1
|
Vandermeulen MD, Lorenz MC, Cullen PJ. Conserved signaling modules regulate filamentous growth in fungi: a model for eukaryotic cell differentiation. Genetics 2024; 228:iyae122. [PMID: 39239926 PMCID: PMC11457945 DOI: 10.1093/genetics/iyae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Eukaryotic organisms are composed of different cell types with defined shapes and functions. Specific cell types are produced by the process of cell differentiation, which is regulated by signal transduction pathways. Signaling pathways regulate cell differentiation by sensing cues and controlling the expression of target genes whose products generate cell types with specific attributes. In studying how cells differentiate, fungi have proved valuable models because of their ease of genetic manipulation and striking cell morphologies. Many fungal species undergo filamentous growth-a specialized growth pattern where cells produce elongated tube-like projections. Filamentous growth promotes expansion into new environments, including invasion into plant and animal hosts by fungal pathogens. The same signaling pathways that regulate filamentous growth in fungi also control cell differentiation throughout eukaryotes and include highly conserved mitogen-activated protein kinase (MAPK) pathways, which is the focus of this review. In many fungal species, mucin-type sensors regulate MAPK pathways to control filamentous growth in response to diverse stimuli. Once activated, MAPK pathways reorganize cell polarity, induce changes in cell adhesion, and promote the secretion of degradative enzymes that mediate access to new environments. However, MAPK pathway regulation is complicated because related pathways can share components with each other yet induce unique responses (i.e. signal specificity). In addition, MAPK pathways function in highly integrated networks with other regulatory pathways (i.e. signal integration). Here, we discuss signal specificity and integration in several yeast models (mainly Saccharomyces cerevisiae and Candida albicans) by focusing on the filamentation MAPK pathway. Because of the strong evolutionary ties between species, a deeper understanding of the regulation of filamentous growth in established models and increasingly diverse fungal species can reveal fundamentally new mechanisms underlying eukaryotic cell differentiation.
Collapse
Affiliation(s)
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
2
|
Gutbier U, Korp J, Scheufler L, Ostermann K. Genetic modules for α-factor pheromone controlled growth regulation of Saccharomyces cerevisiae. Eng Life Sci 2024; 24:e2300235. [PMID: 39113811 PMCID: PMC11300815 DOI: 10.1002/elsc.202300235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/29/2024] [Accepted: 05/05/2024] [Indexed: 08/10/2024] Open
Abstract
Saccharomyces cerevisiae is a commonly used microorganism in the biotechnological industry. For the industrial heterologous production of compounds, it is of great advantage to work with growth-controllable yeast strains. In our work, we utilized the natural pheromone system of S. cerevisiae and generated a set of different strains possessing an α-pheromone controllable growth behavior. Naturally, the α-factor pheromone is involved in communication between haploid S. cerevisiae cells. Perception of the pheromone initiates several cellular changes, enabling the cells to prepare for an upcoming mating event. We exploited this natural pheromone response system and developed two different plasmid-based modules, in which the target genes, MET15 and FAR1, are under control of the α-factor sensitive FIG1 promoter for a controlled expression in S. cerevisiae. Whereas expression of MET15 led to a growth induction, FAR1 expression inhibited growth. The utilization of low copy number or high copy number plasmids for target gene expression and different concentrations of α-factor allow a finely adjustable control of yeast growth rate.
Collapse
Affiliation(s)
- Uta Gutbier
- Faculty of BiologyResearch Group Biological Sensor‐Actuator‐SystemsTUD Dresden University of TechnologyDresdenGermany
- Else Kröner Fresenius Center for Digital HealthFaculty of Medicine Carl Gustav CarusTUD Dresden University of TechnologyDresdenGermany
| | - Juliane Korp
- Faculty of BiologyResearch Group Biological Sensor‐Actuator‐SystemsTUD Dresden University of TechnologyDresdenGermany
| | - Lennart Scheufler
- Faculty of BiologyResearch Group Biological Sensor‐Actuator‐SystemsTUD Dresden University of TechnologyDresdenGermany
| | - Kai Ostermann
- Faculty of BiologyResearch Group Biological Sensor‐Actuator‐SystemsTUD Dresden University of TechnologyDresdenGermany
| |
Collapse
|
3
|
Huang Y, Chen J, Xia H, Gao Z, Gu Q, Liu W, Tang G. FvMbp1-Swi6 complex regulates vegetative growth, stress tolerance, and virulence in Fusarium verticillioides. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134576. [PMID: 38759405 DOI: 10.1016/j.jhazmat.2024.134576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
The mycotoxigenic fungus Fusarium verticillioides is a common pathogen of grain and medicine that contaminates the host with fumonisin B1 (FB1) mycotoxin, poses serious threats to human and animal health. Therefore, it is crucial to unravel the regulatory mechanisms of growth, and pathogenicity of F. verticillioides. Mbp1 is a component of the MluI cell cycle box binding factor complex and acts as an APSES-type transcription factor that regulates cell cycle progression. However, no information is available regarding its role in F. verticillioides. In this study, we demonstrate that FvMbp1 interacts with FvSwi6 that acts as the cell cycle transcription factor, to form the heteromeric transcription factor complexes in F. verticillioides. Our results show that ΔFvMbp1 and ΔFvSwi6 both cause a severe reduction of vegetative growth, conidiation, and increase tolerance to diverse environmental stresses. Moreover, ΔFvMbp1 and ΔFvSwi6 dramatically decrease the virulence of the pathogen on the stalk and ear of maize. Transcriptome profiling show that FvMbp1-Swi6 complex co-regulates the expression of genes associated with multiple stress responses. These results indicate the functional importance of the FvMbp1-Swi6 complex in the filamentous fungi F. verticillioides and reveal a potential target for the effective prevention and control of Fusarium diseases.
Collapse
Affiliation(s)
- Yufei Huang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jinfeng Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Haoxue Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zenggui Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Qin Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing 210095, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guangfei Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
4
|
Kumawat R, Tomar RS. Dissecting the role of mitogen-activated protein kinase Hog1 in yeast flocculation. FEBS J 2024; 291:3080-3103. [PMID: 38648231 DOI: 10.1111/febs.17137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/25/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Living organisms are frequently exposed to multiple biotic and abiotic stress forms during their lifetime. Organisms cope with stress conditions by regulating their gene expression programs. In response to different environmental stress conditions, yeast cells activate different tolerance mechanisms, many of which share common signaling pathways. Flocculation is one of the key mechanisms underlying yeast survival under unfavorable environmental conditions, and the Tup1-Cyc8 corepressor complex is a major regulator of this process. Additionally, yeast cells can utilize different mitogen-activated protein kinase (MAPK) pathways to modulate gene expression during stress conditions. Here, we show that the high osmolarity glycerol (HOG) MAPK pathway is involved in the regulation of yeast flocculation. We observed that the HOG MAPK pathway was constitutively activated in flocculating cells, and found that the interaction between phosphorylated Hog1 and the FLO genes promoter region increased significantly upon sodium chloride exposure. We found that treatment of cells with cantharidin decreased Hog1 phosphorylation, causing a sharp reduction in the expression of FLO genes and the flocculation phenotype. Similarly, deletion of HOG1 in yeast cells reduced flocculation. Altogether, our results suggest a role for HOG MAPK signaling in the regulation of FLO genes and yeast flocculation.
Collapse
Affiliation(s)
- Ramesh Kumawat
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, India
| |
Collapse
|
5
|
Liu Q, Jiang K, Duan S, Zhao N, Shen Y, Zhu L, Zhang KQ, Yang J. Identification of a transcription factor AoMsn2 of the Hog1 signaling pathway contributes to fungal growth, development and pathogenicity in Arthrobotrys oligospora. J Adv Res 2024:S2090-1232(24)00052-3. [PMID: 38331317 DOI: 10.1016/j.jare.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/20/2024] [Accepted: 02/03/2024] [Indexed: 02/10/2024] Open
Abstract
INTRODUCTION Arthrobotrys oligospora has been utilized as a model strain to study the interaction between fungi and nematodes owing to its ability to capture nematodes by developing specialized traps. A previous study showed that high-osmolarity glycerol (Hog1) signaling regulates the osmoregulation and nematocidal activity of A. oligospora. However, the function of downstream transcription factors of the Hog1 signaling in the nematode-trapping (NT) fungi remains unclear. OBJECTIVE This study aimed to investigate the functions and potential regulatory network of AoMsn2, a downstream transcription factor of the Hog1 signaling pathway in A. oligospora. METHODS The function of AoMsn2 was characterized using targeted gene deletion, phenotypic experiments, real-time quantitative PCR, RNA sequencing, untargeted metabolomics, and yeast two-hybrid analysis. RESULTS Loss of Aomsn2 significantly enlarged and swollen the hyphae, with an increase in septa and a significant decrease in nuclei. In particular, spore yield, spore germination rate, traps, and nematode predation efficiency were remarkably decreased in the mutants. Phenotypic and transcriptomic analyses revealed that AoMsn2 is essential for fatty acid metabolism and autophagic pathways. Additionally, untargeted metabolomic analysis identified an important function of AoMsn2 in the modulation of secondary metabolites. Furtherly, we analyzed the protein interaction network of AoMsn2 based on the Kyoto Encyclopedia of Genes and Genomes pathway map and the online website STRING. Finally, Hog1 and six putative targeted proteins of AoMsn2 were identified by Y2H analysis. CONCLUSION Our study reveals that AoMsn2 plays crucial roles in the growth, conidiation, trap development, fatty acid metabolism, and secondary metabolism, as well as establishes a broad basis for understanding the regulatory mechanisms of trap morphogenesis and environmental adaptation in NT fungi.
Collapse
Affiliation(s)
- Qianqian Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Kexin Jiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Shipeng Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Na Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Yanmei Shen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Lirong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming 650032, China.
| |
Collapse
|
6
|
Li S, Liu Q, Wang E, Wang J. Global quantitative understanding of non-equilibrium cell fate decision-making in response to pheromone. iScience 2023; 26:107885. [PMID: 37766979 PMCID: PMC10520453 DOI: 10.1016/j.isci.2023.107885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/09/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Cell-cycle arrest and polarized growth are commonly used to characterize the response of yeast to pheromone. However, the quantitative decision-making processes underlying time-dependent changes in cell fate remain unclear. In this study, we conducted single-cell level experiments to observe multidimensional responses, uncovering diverse fates of yeast cells. Multiple states are revealed, along with the kinetic switching rates and pathways among them, giving rise to a quantitative landscape of mating response. To quantify the experimentally observed cell fates, we developed a theoretical framework based on non-equilibrium landscape and flux theory. Additionally, we performed stochastic simulations of biochemical reactions to elucidate signal transduction and cell growth. Notably, our experimental findings have provided the first global quantitative evidence of the real-time synchronization between intracellular signaling, physiological growth, and morphological functions. These results validate the proposed underlying mechanism governing the emergence of multiple cell fate states. This study introduces an emerging mechanistic approach to understand non-equilibrium cell fate decision-making in response to pheromone.
