1
|
Duan H, Wang S, Shu WJ, Tong Y, Long HZ, Li G, Du HN, Zhao MJ. SETD3-mediated histidine methylation of MCM7 regulates DNA replication by facilitating chromatin loading of MCM. SCIENCE CHINA. LIFE SCIENCES 2025; 68:793-808. [PMID: 39455502 DOI: 10.1007/s11427-023-2600-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/19/2024] [Indexed: 10/28/2024]
Abstract
The minichromosome maintenance complex (MCM) DNA helicase is an important replicative factor during DNA replication. The proper chromatin loading of MCM is a key step to ensure replication initiation during S phase. Because replication initiation is regulated by multiple biological cues, additional changes to MCM may provide better understanding towards this event. Here, we report that histidine methyltransferase SETD3 promotes DNA replication in a manner dependent on enzymatic activity. Nascent-strand sequencing (NS-seq) shows that SETD3 regulates replication initiation, as depletion of SETD3 attenuates early replication origins firing. Biochemical studies reveal that SETD3 binds MCM mainly during S phase, which is required for the CDT1-mediated chromatin loading of MCM. This MCM loading relies on histidine-459 methylation (H459me) on MCM7 which is catalyzed by SETD3. Impairment of H459 methylation attenuates DNA synthesis and chromatin loading of MCM. Furthermore, we show that CDK2 phosphorylates SETD3 at Serine-21 during the G1/S phase, which is required for DNA replication and cell cycle progression. These findings demonstrate a novel mechanism by which SETD3 methylates MCM to regulate replication initiation.
Collapse
Affiliation(s)
- Hongguo Duan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Emergency Center, Zhongnan Hospital of Wuhan University, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Shuang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Emergency Center, Zhongnan Hospital of Wuhan University, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Wen-Jie Shu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Emergency Center, Zhongnan Hospital of Wuhan University, RNA Institute, Wuhan University, Wuhan, 430072, China
| | - Yongjia Tong
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | | | - Guohong Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Emergency Center, Zhongnan Hospital of Wuhan University, RNA Institute, Wuhan University, Wuhan, 430072, China.
| | - Meng-Jie Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Emergency Center, Zhongnan Hospital of Wuhan University, RNA Institute, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
2
|
Wells JN, Edwardes LV, Leber V, Allyjaun S, Peach M, Tomkins J, Kefala-Stavridi A, Faull SV, Aramayo R, Pestana CM, Ranjha L, Speck C. Reconstitution of human DNA licensing and the structural and functional analysis of key intermediates. Nat Commun 2025; 16:478. [PMID: 39779677 PMCID: PMC11711466 DOI: 10.1038/s41467-024-55772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025] Open
Abstract
Human DNA licensing initiates replication fork assembly and DNA replication. This reaction promotes the loading of the hMCM2-7 complex on DNA, which represents the core of the replicative helicase that unwinds DNA during S-phase. Here, we report the reconstitution of human DNA licensing using purified proteins. We showed that the in vitro reaction is specific and results in the assembly of high-salt resistant hMCM2-7 double-hexamers. With ATPγS, an hORC1-5-hCDC6-hCDT1-hMCM2-7 (hOCCM) assembles independent of hORC6, but hORC6 enhances double-hexamer formation. We determined the hOCCM structure, which showed that hORC-hCDC6 recruits hMCM2-7 via five hMCM winged-helix domains. The structure highlights how hORC1 activates the hCDC6 ATPase and uncovered an unexpected role for hCDC6 ATPase in complex disassembly. We identified that hCDC6 binding to hORC1-5 stabilises hORC2-DNA interactions and supports hMCM3-dependent recruitment of hMCM2-7. Finally, the structure allowed us to locate cancer-associated mutations at the hCDC6-hMCM3 interface, which showed specific helicase loading defects.
Collapse
Affiliation(s)
- Jennifer N Wells
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Lucy V Edwardes
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Vera Leber
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Shenaz Allyjaun
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Matthew Peach
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Joshua Tomkins
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Antonia Kefala-Stavridi
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Sarah V Faull
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Ricardo Aramayo
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Carolina M Pestana
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Lepakshi Ranjha
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC Laboratory of Medical Sciences (LMS), London, UK
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
- MRC Laboratory of Medical Sciences (LMS), London, UK.
