1
|
Figueiredo R, Costa M, Moreira D, Moreira M, Noble J, Pereira LG, Melo P, Palanivelu R, Coimbra S, Pereira AM. JAGGER localization and function are dependent on GPI anchor addition. PLANT REPRODUCTION 2024; 37:341-353. [PMID: 38294499 PMCID: PMC11377618 DOI: 10.1007/s00497-024-00495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
KEY MESSAGE GPI anchor addition is important for JAGGER localization and in vivo function. Loss of correct GPI anchor addition in JAGGER, negatively affects its localization and function. In flowering plants, successful double fertilization requires the correct delivery of two sperm cells to the female gametophyte inside the ovule. The delivery of a single pair of sperm cells is achieved by the entrance of a single pollen tube into one female gametophyte. To prevent polyspermy, Arabidopsis ovules avoid the attraction of multiple pollen tubes to one ovule-polytubey block. In Arabidopsis jagger mutants, a significant number of ovules attract more than one pollen tube to an ovule due to an impairment in synergid degeneration. JAGGER encodes a putative arabinogalactan protein which is predicted to be anchored to the plasma membrane by a glycosylphosphatidylinositol (GPI) anchor. Here, we show that JAGGER fused to citrine yellow fluorescent protein (JAGGER-cYFP) is functional and localizes mostly to the periphery of ovule integuments and transmitting tract cells. We further investigated the importance of GPI-anchor addition domains for JAGGER localization and function. Different JAGGER proteins with deletions in predicted ω-site regions and GPI attachment signal domain, expected to compromise the addition of the GPI anchor, led to disruption of JAGGER localization in the cell periphery. All JAGGER proteins with disrupted localization were also not able to rescue the polytubey phenotype, pointing to the importance of GPI-anchor addition to in vivo function of the JAGGER protein.
Collapse
Affiliation(s)
- Raquel Figueiredo
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Mónica Costa
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156, Oeiras, Portugal
| | - Diana Moreira
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Miguel Moreira
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Jennifer Noble
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Luís Gustavo Pereira
- GreenUPorto - Sustainable Agrifood Production Research Centre, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Paula Melo
- GreenUPorto - Sustainable Agrifood Production Research Centre, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | | | - Sílvia Coimbra
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Ana Marta Pereira
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
2
|
Mizukami AG, Kusano S, Matsuura-Tokita K, Hagihara S, Higashiyama T. Cluster effect through the oligomerisation of bioactive disaccharide AMOR on pollen tube capacitation in Torenia fournieri. RSC Chem Biol 2024; 5:745-750. [PMID: 39092441 PMCID: PMC11289873 DOI: 10.1039/d4cb00032c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/27/2024] [Indexed: 08/04/2024] Open
Abstract
Arabinogalactan proteins (AGPs) are plant-specific glycoproteins involved in cellular mechanics and signal transduction. There has been major progress in understanding the structure, synthesis, and molecular functions of their carbohydrate chains; however, the mechanisms by which they function as signalling molecules remain unclear. Here, methyl-glucuronosyl arabinogalactan (AMOR; Me-GlcA-β(1,6)-Gal), a disaccharide structure at the end of AGP carbohydrate chains, was oligomerised via chemical synthesis. The biological activity of AMOR oligomers was enhanced via clustering of the carbohydrate chains. Furthermore, AMOR oligomers yielded a pollen tube morphology (i.e., callose plug formation) similar to that when cultured with native AMOR, suggesting it may be functionally similar to native AMOR.
Collapse
Affiliation(s)
- Akane G Mizukami
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo Tokyo 113-0033 Japan
| | - Shuhei Kusano
- RIKEN Center for Sustainable Resource Science Saitama 351-0198 Japan
| | - Kumi Matsuura-Tokita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo Tokyo 113-0033 Japan
| | - Shinya Hagihara
- RIKEN Center for Sustainable Resource Science Saitama 351-0198 Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo Tokyo 113-0033 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Nagoya 464-8601 Japan
| |
Collapse
|
3
|
Zhong S, Zhao P, Peng X, Li HJ, Duan Q, Cheung AY. From gametes to zygote: Mechanistic advances and emerging possibilities in plant reproduction. PLANT PHYSIOLOGY 2024; 195:4-35. [PMID: 38431529 PMCID: PMC11060694 DOI: 10.1093/plphys/kiae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, New Cornerstone Science Laboratory, College of Life Sciences, Peking University, Beijing 100871, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hong-Ju Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiaohong Duan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular and Cellular Biology Program, Plant Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
4
|
Xiang X, Deng Q, Zheng Y, He Y, Ji D, Vejlupkova Z, Fowler JE, Zhou L. Genome-wide investigation of the LARP gene family: focus on functional identification and transcriptome profiling of ZmLARP6c1 in maize pollen. BMC PLANT BIOLOGY 2024; 24:348. [PMID: 38684961 PMCID: PMC11057080 DOI: 10.1186/s12870-024-05054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND The La-related proteins (LARPs) are a superfamily of RNA-binding proteins associated with regulation of gene expression. Evidence points to an important role for post-transcriptional control of gene expression in germinating pollen tubes, which could be aided by RNA-binding proteins. RESULTS In this study, a genome-wide investigation of the LARP proteins in eight plant species was performed. The LARP proteins were classified into three families based on a phylogenetic analysis. The gene structure, conserved motifs, cis-acting elements in the promoter, and gene expression profiles were investigated to provide a comprehensive overview of the evolutionary history and potential functions of ZmLARP genes in maize. Moreover, ZmLARP6c1 was specifically expressed in pollen and ZmLARP6c1 was localized to the nucleus and cytoplasm in maize protoplasts. Overexpression of ZmLARP6c1 enhanced the percentage pollen germination compared with that of wild-type pollen. In addition, transcriptome profiling analysis revealed that differentially expressed genes included PABP homologous genes and genes involved in jasmonic acid and abscisic acid biosynthesis, metabolism, signaling pathways and response in a Zmlarp6c1::Ds mutant and ZmLARP6c1-overexpression line compared with the corresponding wild type. CONCLUSIONS The findings provide a basis for further evolutionary and functional analyses, and provide insight into the critical regulatory function of ZmLARP6c1 in maize pollen germination.
Collapse
Affiliation(s)
- Xiaoqin Xiang
- College of Agronomy and Biotechnology, Maize Research Institute, Southwest University, Beibei, Chongqing, 400715, China
| | - Qianxia Deng
- College of Agronomy and Biotechnology, Maize Research Institute, Southwest University, Beibei, Chongqing, 400715, China
| | - Yi Zheng
- College of Agronomy and Biotechnology, Maize Research Institute, Southwest University, Beibei, Chongqing, 400715, China
| | - Yi He
- College of Agronomy and Biotechnology, Maize Research Institute, Southwest University, Beibei, Chongqing, 400715, China
| | - Dongpu Ji
- College of Agronomy and Biotechnology, Maize Research Institute, Southwest University, Beibei, Chongqing, 400715, China
| | - Zuzana Vejlupkova
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - John E Fowler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Lian Zhou
- College of Agronomy and Biotechnology, Maize Research Institute, Southwest University, Beibei, Chongqing, 400715, China.
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China.
| |
Collapse
|
5
|
Lopes AL, Moreira D, Pereira AM, Ferraz R, Mendes S, Pereira LG, Colombo L, Coimbra S. AGPs as molecular determinants of reproductive development. ANNALS OF BOTANY 2023; 131:827-838. [PMID: 36945741 PMCID: PMC10184450 DOI: 10.1093/aob/mcad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/15/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Morphogenesis occurs through accurate interaction between essential players to generate highly specialized plant organs. Fruit structure and function are triggered by a neat transcriptional control involving distinct regulator genes encoding transcription factors (TFs) or signalling proteins, such as the C2H2/C2HC zinc-finger NO TRANSMITTING TRACT (NTT) or the MADS-box protein SEEDSTICK (STK), which are important in setting plant reproductive competence, feasibly by affecting cell wall polysaccharide and lipid distribution. Arabinogalactan proteins (AGPs) are major components of the cell wall and are thought to be involved in the reproductive process as important players in specific stages of development. The detection of AGPs epitopes in reproductive tissues of NTT and other fruit development-related TFs, such as MADS-box proteins including SHATTERPROOF1 (SHP1), SHP2 and STK, was the focus of this study. METHODS We used fluorescence microscopy to perform immunolocalization analyses on stk and ntt single mutants, on the ntt stk double mutant and on the stk shp1 shp2 triple mutant using specific anti-AGP monoclonal antibodies. In these mutants, the expression levels of selected AGP genes were also measured by quantitative real-time PCR and compared with the respective expression in wild-type (WT) plants. KEY RESULTS The present immunolocalization study collects information on the distribution patterns of specific AGPs in Arabidopsis female reproductive tissues, complemented by the quantification of AGP expression levels, comparing WT, stk and ntt single mutants, the ntt stk double mutant and the stk shp1 shp2 triple mutant. CONCLUSIONS These findings reveal distinct AGP distribution patterns in different developmental mutants related to the female reproductive unit in Arabidopsis. The value of the immunofluorescence labelling technique is highlighted in this study as an invaluable tool to dissect the remodelling nature of the cell wall in developmental processes.
Collapse
Affiliation(s)
- Ana Lúcia Lopes
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Biosystems and Integrative Sciences Institute – BioISI, Porto, Portugal
| | - Diana Moreira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ana Marta Pereira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ricardo Ferraz
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Sara Mendes
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Luís Gustavo Pereira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- GreenUPorto Sustainable Agrifood Production Research Centre, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Milano, Italy
| | - Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV/REQUIMTE, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
6
|
Liang S, Hu ML, Lin HC, He HJ, Ning XP, Peng PP, Lu GH, Sun SL, Wang XJ, Wang YQ, Wu H. Transcriptional regulations of pollen tube reception are associated with the fertility of the ginger species Zingiber zerumbet and Zingiber corallinum. FRONTIERS IN PLANT SCIENCE 2023; 14:1099250. [PMID: 37235019 PMCID: PMC10208065 DOI: 10.3389/fpls.2023.1099250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/17/2023] [Indexed: 05/28/2023]
Abstract
Zingiber zerumbet and Zingiber corallinum are economically valuable species in the genus Zingiber. While Z. corallinum is sexually active, Z. zerumbet adopts clonal propagation, although it has the potential for sexual reproduction. It is unclear so far at which step during the sexual reproduction of Z. zerumbet inhibition occurs, and what are the regulatory mechanisms underlying this inhibition. Here, by comparing with the fertile species Z. corallinum using microscopy-based methods, we show that rare differences were observed in Z. zerumbet up to the point when the pollen tubes invaded the ovules. However, a significantly higher percentage of ovules still contained intact pollen tubes 24 h after pollination, suggesting pollen tube rupture was impaired in this species. Further RNA-seq analysis generated accordant results, showing that the transcription of ANX and FER, as well as genes for the partners in the same complexes (e.g., BUPS and LRE, respectively), and those putative peptide signals (e.g., RALF34), were timely activated in Z. corallinum, which ensured the pollen tubes being able to grow, reorient to ovules, and receipt by embryo sacs. In Z. zerumbet, genes for these complexes were cooperatively suppressed, which would result in the maintenance of PT integrity due to the disruption of RALF34-ANX/BUPS signaling in PT and the failure of PT reception by an active synergid due to the insufficiency of the synergid-harbored FER/LRE complex. Taking the results from the cytological and RNA-seq studies together, a model is proposed to illustrate the possible regulation mechanisms in Z. zerumbet and Z. corallinum, in which the regulations for pollen tube rupture and reception are proposed as the barrier for sexual reproduction in Z. zerumbet.