Collapse
Affiliation(s)
- Sheng Li
- College of Chemistry, Jilin University, Changchun, Jilin 130012, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Qiong Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Erkang Wang
- College of Chemistry, Jilin University, Changchun, Jilin 130012, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jin Wang
- Department of Chemistry and of Physics and Astronomy, State University of New York at Stony Brook, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
7
|
Li S, Liu Q, Wang E, Wang J. Quantifying nonequilibrium dynamics and thermodynamics of cell fate decision making in yeast under pheromone induction. BIOPHYSICS REVIEWS 2023; 4:031401. [PMID: 38510708 PMCID: PMC10903495 DOI: 10.1063/5.0157759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/21/2023] [Indexed: 03/22/2024]
Abstract
Cellular responses to pheromone in yeast can range from gene expression to morphological and physiological changes. While signaling pathways are well studied, the cell fate decision-making during cellular polar growth is still unclear. Quantifying these cellular behaviors and revealing the underlying physical mechanism remain a significant challenge. Here, we employed a hidden Markov chain model to quantify the dynamics of cellular morphological systems based on our experimentally observed time series. The resulting statistics generated a stability landscape for state attractors. By quantifying rotational fluxes as the non-equilibrium driving force that tends to disrupt the current attractor state, the dynamical origin of non-equilibrium phase transition from four cell morphological fates to a single dominant fate was identified. We revealed that higher chemical voltage differences induced by a high dose of pheromone resulted in higher chemical currents, which will trigger a greater net input and, thus, more degrees of the detailed balance breaking. By quantifying the thermodynamic cost of maintaining morphological state stability, we demonstrated that the flux-related entropy production rate provides a thermodynamic origin for the phase transition in non-equilibrium morphologies. Furthermore, we confirmed that the time irreversibility in time series provides a practical way to predict the non-equilibrium phase transition.
Collapse
Affiliation(s)
| | - Qiong Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | | | - Jin Wang
- Department of Chemistry and of Physics and astronomy, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, USA
| |
Collapse
|
8
|
González B, Aldea M, Cullen PJ. Chaperone-Dependent Degradation of Cdc42 Promotes Cell Polarity and Shields the Protein from Aggregation. Mol Cell Biol 2023; 43:200-222. [PMID: 37114947 PMCID: PMC10184603 DOI: 10.1080/10985549.2023.2198171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 04/29/2023] Open
Abstract
Rho GTPases are global regulators of cell polarity and signaling. By exploring the turnover regulation of the yeast Rho GTPase Cdc42p, we identified new regulatory features surrounding the stability of the protein. We specifically show that Cdc42p is degraded at 37 °C by chaperones through lysine residues located in the C-terminus of the protein. Cdc42p turnover at 37 °C occurred by the 26S proteasome in an ESCRT-dependent manner in the lysosome/vacuole. By analyzing versions of Cdc42p that were defective for turnover, we show that turnover at 37 °C promoted cell polarity but was defective for sensitivity to mating pheromone, presumably mediated through a Cdc42p-dependent MAP kinase pathway. We also identified one residue (K16) in the P-loop of the protein that was critical for Cdc42p stability. Accumulation of Cdc42pK16R in some contexts led to the formation of protein aggregates, which were enriched in aging mother cells and cells undergoing proteostatic stress. Our study uncovers new aspects of protein turnover regulation of a Rho-type GTPase that may extend to other systems. Moreover, residues identified here that mediate Cdc42p turnover correlate with several human diseases, which may suggest that turnover regulation of Cdc42p is important to aspects of human health.
Collapse
Affiliation(s)
- Beatriz González
- Department of Biological Sciences, State University of New York at Buffalo, New York, USA
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona, Spain
| | - Paul J. Cullen
- Department of Biological Sciences, State University of New York at Buffalo, New York, USA
| |
Collapse
|
9
|
Erdenebaatar P, Gunarta IK, Suzuki R, Odongoo R, Fujii T, Fukunaga R, Kanemaki MT, Yoshioka K. Redundant roles of extra-cellular signal-regulated kinase (ERK) 1 and 2 in the G1-S transition and etoposide-induced G2/M checkpoint in HCT116 cells. Drug Discov Ther 2023; 17:10-17. [PMID: 36642508 DOI: 10.5582/ddt.2022.01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The extracellular signal-regulated kinase (ERK) 1 and 2 intracellular signaling pathways play key roles in a variety of cellular processes, such as proliferation and differentiation. Dysregulation of ERK1/2 signaling has been implicated in many diseases, including cancer. Although ERK1/2 signaling pathways have been extensively studied, controversy remains as to whether ERK1 and ERK2 have specific or redundant functions. In this study, we examined the functional roles of ERK1 and ERK2 in cell proliferation and cell cycle progression using an auxin-inducible degron system combined with gene knockout technology. We found that ERK1/2 double depletion, but not ERK1 or ERK2 depletion, substantially inhibited the proliferation of HCT116 cells during G1-S transition. We further demonstrated that ERK1/2-double-depleted cells were much more tolerant to etoposide-induced G2/M arrest than ERK1 or ERK2 single-knockout cells. Together, these results strongly suggest the functional redundancy of ERK1 and ERK2 in both the G1-S transition under physiological conditions and the DNA damage-induced G2/M checkpoint. Our findings substantially advance understanding of the ERK1/2 pathways, which could have strong implications for future pharmacological developments.
Collapse
Affiliation(s)
- Purev Erdenebaatar
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - I Ketut Gunarta
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Ryusuke Suzuki
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Ravdandorj Odongoo
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Toshihiro Fujii
- Department of Biochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Rikiro Fukunaga
- Department of Biochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Japan.,Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| | - Katsuji Yoshioka
- Division of Molecular Cell Signaling, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
10
|
de Mello FDSB, Coradini ALV, Carazzolle MF, Maneira C, Furlan M, Pereira GAG, Teixeira GS. Genetic mapping of a bioethanol yeast strain reveals new targets for hydroxymethylfurfural- and thermotolerance. Microbiol Res 2022; 263:127138. [DOI: 10.1016/j.micres.2022.127138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 10/16/2022]
|
11
|
Ma QZ, Wu HY, Xie SP, Zhao BS, Yin XM, Ding SL, Guo YS, Xu C, Zang R, Geng YH, Zhang M. BsTup1 is required for growth, conidiogenesis, stress response and pathogenicity of Bipolaris sorokiniana. Int J Biol Macromol 2022; 220:721-732. [PMID: 35981683 DOI: 10.1016/j.ijbiomac.2022.07.250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022]
Abstract
Tup1, a conserved transcriptional repressor, plays a critical role in the growth and development of fungi. Here, we identified a BsTup1 gene from the plant pathogenic fungus Bipolaris sorokiniana. The expression of BsTup1 showed a more than three-fold increase during the conidial stage compared with mycelium stage. Deletion of BsTup1 led to decrease hyphal growth and defect in conidia formation. A significant difference was detected in osmotic, oxidative, or cell wall stress responses between the WT and ΔBsTup1 strains. Pathogenicity assays showed that virulence of the ΔBsTup1 mutant was dramatically decreased on wheat and barely leaves. Moreover, it was observed that hyphal tips of the mutants could not form appressorium-like structures on the inner epidermis of onion and barley coleoptile. Yeast two-hybrid assays indicated that BsTup1 could interact with the BsSsn6. RNAseq revealed significant transcriptional changes in the ΔBsTup1 mutant with 2369 genes down-regulated and 2962 genes up-regulated. In these genes, we found that a subset of genes involved in fungal growth, sporulation, cell wall integrity, osmotic stress, oxidation stress, and pathogenicity, which were misregulated in the ΔBsTup1 mutant. These data revealed that BsTup1 has multiple functions in fungal growth, development, stress response and pathogenesis in B. sorokiniana.
Collapse
Affiliation(s)
- Qing-Zhou Ma
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Hai-Yan Wu
- Analytical Instrument Center, Henan Agricultural University, Zhengzhou 450002, China
| | - Shun-Pei Xie
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Bing-Sen Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Xin-Ming Yin
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Sheng-Li Ding
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Ya-Shuang Guo
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao Xu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Rui Zang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Yue-Hua Geng
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| | - Meng Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
12
|
Wang F, Liu K, Wang J, Sun Y, Xiao S, Xue C. ClNOX1/ClNOXR-mediated MAPK and cAMP-PKA signalling pathways and ROS metabolism are involved in Curvularia lunata sexual reproduction and host infection. Environ Microbiol 2022; 24:4340-4355. [PMID: 35676222 DOI: 10.1111/1462-2920.16089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
NADPH oxidases (NOXs) and hydrogen peroxide (H2 O2 ) are involved in physiological and pathological processes, and cell fate decisions in organisms. However, regulatory mechanism of NOXs and the role of H2 O2 on fungal sexual reproduction and host infection remain largely unexplored. Here, we identified ROS metabolic genes and key signalling genes of MAPK and cAMP-PKA pathways in Curvularia lunata, which were NOX ClNOX1 and ClNOXR, superoxide dismutase ClSOD1 and catalase ClCAT4, redox-regulated transcription factor ClAP1, Ras small GTPases Clg2P, pheromone-response MAPK ClK1 and cAMP-PKA ClSCHA, and characterized the functions of these genes. The results showed that ClNOX1 localized to the plasma membrane. ClNOX1 and ClNOXR were involved in sexual reproduction and host infection via ClNOX1/ClNOXR-derived H2 O2 as well as MAPK and cAMP-PKA signalling pathways. H2 O2 acted as a signalling molecule to regulate sexual reproduction and host infection in C. lunata.
Collapse
Affiliation(s)
- Fen Wang
- College of Plant Protection, Shenyang Agriculture University, Shenyang, 110161, China
| | - Kexin Liu
- College of Plant Protection, Shenyang Agriculture University, Shenyang, 110161, China
| | - Jiahui Wang
- College of Plant Protection, Shenyang Agriculture University, Shenyang, 110161, China
| | - Yuxin Sun
- College of Plant Protection, Shenyang Agriculture University, Shenyang, 110161, China
| | - Shuqin Xiao
- College of Plant Protection, Shenyang Agriculture University, Shenyang, 110161, China
| | - Chunsheng Xue
- College of Plant Protection, Shenyang Agriculture University, Shenyang, 110161, China
| |
Collapse
|
13
|
Greenblatt MB, Shim JH, Bok S, Kim JM. The Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase Pathway in Osteoblasts. J Bone Metab 2022; 29:1-15. [PMID: 35325978 PMCID: PMC8948490 DOI: 10.11005/jbm.2022.29.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/17/2022] [Indexed: 12/01/2022] Open
Abstract
Extracellular signal-regulated kinases (ERKs) are evolutionarily ancient signal transducers of the mitogen-activated protein kinase (MAPK) family that have long been linked to the regulation of osteoblast differentiation and bone formation. Here, we review the physiological functions, biochemistry, upstream activators, and downstream substrates of the ERK pathway. ERK is activated in skeletal progenitors and regulates osteoblast differentiation and skeletal mineralization, with ERK serving as a key regulator of Runt-related transcription factor 2, a critical transcription factor for osteoblast differentiation. However, new evidence highlights context-dependent changes in ERK MAPK pathway wiring and function, indicating a broader set of physiological roles associated with changes in ERK pathway components or substrates. Consistent with this importance, several human skeletal dysplasias are associated with dysregulation of the ERK MAPK pathway, including neurofibromatosis type 1 and Noonan syndrome. The continually broadening array of drugs targeting the ERK pathway for the treatment of cancer and other disorders makes it increasingly important to understand how interference with this pathway impacts bone metabolism, highlighting the importance of mouse studies to model the role of the ERK MAPK pathway in bone formation.
