- Molecular Endocrinology and Reproductive Biology Research Laboratory, Department of Zoology, Rajiv Gandhi University, Itanagar, Arunachal Pradesh, India
| |
Collapse
|
50
|
Uusitalo-Kylmälä L, Santo Mendes AC, Polari L, Joensuu K, Heino TJ. An In Vitro Co-Culture Model of Bone Marrow Mesenchymal Stromal Cells and Peripheral Blood Mononuclear Cells Promotes the Differentiation of Myeloid Angiogenic Cells and Pericyte-Like Cells. Stem Cells Dev 2021; 30:309-324. [PMID: 33499756 DOI: 10.1089/scd.2019.0171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are known to stimulate the survival and growth of endothelial cells (ECs) by producing paracrine signals, as well as to differentiate into pericytes and thereby support blood vessel formation and stability. On the other hand, cells with an EC-like phenotype have been found within the CD14+ and CD34+ cell populations of peripheral blood (PB) mononuclear cells (MNCs). The aim of this study was to investigate the proangiogenic differentiation potential of human MSC-MNC co-cultures. Bone marrow-derived MSCs (2,500 cells/cm2) were co-cultured with MNCs (50,000 cells/cm2), which were isolated from the PB of healthy donors. MSCs and MNCs cultured alone at same cell densities were used as controls. Cells in MNC fraction and in co-cultures were isolated for CD14, CD34, and CD31 surface markers with magnetic-activated cell sorting. Co-cultures were analyzed for cell proliferation and morphology, as well as for the expression of various hematopoietic, endothelial, and pericyte markers by immunocytochemistry, quantitative PCR (qPCR), and flow cytometry. Vascular endothelial growth factor (VEGF) expression and secretion was measured with qPCR and enzyme-linked immunosorbent assay, respectively. Our results show that in co-cultures with MSCs, CD14+CD45+ MNCs differentiated into spindle-shaped, nonproliferative, EC-like, myeloid angiogenic cells (MACs) expressing CD31, but also into pericyte-like cells expressing neural/glial antigen 2 (NG2) and CD146. Functionality of the isolated MACs was demonstrated in co-cultures with human umbilical vein endothelial cells, where they supported the formation of tube-like structures. NG2+ cells of MNC-origin were found among both CD34-CD14+ and CD34-CD14- cell populations, indicating the existence of different subtypes of pericyte-like cells. In addition, VEGF was shown to be secreted in MSC-MNC co-cultures, mainly by MSCs. In conclusion, MSCs were shown to possess proangiogenic capacity in MSC-MNC co-cultures as they supported the differentiation of functional MACs, as well as the differentiation of pericyte-like cells of MNC origin. This phenomenon was mediated at least partially via secreted VEGF.
Collapse
Affiliation(s)
| | - Ana Carolina Santo Mendes
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal
| | - Lauri Polari
- Department of Biosciences, Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Katriina Joensuu
- Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Plastic Surgery, Tampere University Hospital, Tampere, Finland
| | - Terhi J Heino
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|