Collapse
Affiliation(s)
- Shan Liang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ming-li Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hao-chuan Lin
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Han-jun He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xi-ping Ning
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Pei-pei Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Guo-hui Lu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shu-lan Sun
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiao-jing Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ying-qiang Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Bolaños L, Abreu I, Bonilla I, Camacho-Cristóbal JJ, Reguera M. What Can Boron Deficiency Symptoms Tell Us about Its Function and Regulation? PLANTS (BASEL, SWITZERLAND) 2023; 12:777. [PMID: 36840125 PMCID: PMC9963425 DOI: 10.3390/plants12040777] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/11/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
On the eve of the 100th anniversary of Dr. Warington's discovery of boron (B) as a nutrient essential for higher plants, "boronists" have struggled to demonstrate a role beyond its structural function in cell walls dimerizing pectin molecules of rhamnogalacturonan II (RGII). In this regard, B deficiency has been associated with a plethora of symptoms in plants that include macroscopic symptoms like growth arrest and cell death and biochemical or molecular symptoms that include changes in cell wall pore size, apoplast acidification, or a steep ROS production that leads to an oxidative burst. Aiming to shed light on B functions in plant biology, we proposed here a unifying model integrating the current knowledge about B function(s) in plants to explain why B deficiency can cause such remarkable effects on plant growth and development, impacting crop productivity. In addition, based on recent experimental evidence that suggests the existence of different B ligands other than RGII in plant cells, namely glycolipids, and glycoproteins, we proposed an experimental pipeline to identify putative missing ligands and to determine how they would integrate into the above-mentioned model.
Collapse
Affiliation(s)
- Luis Bolaños
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Isidro Abreu
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Ildefonso Bonilla
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Juan J. Camacho-Cristóbal
- Departamento de Fisiología, Anatomía y Biología Celular, Facultad de Ciencias Experimentales, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - María Reguera
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
8
|
Pollen tube emergence is mediated by ovary-expressed ALCATRAZ in cucumber. Nat Commun 2023; 14:258. [PMID: 36650145 PMCID: PMC9845374 DOI: 10.1038/s41467-023-35936-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Pollen tube guidance within female tissues of flowering plants can be divided into preovular guidance, ovular guidance and a connecting stage called pollen tube emergence. As yet, no female factor has been identified to positively regulate this transition process. In this study, we show that an ovary-expressed bHLH transcription factor Cucumis sativus ALCATRAZ (CsALC) functions in pollen tube emergence in cucumber. CsALC knockout mutants showed diminished pollen tube emergence, extremely reduced entry into ovules, and a 95% reduction in female fertility. Further examination showed two rapid alkalinization factors CsRALF4 and CsRALF19 were less expressed in Csalc ovaries compared to WT. Besides the loss of male fertility derived from precocious pollen tube rupture as in Arabidopsis, Csralf4 Csralf19 double mutants exhibited a 60% decrease in female fertility due to reduced pollen tube distribution and decreased ovule targeting efficiency. In brief, CsALC regulates female fertility and promotes CsRALF4/19 expression in the ovary during pollen tube guidance in cucumber.
Collapse
|
9
|
Deng L, Wang T, Hu J, Yang X, Yao Y, Jin Z, Huang Z, Sun G, Xiong B, Liao L, Wang Z. Effects of Pollen Sources on Fruit Set and Fruit Characteristics of 'Fengtangli' Plum ( Prunus salicina Lindl.) Based on Microscopic and Transcriptomic Analysis. Int J Mol Sci 2022; 23:12959. [PMID: 36361746 PMCID: PMC9656660 DOI: 10.3390/ijms232112959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 09/29/2023] Open
Abstract
Adequate yield and fruit quality are required in commercial plum production. The pollen source has been shown to influence fruit set and fruit characteristics. In this study, 'Siyueli', 'Fenghuangli' and 'Yinhongli' were used as pollinizers of 'Fengtangli' plum. Additionally, self-pollination, mixed pollination, and open pollination were performed. We characterized the differences in pollen tube growth, fruit set and fruit quality among pollination combinations. 'Fengtangli' flowers pollinated by 'Fenghuangli' had more pistils with pollen tubes penetrating the ovary and the highest fruit set rate, while the lowest fruit set rate was obtained from self-pollination. In self-pollinated flowers, 33% of pistils had at least one pollen tube reaching the ovary, implying that 'Fengtangli' is partially self-compatible. Pollen sources affected 'Fengtangli' fruit size, weight, pulp thickness, soluble solids, and sugar content. Transcriptome analysis of 'Siyueli'-pollinated and 'Yinhongli'-pollinated fruits revealed 2762 and 1018 differentially expressed genes (DEGs) involved in the response to different pollen sources. DEGs were enriched in plant hormone signal transduction, starch and sucrose metabolism, and MAPK signaling pathways. Our findings provide a reference for the selection of suitable pollinizers for 'Fengtangli' plum and promote future research on the metaxenia effect at the molecular level.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
10
|
Cheng Z, Song X, Liu X, Yan S, Song W, Wang Z, Han L, Zhao J, Yan L, Zhou Z, Zhang X. SPATULA and ALCATRAZ confer female sterility and fruit cavity via mediating pistil development in cucumber. PLANT PHYSIOLOGY 2022; 189:1553-1569. [PMID: 35389464 PMCID: PMC9237723 DOI: 10.1093/plphys/kiac158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/12/2022] [Indexed: 06/03/2023]
Abstract
Fruits and seeds play essential roles in plant sexual reproduction and the human diet. Successful fertilization involves delivery of sperm in the pollen tube to the egg cell within the ovary along the transmitting tract (TT). Fruit cavity is an undesirable trait directly affecting cucumber (Cucumis sativus) commercial value. However, the regulatory genes underlying fruit cavity formation and female fertility determination remain unknown in crops. Here, we characterized a basic Helix-Loop-Helix (bHLH) gene C. sativus SPATULA (CsSPT) and its redundant and divergent function with ALCATRAZ (CsALC) in cucumber. CsSPT transcripts were enriched in reproductive organs. Mutation of CsSPT resulted in 60% reduction in female fertility, with seed produced only in the upper portion of fruits. Csspt Csalc mutants displayed complete loss of female fertility and fruit cavity due to carpel separation. Further examination showed that stigmas in the double mutant turned outward with defective papillae identity, and extracellular matrix contents in the abnormal TT were dramatically reduced, which resulted in no path for pollen tube extension and no ovules fertilized. Biochemical and transcriptome analysis showed that CsSPT and CsALC act in homodimers and heterodimers to confer fruit cavity and female sterility by mediating genes involved in TT development, auxin-mediated signaling, and cell wall organization in cucumber.
Collapse
Affiliation(s)
- Zhihua Cheng
- Department of Vegetable Sciences, State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Xiaofei Song
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xiaofeng Liu
- Department of Vegetable Sciences, State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Shuangshuang Yan
- Department of Vegetable Sciences, State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Weiyuan Song
- Department of Vegetable Sciences, State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Zhongyi Wang
- Department of Vegetable Sciences, State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Lijie Han
- Department of Vegetable Sciences, State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | - Jianyu Zhao
- Department of Vegetable Sciences, State Key Laboratories of Agrobiotechnology, Joint International Research Laboratory of Crop Molecular Breeding, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China
| | | | | | | |
Collapse
|
11
|
Deng M, Yao K, Shi C, Shao W, Li Q. Development of Quercus acutissima (Fagaceae) pollen tubes inside pistils during the sexual reproduction process. PLANTA 2022; 256:16. [PMID: 35737139 DOI: 10.1007/s00425-022-03937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Extensive histology of pistillate flowers revealed two pollen tube arresting sites (the style-joining and micropyle) within the pistil of Quercus acutissima during the postpollination-prezygotic stage, which reflects a unique female and male gametophyte recognition/selection mechanism. Sexual reproduction is among the most delicate and essential stages in plant life cycles and involves a series of precise interactions between pistils and male gametophytes. Quercus is a woody genus that dominates Northern Hemisphere forests and is notorious for interspecific hybridization, but its sexual reproduction is poorly understood, especially its pollen tube (PT) growth dynamics within pistils. This study used microtome techniques and scanning electron microscopy to observe the postpollination-prezygotic process in the biennially fruiting oak Quercus acutissima. Many pollen grains germinated at anthesis instantly, and PTs penetrated stigmatic surfaces and elongated through the stylar transmitting tissue, then arrested at style-joining for about 12-13 months. Few PTs resumed growth along the compitum in the upper ovarian locule wall in the subsequent April, concurrent with the rapid growth of rudimentary ovules. PTs arrived in the micropyle, and upper septum during megaspore mother cell meiosis, then arrested again for 7-10 days waiting for the embryo sac maturation. Fertilization occurred one week later. Our study shows a clear female dominant crosstalk growth pattern between PT and the ovule. The intermittent PT growth might reflect a unique male gametophyte recognition/selection mechanism to avoid self-pollination and enhance PT competition while increasing interspecific hybridization.
Collapse
Affiliation(s)
- Min Deng
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, Yunnan, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming, 650504, Yunnan, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Kaiping Yao
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, Yunnan, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming, 650504, Yunnan, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species With Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Chengcheng Shi
- Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Wen Shao
- Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Qiansheng Li
- Horticultural Sciences Department, University of Florida, FL, 32611, USA.
| |
Collapse
|
12
|
Zhang WM, Cheng XZ, Fang D, Cao J. AT-HOOK MOTIF NUCLEAR LOCALIZED (AHL) proteins of ancient origin radiate new functions. Int J Biol Macromol 2022; 214:290-300. [PMID: 35716788 DOI: 10.1016/j.ijbiomac.2022.06.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 06/12/2022] [Indexed: 11/05/2022]
Abstract
AHL (AT-HOOK MOTIF NUCLEAR LOCALIZED) protein is an important transcription factor in plants that regulates a wide range of biological process. It is considered to have evolved from an independent PPC domain in prokaryotes to a complete protein in modern plants. AT-hook motif and PPC conserved domains are the main functional domains of AHL. Since the discovery of AHL, their evolution and function have been continuously studied. The AHL gene family has been identified in multiple species and the functions of several members of the gene family have been studied. Here, we summarize the evolution and structural characteristics of AHL genes, and emphasize their biological functions. This review will provide a basis for further functional study and crop breeding.