Collapse
Affiliation(s)
- Matthew B. Greenblatt
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical, New York, NY,
USA
- Research Division, Hospital for Special Surgery, New York, NY,
USA
| | - Jae-Hyuck Shim
- Division of Rheumatology, Department of Medicine, UMass Chan Medical School, Worcester, MA,
USA
- Horae Gene Therapy Center, and Li Weibo Institute for Rare Diseases Research, UMass Chan Medical School, Worcester, MA,
USA
| | - Seoyeon Bok
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical, New York, NY,
USA
| | - Jung-Min Kim
- Division of Rheumatology, Department of Medicine, UMass Chan Medical School, Worcester, MA,
USA
| |
Collapse
|
14
|
Yue P, Zhang H, Tong X, Peng T, Tang P, Gao T, Guo J. Genome-wide identification and expression profiling of thes MAPK, MAPKK, and MAPKKK gene families in Ophiocordyceps sinensis. Gene 2022; 807:145930. [PMID: 34461151 DOI: 10.1016/j.gene.2021.145930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 11/04/2022]
Abstract
Mitogen-activated protein kinase (MAPK) cascades have a universal cell signaling mechanism in eukaryotes. A typical MAPK signal transduction module comprises three kinds of sequentially phosphorylated protein kinases: MAPK, Mitogen-activated protein kinase kinase (MAPKK), and Mitogen-activated protein kinase kinase kinase (MAPKKK). However, little is known regarding the genes involved in MAPK cascades in Ophiocordyceps sinensis. Nine genes (three MAPK, three MAPKK, and three MAPKKK) were identified in this study. The MAPK, MAPKK, and MAPKKK genes were divided into three subfamilies, according to the phylogenetic analysis. TEY and TGY represented the activation domains of the MAPKs; the corresponding domains in MAPKKs were SDIWS and SDVWS, and those in the MAPKKs were GSVFYWMAPEV and GTPMYMSPEV. Transcription data analysis and quantitative real-time polymerase chain reaction showed that the MAPK cascade was related to the growth of the fruiting body. This is the first study to report a genome-wide identification of the MAPK, MAPKK, and MAPKK gene families in O. sinensis.
Collapse
Affiliation(s)
- Pan Yue
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Key Laboratory of Standardization of Chinese Medicine, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Han Zhang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Key Laboratory of Standardization of Chinese Medicine, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinxin Tong
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Key Laboratory of Standardization of Chinese Medicine, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ting Peng
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Key Laboratory of Standardization of Chinese Medicine, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Pan Tang
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Key Laboratory of Standardization of Chinese Medicine, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - TingHui Gao
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Key Laboratory of Standardization of Chinese Medicine, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jinlin Guo
- Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Key Laboratory of Standardization of Chinese Medicine, Ministry of Education, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
15
|
Mencher A, Morales P, Tronchoni J, Gonzalez R. Mechanisms Involved in Interspecific Communication between Wine Yeasts. Foods 2021; 10:foods10081734. [PMID: 34441512 PMCID: PMC8394882 DOI: 10.3390/foods10081734] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/22/2021] [Indexed: 12/17/2022] Open
Abstract
In parallel with the development of non-Saccharomyces starter cultures in oenology, a growing interest has developed around the interactions between the microorganisms involved in the transformation of grape must into wine. Nowadays, it is widely accepted that the outcome of a fermentation process involving two or more inoculated yeast species will be different from the weighted average of the corresponding individual cultures. Interspecific interactions between wine yeasts take place on several levels, including interference competition, exploitation competition, exchange of metabolic intermediates, and others. Some interactions could be a simple consequence of each yeast running its own metabolic programme in a context where metabolic intermediates and end products from other yeasts are present. However, there are clear indications, in some cases, of specific recognition between interacting yeasts. In this article we discuss the mechanisms that may be involved in the communication between wine yeasts during alcoholic fermentation.
Collapse
Affiliation(s)
- Ana Mencher
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Carretera LO-20, Salida 13, 26007 Logroño, Spain; (A.M.); (P.M.)
| | - Pilar Morales
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Carretera LO-20, Salida 13, 26007 Logroño, Spain; (A.M.); (P.M.)
| | - Jordi Tronchoni
- Faculty of Health Sciences, Valencian International University (VIU), C/Pintor Sorolla 21, 46002 Valencia, Spain;
| | - Ramon Gonzalez
- Instituto de Ciencias de la Vid y del Vino (CSIC, Gobierno de la Rioja, Universidad de La Rioja), Finca La Grajera, Carretera LO-20, Salida 13, 26007 Logroño, Spain; (A.M.); (P.M.)
- Correspondence: ; Tel.: +34-941-894-980
| |
Collapse
|
16
|
Gao J, Xu X, Huang K, Liang Z. Fungal G-Protein-Coupled Receptors: A Promising Mediator of the Impact of Extracellular Signals on Biosynthesis of Ochratoxin A. Front Microbiol 2021; 12:631392. [PMID: 33643259 PMCID: PMC7907439 DOI: 10.3389/fmicb.2021.631392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/21/2021] [Indexed: 01/17/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are transmembrane receptors involved in transducing signals from the external environment inside the cell, which enables fungi to coordinate cell transport, metabolism, and growth to promote their survival, reproduction, and virulence. There are 14 classes of GPCRs in fungi involved in sensing various ligands. In this paper, the synthesis of mycotoxins that are GPCR-mediated is discussed with respect to ligands, environmental stimuli, and intra-/interspecific communication. Despite their apparent importance in fungal biology, very little is known about the role of ochratoxin A (OTA) biosynthesis by Aspergillus ochraceus and the ligands that are involved. Fortunately, increasing evidence shows that the GPCR that involves the AF/ST (sterigmatocystin) pathway in fungi belongs to the same genus. Therefore, we speculate that GPCRs play an important role in a variety of environmental signals and downstream pathways in OTA biosynthesis. The verification of this inference will result in a more controllable GPCR target for control of fungal contamination in the future.
Collapse
Affiliation(s)
- Jing Gao
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Xinge Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhihong Liang
- Beijing Laboratory for Food Quality and Safety, Beijing, China.,College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Deshpande A, Ouldridge TE. Optimizing enzymatic catalysts for rapid turnover of substrates with low enzyme sequestration. BIOLOGICAL CYBERNETICS 2020; 114:653-668. [PMID: 33044662 DOI: 10.1007/s00422-020-00846-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Enzymes are central to both metabolism and information processing in cells. In both cases, an enzyme's ability to accelerate a reaction without being consumed in the reaction is crucial. Nevertheless, enzymes are transiently sequestered when they bind to their substrates; this sequestration limits activity and potentially compromises information processing and signal transduction. In this article, we analyse the mechanism of enzyme-substrate catalysis from the perspective of minimizing the load on the enzymes through sequestration, while maintaining at least a minimum reaction flux. In particular, we ask: which binding free energies of the enzyme-substrate and enzyme-product reaction intermediates minimize the fraction of enzymes sequestered in complexes, while sustaining a certain minimal flux? Under reasonable biophysical assumptions, we find that the optimal design will saturate the bound on the minimal flux and reflects a basic trade-off in catalytic operation. If both binding free energies are too high, there is low sequestration, but the effective progress of the reaction is hampered. If both binding free energies are too low, there is high sequestration, and the reaction flux may also be suppressed in extreme cases. The optimal binding free energies are therefore neither too high nor too low, but in fact moderate. Moreover, the optimal difference in substrate and product binding free energies, which contributes to the thermodynamic driving force of the reaction, is in general strongly constrained by the intrinsic free-energy difference between products and reactants. Both the strategies of using a negative binding free-energy difference to drive the catalyst-bound reaction forward and of using a positive binding free-energy difference to enhance detachment of the product are limited in their efficacy.
Collapse
Affiliation(s)
- Abhishek Deshpande
- Department of Mathematics, University of Wisconin Madison, Madison, 53706, WI, United States of America
| | - Thomas E Ouldridge
- Imperial College Centre for Synthetic Biology and Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
18
|
Sun JL, Zhao LL, He K, Liu Q, Luo J, Zhang DM, Liang J, Liao L, Ma JD, Yang S. MicroRNA regulation in hypoxic environments: differential expression of microRNAs in the liver of largemouth bass (Micropterus salmoides). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2227-2242. [PMID: 32948974 DOI: 10.1007/s10695-020-00877-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Environmental changes in intensive aquaculture commonly lead to hypoxic stress for cultured largemouth bass (Micropterus salmoides). To better to understand the hypoxic stress response mechanisms, the miRNA expression profiles of the livers of largemouth bass exposed for 24 h to three different dissolved oxygen levels (7.0 ± 0.2 mg/L as control, 3.0 ± 0.2 mg/L and 1.2 ± 0.2 mg/L) were compared. In this study, a total of 266 known miRNAs were identified, 84 of which were differentially expressed compared with the control group. Thirteen of the differentially expressed miRNAs (miR-15b-5p, miR-30a-3p, miR-133a-3p, miR-19d-5p, miR-1288-3p, miR456, miR-96-5p, miR-23a-3p, miR-23b-5p, miR-214, miR-24, miR-20a-3p, and miR-2188-5p) were significantly enriched in VEGF signaling pathway, MAPK signaling pathway, and phosphatidylinositol signaling system. These miRNAs were significantly downregulated during stress, especially after a 4-h exposure to hypoxia. In contrast, their target genes (vegfa, pla2g4a, raf1a, pik3c2a, clam2a, inpp1, pi4k2b, mtmr14, ip6k, itpkca, map3k7, and Jun) were significant upregulated after 4 h of hypoxic stress. Moreover, two potential hypoxia-tolerance signal transduction pathways (MAPK signaling pathway and phosphatidylinositol signaling system) were revealed, both of which may play important roles in responding to acute hypoxic stress. We see that miRNAs played an important role in regulating gene expression related to physiological responses to hypoxia. Potential functional network regulated by miRNAs under hypoixic stress in the liver of largemouth bass (Micropterus salmoides). Blue boxes indicated that the expression of miRNA or target genes were down-regulated. Red boxes indicated that the expression of miRNA or target genes wasere up-regulated.