| |
Collapse
|
3
|
Wang L, Li P, Zeng P, Xie D, Gao M, Ma L, Sohail A, Zeng F. Dosage suppressors of gpn2ts mutants and functional insights into the role of Gpn2 in budding yeast. PLoS One 2024; 19:e0313597. [PMID: 39642114 PMCID: PMC11623451 DOI: 10.1371/journal.pone.0313597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/28/2024] [Indexed: 12/08/2024] Open
Abstract
Gpn2 is a highly conserved protein essential for the assembly of RNA polymerase II (RNAPII) in eukaryotic cells. Mutations in Gpn2, specifically Phe105Tyr and Leu164Pro, confer temperature sensitivity and significantly impair RNAPII assembly. Despite its crucial role, the complete range of Gpn2 functions remains to be elucidated. To further explore these functions, we conducted large-scale multicopy suppressor screening in budding yeast, aiming to identify genes whose overexpression could mitigate the growth defects of a temperature-sensitive gpn2 mutant (gpn2ts) at restrictive temperatures. We screened over 30,000 colonies harboring plasmids from a multicopy genetic library and identified 31 genes that rescued the growth defects of gpn2ts to various extents. Notably, we found that PAB1, CDC5, and RGS2 reduced the drug sensitivity of gpn2ts mutants. These findings lay a theoretical foundation for future studies on the function of Gpn2 in RNAPII assembly.
Collapse
Affiliation(s)
- Le Wang
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Pan Li
- College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Pei Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Debao Xie
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Mengdi Gao
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Lujie Ma
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Aamir Sohail
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
4
|
Reuter LM, Khadayate SP, Mossler A, Liebl K, Faull SV, Karimi MM, Speck C. MCM2-7 loading-dependent ORC release ensures genome-wide origin licensing. Nat Commun 2024; 15:7306. [PMID: 39181881 PMCID: PMC11344781 DOI: 10.1038/s41467-024-51538-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/09/2024] [Indexed: 08/27/2024] Open
Abstract
Origin recognition complex (ORC)-dependent loading of the replicative helicase MCM2-7 onto replication origins in G1-phase forms the basis of replication fork establishment in S-phase. However, how ORC and MCM2-7 facilitate genome-wide DNA licensing is not fully understood. Mapping the molecular footprints of budding yeast ORC and MCM2-7 genome-wide, we discovered that MCM2-7 loading is associated with ORC release from origins and redistribution to non-origin sites. Our bioinformatic analysis revealed that origins are compact units, where a single MCM2-7 double hexamer blocks repetitive loading through steric ORC binding site occlusion. Analyses of A-elements and an improved B2-element consensus motif uncovered that DNA shape, DNA flexibility, and the correct, face-to-face spacing of the two DNA elements are hallmarks of ORC-binding and efficient helicase loading sites. Thus, our work identified fundamental principles for MCM2-7 helicase loading that explain how origin licensing is realised across the genome.
Collapse
Affiliation(s)
- L Maximilian Reuter
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.
- Institute of Molecular Biology (IMB) gGmbH, Ackermannweg 4, Mainz, Germany.
| | | | - Audrey Mossler
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Korbinian Liebl
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL, USA
| | - Sarah V Faull
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mohammad M Karimi
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Christian Speck
- DNA Replication Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.
- MRC London Institute of Medical Sciences (LMS), London, United Kingdom.
| |
Collapse
|
5
|
Stillman B. Establishing a biochemical understanding of the initiation of chromosome replication in bacteria. Proc Natl Acad Sci U S A 2024; 121:e2400667121. [PMID: 38758693 PMCID: PMC11161774 DOI: 10.1073/pnas.2400667121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024] Open
Abstract
In the mid-1950s, Arthur Kornberg elucidated the enzymatic synthesis of DNA by DNA polymerase, for which he was recognized with the 1959 Nobel Prize in Physiology or Medicine. He then identified many of the proteins that cooperate with DNA polymerase to replicate duplex DNA of small bacteriophages. However, one major unanswered problem was understanding the mechanism and control of the initiation of chromosome replication in bacteria. In a seminal paper in 1981, Fuller, Kaguni, and Kornberg reported the development of a cell-free enzyme system that could replicate DNA that was dependent on the bacterial origin of DNA replication, oriC. This advance opened the door to a flurry of discoveries and important papers that elucidated the process and control of initiation of chromosome replication in bacteria.