Collapse
Affiliation(s)
- Wei-Meng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiu-Zhu Cheng
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Da Fang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
13
|
Kaur D, Moreira D, Coimbra S, Showalter AM. Hydroxyproline- O-Galactosyltransferases Synthesizing Type II Arabinogalactans Are Essential for Male Gametophytic Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:935413. [PMID: 35774810 PMCID: PMC9237623 DOI: 10.3389/fpls.2022.935413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/17/2022] [Indexed: 05/25/2023]
Abstract
In flowering plants, male reproductive function is determined by successful development and performance of stamens, pollen grains, and pollen tubes. Despite the crucial role of highly glycosylated arabinogalactan-proteins (AGPs) in male gamete formation, pollen grain, and pollen tube cell walls, the underlying mechanisms defining these functions of AGPs have remained elusive. Eight partially redundant Hyp-galactosyltransferases (named GALT2-GALT9) genes/enzymes are known to initiate Hyp-O-galactosylation for Hyp-arabinogalactan (AG) production in Arabidopsis thaliana. To assess the contributions of these Hyp-AGs to male reproductive function, we used a galt2galt5galt7galt8galt9 quintuple Hyp-GALT mutant for this study. Both anther size and pollen viability were compromised in the quintuple mutants. Defects in male gametogenesis were observed in later stages of maturing microspores after meiosis, accompanied by membrane blebbing and numerous lytic vacuoles. Cytological and ultramicroscopic observations revealed that pollen exine reticulate architecture and intine layer development were affected such that non-viable collapsed mature pollen grains were produced, which were devoid of cell content and nuclei, with virtually no intine. AGP immunolabeling demonstrated alterations in cell wall architecture of the anther, pollen grains, and pollen tube. Specifically, the LM2 monoclonal antibody (which recognized β-GlcA epitopes on AGPs) showed a weak signal for the endothecium, microspores, and pollen tube apex. Pollen tube tips also displayed excessive callose deposition. Interestingly, expression patterns of pollen-specific AGPs, namely AGP6, AGP11, AGP23, and AGP40, were determined to be higher in the quintuple mutants. Taken together, our data illustrate the importance of type-II AGs in male reproductive function for successful fertilization.
Collapse
Affiliation(s)
- Dasmeet Kaur
- Department of Environmental & Plant Biology, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Diana Moreira
- Departamento de Biología, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal
| | - Sílvia Coimbra
- Departamento de Biología, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- LAQV Requimte, Sustainable Chemistry, Universidade do Porto, Porto, Portugal
| | - Allan M. Showalter
- Department of Environmental & Plant Biology, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| |
Collapse
|
14
|
Arabinogalactan Proteins: Focus on the Role in Cellulose Synthesis and Deposition during Plant Cell Wall Biogenesis. Int J Mol Sci 2022; 23:ijms23126578. [PMID: 35743022 PMCID: PMC9223364 DOI: 10.3390/ijms23126578] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Arabinogalactan proteins (AGPs) belong to a family of glycoproteins that are widely present in plants. AGPs are mostly composed of a protein backbone decorated with complex carbohydrate side chains and are usually anchored to the plasma membrane or secreted extracellularly. A trickle of compelling biochemical and genetic evidence has demonstrated that AGPs make exciting candidates for a multitude of vital activities related to plant growth and development. However, because of the diversity of AGPs, functional redundancy of AGP family members, and blunt-force research tools, the precise functions of AGPs and their mechanisms of action remain elusive. In this review, we put together the current knowledge about the characteristics, classification, and identification of AGPs and make a summary of the biological functions of AGPs in multiple phases of plant reproduction and developmental processes. In addition, we especially discuss deeply the potential mechanisms for AGP action in different biological processes via their impacts on cellulose synthesis and deposition based on previous studies. Particularly, five hypothetical models that may explain the AGP involvement in cellulose synthesis and deposition during plant cell wall biogenesis are proposed. AGPs open a new avenue for understanding cellulose synthesis and deposition in plants.
Collapse
|
15
|
Nguyen H, Herrmann F, König S, Goycoolea F, Hensel A. Structural characterization of the carbohydrate and protein part of arabinogalactan protein from Basella alba stem and antiadhesive activity of polysaccharides from B. alba against Helicobacter pylori. Fitoterapia 2022; 157:105132. [DOI: 10.1016/j.fitote.2022.105132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 01/17/2023]
|
16
|
Cheung AY, Cosgrove DJ, Hara-Nishimura I, Jürgens G, Lloyd C, Robinson DG, Staehelin LA, Weijers D. A rich and bountiful harvest: Key discoveries in plant cell biology. THE PLANT CELL 2022; 34:53-71. [PMID: 34524464 PMCID: PMC8773953 DOI: 10.1093/plcell/koab234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 05/13/2023]
Abstract
The field of plant cell biology has a rich history of discovery, going back to Robert Hooke's discovery of cells themselves. The development of microscopes and preparation techniques has allowed for the visualization of subcellular structures, and the use of protein biochemistry, genetics, and molecular biology has enabled the identification of proteins and mechanisms that regulate key cellular processes. In this review, seven senior plant cell biologists reflect on the development of this research field in the past decades, including the foundational contributions that their teams have made to our rich, current insights into cell biology. Topics covered include signaling and cell morphogenesis, membrane trafficking, cytokinesis, cytoskeletal regulation, and cell wall biology. In addition, these scientists illustrate the pathways to discovery in this exciting research field.
Collapse
Affiliation(s)
- Alice Y Cheung
- Department of Biochemistry and Molecular Biology, Molecular Cell Biology Program, Plant Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Daniel J Cosgrove
- Department of Biology, Penn State University, University Park, Pennsylvania 16802, USA
| | | | - Gerd Jürgens
- ZMBP-Developmental Genetics, University of Tuebingen, Tuebingen 72076, Germany
| | - Clive Lloyd
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - David G Robinson
- Centre for Organismal Studies, University of Heidelberg, Heidelberg D-69120, Germany
| | - L Andrew Staehelin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen 6708WE, the Netherlands
| |
Collapse
|
17
|
Muñoz-Sanz JV, Tovar-Méndez A, Lu L, Dai R, McClure B. A Cysteine-Rich Protein, SpDIR1L, Implicated in S-RNase-Independent Pollen Rejection in the Tomato ( Solanum Section Lycopersicon) Clade. Int J Mol Sci 2021; 22:ijms222313067. [PMID: 34884871 PMCID: PMC8657656 DOI: 10.3390/ijms222313067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Tomato clade species (Solanum sect. Lycopersicon) display multiple interspecific reproductive barriers (IRBs). Some IRBs conform to the SI x SC rule, which describes unilateral incompatibility (UI) where pollen from SC species is rejected on SI species’ pistils, but reciprocal pollinations are successful. However, SC x SC UI also exists, offering opportunities to identify factors that contribute to S-RNase-independent IRBs. For instance, SC Solanum pennellii LA0716 pistils only permit SC Solanum lycopersicum pollen tubes to penetrate to the top third of the pistil, while S. pennellii pollen penetrates to S. lycopersicum ovaries. We identified candidate S. pennellii LA0716 pistil barrier genes based on expression profiles and published results. CRISPR/Cas9 mutants were created in eight candidate genes, and mutants were assessed for changes in S. lycopersicum pollen tube growth. Mutants in a gene designated Defective in Induced Resistance 1-like (SpDIR1L), which encodes a small cysteine-rich protein, permitted S. lycopersicum pollen tubes to grow to the bottom third of the style. We show that SpDIR1L protein accumulation correlates with IRB strength and that species with weak or no IRBs toward S. lycopersicum pollen share a 150 bp deletion in the upstream region of SpDIR1L. These results suggest that SpDIR1L contributes to an S-RNase-independent IRB.
Collapse
Affiliation(s)
- Juan Vicente Muñoz-Sanz
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; (A.T.-M.); (L.L.); (R.D.); (B.M.)
- Rijk Zwaan Iberica S.A., Carretera Viator Paraje El Mamí S/N, La Cañada, 04120 Almería, Spain
- Correspondence:
| | - Alejandro Tovar-Méndez
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; (A.T.-M.); (L.L.); (R.D.); (B.M.)
- Elemental Enzymes, 1685 Galt Industrial Boulevard, St. Louis, MO 63132, USA
| | - Lu Lu
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; (A.T.-M.); (L.L.); (R.D.); (B.M.)
- Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Ru Dai
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; (A.T.-M.); (L.L.); (R.D.); (B.M.)
- Department of Horticultural Sciences, University of Florida, Fifield Hall, 2550 Hull Road, Gainesville, FL 32611, USA
| | - Bruce McClure
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; (A.T.-M.); (L.L.); (R.D.); (B.M.)
| |
Collapse
|
18
|
Identification and Analysis of Genes Involved in Double Fertilization in Rice. Int J Mol Sci 2021; 22:ijms222312850. [PMID: 34884656 PMCID: PMC8657449 DOI: 10.3390/ijms222312850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022] Open
Abstract
Double fertilization is a key determinant of grain yield, and the failure of fertilization during hybridization is one important reason for reproductive isolation. Therefore, fertilization has a very important role in the production of high-yield and well-quality hybrid of rice. Here, we used RNA sequencing technology to study the change of the transcriptome during double fertilization with the help of the mutant fertilization barrier (feb) that failed to finish fertilization process and led to seed abortion. The results showed that 1669 genes were related to the guided growth of pollen tubes, 332 genes were involved in the recognition and fusion of the male–female gametes, and 430 genes were associated with zygote formation and early free endosperm nuclear division. Among them, the genes related to carbohydrate metabolism; signal transduction pathways were enriched in the guided growth of pollen tubes, the genes involved in the photosynthesis; fatty acid synthesis pathways were activated by the recognition and fusion of the male–female gametes; and the cell cycle-related genes might play an essential role in zygote formation and early endosperm nuclear division. Furthermore, among the 1669 pollen tube-related genes, it was found that 7 arabinogalactan proteins (AGPs), 1 cysteine-rich peptide (CRP), and 15 receptor-like kinases (RLKs) were specifically expressed in anther, while 2 AGPs, 7 CRPs, and 5 RLKs in pistil, showing obvious unequal distribution which implied they might play different roles in anther and pistil during fertilization. These studies laid a solid foundation for revealing double fertilization mechanism of rice and for the follow-up investigation.