Collapse
Affiliation(s)
- Jun Long Sun
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, 570228, Hainan, China
| | - Liu Lan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Dong Mei Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ji Liang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lei Liao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ji Deng Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
19
|
Yong M, Yu J, Pan X, Yu M, Cao H, Qi Z, Du Y, Zhang R, Song T, Yin X, Chen Z, Liu W, Liu Y. MAT1-1-3, a Mating Type Gene in the Villosiclava virens, Is Required for Fruiting Bodies and Sclerotia Formation, Asexual Development and Pathogenicity. Front Microbiol 2020; 11:1337. [PMID: 32714294 PMCID: PMC7344243 DOI: 10.3389/fmicb.2020.01337] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/25/2020] [Indexed: 12/29/2022] Open
Abstract
Villosiclava virens is the prevalent causative pathogen of rice false smut, a destructive rice disease. Mating-type genes play a vital role in the evolution of mating systems in fungi. Some fungi have lost MAT1-1-3, one of the mating-type genes, during evolution, whereas others still retain MAT1-1-3. However, how MAT1-1-3 regulates the sexual development of heterothallic V. virens remains unknown. Here, we generated the MAT1-1-3 mutants, which exhibited defects in vegetative growth, stress response, pathogenicity, sclerotia formation and fruiting body maturation. An artificial outcrossing inoculation assay showed that the Δmat1-1-3 mutant was unable to produce sclerotia. Unexpectedly, the Δmat1-1-3 mutant could form immature fruiting bodies without mating on potato sucrose agar medium (PSA) compared with the wild-type strain, most likely by activating the truncated MAT1-2-1 transcription to regulate the sexual development. Moreover, RNA-seq data showed that knockout of MAT1-1-3 results in misregulation of a subset of genes involved in sexual development, MAPK signaling, cell wall integrity, autophagy, epigenetic modification, and transcriptional regulation. Collectively, this study reveals that MAT1-1-3 is required for asexual and sexual development, and pathogenicity of V. virens, thereby provides new insights into the function of mating-type genes in the fungi life cycle and infection process.
Collapse
Affiliation(s)
- Mingli Yong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaole Yin
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhiyi Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
20
|
Annunziata MC, Parisi M, Esposito G, Fabbrocini G, Ammendola R, Cattaneo F. Phosphorylation Sites in Protein Kinases and Phosphatases Regulated by Formyl Peptide Receptor 2 Signaling. Int J Mol Sci 2020; 21:ijms21113818. [PMID: 32471307 PMCID: PMC7312799 DOI: 10.3390/ijms21113818] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
FPR1, FPR2, and FPR3 are members of Formyl Peptides Receptors (FPRs) family belonging to the GPCR superfamily. FPR2 is a low affinity receptor for formyl peptides and it is considered the most promiscuous member of this family. Intracellular signaling cascades triggered by FPRs include the activation of different protein kinases and phosphatase, as well as tyrosine kinase receptors transactivation. Protein kinases and phosphatases act coordinately and any impairment of their activation or regulation represents one of the most common causes of several human diseases. Several phospho-sites has been identified in protein kinases and phosphatases, whose role may be to expand the repertoire of molecular mechanisms of regulation or may be necessary for fine-tuning of switch properties. We previously performed a phospho-proteomic analysis in FPR2-stimulated cells that revealed, among other things, not yet identified phospho-sites on six protein kinases and one protein phosphatase. Herein, we discuss on the selective phosphorylation of Serine/Threonine-protein kinase N2, Serine/Threonine-protein kinase PRP4 homolog, Serine/Threonine-protein kinase MARK2, Serine/Threonine-protein kinase PAK4, Serine/Threonine-protein kinase 10, Dual specificity mitogen-activated protein kinase kinase 2, and Protein phosphatase 1 regulatory subunit 14A, triggered by FPR2 stimulation. We also describe the putative FPR2-dependent signaling cascades upstream to these specific phospho-sites.
Collapse
Affiliation(s)
- Maria Carmela Annunziata
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.C.A.); (M.P.); (G.F.)
| | - Melania Parisi
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.C.A.); (M.P.); (G.F.)
| | - Gabriella Esposito
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (G.E.); (R.A.)
| | - Gabriella Fabbrocini
- Department of Clinical Medicine and Surgery, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (M.C.A.); (M.P.); (G.F.)
| | - Rosario Ammendola
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (G.E.); (R.A.)
| | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (G.E.); (R.A.)
- Correspondence: ; Fax: +39-081-7464-359
| |
Collapse
|
21
|
An adaptor protein BmSte50 interacts with BmSte11 MAPKKK and is involved in host infection, conidiation, melanization, and sexual development in Bipolaris maydis. MYCOSCIENCE 2020. [DOI: 10.1016/j.myc.2019.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Javaid N, Choi S. Toll-like Receptors from the Perspective of Cancer Treatment. Cancers (Basel) 2020; 12:E297. [PMID: 32012718 PMCID: PMC7072551 DOI: 10.3390/cancers12020297] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) represent a family of pattern recognition receptors that recognize certain pathogen-associated molecular patterns and damage-associated molecular patterns. TLRs are highly interesting to researchers including immunologists because of the involvement in various diseases including cancers, allergies, autoimmunity, infections, and inflammation. After ligand engagement, TLRs trigger multiple signaling pathways involving nuclear factor-κB (NF-κB), interferon-regulatory factors (IRFs), and mitogen-activated protein kinases (MAPKs) for the production of various cytokines that play an important role in diseases like cancer. TLR activation in immune as well as cancer cells may prevent the formation and growth of a tumor. Nonetheless, under certain conditions, either hyperactivation or hypoactivation of TLRs supports the survival and metastasis of a tumor. Therefore, the design of TLR-targeting agonists as well as antagonists is a promising immunotherapeutic approach to cancer. In this review, we mainly describe TLRs, their involvement in cancer, and their promising properties for anticancer drug discovery.
Collapse
Affiliation(s)
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea;
| |
Collapse
|
23
|
Perry AM, Hernday AD, Nobile CJ. Unraveling How Candida albicans Forms Sexual Biofilms. J Fungi (Basel) 2020; 6:jof6010014. [PMID: 31952361 PMCID: PMC7151012 DOI: 10.3390/jof6010014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Biofilms, structured and densely packed communities of microbial cells attached to surfaces, are considered to be the natural growth state for a vast majority of microorganisms. The ability to form biofilms is an important virulence factor for most pathogens, including the opportunistic human fungal pathogen Candida albicans. C. albicans is one of the most prevalent fungal species of the human microbiota that asymptomatically colonizes healthy individuals. However, C. albicans can also cause severe and life-threatening infections when host conditions permit (e.g., through alterations in the host immune system, pH, and resident microbiota). Like many other pathogens, this ability to cause infections depends, in part, on the ability to form biofilms. Once formed, C. albicans biofilms are often resistant to antifungal agents and the host immune response, and can act as reservoirs to maintain persistent infections as well as to seed new infections in a host. The majority of C. albicans clinical isolates are heterozygous (a/α) at the mating type-like (MTL) locus, which defines Candida mating types, and are capable of forming robust biofilms when cultured in vitro. These “conventional” biofilms, formed by MTL-heterozygous (a/α) cells, have been the primary focus of C. albicans biofilm research to date. Recent work in the field, however, has uncovered novel mechanisms through which biofilms are generated by C. albicans cells that are homozygous or hemizygous (a/a, a/Δ, α/α, or α/Δ) at the MTL locus. In these studies, the addition of pheromones of the opposite mating type can induce the formation of specialized “sexual” biofilms, either through the addition of synthetic peptide pheromones to the culture, or in response to co-culturing of cells of the opposite mating types. Although sexual biofilms are generally less robust than conventional biofilms, they could serve as a protective niche to support genetic exchange between mating-competent cells, and thus may represent an adaptive mechanism to increase population diversity in dynamic environments. Although conventional and sexual biofilms appear functionally distinct, both types of biofilms are structurally similar, containing yeast, pseudohyphal, and hyphal cells surrounded by an extracellular matrix. Despite their structural similarities, conventional and sexual biofilms appear to be governed by distinct transcriptional networks and signaling pathways, suggesting that they may be adapted for, and responsive to, distinct environmental conditions. Here we review sexual biofilms and compare and contrast them to conventional biofilms of C. albicans.
Collapse
Affiliation(s)
- Austin M. Perry
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA; (A.M.P.); (A.D.H.)
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Aaron D. Hernday
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA; (A.M.P.); (A.D.H.)
| | - Clarissa J. Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA; (A.M.P.); (A.D.H.)
- Correspondence: ; Tel.: +1-209-228-2427
| |
Collapse
|
24
|
Xie M, Bai N, Yang J, Jiang K, Zhou D, Zhao Y, Li D, Niu X, Zhang KQ, Yang J. Protein Kinase Ime2 Is Required for Mycelial Growth, Conidiation, Osmoregulation, and Pathogenicity in Nematode-Trapping Fungus Arthrobotrys oligospora. Front Microbiol 2020; 10:3065. [PMID: 31993040 PMCID: PMC6971104 DOI: 10.3389/fmicb.2019.03065] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 12/18/2019] [Indexed: 11/26/2022] Open
Abstract
Inducer of meiosis 2 (Ime2), a protein kinase that has been identified in diverse fungal species, functions in the regulation of various cellular processes, such as ascospore formation, pseudohyphal growth, and sexual reproduction. In this study, AoIme2, an ortholog of Saccharomyces cerevisiae Ime2, was characterized in the nematode-trapping fungus Arthrobotrys oligospora. Disruption of the gene Aoime2 caused defective growth, with slower mycelial growth in ΔAoime2 mutants than the wild type (WT) strain, and in the mutants, the number of hyphal septa in mycelia was higher and the number of cell nuclei in mycelia and conidia was considerably lower than in the WT strain. The conidial yields of the ΔAoime2 mutants were decreased by ∼33% relative to the WT strain, and the transcription of several sporulation-related genes, including abaA, fluG, rodA, aspB, velB, and vosA, was markedly downregulated during the conidiation stage. The ΔAoime2 mutants were highly sensitive to the osmotic stressors NaCl and sorbitol, and the cell wall of partial hyphae in the mutants was deformed. Further examination revealed that the cell wall of the traps produced by ΔAoime2 mutants became loose, and that the electron-dense bodies in trap cells were also few than in the WT strain. Moreover, Aoime2 disruption caused a reduction in trap formation and serine-protease production, and most hyphal traps produced by ΔAoime2 mutants did not form an intact hyphal loop; consequently, substantially fewer nematodes were captured by the mutants than by the WT strain. In summary, an Ime2-MAPK is identified here for the first time from a nematode-trapping fungus, and the kinase is shown to be involved in the regulation of mycelial growth and development, conidiation, osmolarity, and pathogenicity in A. oligospora.
Collapse
Affiliation(s)
- Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China.,Department of Chemistry and Life Science, Chuxiong Normal University, Chuxiong, China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Jiangliu Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Kexin Jiang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Duanxu Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Yining Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Dongni Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Xuemei Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.,School of Life Sciences, Yunnan University, Kunming, China.,Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| |
Collapse
|
25
|
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors in fungi. These receptors have an important role in the transduction of extracellular signals into intracellular sites in response to diverse stimuli. They enable fungi to coordinate cell function and metabolism, thereby promoting their survival and propagation, and sense certain fundamentally conserved elements, such as nutrients, pheromones, and stress, for adaptation to their niches, environmental stresses, and host environment, causing disease and pathogen virulence. This chapter highlights the role of GPCRs in fungi in coordinating cell function and metabolism. Fungal cells sense the molecular interactions between extracellular signals. Their respective sensory systems are described here in detail.