Collapse
Affiliation(s)
- Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY11724
| |
Collapse
|
6
|
Geng Y, Liu C, Xu N, Shi X, Suen MC, Zhou B, Yan B, Wu C, Li H, Song Y, Chen X, Wang Z, Cai Q, Zhu G. The N-terminal region of Cdc6 specifically recognizes human DNA G-quadruplex. Int J Biol Macromol 2024; 260:129487. [PMID: 38237821 DOI: 10.1016/j.ijbiomac.2024.129487] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024]
Abstract
Guanine (G)-rich nucleic acid sequences can form diverse G-quadruplex structures located in functionally significant genome regions, exerting regulatory control over essential biological processes, including DNA replication in vivo. During the initiation of DNA replication, Cdc6 is recruited by the origin recognition complex (ORC) to target specific chromosomal DNA sequences. This study reveals that human Cdc6 interacts with G-quadruplex structure through a distinct region within the N-terminal intrinsically disordered region (IDR), encompassing residues 7-20. The binding region assumes a hook-type conformation, as elucidated by the NMR solution structure in complex with htel21T18. Significantly, mutagenesis and in vivo investigations confirm the highly specific nature of Cdc6's recognition of G-quadruplex. This research enhances our understanding of the fundamental mechanism governing the interaction between G-quadruplex and the N-terminal IDR region of Cdc6, shedding light on the intricate regulation of DNA replication processes.
Collapse
Affiliation(s)
- Yanyan Geng
- Clinical Research Institute of the First Affiliated Hospital of Xiamen University, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Changdong Liu
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Naining Xu
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Xiao Shi
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Monica Ching Suen
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Bo Zhou
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Bing Yan
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Caiming Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hui Li
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuanjian Song
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xueqin Chen
- Clinical Research Institute of the First Affiliated Hospital of Xiamen University, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Qixu Cai
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China.
| | - Guang Zhu
- Institute for Advanced Study and State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
7
|
Zhang A, Friedman LJ, Gelles J, Bell SP. Changing protein-DNA interactions promote ORC binding site exchange during replication origin licensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545300. [PMID: 37398123 PMCID: PMC10312730 DOI: 10.1101/2023.06.16.545300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
During origin licensing, the eukaryotic replicative helicase Mcm2-7 forms head-to-head double hexamers to prime origins for bidirectional replication. Recent single-molecule and structural studies revealed that one molecule of the helicase loader ORC can sequentially load two Mcm2-7 hexamers to ensure proper head-to-head helicase alignment. To perform this task, ORC must release from its initial high-affinity DNA binding site and "flip" to bind a weaker, inverted DNA site. However, the mechanism of this binding-site switch remains unclear. In this study, we used single-molecule Förster resonance energy transfer (sm-FRET) to study the changing interactions between DNA and ORC or Mcm2-7. We found that the loss of DNA bending that occurs during DNA deposition into the Mcm2-7 central channel increases the rate of ORC dissociation from DNA. Further studies revealed temporally-controlled DNA sliding of helicase-loading intermediates, and that the first sliding complex includes ORC, Mcm2-7, and Cdt1. We demonstrate that sequential events of DNA unbending, Cdc6 release, and sliding lead to a stepwise decrease in ORC stability on DNA, facilitating ORC dissociation from its strong binding site during site switching. In addition, the controlled sliding we observed provides insight into how ORC accesses secondary DNA binding sites at different locations relative to the initial binding site. Our study highlights the importance of dynamic protein-DNA interactions in the loading of two oppositely-oriented Mcm2-7 helicases to ensure bidirectional DNA replication. Significance Statement Bidirectional DNA replication, in which two replication forks travel in opposite directions from each origin of replication, is required for complete genome duplication. To prepare for this event, two copies of the Mcm2-7 replicative helicase are loaded at each origin in opposite orientations. Using single-molecule assays, we studied the sequence of changing protein-DNA interactions involved in this process. These stepwise changes gradually reduce the DNA-binding strength of ORC, the primary DNA binding protein involved in this event. This reduced affinity promotes ORC dissociation and rebinding in the opposite orientation on the DNA, facilitating the sequential assembly of two Mcm2-7 molecules in opposite orientations. Our findings identify a coordinated series of events that drive proper DNA replication initiation.
Collapse
Affiliation(s)
- Annie Zhang
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Larry J. Friedman
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Jeff Gelles
- Department of Biochemistry, Brandeis University, Waltham, MA 02454, USA
| | - Stephen P Bell
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Hu Y, Stillman B. Origins of DNA replication in eukaryotes. Mol Cell 2023; 83:352-372. [PMID: 36640769 PMCID: PMC9898300 DOI: 10.1016/j.molcel.2022.12.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023]
Abstract
Errors occurring during DNA replication can result in inaccurate replication, incomplete replication, or re-replication, resulting in genome instability that can lead to diseases such as cancer or disorders such as autism. A great deal of progress has been made toward understanding the entire process of DNA replication in eukaryotes, including the mechanism of initiation and its control. This review focuses on the current understanding of how the origin recognition complex (ORC) contributes to determining the location of replication initiation in the multiple chromosomes within eukaryotic cells, as well as methods for mapping the location and temporal patterning of DNA replication. Origin specification and configuration vary substantially between eukaryotic species and in some cases co-evolved with gene-silencing mechanisms. We discuss the possibility that centromeres and origins of DNA replication were originally derived from a common element and later separated during evolution.