Collapse
|
19
|
Signaling at Physical Barriers during Pollen-Pistil Interactions. Int J Mol Sci 2021; 22:ijms222212230. [PMID: 34830110 PMCID: PMC8622735 DOI: 10.3390/ijms222212230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023] Open
Abstract
In angiosperms, double fertilization requires pollen tubes to transport non-motile sperm to distant egg cells housed in a specialized female structure known as the pistil, mediating the ultimate fusion between male and female gametes. During this journey, the pollen tube encounters numerous physical barriers that must be mechanically circumvented, including the penetration of the stigmatic papillae, style, transmitting tract, and synergid cells as well as the ultimate fusion of sperm cells to the egg or central cell. Additionally, the pollen tube must maintain structural integrity in these compact environments, while responding to positional guidance cues that lead the pollen tube to its destination. Here, we discuss the nature of these physical barriers as well as efforts to genetically and cellularly identify the factors that allow pollen tubes to successfully, specifically, and quickly circumnavigate them.
Collapse
|
20
|
Kiyono H, Katano K, Suzuki N. Links between Regulatory Systems of ROS and Carbohydrates in Reproductive Development. PLANTS 2021; 10:plants10081652. [PMID: 34451697 PMCID: PMC8401158 DOI: 10.3390/plants10081652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/02/2022]
Abstract
To thrive on the earth, highly sophisticated systems to finely control reproductive development have been evolved in plants. In addition, deciphering the mechanisms underlying the reproductive development has been considered as a main research avenue because it leads to the improvement of the crop yields to fulfill the huge demand of foods for the growing world population. Numerous studies revealed the significance of ROS regulatory systems and carbohydrate transports and metabolisms in the regulation of various processes of reproductive development. However, it is poorly understood how these mechanisms function together in reproductive tissues. In this review, we discuss mode of coordination and integration between ROS regulatory systems and carbohydrate transports and metabolisms underlying reproductive development based on the hitherto findings. We then propose three mechanisms as key players that integrate ROS and carbohydrate regulatory systems. These include ROS-dependent programmed cell death (PCD), mitochondrial and respiratory metabolisms as sources of ROS and energy, and functions of arabinogalactan proteins (AGPs). It is likely that these key mechanisms govern the various signals involved in the sequential events required for proper seed production.
Collapse
Affiliation(s)
- Hanako Kiyono
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda, Tokyo 102-8554, Japan; (H.K.); (K.K.)
| | - Kazuma Katano
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda, Tokyo 102-8554, Japan; (H.K.); (K.K.)
- Research Fellow of Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-0083, Japan
| | - Nobuhiro Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda, Tokyo 102-8554, Japan; (H.K.); (K.K.)
- Correspondence: ; Tel.: +81-3-3238-3884
| |
Collapse
|
21
|
Tushabe D, Rosbakh S. A Compendium of in vitro Germination Media for Pollen Research. FRONTIERS IN PLANT SCIENCE 2021; 12:709945. [PMID: 34305993 PMCID: PMC8299282 DOI: 10.3389/fpls.2021.709945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
The correct choice of in vitro pollen germination media (PGM) is crucial in basic and applied pollen research. However, the methodological gaps (e.g., strong focus of current research on model species and cultivated plants along with the lack of general rules for developing a PGM) makes experimenting with pollen difficult. We closed these gaps by compiling a compendium of optimized in vitro PGM recipes from more than 1800 articles published in English, German, and Russian from 1926 to 2019. The compendium includes 1572 PGM recipes successfully used to germinate pollen grains or produce pollen tubes in 816 species representing 412 genera and 114 families (both monocots and dicots). Among the 110 components recorded from the different PGM recipes, sucrose (89% of species), H3BO3 (77%), Ca2+ (59%), Mg2+ (44%), and K+ (39%) were the most commonly used PGM components. PGM pH was reported in 35% of all studies reviewed. Also, we identified some general rules for creating PGM for various groups of species differing in area of research (wild and cultivated species), phylogenetic relatedness (angiosperms vs. gymnosperms, dicots vs. monocots), pollen physiology (bi- and tri-cellular), biochemistry (starchy vs. starchless pollen grains), and stigma properties (dry vs. wet), and compared the component requirements. Sucrose, calcium, and magnesium concentrations were significantly different across most categories indicating that pollen sensitivity to sugar and mineral requirements in PGM is highly group-specific and should be accounted for when composing new PGM. This compendium is an important data resource on PGM and can facilitate future pollen research.
Collapse
|
22
|
Abstract
The gametophyte represents the sexual phase in the alternation of generations in plants; the other, nonsexual phase is the sporophyte. Here, we review the evolutionary origins of the male gametophyte among land plants and, in particular, its ontogenesis in flowering plants. The highly reduced male gametophyte of angiosperm plants is a two- or three-celled pollen grain. Its task is the production of two male gametes and their transport to the female gametophyte, the embryo sac, where double fertilization takes place. We describe two phases of pollen ontogenesis-a developmental phase leading to the differentiation of the male germline and the formation of a mature pollen grain and a functional phase representing the pollen tube growth, beginning with the landing of the pollen grain on the stigma and ending with double fertilization. We highlight recent advances in the complex regulatory mechanisms involved, including posttranscriptional regulation and transcript storage, intracellular metabolic signaling, pollen cell wall structure and synthesis, protein secretion, and phased cell-cell communication within the reproductive tissues.
Collapse
Affiliation(s)
- Said Hafidh
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| |
Collapse
|
23
|
Yao H, Scornet D, Jam M, Hervé C, Potin P, Oliveira Correia L, Coelho SM, Cock JM. Biochemical characteristics of a diffusible factor that induces gametophyte to sporophyte switching in the brown alga Ectocarpus. JOURNAL OF PHYCOLOGY 2021; 57:742-753. [PMID: 33432598 DOI: 10.1111/jpy.13126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The haploid-diploid life cycle of the filamentous brown alga Ectocarpus involves alternation between two independent and morphologically distinct multicellular generations, the sporophyte and the gametophyte. Deployment of the sporophyte developmental program requires two TALE homeodomain transcription factors OUROBOROS and SAMSARA. In addition, the sporophyte generation has been shown to secrete a diffusible factor that can induce uni-spores to switch from the gametophyte to the sporophyte developmental program. Here, we determine optimal conditions for production, storage, and detection of this diffusible factor and show that it is a heat-resistant, high molecular weight molecule. Based on a combined approach involving proteomic analysis of sporophyte-conditioned medium and the use of biochemical tools to characterize arabinogalactan proteins, we present evidence that sporophyte-conditioned medium contains AGP epitopes and suggest that the diffusible factor may belong to this family of glycoproteins.
Collapse
Affiliation(s)
- Haiqin Yao
- Algal Genetics Group, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Delphine Scornet
- Algal Genetics Group, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Murielle Jam
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
- Marine Glycobiology, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
| | - Cécile Hervé
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
- Marine Glycobiology, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
| | - Philippe Potin
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
- Algal Biology and Environmental Interactions, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
| | - Lydie Oliveira Correia
- PAPPSO, INRA, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Susana M Coelho
- Algal Genetics Group, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - J Mark Cock
- Algal Genetics Group, UMR 8227, CNRS, Sorbonne Université, UPMC University Paris 06, Paris, France
- Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| |
Collapse
|
24
|
Lara-Mondragón CM, MacAlister CA. Arabinogalactan glycoprotein dynamics during the progamic phase in the tomato pistil. PLANT REPRODUCTION 2021; 34:131-148. [PMID: 33860833 DOI: 10.1007/s00497-021-00408-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Pistil AGPs display dynamic localization patterns in response to fertilization in tomato. SlyFLA9 (Solyc07g065540.1) is a chimeric Fasciclin-like AGP with enriched expression in the ovary, suggesting a potential function during pollen-pistil interaction. During fertilization, the male gametes are delivered by pollen tubes to receptive ovules, deeply embedded in the sporophytic tissues of the pistil. Arabinogalactan glycoproteins (AGPs) are a diverse family of highly glycosylated, secreted proteins which have been widely implicated in plant reproduction, particularly within the pistil. Though tomato (Solanum lycopersicum) is an important crop requiring successful fertilization for production, the molecular basis of this event remains understudied. Here we explore the spatiotemporal localization of AGPs in the mature tomato pistil before and after fertilization. Using histological techniques to detect AGP sugar moieties, we found that accumulation of AGPs correlated with the maturation of the stigma and we identified an AGP subpopulation restricted to the micropyle that was no longer visible upon fertilization. To identify candidate pistil AGP genes, we used an RNA-sequencing approach to catalog gene expression in functionally distinct subsections of the mature tomato pistil (the stigma, apical and basal style and ovary) as well as pollen and pollen tubes. Of 161 predicted AGP and AGP-like proteins encoded in the tomato genome, we identified four genes with specifically enriched expression in reproductive tissues. We further validated expression of two of these, a Fasciclin-like AGP (SlyFLA9, Solyc07g065540.1) and a novel hybrid AGP (SlyHAE, Solyc09g075580.1). Using in situ hybridization, we also found SlyFLA9 was expressed in the integuments of the ovule and the pericarp. Additionally, differential expression analyses of the pistil transcriptome revealed previously unreported genes with enriched expression in each subsection of the mature pistil, setting the foundation for future functional studies.
Collapse
Affiliation(s)
| | - Cora A MacAlister
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Xie R, Zhao J, Lu L, Jernstedt J, Guo J, Brown PH, Tian S. Spatial imaging reveals the pathways of Zn transport and accumulation during reproductive growth stage in almond plants. PLANT, CELL & ENVIRONMENT 2021; 44:1858-1868. [PMID: 33665861 DOI: 10.1111/pce.14037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/23/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The reproductive processes of several deciduous trees are highly sensitive to Zn deficiency. An understanding of the patterns of Zn storage and remobilization during bud development and bud break is critical for the development of fertilization strategies to prevent deficiencies and may be valuable in selection and breeding programs to develop more Zn-resilient cultivars. In this study, we provide insights into the in situ distribution of Zn in almond reproductive organs at tissue, cellular, and subcellular scales using synchrotron-based X-ray fluorescence. The concentrations of Zn in different parts of the vegetative and reproductive tissues were also analysed. Our results show that the small branches subtending the flower and fruit, pollen grain, transmitting tissues of styles, and seed embryo are all important storage sites for Zn. An increase in Zn concentrations in almond reproductive organs mostly occur during the expanding growth phase, such as bud-flush and the mid-fruit enlargement stage; however, Zn transport to floral parts and fruit tissues was restricted at the pedicel and seed coat, suggesting a bottleneck in the export of Zn from the mother plant to filial tissues. Our results provide direct visual evidence for in-situ Zn distribution within the reproductive tissues of a deciduous tree species.