Collapse
Affiliation(s)
- Abd El-Latif Hesham
- Department of Genetics Faculty of Agriculture, Beni-Suef University, Beni-Suef, Egypt
| | | | | | | | - Vijai Kumar Gupta
- AgroBioSciences and Chemical & Biochemical Sciences Department, University Mohammed VI Polytechnic (UM6P), Benguerir, Morocco
| |
Collapse
|
26
|
Li D, Qin L, Wang Y, Xie Q, Li N, Wang S, Yuan J. AflSte20 Regulates Morphogenesis, Stress Response, and Aflatoxin Biosynthesis of Aspergillus flavus. Toxins (Basel) 2019; 11:toxins11120730. [PMID: 31847206 PMCID: PMC6950481 DOI: 10.3390/toxins11120730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
Various signaling pathways in filamentous fungi help cells receive and respond to environmental information. Previous studies have shown that the mitogen-activated protein kinase (MAPK) pathway is phosphorylation-dependent and activated by different kinase proteins. Serine/threonine kinase plays a very important role in the MAPK pathway. In this study, we selected the serine/threonine kinase AflSte20 in Aspergillus flavus for functional study. By constructing Aflste20 knockout mutants and complemented strains, it was proven that the Aflste20 knockout mutant (ΔAflste20) showed a significant decrease in growth, sporogenesis, sclerotinogenesis, virulence, and infection compared to the WT (wild type) and complemented strain (ΔAflste20C). Further research indicated that ΔAflste20 has more sensitivity characteristics than WT and ΔAflste20C under various stimuli such as osmotic stress and other types of environmental stresses. Above all, our study showed that the mitogen-activated kinase AflSte20 plays an important role in the growth, conidia production, stress response and sclerotia formation, as well as aflatoxin biosynthesis, in A. flavus.
Collapse
Affiliation(s)
| | | | | | | | | | - Shihua Wang
- Correspondence: (S.W.); (J.Y.); Tel./Fax: +86-591-8378-7126 (S.W.)
| | - Jun Yuan
- Correspondence: (S.W.); (J.Y.); Tel./Fax: +86-591-8378-7126 (S.W.)
| |
Collapse
|
27
|
Single-Gene Deletions Contributing to Loss of Heterozygosity in Saccharomyces cerevisiae: Genome-Wide Screens and Reproducibility. G3-GENES GENOMES GENETICS 2019; 9:2835-2850. [PMID: 31270132 PMCID: PMC6723133 DOI: 10.1534/g3.119.400429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Loss of heterozygosity (LOH) is a phenomenon commonly observed in cancers; the loss of chromosomal regions can be both causal and indicative of underlying genome instability. Yeast has long been used as a model organism to study genetic mechanisms difficult to study in mammalian cells. Studying gene deletions leading to increased LOH in yeast aids our understanding of the processes involved, and guides exploration into the etiology of LOH in cancers. Yet, before in-depth mechanistic studies can occur, candidate genes of interest must be identified. Utilizing the heterozygous Saccharomyces cerevisiae deletion collection (≈ 6500 strains), 217 genes whose disruption leads to increased LOH events at the endogenously heterozygous mating type locus were identified. Our investigation to refine this list of genes to candidates with the most definite impact on LOH includes: secondary testing for LOH impact at an additional locus, gene ontology analysis to determine common gene characteristics, and positional gene enrichment studies to identify chromosomal regions important in LOH events. Further, we conducted extensive comparisons of our data to screens with similar, but distinct methodologies, to further distinguish genes that are more likely to be true contributors to instability due to their reproducibility, and not just identified due to the stochastic nature of LOH. Finally, we selected nine candidate genes and quantitatively measured their impact on LOH as a benchmark for the impact of genes identified in our study. Our data add to the existing body of work and strengthen the evidence of single-gene knockdowns contributing to genome instability.
Collapse
|
28
|
Sensing and transduction of nutritional and chemical signals in filamentous fungi: Impact on cell development and secondary metabolites biosynthesis. Biotechnol Adv 2019; 37:107392. [PMID: 31034961 DOI: 10.1016/j.biotechadv.2019.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 11/23/2022]
Abstract
Filamentous fungi respond to hundreds of nutritional, chemical and environmental signals that affect expression of primary metabolism and biosynthesis of secondary metabolites. These signals are sensed at the membrane level by G protein coupled receptors (GPCRs). GPCRs contain usually seven transmembrane domains, an external amino terminal fragment that interacts with the ligand, and an internal carboxy terminal end interacting with the intracellular G protein. There is a great variety of GPCRs in filamentous fungi involved in sensing of sugars, amino acids, cellulose, cell-wall components, sex pheromones, oxylipins, calcium ions and other ligands. Mechanisms of signal transduction at the membrane level by GPCRs are discussed, including the internalization and compartmentalisation of these sensor proteins. We have identified and analysed the GPCRs in the genome of Penicillium chrysogenum and compared them with GPCRs of several other filamentous fungi. We have found 66 GPCRs classified into 14 classes, depending on the ligand recognized by these proteins, including most previously proposed classes of GPCRs. We have found 66 putative GPCRs, representatives of twelve of the fourteen previously proposed classes of GPCRs, depending on the ligand recognized by these proteins. A staggering fortytwo putative members of the new GPCR class XIV, the so-called Pth11 sensors of cellulosic material as reported for Neurospora crassa and some other fungi, were identified. Several GPCRs sensing sex pheromones, known in yeast and in several fungi, were also identified in P. chrysogenum, confirming the recent unravelling of the hidden sexual capacity of this species. Other sensing mechanisms do not involve GPCRs, including the two-component systems (HKRR), the HOG signalling system and the PalH mediated pH transduction sensor. GPCR sensor proteins transmit their signals by interacting with intracellular heterotrimeric G proteins, that are well known in several fungi, including P. chrysogenum. These G proteins are inactive in the GDP containing heterotrimeric state, and become active by nucleotide exchange, allowing the separation of the heterotrimeric protein in active Gα and Gβγ dimer subunits. The conversion of GTP in GDP is mediated by the endogenous GTPase activity of the G proteins. Downstream of the ligand interaction, the activated Gα protein and also the Gβ/Gγ dimer, transduce the signals through at least three different cascades: adenylate cyclase/cAMP, MAPK kinase, and phospholipase C mediated pathways.
Collapse
|
29
|
Román E, Correia I, Prieto D, Alonso R, Pla J. The HOG MAPK pathway in Candida albicans: more than an osmosensing pathway. Int Microbiol 2019; 23:23-29. [DOI: 10.1007/s10123-019-00069-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/21/2019] [Accepted: 02/27/2019] [Indexed: 12/18/2022]
|
30
|
Sharmeen N, Sulea T, Whiteway M, Wu C. The adaptor protein Ste50 directly modulates yeast MAPK signaling specificity through differential connections of its RA domain. Mol Biol Cell 2019; 30:794-807. [PMID: 30650049 PMCID: PMC6589780 DOI: 10.1091/mbc.e18-11-0708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Discriminating among diverse environmental stimuli is critical for organisms to ensure their proper development, homeostasis, and survival. Saccharomyces cerevisiae regulates mating, osmoregulation, and filamentous growth using three different MAPK signaling pathways that share common components and therefore must ensure specificity. The adaptor protein Ste50 activates Ste11p, the MAP3K of all three modules. Its Ras association (RA) domain acts in both hyperosmolar and filamentous growth pathways, but its connection to the mating pathway is unknown. Genetically probing the domain, we found mutants that specifically disrupted mating or HOG-signaling pathways or both. Structurally these residues clustered on the RA domain, forming distinct surfaces with a propensity for protein–protein interactions. GFP fusions of wild-type (WT) and mutant Ste50p show that WT is localized to the shmoo structure and accumulates at the growing shmoo tip. The specifically pheromone response–defective mutants are severely impaired in shmoo formation and fail to localize ste50p, suggesting a failure of association and function of Ste50 mutants in the pheromone-signaling complex. Our results suggest that yeast cells can use differential protein interactions with the Ste50p RA domain to provide specificity of signaling during MAPK pathway activation.
Collapse
Affiliation(s)
- Nusrat Sharmeen
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Traian Sulea
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada.,Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, H9X 3V9 QC, Canada
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Cunle Wu
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.,Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| |
Collapse
|
31
|
Satoh R. [The Molecular Basis of Drug Discovery Targeting the Regulatory Mechanism of MAPK Signaling via the Spatial Regulation of RNA-binding Proteins]. YAKUGAKU ZASSHI 2019; 139:7-12. [PMID: 30606933 DOI: 10.1248/yakushi.18-00189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitogen-activated protein kinase (MAPK) is a highly conserved serine/threonine kinase that regulates multiple cellular processes such as cell proliferation, differentiation, apoptosis, and inflammation. Rnc1 has been identified as a regulator of Pmk1 MAPK signaling, a homologue of extracellular signal-regulated kinase (ERK)-1 MAPK in mammals. Rnc1 encodes a K-homology (KH)-type RNA-binding protein (RBP). Previously, it was reported that Rnc1 acts as a negative regulator of Pmk1 MAPK signaling through the mRNA stabilization of Pmp1, the MAPK phosphatase for Pmk1 in our laboratory. We analyzed the spatial regulation of Rnc1 and discovered that Rnc1 is exported from the nucleus by the mRNA-export system. The nuclear export of Rnc1 is important for exerting its function to stabilize Pmp1 mRNA. Therefore, the spatial regulation of Rnc1 affects MAPK signaling activity. We also reported that Nrd1, an RRM-type RBP, plays a critical role in cytokinesis by binding to and stabilizing myosin mRNA. Notably, Rnc1 and Nrd1 localize to stress granules (SGs) in response to various environmental stresses. Moreover, SG formation is inhibited in the Nrd1 or Rnc1 deletion cells, whereas the overproduction of Nrd1 or Rnc1, as well as that of mammalian RBP TIA-1, induces granule formation. These data show that Nrd1 and Rnc1 regulate SG formation as a novel SG component. Alterations of SG formation are linked to neurodegenerative diseases and resistance to anti-cancer drugs, thus conferring remarkable clinical importance to SGs. This review discusses the spatial regulation of RBPs or SG formation as novel targets for drug discovery.
Collapse
Affiliation(s)
- Ryosuke Satoh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University
| |
Collapse
|
32
|
McClatchy DB, Yu NK, Martínez-Bartolomé S, Patel R, Pelletier AR, Lavalle-Adam M, Powell SB, Roberto M, Yates JR. Structural Analysis of Hippocampal Kinase Signal Transduction. ACS Chem Neurosci 2018; 9:3072-3085. [PMID: 30053369 PMCID: PMC6374210 DOI: 10.1021/acschemneuro.8b00284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Kinases are a major clinical target for human diseases. Identifying the proteins that interact with kinases in vivo will provide information on unreported substrates and will potentially lead to more specific methods for therapeutic kinase regulation. Here, endogenous immunoprecipitations of evolutionally distinct kinases (i.e., Akt, ERK2, and CAMK2) from rodent hippocampi were analyzed by mass spectrometry to generate three highly confident kinase protein-protein interaction networks. Proteins of similar function were identified in the networks, suggesting a universal model for kinase signaling complexes. Protein interactions were observed between kinases with reported symbiotic relationships. The kinase networks were significantly enriched in genes associated with specific neurodevelopmental disorders providing novel structural connections between these disease-associated genes. To demonstrate a functional relationship between the kinases and the network, pharmacological manipulation of Akt in hippocampal slices was shown to regulate the activity of potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel(HCN1), which was identified in the Akt network. Overall, the kinase protein-protein interaction networks provide molecular insight of the spatial complexity of in vivo kinase signal transduction which is required to achieve the therapeutic potential of kinase manipulation in the brain.