Collapse
Affiliation(s)
- Yixin Hu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA; Program in Molecular and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
9
|
Willemsen M, Staels F, Gerbaux M, Neumann J, Schrijvers R, Meyts I, Humblet-Baron S, Liston A. DNA replication-associated inborn errors of immunity. J Allergy Clin Immunol 2023; 151:345-360. [PMID: 36395985 DOI: 10.1016/j.jaci.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Inborn errors of immunity are a heterogeneous group of monogenic immunologic disorders caused by mutations in genes with critical roles in the development, maintenance, or function of the immune system. The genetic basis is frequently a mutation in a gene with restricted expression and/or function in immune cells, leading to an immune disorder. Several classes of inborn errors of immunity, however, result from mutation in genes that are ubiquitously expressed. Despite the genes participating in cellular processes conserved between cell types, immune cells are disproportionally affected, leading to inborn errors of immunity. Mutations in DNA replication, DNA repair, or DNA damage response factors can result in monogenic human disease, some of which are classified as inborn errors of immunity. Genetic defects in the DNA repair machinery are a well-known cause of T-B-NK+ severe combined immunodeficiency. An emerging class of inborn errors of immunity is those caused by mutations in DNA replication factors. Considerable heterogeneity exists within the DNA replication-associated inborn errors of immunity, with diverse immunologic defects and clinical manifestations observed. These differences are suggestive for differential sensitivity of certain leukocyte subsets to deficiencies in specific DNA replication factors. Here, we provide an overview of DNA replication-associated inborn errors of immunity and discuss the emerging mechanistic insights that can explain the observed immunologic heterogeneity.
Collapse
Affiliation(s)
- Mathijs Willemsen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium.
| | - Frederik Staels
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Margaux Gerbaux
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; Pediatric Department, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Julika Neumann
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Department of Microbiology, Immunology and Transplantation, Laboratory for Inborn Errors of Immunity, KU Leuven, Leuven, Belgium; Department of Pediatrics, Division of Primary Immunodeficiencies, University Hospitals Leuven, Leuven, Belgium; ERN-RITA Core Center Member, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium.
| | - Adrian Liston
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium; VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium; Immunology Program, The Babraham Institute, Babraham Research Campus, Cambridge.
| |
Collapse
|
10
|
The CMG helicase and cancer: a tumor "engine" and weakness with missing mutations. Oncogene 2023; 42:473-490. [PMID: 36522488 PMCID: PMC9948756 DOI: 10.1038/s41388-022-02572-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
The replicative Cdc45-MCM-GINS (CMG) helicase is a large protein complex that functions in the DNA melting and unwinding steps as a component of replisomes during DNA replication in mammalian cells. Although the CMG performs this important role in cell growth, the CMG is not a simple bystander in cell cycle events. Components of the CMG, specifically the MCM precursors, are also involved in maintaining genomic stability by regulating DNA replication fork speeds, facilitating recovery from replicative stresses, and preventing consequential DNA damage. Given these important functions, MCM/CMG complexes are highly regulated by growth factors such as TGF-ß1 and by signaling factors such as Myc, Cyclin E, and the retinoblastoma protein. Mismanagement of MCM/CMG complexes when these signaling mediators are deregulated, and in the absence of the tumor suppressor protein p53, leads to increased genomic instability and is a contributor to tumorigenic transformation and tumor heterogeneity. The goal of this review is to provide insight into the mechanisms and dynamics by which the CMG is regulated during its assembly and activation in mammalian genomes, and how errors in CMG regulation due to oncogenic changes promote tumorigenesis. Finally, and most importantly, we highlight the emerging understanding of the CMG helicase as an exploitable vulnerability and novel target for therapeutic intervention in cancer.