Collapse
Affiliation(s)
- Ruohan Xie
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, China
| | - Jianqi Zhao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, China
| | - Judy Jernstedt
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Jiansheng Guo
- Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Center of Cryo Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Patrick H Brown
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Shengke Tian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Science, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Windari EA, Ando M, Mizoguchi Y, Shimada H, Ohira K, Kagaya Y, Higashiyama T, Takayama S, Watanabe M, Suwabe K. Two aquaporins, SIP1;1 and PIP1;2, mediate water transport for pollen hydration in the Arabidopsis pistil. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:77-87. [PMID: 34177327 PMCID: PMC8215469 DOI: 10.5511/plantbiotechnology.20.1207a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/07/2020] [Indexed: 06/13/2023]
Abstract
Pollination is the crucial initial step that brings together the male and female gametophytes, and occurs at the surface of the stigmatic papilla cell in Arabidopsis thaliana. After pollen recognition, pollen hydration is initiated as a second critical step to activate desiccated mature pollen grains for germination, and thus water transport from pistil to pollen is essential for this process. In this study, we report a novel aquaporin-mediated water transport process in the papilla cell as a control mechanism for pollen hydration. Coupled with a time-series imaging analysis of pollination and a reverse genetic analysis using T-DNA insertion Arabidopsis mutants, we found that two aquaporins, the ER-bound SIP1;1 and the plasma membrane-bound PIP1;2, are key players in water transport from papilla cell to pollen during pollination. In wild type plant, hydration speed reached its maximal value within 5 min after pollination, remained high until 10-15 min. In contrast, sip1;1 and pip1;2 mutants showed no rapid increase of hydration speed, but instead a moderate increase during ∼25 min after pollination. Pollen of sip1;1 and pip1;2 mutants had normal viability without any functional defects for pollination, indicating that decelerated pollen hydration is due to a functional defect on the female side in sip1;1 and pip1;2 mutants. In addition, sip1;1 pip1;2 double knockout mutant showed a similar impairment of pollen hydration to individual single mutants, suggesting that their coordinated regulation is critical for proper water transport, in terms of speed and amount, in the pistil to accomplish successful pollen hydration.
Collapse
Affiliation(s)
- Endang Ayu Windari
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Mei Ando
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Yohei Mizoguchi
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Hiroto Shimada
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Keima Ohira
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Yasuaki Kagaya
- Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514-8507, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Aichi 464-8601, Japan
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Seiji Takayama
- Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Keita Suwabe
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| |
Collapse
|
27
|
Yang H, You C, Yang S, Zhang Y, Yang F, Li X, Chen N, Luo Y, Hu X. The Role of Calcium/Calcium-Dependent Protein Kinases Signal Pathway in Pollen Tube Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:633293. [PMID: 33767718 PMCID: PMC7985351 DOI: 10.3389/fpls.2021.633293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/15/2021] [Indexed: 05/21/2023]
Abstract
Pollen tube (PT) growth as a key step for successful fertilization is essential for angiosperm survival and especially vital for grain yield in cereals. The process of PT growth is regulated by many complex and delicate signaling pathways. Among them, the calcium/calcium-dependent protein kinases (Ca2+/CPKs) signal pathway has become one research focus, as Ca2+ ion is a well-known essential signal molecule for PT growth, which can be instantly sensed and transduced by CPKs to control myriad biological processes. In this review, we summarize the recent progress in understanding the Ca2+/CPKs signal pathway governing PT growth. We also discuss how this pathway regulates PT growth and how reactive oxygen species (ROS) and cyclic nucleotide are integrated by Ca2+ signaling networks.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Chen You
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Shaoyu Yang
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Yuping Zhang
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Fan Yang
- Department of Biology, Taiyuan Normal University, Jinzhong, China
| | - Xue Li
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Ning Chen
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Yanmin Luo
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Xiuli Hu
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
28
|
Paving the Way for Fertilization: The Role of the Transmitting Tract. Int J Mol Sci 2021; 22:ijms22052603. [PMID: 33807566 PMCID: PMC7961442 DOI: 10.3390/ijms22052603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/12/2023] Open
Abstract
Angiosperm reproduction relies on the precise growth of the pollen tube through different pistil tissues carrying two sperm cells into the ovules’ embryo sac, where they fuse with the egg and the central cell to accomplish double fertilization and ultimately initiate seed development. A network of intrinsic and tightly regulated communication and signaling cascades, which mediate continuous interactions between the pollen tube and the sporophytic and gametophytic female tissues, ensures the fast and meticulous growth of pollen tubes along the pistil, until it reaches the ovule embryo sac. Most of the pollen tube growth occurs in a specialized tissue—the transmitting tract—connecting the stigma, the style, and the ovary. This tissue is composed of highly secretory cells responsible for producing an extensive extracellular matrix. This multifaceted matrix is proposed to support and provide nutrition and adhesion for pollen tube growth and guidance. Insights pertaining to the mechanisms that underlie these processes remain sparse due to the difficulty of accessing and manipulating the female sporophytic tissues enclosed in the pistil. Here, we summarize the current knowledge on this key step of reproduction in flowering plants with special emphasis on the female transmitting tract tissue.
Collapse
|
29
|
Zhou L, Vejlupkova Z, Warman C, Fowler JE. A Maize Male Gametophyte-Specific Gene Encodes ZmLARP6c1, a Potential RNA-Binding Protein Required for Competitive Pollen Tube Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:635244. [PMID: 33719310 PMCID: PMC7947365 DOI: 10.3389/fpls.2021.635244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Members of the La-related protein family (LARPs) contain a conserved La module, which has been associated with RNA-binding activity. Expression of the maize gene GRMZM2G323499/Zm00001d018613, a member of the LARP family, is highly specific to pollen, based on both transcriptomic and proteomic assays. This suggests a pollen-specific RNA regulatory function for the protein, designated ZmLARP6c1 based on sequence similarity to the LARP6 subfamily in Arabidopsis. To test this hypothesis, a Ds-GFP transposable element insertion in the ZmLarp6c1 gene (tdsgR82C05) was obtained from the Dooner/Du mutant collection. Sequencing confirmed that the Ds-GFP insertion is in an exon, and thus likely interferes with ZmLARP6c1 function. Tracking inheritance of the insertion via its endosperm-expressed GFP indicated that the mutation was associated with reduced transmission from a heterozygous plant when crossed as a male (ranging from 0.5 to 26.5% transmission), but not as a female. Furthermore, this transmission defect was significantly alleviated when less pollen was applied to the silk, reducing competition between mutant and wild-type pollen. Pollen grain diameter measurements and nuclei counts showed no significant differences between wild-type and mutant pollen. However, in vitro, mutant pollen tubes were significantly shorter than those from sibling wild-type plants, and also displayed altered germination dynamics. These results are consistent with the idea that ZmLARP6c1 provides an important regulatory function during the highly competitive progamic phase of male gametophyte development following arrival of the pollen grain on the silk. The conditional, competitive nature of the Zmlarp6c1::Ds male sterility phenotype (i.e., reduced ability to produce progeny seed) points toward new possibilities for genetic control of parentage in crop production.
Collapse
Affiliation(s)
- Lian Zhou
- Maize Research Institute, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Zuzana Vejlupkova
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - Cedar Warman
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | - John E Fowler
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
30
|
Lora J, Perez V, Herrero M, Hormaza JI. Ovary Signals for Pollen Tube Guidance in Chalazogamous Mangifera indica L. FRONTIERS IN PLANT SCIENCE 2021; 11:601706. [PMID: 33643328 PMCID: PMC7902493 DOI: 10.3389/fpls.2020.601706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Most flowering plants show porogamy in which the pollen tubes reach the egg apparatus through the micropyle. However, several species show chalazogamy, an unusual pollen tube growth, in which the pollen tubes reach the embryo sac through the chalaza. While ovary signals for pollen tube growth and guidance have been extensively studied in porogamous species, few studies have addressed the process in chalazogamous species such as mango (Mangifera indica L.), one of the five most important fruit crops worldwide in terms of production. In this study, we characterize pollen-pistil interaction in mango, paying special attention to three key players known to be involved in the directional pollen tube growth of porogamous species such as starch, arabinogalactan proteins (AGPs), and γ-aminobutyric acid (GABA). Starch grains were observed in the style and in the ponticulus at anthesis, but their number decreased 1 day after anthesis. AGPs, revealed by JIM8 and JIM13 antibodies, were homogenously observed in the style and ovary, but were more conspicuous in the nucellus around the egg apparatus. GABA, revealed by anti-GABA antibodies, was specifically observed in the transmitting tissue, including the ponticulus. Moreover, GABA was shown to stimulate in vitro mango pollen tube elongation. The results support the heterotrophic growth of mango pollen tubes in the style at the expense of starch, similarly to the observations in porogamous species. However, unlike porogamous species, the micropyle of mango does not show high levels of GABA and starch, although they were observed in the ponticulus and could play a role in supporting the unusual pollen tube growth in chalazogamous species.
Collapse
Affiliation(s)
- Jorge Lora
- Subtropical Fruit Crops Department, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM La Mayora-CSIC-UMA), Algarrobo-Costa, Spain
| | - Veronica Perez
- Subtropical Fruit Crops Department, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM La Mayora-CSIC-UMA), Algarrobo-Costa, Spain
- Unidad Técnica del Instituto de Productos Naturales y Agrobiología, IPNA-CSIC, Laboratorio de Agrobiología Juan José Bravo Rodríguez (Cabildo de La Palma), Santa Cruz de La Palma, Spain
- Instituto de Productos Naturales y Agrobiologia (IPNA-CSIC), San Cristóbal de La Laguna, Spain
| | - Maria Herrero
- Pomology Department, Estación Experimental Aula Dei-CSIC, Zaragoza, Spain
| | - Jose I. Hormaza
- Subtropical Fruit Crops Department, Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM La Mayora-CSIC-UMA), Algarrobo-Costa, Spain
| |
Collapse
|
31
|
Lohani N, Singh MB, Bhalla PL. RNA-Seq Highlights Molecular Events Associated With Impaired Pollen-Pistil Interactions Following Short-Term Heat Stress in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 11:622748. [PMID: 33584763 PMCID: PMC7872974 DOI: 10.3389/fpls.2020.622748] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/08/2020] [Indexed: 05/09/2023]
Abstract
The global climate change is leading to increased frequency of heatwaves with crops getting exposed to extreme temperature events. Such temperature spikes during the reproductive stage of plant development can harm crop fertility and productivity. Here we report the response of short-term heat stress events on the pollen and pistil tissues in a commercially grown cultivar of Brassica napus. Our data reveals that short-term temperature spikes not only affect pollen fitness but also impair the ability of the pistil to support pollen germination and pollen tube growth and that the heat stress sensitivity of pistil can have severe consequences for seed set and yield. Comparative transcriptome profiling of non-stressed and heat-stressed (40°C for 30 min) pollen and pistil (stigma + style) highlighted the underlying cellular mechanisms involved in heat stress response in these reproductive tissues. In pollen, cell wall organization and cellular transport-related genes possibly regulate pollen fitness under heat stress while the heat stress-induced repression of transcription factor encoding transcripts is a feature of the pistil response. Overall, high temperature altered the expression of genes involved in protein processing, regulation of transcription, pollen-pistil interactions, and misregulation of cellular organization, transport, and metabolism. Our results show that short episodes of high-temperature exposure in B. napus modulate key regulatory pathways disrupted reproductive processes, ultimately translating to yield loss. Further investigations on the genes and networks identified in the present study pave a way toward genetic improvement of the thermotolerance and reproductive performance of B. napus varieties.