Collapse
Affiliation(s)
- Daniel B McClatchy
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Nam-Kyung Yu
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Salvador Martínez-Bartolomé
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Reesha Patel
- Department of Neuroscience , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Alexander R Pelletier
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology , University of Ottawa , Ottawa , ON K1H 8M5 , Canada
| | - Mathieu Lavalle-Adam
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology , University of Ottawa , Ottawa , ON K1H 8M5 , Canada
| | - Susan B Powell
- Department of Psychiatry , UCSD , La Jolla , California 92093 , United States
| | - Marisa Roberto
- Department of Neuroscience , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - John R Yates
- Department of Molecular Medicine , The Scripps Research Institute , La Jolla , California 92037 , United States
| |
Collapse
|
33
|
Shiraishi K, Hioki T, Habata A, Yurimoto H, Sakai Y. Yeast Hog1 proteins are sequestered in stress granules during high-temperature stress. J Cell Sci 2018; 131:jcs.209114. [PMID: 29183915 DOI: 10.1242/jcs.209114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/22/2017] [Indexed: 11/20/2022] Open
Abstract
The yeast high-osmolarity glycerol (HOG) pathway plays a central role in stress responses. It is activated by various stresses, including hyperosmotic stress, oxidative stress, high-temperature stress and exposure to arsenite. Hog1, the crucial MAP kinase of the pathway, localizes to the nucleus in response to high osmotic concentrations, i.e. high osmolarity; but, otherwise, little is known about its intracellular dynamics and regulation. By using the methylotrophic yeast Candida boidinii, we found that CbHog1-Venus formed intracellular dot structures after high-temperature stress in a reversible manner. Microscopic observation revealed that CbHog1-mCherry colocalized with CbPab1-Venus, a marker protein of stress granules. Hog1 homologs in Pichia pastoris and Schizosaccharomyces pombe also exhibited similar dot formation under high-temperature stress, whereas Saccharomyces cerevisiae Hog1 (ScHog1)-GFP did not. Analysis of CbHog1-Venus in C. boidinii revealed that a β-sheet structure in the N-terminal region was necessary and sufficient for its localization to stress granules. Physiological studies revealed that sequestration of activated Hog1 proteins in stress granules was responsible for downregulation of Hog1 activity under high-temperature stress.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kosuke Shiraishi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, 606-8502, Kyoto, Japan
| | - Takahiro Hioki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, 606-8502, Kyoto, Japan
| | - Akari Habata
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, 606-8502, Kyoto, Japan
| | - Hiroya Yurimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, 606-8502, Kyoto, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, 606-8502, Kyoto, Japan .,Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, 606-8502, Kyoto, Japan
| |
Collapse
|
34
|
Krysan PJ, Colcombet J. Cellular Complexity in MAPK Signaling in Plants: Questions and Emerging Tools to Answer Them. FRONTIERS IN PLANT SCIENCE 2018; 9:1674. [PMID: 30538711 PMCID: PMC6277691 DOI: 10.3389/fpls.2018.01674] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/26/2018] [Indexed: 05/21/2023]
Abstract
Mitogen activated protein kinase (MAPK) cascades play an important role in many aspects of plant growth, development, and environmental response. Because of their central role in many important processes, MAPKs have been extensively studied using biochemical and genetic approaches. This work has allowed for the identification of the MAPK genes and proteins involved in a number of different signaling pathways. Less well developed, however, is our understanding of how MAPK cascades and their corresponding signaling pathways are organized at subcellular levels. In this review, we will provide an overview of plant MAPK signaling, including a discussion of what is known about cellular mechanisms for achieving signaling specificity. Then we will explore what is currently known about the subcellular localization of MAPK proteins in resting conditions and after pathway activation. Finally, we will discuss a number of new experimental methods that have not been widely deployed in plants that have the potential to provide a deeper understanding of the spatial and temporal dynamics of MAPK signaling.
Collapse
Affiliation(s)
- Patrick J. Krysan
- Horticulture Department, University of Wisconsin–Madison, Madison, WI, United States
| | - Jean Colcombet
- Institute of Plant Sciences Paris Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Saclay, Gif-sur-Yvette, France
- Institute of Plant Sciences Paris Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Gif-sur-Yvette, France
- *Correspondence: Jean Colcombet,
| |
Collapse
|
35
|
So KK, Kim DH. Role of MAPK Signaling Pathways in Regulating the Hydrophobin Cryparin in the Chestnut Blight Fungus Cryphonectria parasitica. MYCOBIOLOGY 2017; 45:362-369. [PMID: 29371804 PMCID: PMC5780368 DOI: 10.5941/myco.2017.45.4.362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/06/2017] [Accepted: 10/15/2017] [Indexed: 06/07/2023]
Abstract
We assessed the regulation of cryparin, a class II hydrophobin, using three representative mitogen-activated protein kinase (MAPK) pathways in Cryphonectria parasitica. Mutation of the CpSlt2 gene, an ortholog of yeast SLT2 in the cell wall integrity (CWI) pathway, resulted in a dramatic decrease in cryparin production. Similarly, a mutant of the CpBck1 gene, a MAP kinase kinase kinase gene in the CWI pathway, showed decreased cryparin production. Additionally, mutation of the cpmk1 gene, an ortholog of yeast HOG1, showed decreased cryparin production. However, mutation of the cpmk2 gene, an ortholog of yeast Kss1/Fus3, showed increased cryparin production. The easy-wet phenotype and accumulation of the cryparin transcript in corresponding mutants were consistent with the cryparin production results. In silico analysis of the promoter region of the cryparin gene revealed the presence of binding motifs related to downstream transcription factors of CWI, HOG1, and pheromone responsive pathways including MADS-box- and Ste12-binding domains. Real-time reverse transcriptase PCR analyses indicated that both CpRlm1, an ortholog of yeast RLM1 in the CWI pathway, and cpst12, an ortholog of yeast STE12 in the mating pathway, showed significantly reduced transcription levels in the mutant strains showing lower cryparin production in C. prasitica. However, the transcription of CpMcm1, an ortholog of yeast MCM1, did not correlate with that of the mutant strains showing downregulation of cryparin. These results indicate that three representative MAPK pathways played a role in regulating cryparin production. However, regulation varied depending on the MAPK pathways: the CWI and HOG1 pathways were stimulatory, whereas the pheromone-responsive MAPK was repressive.
Collapse
Affiliation(s)
- Kum-Kang So
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, Korea
| | - Dae-Hyuk Kim
- Department of Molecular Biology, Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
36
|
Yamamoto K, Tran TNM, Takegawa K, Kaneko Y, Maekawa H. Regulation of mating type switching by the mating type genes and RME1 in Ogataea polymorpha. Sci Rep 2017; 7:16318. [PMID: 29176579 PMCID: PMC5701183 DOI: 10.1038/s41598-017-16284-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/09/2017] [Indexed: 11/12/2022] Open
Abstract
Saccharomyces cerevisiae and its closely related yeasts undergo mating type switching by replacing DNA sequences at the active mating type locus (MAT) with one of two silent mating type cassettes. Recently, a novel mode of mating type switching was reported in methylotrophic yeast, including Ogataea polymorpha, which utilizes chromosomal recombination between inverted-repeat sequences flanking two MAT loci. The inversion is highly regulated and occurs only when two requirements are met: haploidy and nutritional starvation. However, links between this information and the mechanism associated with mating type switching are not understood. Here we investigated the roles of transcription factors involved in yeast sexual development, such as mating type genes and the conserved zinc finger protein Rme1. We found that co-presence of mating type a1 and α2 genes was sufficient to prevent mating type switching, suggesting that ploidy information resides solely in the mating type locus. Additionally, RME1 deletion resulted in a reduced rate of switching, and ectopic expression of O. polymorpha RME1 overrode the requirement for starvation to induce MAT inversion. These results suggested that mating type switching in O. polymorpha is likely regulated by two distinct transcriptional programs that are linked to the ploidy and transmission of the starvation signal.
Collapse
Affiliation(s)
| | - Thi N M Tran
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Kaoru Takegawa
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | - Hiromi Maekawa
- Graduate School of Engineering, Osaka University, Osaka, Japan. .,Faculty of Agriculture, Kyushu University, Fukuoka, Japan. .,Centre for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
37
|
He P, Wang Y, Wang X, Zhang X, Tian C. The Mitogen-Activated Protein Kinase CgMK1 Governs Appressorium Formation, Melanin Synthesis, and Plant Infection of Colletotrichum gloeosporioides. Front Microbiol 2017; 8:2216. [PMID: 29176970 PMCID: PMC5686099 DOI: 10.3389/fmicb.2017.02216] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/27/2017] [Indexed: 11/13/2022] Open
Abstract
The fungus Colletotrichum gloeosporiodes infects plant hosts with a specialized cell called an appressorium, which is melanized and required for plant cell wall penetration. Here, we show that the mitogen-activated protein kinase CgMK1 governs appressorium formation and virulence in the poplar anthracnose fungus C. gloeosporioides. Deletion of CgMK1 impairs aerial hyphal growth and biomass accumulation, and CgMK1 is responsible for the expression of melanin biosynthesis-associated genes. CgMK1 deletion mutants are unable to form appressorium and lose the capacity to colonize either wounded or unwounded poplar leaves, leading to loss of virulence. We demonstrate that the exogenous application of cAMP fails to restore defective appressorium formation in the CgMK1 deletion mutants, suggesting that CgMK1 may function downstream or independent of a cAMP-dependent signal for appressorium formation. Moreover, CgMK1 mutants were sensitive to high osmosis, indicating that CgMK1 plays an important role in stress response. We conclude that CgMK1 plays a vital role in regulating appressorium formation, melanin biosynthesis, and virulence in C. gloeosporiodes.