Collapse
|
11
|
Quan Y, Zhang QY, Zhou AL, Wang Y, Cai J, Gao YQ, Zhou H. Site-specific MCM sumoylation prevents genome rearrangements by controlling origin-bound MCM. PLoS Genet 2022; 18:e1010275. [PMID: 35696436 PMCID: PMC9232163 DOI: 10.1371/journal.pgen.1010275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/24/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Timely completion of eukaryotic genome duplication requires coordinated DNA replication initiation at multiple origins. Replication begins with the loading of the Mini-Chromosome Maintenance (MCM) complex, proceeds by the activation of the Cdc45-MCM-GINS (CMG) helicase, and ends with CMG removal after chromosomes are fully replicated. Post-translational modifications on the MCM and associated factors ensure an orderly transit of these steps. Although the mechanisms of CMG activation and removal are partially understood, regulated MCM loading is not, leaving an incomplete understanding of how DNA replication begins. Here we describe a site-specific modification of Mcm3 by the Small Ubiquitin-like MOdifier (SUMO). Mutations that prevent this modification reduce the MCM loaded at replication origins and lower CMG levels, resulting in impaired cell growth, delayed chromosomal replication, and the accumulation of gross chromosomal rearrangements (GCRs). These findings demonstrate the existence of a SUMO-dependent regulation of origin-bound MCM and show that this pathway is needed to prevent genome rearrangements. Faithful replication of the genome is essential for the survival and health of all living organisms. The eukaryotic genome presents a unique and difficult challenge: its enormous size demands the coordinated action of numerous DNA replication origins to ensure timely completion of genome duplication. Although the mechanisms that control the activation and removal of DNA replisome are partially understood, whether and how cells regulate the loading of the Mini-Chromosome Maintenance (MCM) complex, the precursor of the DNA replisome, at replication origins are not. Because mutations to MCM-loading factors and enzymes that catalyze reversible protein sumoylation cause substantial gross chromosomal rearrangements (GCRs) that characterize the cancer genome, understanding regulated MCM loading is one of the most pressing questions in the field. Here, we identified a site-specific SUMO modification of MCM and found that mutation disabling this modification causes severe growth defect and impaired DNA replication. These defects are attributable to reduced MCM at DNA replication origins, resulting in a lower DNA replisome level and a dramatic accumulation of GCRs. Thus, these findings identify a hitherto unknown regulatory mechanism: Site-specific MCM sumoylation regulates origin-bound MCM, and this prevents genome rearrangements.
Collapse
Affiliation(s)
- Yun Quan
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, United States of America
| | - Qian-yi Zhang
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, United States of America
| | - Ann L. Zhou
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, United States of America
| | - Yuhao Wang
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, United States of America
| | - Jiaxi Cai
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, United States of America
| | - Yong-qi Gao
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, United States of America
| | - Huilin Zhou
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, United States of America
- Moores Cancer Center, School of Medicine, University of California at San Diego, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
12
|
Symbiosis with Dinoflagellates Alters Cnidarian Cell-Cycle Gene Expression. Cell Microbiol 2022. [DOI: 10.1155/2022/3330160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the cnidarian-dinoflagellate symbiosis, hosts show altered expression of genes involved in growth and proliferation when in the symbiotic state, but little is known about the molecular mechanisms that underlie the host’s altered growth rate. Using tissue-specific transcriptomics, we determined how symbiosis affects expression of cell cycle-associated genes, in the model symbiotic cnidarian Exaiptasia diaphana (Aiptasia). The presence of symbionts within the gastrodermis elicited cell-cycle arrest in the G1 phase in a larger proportion of host cells compared with the aposymbiotic gastrodermis. The symbiotic gastrodermis also showed a reduction in the amount of cells synthesizing their DNA and progressing through mitosis when compared with the aposymbiotic gastrodermis. Host apoptotic inhibitors (Mdm2) were elevated, while host apoptotic sensitizers (c-Myc) were depressed, in the symbiotic gastrodermis when compared with the aposymbiotic gastrodermis and epidermis of symbiotic anemones, respectively. This indicates that the presence of symbionts negatively regulates host apoptosis, possibly contributing to their persistence within the host. Transcripts (ATM/ATR) associated with DNA damage were also downregulated in symbiotic gastrodermal tissues. In epidermal cells, a single gene (Mob1) required for mitotic completion was upregulated in symbiotic compared with aposymbiotic anemones, suggesting that the presence of symbionts in the gastrodermis stimulates host cell division in the epidermis. To further corroborate this hypothesis, we performed microscopic analysis using an S-phase indicator (EdU), allowing us to evaluate cell cycling in host cells. Our results confirmed that there were significantly more proliferating host cells in both the gastrodermis and epidermis in the symbiotic state compared with the aposymbiotic state. Furthermore, when comparing between tissue layers in the presence of symbionts, the epidermis had significantly more proliferating host cells than the symbiont-containing gastrodermis. These results contribute to our understanding of the influence of symbionts on the mechanisms of cnidarian cell proliferation and mechanisms associated with symbiont maintenance.