Collapse
Affiliation(s)
| | | | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
32
|
Hromadová D, Soukup A, Tylová E. Arabinogalactan Proteins in Plant Roots - An Update on Possible Functions. FRONTIERS IN PLANT SCIENCE 2021; 12:674010. [PMID: 34079573 PMCID: PMC8165308 DOI: 10.3389/fpls.2021.674010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 05/05/2023]
Abstract
Responsiveness to environmental conditions and developmental plasticity of root systems are crucial determinants of plant fitness. These processes are interconnected at a cellular level with cell wall properties and cell surface signaling, which involve arabinogalactan proteins (AGPs) as essential components. AGPs are cell-wall localized glycoproteins, often GPI-anchored, which participate in root functions at many levels. They are involved in cell expansion and differentiation, regulation of root growth, interactions with other organisms, and environmental response. Due to the complexity of cell wall functional and regulatory networks, and despite the large amount of experimental data, the exact molecular mechanisms of AGP-action are still largely unknown. This dynamically evolving field of root biology is summarized in the present review.
Collapse
|
33
|
Zhang WM, Fang D, Cheng XZ, Cao J, Tan XL. Insights Into the Molecular Evolution of AT-Hook Motif Nuclear Localization Genes in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:714305. [PMID: 34567028 PMCID: PMC8458767 DOI: 10.3389/fpls.2021.714305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/19/2021] [Indexed: 05/13/2023]
Abstract
AT-hook motif nuclear localization (AHL) proteins belong to a family of transcription factors, and play important roles in plant growth and development and response to various stresses through protein-DNA and protein-protein interactions. To better understand the Brassica napus AHL gene family, AHL genes in B. napus and related species were analyzed. Using Arabidopsis as a reference, 122 AHL gene family members were first identified in B. napus. According to the phylogenetic tree and gene organization, the BnaAHLs were classified into two clades (Clade-A and Clade-B) and three types (Type-I, Type-II, and Type-III). Gene organization and motif distribution analysis suggested that the AHL gene family is relatively conserved during evolution. These BnaAHLs are unevenly distributed on 38 chromosomes and expanded by whole-genome duplication (WGD) or segmental duplication. And large-scale loss events have also occurred in evolution. All types of BnaAHLs are subject to purification or neutral selection, while some positive selection sites are also identified in Type-II and Type-III groups. At the same time, the purification effect of Type-I members are stronger than that of the others. In addition, RNA-seq data and cis-acting element analysis also suggested that the BnaAHLs play important roles in B. napus growth and development, as well as in response to some abiotic and biotic stresses. Protein-protein interaction analysis identified some important BnaAHL-binding proteins, which also play key roles in plant growth and development. This study is helpful to fully understand the origin and evolution of the AHL gene in B. napus, and lays the foundation for their functional studies.
Collapse
|
34
|
Ajayi OO, Showalter AM. Systems identification and characterization of β-glucuronosyltransferase genes involved in arabinogalactan-protein biosynthesis in plant genomes. Sci Rep 2020; 10:20562. [PMID: 33239665 PMCID: PMC7689455 DOI: 10.1038/s41598-020-72658-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 08/24/2020] [Indexed: 11/10/2022] Open
Abstract
Utilizing plant biomass for bioethanol production requires an understanding of the molecular mechanisms involved in plant cell wall assembly. Arabinogalactan-proteins (AGPs) are glycoproteins that interact with other cell wall polymers to influence plant growth and developmental processes. Glucuronic acid, which is transferred to the AGP glycan by β-glucuronosyltransferases (GLCATs), is the only acidic sugar in AGPs with the ability to bind calcium. We carried out a comprehensive genome-wide analysis of a putative GLCAT gene family involved in AGP biosynthesis by examining its sequence diversity, genetic architecture, phylogenetic and motif characteristics, selection pressure and gene expression in plants. We report the identification of 161 putative GLCAT genes distributed across 14 plant genomes and a widely conserved GLCAT catalytic domain. We discovered a phylogenetic clade shared between bryophytes and higher land plants of monocot grass and dicot lineages and identified positively selected sites that do not result in functional divergence of GLCATs. RNA-seq and microarray data analyses of the putative GLCAT genes revealed gene expression signatures that likely influence the assembly of plant cell wall polymers which is critical to the overall growth and development of edible and bioenergy crops.
Collapse
Affiliation(s)
- Oyeyemi Olugbenga Ajayi
- Department of Environmental and Plant Biology, Ohio University, Athens, 45701 USA
- Molecular and Cellular Biology Program, Ohio University, Athens, 45701 USA
| | - Allan M. Showalter
- Department of Environmental and Plant Biology, Ohio University, Athens, 45701 USA
- Molecular and Cellular Biology Program, Ohio University, Athens, 45701 USA
| |
Collapse
|
35
|
Leszczuk A, Kalaitzis P, Blazakis KN, Zdunek A. The role of arabinogalactan proteins (AGPs) in fruit ripening-a review. HORTICULTURE RESEARCH 2020; 7:176. [PMID: 33328442 PMCID: PMC7603502 DOI: 10.1038/s41438-020-00397-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 05/21/2023]
Abstract
Arabinogalactan proteins (AGPs) are proteoglycans challenging researchers for decades. However, despite the extremely interesting polydispersity of their structure and essential application potential, studies of AGPs in fruit are limited, and only a few groups deal with this scientific subject. Here, we summarise the results of pioneering studies on AGPs in fruit tissue with their structure, specific localization pattern, stress factors influencing their presence, and a focus on recent advances. We discuss the properties of AGPs, i.e., binding calcium ions, ability to aggregate, adhesive nature, and crosslinking with other cell wall components that may also be implicated in fruit metabolism. The aim of this review is an attempt to associate well-known features and properties of AGPs with their putative roles in fruit ripening. The putative physiological significance of AGPs might provide additional targets of regulation for fruit developmental programme. A comprehensive understanding of the AGP expression, structure, and untypical features may give new information for agronomic, horticulture, and renewable biomaterial applications.
Collapse
Affiliation(s)
- Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland.
| | - Panagiotis Kalaitzis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, P.O. Box 85, Chania, 73100, Greece
| | - Konstantinos N Blazakis
- Department of Horticultural Genetics and Biotechnology, Mediterranean Agronomic Institute of Chania, Chania, P.O. Box 85, Chania, 73100, Greece
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| |
Collapse
|
36
|
Adhikari PB, Liu X, Kasahara RD. Mechanics of Pollen Tube Elongation: A Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:589712. [PMID: 33193543 PMCID: PMC7606272 DOI: 10.3389/fpls.2020.589712] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/30/2020] [Indexed: 05/13/2023]
Abstract
Pollen tube (PT) serves as a vehicle that delivers male gametes (sperm cells) to a female gametophyte during double fertilization, which eventually leads to the seed formation. It is one of the fastest elongating structures in plants. Normally, PTs traverse through the extracellular matrix at the transmitting tract after penetrating the stigma. While the endeavor may appear simple, the molecular processes and mechanics of the PT elongation is yet to be fully resolved. Although it is the most studied "tip-growing" structure in plants, several features of the structure (e.g., Membrane dynamics, growth behavior, mechanosensing etc.) are only partially understood. In many aspects, PTs are still considered as a tissue rather than a "unique cell." In this review, we have attempted to discuss mainly on the mechanics behind PT-elongation and briefly on the molecular players involved in the process. Four aspects of PTs are particularly discussed: the PT as a cell, its membrane dynamics, mechanics of its elongation, and the potential mechanosensors involved in its elongation based on relevant findings in both plant and non-plant models.
Collapse
Affiliation(s)
- Prakash Babu Adhikari
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyan Liu
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ryushiro D. Kasahara
- School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
37
|
Three STIGMA AND STYLE STYLISTs Pattern the Fine Architectures of Apical Gynoecium and Are Critical for Male Gametophyte-Pistil Interaction. Curr Biol 2020; 30:4780-4788.e5. [PMID: 33007250 DOI: 10.1016/j.cub.2020.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/02/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022]
Abstract
The gynoecium is derived from the fusion of carpels and is considered to have evolved from a simple setup followed by adaptive adjustment in cell type and tissue distribution to facilitate efficient sexual reproduction [1, 2]. As a sequence of the adjustment, the apical gynoecium differentiates into a stigma and a style. Both the structural patterning and functional specification of the apical gynoecium are critical for plant fertility [3, 4]. However, how the fine structures of the apical gynoecium are established at the interface interacting with pollen and pollen tubes remain to be elucidated. Here, we report a novel angiosperm-specific gene family, STIGMA AND STYLE STYLIST 1-3 (SSS1, SSS2, and SSS3). The SSS1 expresses predominately in the transmitting tract tissue of style, SSS2 expresses intensively in stigma, and SSS3 expresses mainly in stylar peripheral region round the transmitting tract. SSSs coregulate the patterning of the apical gynoecium via controlling cell expansion or elongation. Both the architecture and function of apical gynoecium can be affected by the alteration of SSS expression, indicating their critical roles in the establishment of a proper female interface for communication with pollen tubes. The NGATHA3 (NGA3) transcription factor [5, 6] can directly bind to SSSs promoter and control SSSs expression. Overexpression of SSSs could rescue the stylar defect of nga1nga3 double mutant, indicating their context in the same regulatory pathway. Our findings reveal a novel molecular mechanism responsible for patterning the fine architecture of apical gynoecium and establishing a proper interface for pollen tube growth, which is therefore crucial for plant sexual reproduction.