Collapse
Affiliation(s)
- Puhuizhong He
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Yonglin Wang
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Xiaolian Wang
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Xiaolin Zhang
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Chengming Tian
- College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
38
|
Mutation of the Slt2 ortholog from Cryphonectria parasitica results in abnormal cell wall integrity and sectorization with impaired pathogenicity. Sci Rep 2017; 7:9038. [PMID: 28831166 PMCID: PMC5567307 DOI: 10.1038/s41598-017-09383-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/26/2017] [Indexed: 11/26/2022] Open
Abstract
We assessed the biological function of CpSlt2, an ortholog of the cell wall integrity (CWI) MAPK of Saccharomyces cerevisiae, in the chestnut blight fungus Cryphonectria parasitica. The CpSlt2-null mutant exhibited marked changes in colonial growth, near absence of conidiation and aerial hyphae, and abnormal pigmentation. In addition, the CpSlt2-null mutant exhibited CWI-related phenotypic defects including hypersensitivity to cell wall-disturbing agents and other stresses. Electron microscopy revealed the presence of abnormal hyphae such as intrahyphal hyphae. In addition, virulence assays indicated that the CpSlt2 gene plays an important role in fungal pathogenesis. As cultivation of the mutant strains progressed, the majority of the colonies showed sporadic sectorization and mycelia from the sectored area stably maintained the sectored phenotype. Although mycelial growth was partially recovered, the sectored progeny had dramatically impaired virulence, confirming the CpSlt2 gene has a role in pathogenicity. Compared to a previous mutant of the CpBck1 gene, a MAPKKK gene in CWI pathway, the CpSlt2-null mutant showed similar, although not identical, phenotypic changes and most phenotypic changes were less severe than those of the CpBck1-null mutant. These results suggest that the unique sectorization is CWI pathway-specific, though the components in the same CWI pathway have common and specific functions.
Collapse
|
39
|
Evolutionary dynamics in the fungal polarization network, a mechanistic perspective. Biophys Rev 2017; 9:375-387. [PMID: 28812259 PMCID: PMC5578929 DOI: 10.1007/s12551-017-0286-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
Polarity establishment underlies proper cell cycle completion across virtually all organisms. Much progress has been made in generating an understanding of the structural and functional components of this process, especially in model species. Here we focus on the evolutionary dynamics of the fungal polarization protein network in order to determine general components and mechanistic principles, species- or lineage-specific adaptations and the evolvability of the network. The currently available genomic and proteomic screens in a variety of fungal species have shown three main characteristics: (1) certain proteins, processes and functions are conserved throughout the fungal clade; (2) orthologous functions can never be assumed, as various cases have been observed of homologous loci with dissimilar functions; (3) species have, typically, various species- or lineage-specific proteins incorporated in their polarization network. Further large-scale comparative and experimental studies, including those on non-model species representing the great fungal diversity, are needed to gain a better understanding of the evolutionary dynamics and generalities of the polarization network in fungi.
Collapse
|
40
|
Gu SH, Chen CH. Injury-induced rapid activation of MAPK signaling in dechorionated eggs and larvae of the silkworm Bombyx mori. INSECT SCIENCE 2017; 24:248-258. [PMID: 26619971 DOI: 10.1111/1744-7917.12301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2015] [Indexed: 06/05/2023]
Abstract
Previous study showed that diapause in Bombyx mori eggs can be terminated by dechorionation and that activation in the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) in dechorionated cultured eggs is involved in diapause termination. In the present study, the possible mechanism underlying activation of ERK upon dechorionation was further investigated. Results showed that mechanical injury of diapause eggs without medium incubation also resulted in rapid increase in the phospho-ERK levels and that injury increased the phospho-ERK levels at different stages of both diapause eggs and eggs in which diapause initiation was prevented by HCl. Effects of anaerobiosis on dechorionation-stimulated phospho-ERK levels showed that the mechanical injury itself but not the dramatic increase in oxygen uptake upon injury is involved in a rapid activation of ERK. Chemical anaerobiosis on dechorionation-stimulated phospho-ERK levels and the in vivo effect of anaerobiosis showed that the supply of oxygen also plays a role in ERK signaling. In addition, injury induced the phosphorylation of c-jun N-terminal kinases (JNKs) and p38 kinase, components of two parallel MAPK pathways. A kinase assay showed a dramatic increase in JNK kinase activity in egg lysates upon injury. When newly hatched first instar larvae were injured, an increase in the phospho-ERK levels similar to that in dechorionated eggs was observed. From the results, we hypothesize that the injury-induced rapid activation of MAPK signaling, which serves as a natural signal for embryonic development, is related to diapause termination in dechorionated eggs.
Collapse
Affiliation(s)
- Shi-Hong Gu
- Department of Biology, National Museum of Natural Science, Taichung, Taiwan, China
| | | |
Collapse
|
41
|
Li Y, Qin L, Zhao J, Muhammad T, Cao H, Li H, Zhang Y, Liang Y. SlMAPK3 enhances tolerance to tomato yellow leaf curl virus (TYLCV) by regulating salicylic acid and jasmonic acid signaling in tomato (Solanum lycopersicum). PLoS One 2017; 12:e0172466. [PMID: 28222174 PMCID: PMC5319765 DOI: 10.1371/journal.pone.0172466] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/06/2017] [Indexed: 11/19/2022] Open
Abstract
Several recent studies have reported on the role of mitogen-activated protein kinase (MAPK3) in plant immune responses. However, little is known about how MAPK3 functions in tomato (Solanum lycopersicum L.) infected with tomato yellow leaf curl virus (TYLCV). There is also uncertainty about the connection between plant MAPK3 and the salicylic acid (SA) and jasmonic acid (JA) defense-signaling pathways. The results of this study indicated that SlMAPK3 participates in the antiviral response against TYLCV. Tomato seedlings were inoculated with TYLCV to investigate the possible roles of SlMAPK1, SlMAPK2, and SlMAPK3 against this virus. Inoculation with TYLCV strongly induced the expression and the activity of all three genes. Silencing of SlMAPK1, SlMAPK2, and SlMAPK3 reduced tolerance to TYLCV, increased leaf H2O2 concentrations, and attenuated expression of defense-related genes after TYLCV infection, especially in SlMAPK3-silenced plants. Exogenous SA and methyl jasmonic acid (MeJA) both significantly induced SlMAPK3 expression in tomato leaves. Over-expression of SlMAPK3 increased the transcript levels of SA/JA-mediated defense-related genes (PR1, PR1b/SlLapA, SlPI-I, and SlPI-II) and enhanced tolerance to TYLCV. After TYLCV inoculation, the leaves of SlMAPK3 over-expressed plants compared with wild type plants showed less H2O2 accumulation and greater superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) activity. Overall, the results suggested that SlMAPK3 participates in the antiviral response of tomato to TYLCV, and that this process may be through either the SA or JA defense-signaling pathways.
Collapse
Affiliation(s)
- Yunzhou Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Lei Qin
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Jingjing Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Tayeb Muhammad
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Hehe Cao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Hailiang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yan Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
42
|
Zhou S, Yang Q, Yin C, Liu L, Liang W. Systematic analysis of the lysine acetylome in Fusarium graminearum. BMC Genomics 2016; 17:1019. [PMID: 27964708 PMCID: PMC5153868 DOI: 10.1186/s12864-016-3361-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/28/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Lysine acetylation in proteins is a ubiquitous and conserved post-translational modification, playing a critical regulatory role in almost every aspect of living cells. Although known for many years, its function remains elusive in Fusarium graminearum, one of the most important necrotrophic plant pathogens with huge economic impact. RESULTS By the combination of affinity enrichment and high-resolution LC-MS/MS analysis, large-scale lysine acetylome analysis was performed. In total, 577 lysine acetylation sites matched to 364 different proteins were identified. Bioinformatics analysis of the acetylome showed that the acetylated proteins are involved in a wide range of cellular functions and exhibit diverse subcellular localizations. Remarkably, 10 proteins involved in the virulence or DON (deoxynivalenol) biosynthesis were found to be acetylated, including 4 transcription factors, 4 protein kinases and 2 phosphatases. Protein-protein interaction network analysis revealed that acetylated protein complexes are involved in diversified interactions. CONCLUSIONS This work provides the first comprehensive survey of a possible lysine acetylome in F. graminearum and reveals previously unappreciated roles of lysine acetylation in the regulation of diverse biological processes. This work provides a resource for functional analysis of acetylated proteins in filamentous fungi.
Collapse
Affiliation(s)
- Shanyue Zhou
- College of Agronomy and Plant Protection, The Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang, Qingdao, Shandong, 266109, China
| | - Qianqian Yang
- College of Agronomy and Plant Protection, The Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang, Qingdao, Shandong, 266109, China
| | - Changfa Yin
- College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Lin Liu
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenxing Liang
- College of Agronomy and Plant Protection, The Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao Agricultural University, No. 700 Changcheng Road, Chengyang, Qingdao, Shandong, 266109, China.
| |
Collapse
|
43
|
Characterization of T-DNA insertion mutants with decreased virulence in the entomopathogenic fungus Beauveria bassiana JEF-007. Appl Microbiol Biotechnol 2016; 100:8889-900. [DOI: 10.1007/s00253-016-7734-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/02/2016] [Accepted: 07/10/2016] [Indexed: 12/21/2022]
|
44
|
Goshen-Lago T, Goldberg-Carp A, Melamed D, Darlyuk-Saadon I, Bai C, Ahn NG, Admon A, Engelberg D. Variants of the yeast MAPK Mpk1 are fully functional independently of activation loop phosphorylation. Mol Biol Cell 2016; 27:2771-83. [PMID: 27413009 PMCID: PMC5007096 DOI: 10.1091/mbc.e16-03-0167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
MAPKs are catalytically and biologically active only when dually phosphorylated on a TEY motif. Mutations in the yeast MAPK Mpk1 are described that render it fully functional when mutated in its TEY motif and even when it carries a kinase-dead mutation. MAP kinases of the ERK family are conserved from yeast to humans. Their catalytic activity is dependent on dual phosphorylation of their activation loop’s TEY motif, catalyzed by MAPK kinases (MEKs). Here we studied variants of Mpk1, a yeast orthologue of Erk, which is essential for cell wall integrity. Cells lacking MPK1, or the genes encoding the relevant MEKs, MKK1 and MKK2, do not proliferate under cell wall stress, imposed, for example, by caffeine. Mutants of Mpk1, Mpk1(Y268C) and Mpk1(Y268A), function independently of Mkk1 and Mkk2. We show that these variants are phosphorylated at their activation loop in mkk1∆mkk2∆ and mkk1∆mkk2∆pbs2∆ste7∆ cells, suggesting that they autophosphorylate. However, strikingly, when Y268C/A mutations were combined with the kinase-dead mutation, K54R, or mutations at the TEY motif, T190A+Y192F, the resulting proteins still allowed mkk1∆mkk2∆ cells to proliferate under caffeine stress. Mutating the equivalent residue, Tyr-280/Tyr-261, in Erk1/Erk2 significantly impaired Erk1/2’s catalytic activity. This study describes the first case in which a MAPK, Erk/Mpk1, imposes a phenotype via a mechanism that is independent of TEY phosphorylation and an unusual case in which an equivalent mutation in a highly conserved domain of yeast and mammalian Erks causes an opposite effect.