Collapse
|
13
|
Xie D, Zhao X, Ma L, Wang L, Li P, Cheng H, Li Z, Zeng P, Zhang J, Zeng F. Rba50 and Gpn2 recruit the second largest subunits for the assembly of RNA polymerase II and III. Int J Biol Macromol 2022; 204:565-575. [PMID: 35176321 DOI: 10.1016/j.ijbiomac.2022.02.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/18/2022]
Abstract
Although remarkable progress has been made toward understanding the structures of eukaryotic RNA polymerases, the pathways and factors that facilitate their assembly remain unresolved. Essential proteins Rba50 and Gpn2 are required for Rpb3 subcomplex assembly, but whether they participate in subsequent assembly steps is unknown. Herein, we performed comprehensive genetic screens to explore Rba50 function. We identified two unique extragenic rba50-3-suppressing mutations that map to genes encoding the Rba50-interacting protein Gpn2, and Rpb2, the second largest subunit of RNAPII. Both gpn2-R347S and rpb2-V1171G variants bypass Rpb1 cytoplasmic arrest and temperature-sensitive growth defects of the rba50-3 mutant. GPN2 and RPB2 were also identified as novel multicopy suppressors of the rba50-3 mutant. Rapid depletion of Rba50 affected Rpb3-Rpb2 association during RNAPII assembly. Importantly, we demonstrated that Gpn2 facilitates the association of Rba50 and Rpb2. Our results imply that Rba50-Gpn2 interaction is essential for Rpb2 recruitment during RNAPII assembly following Rpb3 subcomplex assembly. Furthermore, the Rba50-Gpn2 complex appears to play a similar role in the assembly of RNAPIII. We therefore propose a model in which Rba50 interacts with Gpn2 and thereby promotes loading of the second largest subunit of RNAP II and III onto the previously assembled subcomplex.
Collapse
Affiliation(s)
- Debao Xie
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Xiangdong Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Lujie Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Le Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Pan Li
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Hongqian Cheng
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Zhaoying Li
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Pei Zeng
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jing Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Fanli Zeng
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, Hebei 071001, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
14
|
The structure of ORC-Cdc6 on an origin DNA reveals the mechanism of ORC activation by the replication initiator Cdc6. Nat Commun 2021; 12:3883. [PMID: 34162887 PMCID: PMC8222357 DOI: 10.1038/s41467-021-24199-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 06/07/2021] [Indexed: 01/31/2023] Open
Abstract
The Origin Recognition Complex (ORC) binds to sites in chromosomes to specify the location of origins of DNA replication. The S. cerevisiae ORC binds to specific DNA sequences throughout the cell cycle but becomes active only when it binds to the replication initiator Cdc6. It has been unclear at the molecular level how Cdc6 activates ORC, converting it to an active recruiter of the Mcm2-7 hexamer, the core of the replicative helicase. Here we report the cryo-EM structure at 3.3 Å resolution of the yeast ORC–Cdc6 bound to an 85-bp ARS1 origin DNA. The structure reveals that Cdc6 contributes to origin DNA recognition via its winged helix domain (WHD) and its initiator-specific motif. Cdc6 binding rearranges a short α-helix in the Orc1 AAA+ domain and the Orc2 WHD, leading to the activation of the Cdc6 ATPase and the formation of the three sites for the recruitment of Mcm2-7, none of which are present in ORC alone. The results illuminate the molecular mechanism of a critical biochemical step in the licensing of eukaryotic replication origins. Eukaryotic DNA replication is mediated by many proteins which are tightly regulated for an efficient firing of replication at each cell cycle. Here the authors report a cryo-EM structure of the yeast ORC–Cdc6 bound to an 85-bp ARS1 origin DNA revealing additional insights into how Cdc6 contributes to origin DNA recognition.
Collapse
|
15
|
de La Roche Saint-André C, Géli V. Set1-dependent H3K4 methylation becomes critical for limiting DNA damage in response to changes in S-phase dynamics in Saccharomyces cerevisiae. DNA Repair (Amst) 2021; 105:103159. [PMID: 34174709 DOI: 10.1016/j.dnarep.2021.103159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 11/29/2022]
Abstract
DNA replication is a highly regulated process that occurs in the context of chromatin structure and is sensitive to several histone post-translational modifications. In Saccharomyces cerevisiae, the histone methylase Set1 is responsible for the transcription-dependent deposition of H3K4 methylation (H3K4me) throughout the genome. Here we show that a combination of a hypomorphic replication mutation (orc5-1) with the absence of Set1 (set1Δ) compromises the progression through S-phase, and this is associated with a large increase in DNA damage. The ensuing DNA damage checkpoint activation, in addition to that of the spindle assembly checkpoint, restricts the growth of orc5-1 set1Δ. The opposite effects of the lack of RNase H activity and the reduction of histone levels on orc5-1 set1Δ viability are in agreement with their expected effects on replication fork progression. We propose that the role of H3K4 methylation during DNA replication becomes critical when the replication forks acceleration due to decreased origin firing in the orc5-1 background increases the risk for transcription replication conflicts. Furthermore, we show that an increase of reactive oxygen species levels, likely a consequence of the elevated DNA damage, is partly responsible for the lethality in orc5-1 set1Δ.