Collapse
|
38
|
Abstract
Cell surface glycoproteins in plants were first described more than 50 years ago, and yet, the precise mechanisms by which they operate remain elusive to this day. Studying glycoproteins is often challenging due to their subcellular localization (many secreted or membrane associated) and the extent of glycosylation present on the protein backbone, which can have profound effects on protein structure and behavior. In plants, additional layers of complexity exist as cell surface glycoproteins are in close contact, and in some cases, establish direct linkages with the polysaccharide networks present in the cell wall. In this chapter, we guide the reader through a protocol aimed to address the glycosylation status of a presumed cell surface glycoprotein. First, we discuss the advantages and disadvantages of using plants as homologous expression systems for recombinant glycoprotein production. Next, we describe a protocol for microsomal enrichment, followed by partial purification by affinity chromatography and finally glycodetection by immunoblotting using monoclonal antibodies targeting cell wall glycans. We particularly focus on the hydroxyproline-rich glycoprotein (HRGP) family, the most abundant family of glycoproteins in the plant cell wall. We provide examples of two putative HRGP chimeric proteins, one akin to extensins and the second an arabinogalactan protein (AGP)-like protein. For the latter, we provide an AGP-specific protocol to ensure enrichment of members of this group, which can be used independently or in conjunction with the described protocol. Throughout the chapter, we provide recommendations for the handling of plant glycoproteins and highlight special considerations for experimental design, along with troubleshooting suggestions.
Collapse
|
39
|
Leszczuk A, Cybulska J, Skrzypek T, Zdunek A. Properties of Arabinogalactan Proteins (AGPs) in Apple ( Malus × Domestica) Fruit at Different Stages of Ripening. BIOLOGY 2020; 9:biology9080225. [PMID: 32823888 PMCID: PMC7463920 DOI: 10.3390/biology9080225] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022]
Abstract
Arabinogalactan proteins (AGPs) are constituents of the cell wall–plasma membrane continuum in fruit tissue. The aim of the study was to characterise AGPs contained in fruit by determination of their chemical structure and morphological properties. The results were obtained from in and ex situ investigations and a comparative analysis of AGPs present in Malus × domestica fruit at different stages of ripening from green fruit through the mature stage to over-ripening during fruit storage. The HPLC and colorimetric methods were used for analyses of the composition of monosaccharides and proteins in AGPs extracted from fruit. We have found that AGPs from fruit mainly consists of carbohydrate chains composed predominantly of arabinose, galactose, glucose, galacturonic acid, and xylose. The protein moiety accounts for 3.15–4.58%, which depends on the various phases of ripening. Taken together, our results show that the structural and morphological properties of AGPs and calcium concentration in AGPs are related to the progress of ripening, which is correlated with proper fruit cell wall assembly. In line with the existing knowledge, our data confirmed the typical carbohydrate composition of AGPs and may be the basis for studies regarding their presumed properties of binding calcium ions.
Collapse
Affiliation(s)
- Agata Leszczuk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (J.C.); (A.Z.)
- Correspondence: ; Tel.: +48-817-445-061
| | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (J.C.); (A.Z.)
| | - Tomasz Skrzypek
- Confocal and Electron Microscopy Laboratory, Centre for Interdisciplinary Research, John Paul II Catholic University of Lublin, Al. Kraśnicka 102, 20-718 Lublin, Poland;
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland; (J.C.); (A.Z.)
| |
Collapse
|
40
|
Galvanotropic Chamber for Controlled Reorientation of Pollen Tube Growth and Simultaneous Confocal Imaging of Intracellular Dynamics. Methods Mol Biol 2020. [PMID: 32529437 DOI: 10.1007/978-1-0716-0672-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Successful fertilization and seed set require the pollen tube to grow through several tissues, to change its growth orientation by responding to directional cues, and to ultimately reach the embryo sac and deliver the paternal genetic material. The ability to respond to external directional cues is, therefore, a pivotal feature of pollen tube behavior. In order to study the regulatory mechanisms controlling and mediating pollen tube tropic growth, a robust and reproducible method for the induction of growth reorientation in vitro is required. Here we describe a galvanotropic chamber designed to expose growing pollen tubes to precisely calibrated directional cues triggering reorientation while simultaneously tracking subcellular processes using live cell imaging and confocal laser scanning microscopy.
Collapse
|
41
|
Liu L, Zhao L, Chen P, Cai H, Hou Z, Jin X, Aslam M, Chai M, Lai L, He Q, Liu Y, Huang X, Chen H, Chen Y, Qin Y. ATP binding cassette transporters ABCG1 and ABCG16 affect reproductive development via auxin signalling in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1172-1186. [PMID: 31944421 DOI: 10.1111/tpj.14690] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/08/2020] [Indexed: 05/19/2023]
Abstract
Angiosperm reproductive development is a complex event that includes floral organ development, male and female gametophyte formation and interaction between the male and female reproductive organs for successful fertilization. Previous studies have revealed the redundant function of ATP binding cassette subfamily G (ABCG) transporters ABCG1 and ABCG16 in pollen development, but whether they are involved in other reproductive processes is unknown. Here we show that ABCG1 and ABCG16 were not only expressed in anthers and stamen filaments but also enriched in pistil tissues, including the stigma, style, transmitting tract and ovule. We further demonstrated that pistil-expressed ABCG1 and ABCG16 promoted rapid pollen tube growth through their effects on auxin distribution and auxin flow in the pistil. Moreover, disrupted auxin homeostasis in stamen filaments was associated with defective filament elongation. Our work reveals the key functions of ABCG1 and ABCG16 in reproductive development and provides clues for identifying ABCG1 and ABCG16 substrates in Arabidopsis.
Collapse
Affiliation(s)
- Liping Liu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lihua Zhao
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Piaojuan Chen
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hanyang Cai
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhimin Hou
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xingyue Jin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mohammad Aslam
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Mengnan Chai
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Linyi Lai
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qing He
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanhui Liu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoyi Huang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huihuang Chen
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yingzhi Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Yuan Qin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning, 530004, China
| |
Collapse
|
42
|
Adhikari PB, Liu X, Wu X, Zhu S, Kasahara RD. Fertilization in flowering plants: an odyssey of sperm cell delivery. PLANT MOLECULAR BIOLOGY 2020; 103:9-32. [PMID: 32124177 DOI: 10.1007/s11103-020-00987-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/26/2020] [Indexed: 05/22/2023]
Abstract
In light of the available discoveries in the field, this review manuscript discusses on plant reproduction mechanism and molecular players involved in the process. Sperm cells in angiosperms are immotile and are physically distant to the female gametophytes (FG). To secure the production of the next generation, plants have devised a clever approach by which the two sperm cells in each pollen are safely delivered to the female gametophyte where two fertilization events occur (by each sperm cell fertilizing an egg cell and central cell) to give rise to embryo and endosperm. Each of the successfully fertilized ovules later develops into a seed. Sets of macromolecules play roles in pollen tube (PT) guidance, from the stigma, through the transmitting tract and funiculus to the micropylar end of the ovule. Other sets of genetic players are involved in PT reception and in its rupture after it enters the ovule, and yet other sets of genes function in gametic fusion. Angiosperms have come long way from primitive reproductive structure development to today's sophisticated, diverse, and in most cases flamboyant organ. In this review, we will be discussing on the intricate yet complex molecular mechanism of double fertilization and how it might have been shaped by the evolutionary forces focusing particularly on the model plant Arabidopsis.
Collapse
Affiliation(s)
- Prakash B Adhikari
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoyan Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoyan Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shaowei Zhu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ryushiro D Kasahara
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
- Horticultural Plant Biology and Metabolomics Center (HBMC), Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
43
|
FERONIA controls pectin- and nitric oxide-mediated male–female interaction. Nature 2020; 579:561-566. [DOI: 10.1038/s41586-020-2106-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/17/2020] [Indexed: 12/31/2022]
|
44
|
Reimann TM. Flow Chamber Assay to Image the Response of FRET-Based Nanosensors in Pollen Tubes to Changes in Medium Composition. Methods Mol Biol 2020; 2160:257-273. [PMID: 32529443 DOI: 10.1007/978-1-0716-0672-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pollen tubes growing in the transmitting tract are presented with an extracellular matrix rich in a variety of substances. The expression of a multitude of genes for transport proteins in the pollen tube indicates that pollen tubes take up at least some of the components provided by the transmitting tract, for example nutrients, ions, or signaling molecules. FRET (Förster resonance energy transfer)-based nanosensors are perfectly suited to study the uptake of these molecules into pollen tubes. They are genetically encoded and can easily be expressed in Arabidopsis pollen tubes. Furthermore, the method is noninvasive and nanosensors for a wide range of substances are available. This chapter will describe the design of plasmids required to generate stable Arabidopsis lines with a pollen tube-specific expression of nanosensor constructs. We also present a method to germinate Arabidopsis pollen tubes in a flow chamber slide that allows the perfusion of the pollen tubes with liquid medium supplemented with the substrate of the nanosensor. Simultaneous evaluation of the FRET efficiency of the nanosensor by confocal microscopy reveals whether the substance is taken up by the pollen tubes. Together with the great number of available nanosensors this method can generate a detailed picture of the substances that are taken up during pollen tubes growth.
Collapse
Affiliation(s)
- Theresa Maria Reimann
- Department of Biology, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany.
| |
Collapse
|
45
|
Alves CML, Noyszewski AK, Smith AG. Nicotiana tabacum pollen-pistil interactions show unexpected spatial and temporal differences in pollen tube growth among genotypes. PLANT REPRODUCTION 2019; 32:341-352. [PMID: 31359145 DOI: 10.1007/s00497-019-00375-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
KEY MESSAGE This research revealed diverse PTG rates among intraspecific pollen-pistil interactions that showed variable dependency on the stigma and mature TT. Pollen-pistil interactions regulate pollen tube growth (PTG) rates and are determinants of fertilization and seed set. This research focuses on the diversity of intraspecific PTG rates and the spatial and temporal regulation of PTG among Nicotiana tabacum genotypes. Nonrandom mating within self-compatible species has been noted, but little is known on the mechanisms involved. To begin research on nonrandom mating, we took advantage of the model reproductive system of N. tabacum and used seventeen diverse N. tabacum genotypes in a complete pollination diallel to measure the diversity of intraspecific pollen-pistil interactions. The 289 intraspecific interactions showed surprisingly large differences in PTG rates. The interaction between specific males and females resulted in 18 specific combining abilities that were significantly different, indicating the importance of the specific genotype interaction in regulating intraspecific PTG. No single female or male genotype exerted overall control of PTG rates, as determined by a general combining ability analysis. Slow and fast pollen-pistil interactions showed spatial differences in growth rates along the style. Slower interactions had a slower initial PTG rate while fast interactions had faster consistent rates of growth indicating spatial regulation of PTG in the pistil. Removal of the stigma or the mature transmitting tissue (TT) showed the tissue-specific component of PTG regulation. Stigma removal resulted in slower or no change in PTG rate depending on the pollen and pistil genotypes. Removal of the TT, which necessitated removal of the stigma, showed no change, slower or unexpectedly, increased growth rates relative to growth rates without a stigma. These data show the diverse nature of pollen-pistil interactions in N. tabacum genotypes providing a system to further investigate the regulation of PTG.