Collapse
Affiliation(s)
- Tal Goshen-Lago
- Department of Biological Chemistry, Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Anat Goldberg-Carp
- Department of Biological Chemistry, Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dganit Melamed
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ilona Darlyuk-Saadon
- CREATE-NUS-HUJ, Cellular and Molecular Mechanisms of Inflammation Program, National University of Singapore, Singapore 138602 Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456
| | - Chen Bai
- CREATE-NUS-HUJ, Cellular and Molecular Mechanisms of Inflammation Program, National University of Singapore, Singapore 138602 Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456
| | - Natalie G Ahn
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
| | - Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - David Engelberg
- Department of Biological Chemistry, Institute of Life Science, Hebrew University of Jerusalem, Jerusalem 91904, Israel CREATE-NUS-HUJ, Cellular and Molecular Mechanisms of Inflammation Program, National University of Singapore, Singapore 138602 Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456
| |
Collapse
|
45
|
Nie S, Xu H. Riboflavin-Induced Disease Resistance Requires the Mitogen-Activated Protein Kinases 3 and 6 in Arabidopsis thaliana. PLoS One 2016; 11:e0153175. [PMID: 27054585 PMCID: PMC4824526 DOI: 10.1371/journal.pone.0153175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/24/2016] [Indexed: 12/20/2022] Open
Abstract
As a resistance elicitor, riboflavin (vitamin B2) protects plants against a wide range of pathogens. At molecular biological levels, it is important to elucidate the signaling pathways underlying the disease resistance induced by riboflavin. Here, riboflavin was tested to induce resistance against virulent Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000) in Arabidopsis. Results showed that riboflavin induced disease resistance based on MAPK-dependent priming for the expression of PR1 gene. Riboflavin induced transient expression of PR1 gene. However, following Pst DC3000 inoculation, riboflavin potentiated stronger PR1 gene transcription. Further was suggested that the transcript levels of mitogen-activated protein kinases, MPK3 and MPK6, were primed under riboflavin. Upon infection by Pst DC3000, these two enzymes were more strongly activated. The elevated activation of both MPK3 and MPK6 was responsible for enhanced defense gene expression and resistance after riboflavin treatment. Moreover, riboflavin significantly reduced the transcript levels of MPK3 and MPK6 by application of AsA and BAPTA, an H2O2 scavenger and a calcium (Ca2+) scavenger, respectively. In conclusion, MPK3 and MPK6 were responsible for riboflavin-induced resistance, and played an important role in H2O2- and Ca2+-related signaling pathways, and this study could provide a new insight into the mechanistic study of riboflavin-induced defense responses.
Collapse
Affiliation(s)
- Shengjun Nie
- International Nature Farming Research Center, Hata 5632, Matsumoto-city, Nagano 390–1401, Japan
| | - Huilian Xu
- International Nature Farming Research Center, Hata 5632, Matsumoto-city, Nagano 390–1401, Japan
- * E-mail:
| |
Collapse
|
46
|
Kim JM, Lee JG, Yun SH, So KK, Ko YH, Kim YH, Park SM, Kim DH. A Mutant of the Bck1 Homolog from Cryphonectria parasitica Resulted in Sectorization with an Impaired Pathogenicity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:268-276. [PMID: 26757242 DOI: 10.1094/mpmi-08-15-0185-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CpBck1, an ortholog of the cell-wall integrity mitogen-activated protein kinase kinase kinase of Saccharomyces cerevisiae, was cloned and characterized from the chestnut blight fungus Cryphonectria parasitica. The CpBck1-null mutant displayed cell wall integrity-related phenotypic changes such as abnormal cell morphology and wall formation and hypersensitivity to cell wall-disrupting agents. In addition, the mutant showed severely retarded growth without any sign of normal development, such as hyphal differentiation, conidiation, or pigmentation. As the culture proceeded, the mutant colony showed sporadic sectorization. Once sectored, the sectored phenotype of robust mycelial growth without differentiation was stably inherited. Compared with the wild type, both the parental CpBck1-null mutant and the sectored progeny exhibited marked impaired virulence. The present study revealed that a mutation in a signaling pathway component related to cell-wall integrity resulted in sporadic sectorization and these sectored phenotypes were stably inherited, suggesting that this signal transduction pathway is implicated in adaptive genetic changes for sectorization.
Collapse
Affiliation(s)
- Jung-Mi Kim
- 1 Department of Bio-Environmental Chemistry, Institute of Life Science and Natural Resources, Wonkwang University, Iksan, Chonbuk 570-749, Korea
| | - Joong-Gi Lee
- 2 Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea; and
| | - Suk-Hyun Yun
- 2 Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea; and
| | - Kum-Kang So
- 2 Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea; and
| | - Yo-Han Ko
- 2 Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea; and
| | - Young Ho Kim
- 3 Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| | - Seung-Moon Park
- 2 Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea; and
| | - Dae-Hyuk Kim
- 2 Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Department of Bioactive Material Sciences, Chonbuk National University, Jeonju, Chonbuk 561-756, Korea; and
| |
Collapse
|
47
|
Weinberg SH. Microdomain [Ca(2+)] Fluctuations Alter Temporal Dynamics in Models of Ca(2+)-Dependent Signaling Cascades and Synaptic Vesicle Release. Neural Comput 2016; 28:493-524. [PMID: 26735745 DOI: 10.1162/neco_a_00811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Ca(2+)-dependent signaling is often localized in spatially restricted microdomains and may involve only 1 to 100 Ca(2+) ions. Fluctuations in the microdomain Ca(2+) concentration (Ca(2+)) can arise from a wide range of elementary processes, including diffusion, Ca(2+) influx, and association/dissociation with Ca(2+) binding proteins or buffers. However, it is unclear to what extent these fluctuations alter Ca(2+)-dependent signaling. We construct Markov models of a general Ca(2+)-dependent signaling cascade and Ca(2+)-triggered synaptic vesicle release. We compare the hitting (release) time distribution and statistics for models that account for [Ca(2+)] fluctuations with the corresponding models that neglect these fluctuations. In general, when Ca(2+) fluctuations are much faster than the characteristic time for the signaling event, the hitting time distributions and statistics for the models with and without Ca(2+) fluctuation are similar. However, when the timescale of Ca(2+) fluctuations is on the same order as the signaling cascade or slower, the hitting time mean and variability are typically increased, in particular when the average number of microdomain Ca(2+) ions is small, a consequence of a long-tailed hitting time distribution. In a model of Ca(2+)-triggered synaptic vesicle release, we demonstrate the conditions for which [Ca(2+)] fluctuations do and do not alter the distribution, mean, and variability of release timing. We find that both the release time mean and variability can be increased, demonstrating that Ca(2+) fluctuations are an important aspect of microdomain Ca(2+) signaling and further suggesting that Ca(2+) fluctuations in the presynaptic terminal may contribute to variability in synaptic vesicle release and thus variability in neuronal spiking.
Collapse
Affiliation(s)
- Seth H Weinberg
- Virginia Modeling, Analysis and Simulation Center, Old Dominion University, Suffolk, Virginia 23435, U.S.A
| |
Collapse
|
48
|
Lassowskat I, Hoehenwarter W, Lee J, Scheel D. Phosphoprotein Enrichment Combined with Phosphopeptide Enrichment to Identify Putative Phosphoproteins During Defense Response in Arabidopsis thaliana. Methods Mol Biol 2016; 1398:373-383. [PMID: 26867639 DOI: 10.1007/978-1-4939-3356-3_30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Phosphoprotein/peptide enrichment is an important technique to elucidate signaling components of defense responses with mass spectrometry. Normally, proteins can be detected easily by shotgun experiments but the low abundance of phosphoproteins hinders their detection. Here, we describe a combination of prefractionation with desalting, phosphoprotein and phosphopeptide enrichment to effectively accumulate phosphorylated proteins from leaf tissue of stressed Arabidopsis plants.
Collapse
Affiliation(s)
- Ines Lassowskat
- Department of Stress and Developmental Biology, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120, Halle/Saale, Germany
| | - Wolfgang Hoehenwarter
- Department of Stress and Developmental Biology, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120, Halle/Saale, Germany
| | - Justin Lee
- Department of Stress and Developmental Biology, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120, Halle/Saale, Germany
| | - Dierk Scheel
- Department of Stress and Developmental Biology, Leibniz-Institute of Plant Biochemistry, Weinberg 3, 06120, Halle/Saale, Germany.
| |
Collapse
|
49
|
Kanda Y, Satoh R, Matsumoto S, Ikeda C, Inutsuka N, Hagihara K, Matzno S, Tsujimoto S, Kita A, Sugiura R. Skb5, an SH3 adaptor protein, regulates Pmk1 MAPK signaling by controlling the intracellular localization of Mkh1 MAPKKK. J Cell Sci 2016; 129:3189-202. [DOI: 10.1242/jcs.188854] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/06/2016] [Indexed: 11/20/2022] Open
Abstract
The MAPK cascade is a highly conserved signaling module composed of MAPK/MAPKK/MAPKKK. MAPKKK Mkh1 is an initiating kinase in Pmk1 MAPK signaling, which regulates cell integrity in fission yeast. Our genetic screen for regulators of Pmk1 signaling identified Skb5 (Shk1 kinase binding protein 5), an SH3 domain-containing adaptor protein. Here, we showed that Skb5 serves as an inhibitor of Pmk1 MAPK signaling activation by downregulating Mkh1 localization to cell tips via its interaction with the SH3 domain. Consistently, the Mkh13PA mutant protein, with impaired Skb5 binding, remained in the cell tips, even when Skb5 was overproduced. Intriguingly, Skb5 needs Mkh1 to localize to the growing ends as Mkh1 deletion and disruption of Mkh1 binding impairs Skb5 localization. Deletion of Pck2, an upstream activator of Mkh1, impaired the cell tip localization of Mkh1 and Skb5 as well as Mkh1/Skb5 interaction. Interestingly, both Pck2 and Mkh1 localized to the cell tips at the G1/S phase, which coincided with Pmk1 MAPK activation. Altogether, Mkh1 localization to cell tips is important for transmitting upstream signaling to Pmk1 and Skb5 spatially regulates this process.
Collapse
Affiliation(s)
- Yuki Kanda
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| | - Saki Matsumoto
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| | - Chisato Ikeda
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| | - Natsumi Inutsuka
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| | - Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| | - Sumio Matzno
- Division of Pharmaceutical Education, Faculty of Pharmacy, Kinki University, Japan
| | - Sho Tsujimoto
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| | - Ayako Kita
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| |
Collapse
|
50
|
Albataineh MT, Kadosh D. Regulatory roles of phosphorylation in model and pathogenic fungi. Med Mycol 2015; 54:333-52. [PMID: 26705834 PMCID: PMC4818690 DOI: 10.1093/mmy/myv098] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/01/2015] [Indexed: 12/25/2022] Open
Abstract
Over the past 20 years, considerable advances have been made toward our understanding
of how post-translational modifications affect a wide variety of biological
processes, including morphology and virulence, in medically important fungi.
Phosphorylation stands out as a key molecular switch and regulatory modification that
plays a critical role in controlling these processes. In this article, we first
provide a comprehensive and up-to-date overview of the regulatory roles that both
Ser/Thr and non-Ser/Thr kinases and phosphatases play in model and pathogenic fungi.
Next, we discuss the impact of current global approaches that are being used to
define the complete set of phosphorylation targets (phosphoproteome) in medically
important fungi. Finally, we provide new insights and perspectives into the potential
use of key regulatory kinases and phosphatases as targets for the development of
novel and more effective antifungal strategies.
Collapse
Affiliation(s)
- Mohammad T Albataineh
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - David Kadosh
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| |
Collapse
|