Collapse
Affiliation(s)
- Christophe de La Roche Saint-André
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, Marseille, France.
| | - Vincent Géli
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Aix Marseille University, Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
16
|
Faustova I, Loog M. SLiMs in intrinsically disordered protein regions regulate the cell cycle dynamics of ORC1-CDC6 interaction and pre-replicative complex assembly. Mol Cell 2021; 81:1861-1862. [PMID: 33961774 DOI: 10.1016/j.molcel.2021.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hossain et al. (2021) show that human origin recognition complex subunit ORC1 and licensing factor CDC6 interact when the pre-replicative complex forms in G1. Short linear motifs (SLiMs) in intrinsically disordered regions (IDRs) mediate this interaction and its regulation by CDKs.
Collapse
Affiliation(s)
- Ilona Faustova
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Mart Loog
- Institute of Technology, University of Tartu, Tartu 50411, Estonia.
| |
Collapse
|
17
|
Replication initiation: Implications in genome integrity. DNA Repair (Amst) 2021; 103:103131. [PMID: 33992866 DOI: 10.1016/j.dnarep.2021.103131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 02/01/2023]
Abstract
In every cell cycle, billions of nucleotides need to be duplicated within hours, with extraordinary precision and accuracy. The molecular mechanism by which cells regulate the replication event is very complicated, and the entire process begins way before the onset of S phase. During the G1 phase of the cell cycle, cells prepare by assembling essential replication factors to establish the pre-replicative complex at origins, sites that dictate where replication would initiate during S phase. During S phase, the replication process is tightly coupled with the DNA repair system to ensure the fidelity of replication. Defects in replication and any error must be recognized by DNA damage response and checkpoint signaling pathways in order to halt the cell cycle before cells are allowed to divide. The coordination of these processes throughout the cell cycle is therefore critical to achieve genomic integrity and prevent diseases. In this review, we focus on the current understanding of how the replication initiation events are regulated to achieve genome stability.
Collapse
|
18
|
Ikui AE, Ueki N, Pecani K, Cross FR. Control of pre-replicative complex during the division cycle in Chlamydomonas reinhardtii. PLoS Genet 2021; 17:e1009471. [PMID: 33909603 PMCID: PMC8081180 DOI: 10.1371/journal.pgen.1009471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 03/07/2021] [Indexed: 12/31/2022] Open
Abstract
DNA replication is fundamental to all living organisms. In yeast and animals, it is triggered by an assembly of pre-replicative complex including ORC, CDC6 and MCMs. Cyclin Dependent Kinase (CDK) regulates both assembly and firing of the pre-replicative complex. We tested temperature-sensitive mutants blocking Chlamydomonas DNA replication. The mutants were partially or completely defective in DNA replication and did not produce mitotic spindles. After a long G1, wild type Chlamydomonas cells enter a division phase when it undergoes multiple rapid synchronous divisions ('multiple fission'). Using tagged transgenic strains, we found that MCM4 and MCM6 were localized to the nucleus throughout the entire multiple fission division cycle, except for transient cytoplasmic localization during each mitosis. Chlamydomonas CDC6 was transiently localized in nucleus in early division cycles. CDC6 protein levels were very low, probably due to proteasomal degradation. CDC6 levels were severely reduced by inactivation of CDKA1 (CDK1 ortholog) but not the plant-specific CDKB1. Proteasome inhibition did not detectably increase CDC6 levels in the cdka1 mutant, suggesting that CDKA1 might upregulate CDC6 at the transcriptional level. All of the DNA replication proteins tested were essentially undetectable until late G1. They accumulated specifically during multiple fission and then were degraded as cells completed their terminal divisions. We speculate that loading of origins with the MCM helicase may not occur until the end of the long G1, unlike in the budding yeast system. We also developed a simple assay for salt-resistant chromatin binding of MCM4, and found that tight MCM4 loading was dependent on ORC1, CDC6 and MCM6, but not on RNR1 or CDKB1. These results provide a microbial framework for approaching replication control in the plant kingdom.