Collapse
Affiliation(s)
- Camila M L Alves
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Andrzej K Noyszewski
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Alan G Smith
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN, 55108, USA.
| |
Collapse
|
46
|
Callaway TD, Singh-Cundy A. HD-AGPs as Speciation Genes: Positive Selection on a Proline-Rich Domain in Non-Hybridizing Species of Petunia, Solanum, and Nicotiana. PLANTS (BASEL, SWITZERLAND) 2019; 8:E211. [PMID: 31288469 PMCID: PMC6681252 DOI: 10.3390/plants8070211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 07/04/2019] [Indexed: 11/16/2022]
Abstract
Transmitting tissue-specific proteins (TTS proteins) are abundant in the extracellular matrix of Nicotiana pistils, and vital for optimal pollen tube growth and seed set. We have identified orthologs from several species in the Solanaceae, including Petunia axillaris axillaris and Petunia integrifolia. We refer to TTS proteins and their orthologs as histidine domain-arabinogalactan proteins (HD-AGPs). HD-AGPs have distinctive domains, including a small histidine-rich region and a C-terminal PAC domain. Pairwise comparisons between HD-AGPs of 15 species belonging to Petunia, Nicotiana, and Solanum show that the his-domain and PAC domain are under purifying selection. In contrast, a proline-rich domain (HV2) is conserved among cross-hybridizing species, but variant in species-pairs that are reproductively isolated by post-pollination pre-fertilization reproductive barriers. In particular, variation in a tetrapeptide motif (XKPP) is systematically correlated with the presence of an interspecific reproductive barrier. Ka/Ks ratios are not informative at the infrageneric level, but the ratios reveal a clear signature of positive selection on two hypervariable domains (HV1 and HV2) when HD-AGPs from five solanaceous genera are compared. We propose that sequence divergence in the hypervariable domains of HD-AGPs reinforces sympatric speciation in incipient species that may have first diverged as a consequence of pollinator preferences or other ecological factors.
Collapse
Affiliation(s)
- Tara D Callaway
- Biology Department, Western Washington University, Bellingham, WA 98225, USA
| | - Anu Singh-Cundy
- Biology Department, Western Washington University, Bellingham, WA 98225, USA.
| |
Collapse
|
47
|
Lopes AL, Moreira D, Ferreira MJ, Pereira AM, Coimbra S. Insights into secrets along the pollen tube pathway in need to be discovered. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2979-2992. [PMID: 30820535 DOI: 10.1093/jxb/erz087] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
The process of plant fertilization provides an outstanding example of refined control of gene expression. During this elegant process, subtle communication occurs between neighboring cells, based on chemical signals, that induces cellular mechanisms of patterning and growth. Having faced an immediate issue of self-incompatibility responses, the pathway to fertilization starts once the stigmatic cells recognize a compatible pollen grain, and it continues with numerous players interacting to affect pollen tube growth and the puzzling process of navigation along the transmitting tract. The pollen tube goes through a guidance process that begins with a preovular stage (i.e. prior to the influence of the target ovule), with interactions with factors from the transmitting tissue. In the subsequent ovular-guidance stage a specific relationship develops between the pollen tube and its target ovule. This stage is divided into the funicular and micropylar guidance steps, with numerous receptors working in signalling cascades. Finally, just after the pollen tube has passed beyond the synergids, fusion of the gametes occurs and the developing seed-the ultimate aim of the process-will start to mature. In this paper, we review the existing knowledge of the crucial biological processes involved in pollen-pistil interactions that give rise to the new seed.
Collapse
Affiliation(s)
- Ana Lúcia Lopes
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Biosystems and Integrative Sciences Institute - BioISI, Porto, Portugal
- Sustainable Agrifood Production Research Centre - GreenUPorto, Vairão, Portugal
| | - Diana Moreira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Maria João Ferreira
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Ana Marta Pereira
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Milano, Italy
| | - Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Sustainable Agrifood Production Research Centre - GreenUPorto, Vairão, Portugal
| |
Collapse
|
48
|
Prior N, Little SA, Boyes I, Griffith P, Husby C, Pirone-Davies C, Stevenson DW, Tomlinson PB, von Aderkas P. Complex reproductive secretions occur in all extant gymnosperm lineages: a proteomic survey of gymnosperm pollination drops. PLANT REPRODUCTION 2019; 32:153-166. [PMID: 30430247 PMCID: PMC6500509 DOI: 10.1007/s00497-018-0348-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/09/2018] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE Complex protein-containing reproductive secretions are a conserved trait amongst all extant gymnosperms; the pollination drops of most groups include carbohydrate-modifying enzymes and defence proteins. Pollination drops are aqueous secretions that receive pollen and transport it to the ovule interior in gymnosperms (Coniferales, Cycadales, Ginkgoales, Gnetales). Proteins are well established as components of pollination drops in conifers (Coniferales) and Ephedra spp. (Gnetales), but it is unknown whether proteins are also present in the pollination drops of cycads (Cycadales), Ginkgo (Ginkgoales), Gnetum (Gnetales), or in the pollination drops produced by sterile ovules occurring on pollen plants in the Gnetales. We used liquid chromatography-tandem mass spectrometry followed by database-derived protein identification to conduct proteomic surveys of pollination drops collected from: Ceratozamia hildae, Zamia furfuracea and Cycas rumphii (Cycadales); Ginkgo biloba (Ginkgoales); Gnetum gnemon and Welwitschia mirabilis, including pollination drops from both microsporangiate and ovulate plants (Gnetales). We identified proteins in all samples: C. hildae (61), Z. furfuracea (40), C. rumphii (9), G. biloba (57), G. gnemon ovulate (17) and sterile ovules from microsporangiate plants (25) and W. mirabilis fertile ovules (1) and sterile ovules from microsporangiate plants (138). Proteins involved in defence and carbohydrate modification occurred in the drops of most groups, indicating conserved functions for proteins in pollination drops. Our study demonstrates that all extant gymnosperm groups produce complex reproductive secretions containing proteins, an ancient trait that likely contributed to the evolutionary success of seed plants.
Collapse
Affiliation(s)
- Natalie Prior
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, Canada
| | - Stefan A Little
- Department of Environmental and Plant Biology, Ohio University, Athens, OH, USA
| | - Ian Boyes
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, Canada
| | - Patrick Griffith
- Montgomery Botanical Center, 11901 Old Cutler Road, Coral Gables, FL, USA
| | - Chad Husby
- Montgomery Botanical Center, 11901 Old Cutler Road, Coral Gables, FL, USA
| | - Cary Pirone-Davies
- The Arnold Arboretum of Harvard University, 125 Arborway, Boston, MA, USA
| | | | - P Barry Tomlinson
- Montgomery Botanical Center, 11901 Old Cutler Road, Coral Gables, FL, USA
| | - Patrick von Aderkas
- Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, Canada.
| |
Collapse
|
49
|
Johnson MA, Harper JF, Palanivelu R. A Fruitful Journey: Pollen Tube Navigation from Germination to Fertilization. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:809-837. [PMID: 30822112 DOI: 10.1146/annurev-arplant-050718-100133] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In flowering plants, pollen tubes undergo tip growth to deliver two nonmotile sperm to the ovule where they fuse with an egg and central cell to achieve double fertilization. This extended journey involves rapid growth and changes in gene activity that manage compatible interactions with at least seven different cell types. Nearly half of the genome is expressed in haploid pollen, which facilitates genetic analysis, even of essential genes. These unique attributes make pollen an ideal system with which to study plant cell-cell interactions, tip growth, cell migration, the modulation of cell wall integrity, and gene expression networks. We highlight the signaling systems required for pollen tube navigation and the potential roles of Ca2+ signals. The dynamics of pollen development make sexual reproduction highly sensitive to heat stress. Understanding this vulnerability may generate strategies to improve seed crop yields that are under threat from climate change.
Collapse
Affiliation(s)
- Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912, USA;
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA;
| | | |
Collapse
|
50
|
Alves CML, Noyszewski AK, Smith AG. Structure and function of class III pistil-specific extensin-like protein in interspecific reproductive barriers. BMC PLANT BIOLOGY 2019; 19:118. [PMID: 30922239 PMCID: PMC6440088 DOI: 10.1186/s12870-019-1728-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/19/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND The transmitting tissue of the style is the pathway for pollen tube growth to the ovules and has components that function in recognizing and discriminating appropriate pollen genotypes. In Nicotiana tabacum, the class III pistil extensin-like (PELPIII) arabinogalactan protein is essential for the inhibition of N. obtusifolia pollen tube growth. The transmitting tissue-specific (TTS) arabinogalactan protein amino acid sequence and expression pattern is similar to PELPIII, but it facilitates self-pollinated N. tabacum. The TTS and PELPIII arabinogalactan protein can be divided into the less conserved N-terminal (NTD) and the more conserved C-terminal (CTD) domains. This research tested whether the NTD is the key domain in determining PELPIII function in the inhibition of interspecific pollen tube growth. Three variant PELPIII gene constructs were produced where the PELPIII NTD was exchanged with the TTS NTD and a single amino acid change (cysteine to alanine) was introduced into the PELPIII NTD. The PELPIII variants of N. tabacum were tested for activity by measuring the inhibition N. obtusifolia pollen tube growth by using them to complement a 3'UTR RNAi transgenic line with reduced PELPIII mRNA. RESULTS The RNAi N. tabacum line had reduced PELPIII mRNA accumulation and reduced inhibition of N. obtusifolia pollen tube growth, but had no effect on self-pollen tube growth or pollen tube growth of 12 other Nicotiana species. The NTD of PELPIII with either the PELPIII or TTS CTDs complemented the loss PELPIII activity in the RNAi transgenic line as measured by inhibition of N. obtusifolia pollen tube growth. The TTS NTD with the PELPIII CTD and a variant PELPIII with a cysteine to alanine mutation in its NTD failed to complement the loss of PELPIII activity and did not inhibit N. obtusifolia pollen tube growth. CONCLUSION The NTD is a key determinant in PELPIII's function in regulating interspecific pollen tube growth and is a first step toward understanding the mechanism of how PELPIII NTD regulates pollen tube growth.
Collapse
Affiliation(s)
- Camila M. L. Alves
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN 55108 USA
| | - Andrzej K. Noyszewski
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN 55108 USA
| | - Alan G. Smith
- Department of Horticultural Science, University of Minnesota, Saint Paul, MN 55108 USA
| |
Collapse
|