Collapse
Affiliation(s)
- Amy E. Ikui
- Department of Biology, Brooklyn College, The City University of New York, New York City, New York, United States of America
- * E-mail: (AEI); (FRC)
| | - Noriko Ueki
- Department of Biology, Brooklyn College, The City University of New York, New York City, New York, United States of America
| | - Kresti Pecani
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York City, New York, United States of America
| | - Frederick R. Cross
- Laboratory of Cell Cycle Genetics, The Rockefeller University, New York City, New York, United States of America
- * E-mail: (AEI); (FRC)
| |
Collapse
|
19
|
Amin A, Wu R, Cheung MH, Scott JF, Wang Z, Zhou Z, Liu C, Zhu G, Wong CKC, Yu Z, Liang C. An Essential and Cell-Cycle-Dependent ORC Dimerization Cycle Regulates Eukaryotic Chromosomal DNA Replication. Cell Rep 2021; 30:3323-3338.e6. [PMID: 32160540 DOI: 10.1016/j.celrep.2020.02.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 10/04/2019] [Accepted: 02/10/2020] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic DNA replication licensing is a prerequisite for, and plays a role in, regulating genome duplication that occurs exactly once per cell cycle. ORC (origin recognition complex) binds to and marks replication origins throughout the cell cycle and loads other replication-initiation proteins onto replication origins to form pre-replicative complexes (pre-RCs), completing replication licensing. However, how an asymmetric single-heterohexameric ORC structure loads the symmetric MCM (minichromosome maintenance) double hexamers is controversial, and importantly, it remains unknown when and how ORC proteins associate with the newly replicated origins to protect them from invasion by histones. Here, we report an essential and cell-cycle-dependent ORC "dimerization cycle" that plays three fundamental roles in the regulation of DNA replication: providing a symmetric platform to load the symmetric pre-RCs, marking and protecting the nascent sister replication origins for the next licensing, and playing a crucial role to prevent origin re-licensing within the same cell cycle.
Collapse
Affiliation(s)
- Aftab Amin
- School of Chinese Medicine and Department of Biology, Hong Kong Baptist University, Hong Kong, China; Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Rentian Wu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Man Hei Cheung
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - John F Scott
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Ziyi Wang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zijing Zhou
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Changdong Liu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Guang Zhu
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Chris Kong-Chu Wong
- School of Chinese Medicine and Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zhiling Yu
- School of Chinese Medicine and Department of Biology, Hong Kong Baptist University, Hong Kong, China.
| | - Chun Liang
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China; The First Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, China; EnKang Pharmaceuticals Limited, Guangzhou, China.
| |
Collapse
|
20
|
Multiple, short protein binding motifs in ORC1 and CDC6 control the initiation of DNA replication. Mol Cell 2021; 81:1951-1969.e6. [PMID: 33761311 DOI: 10.1016/j.molcel.2021.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/18/2021] [Accepted: 02/27/2021] [Indexed: 12/18/2022]
Abstract
The initiation of DNA replication involves cell cycle-dependent assembly and disassembly of protein complexes, including the origin recognition complex (ORC) and CDC6 AAA+ ATPases. We report that multiple short linear protein motifs (SLiMs) within intrinsically disordered regions (IDRs) in ORC1 and CDC6 mediate cyclin-CDK-dependent and independent protein-protein interactions, conditional on the cell cycle phase. A domain within the ORC1 IDR is required for interaction between the ORC1 and CDC6 AAA+ domains in G1, whereas the same domain prevents CDC6-ORC1 interaction during mitosis. Then, during late G1, this domain facilitates ORC1 destruction by a SKP2-cyclin A-CDK2-dependent mechanism. During G1, the CDC6 Cy motif cooperates with cyclin E-CDK2 to promote ORC1-CDC6 interactions. The CDC6 IDR regulates self-interaction by ORC1, thereby controlling ORC1 protein levels. Protein phosphatase 1 binds directly to a SLiM in the ORC1 IDR, causing ORC1 de-phosphorylation upon mitotic exit, increasing ORC1 protein, and promoting pre-RC assembly.
Collapse
|
21
|
High-Copy Yeast Library Construction and High-Copy Rescue Genetic Screen in Saccharomyces cerevisiae. Methods Mol Biol 2021; 2196:77-83. [PMID: 32889714 DOI: 10.1007/978-1-0716-0868-5_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High-copy rescue genetic screening is a powerful strategy for the identification of suppression genetic interactions in the model eukaryotic organism Saccharomyces cerevisiae (budding yeast). The strain carrying the mutant allele of interest is transformed with a genomic library cloned in a high-copy plasmid. Each clone carries a genomic fragment insertion of around 10 kb, typically containing one to three complete genes under their own promoters. The high-copy vector favors the accumulation of high levels of the corresponding protein, aimed at suppressing the mutant phenotype. Typically, high-copy genetic screens select for viable clones under conditions restrictive or lethal for the query mutant strain. Here, we describe in detail the procedure to generate a high-copy genomic library and a protocol for rescue genetic screening and identification of the suppressor clones.
Collapse
|
22
|
Xu N, You Y, Liu C, Balasov M, Lun LT, Geng Y, Fung CP, Miao H, Tian H, Choy TT, Shi X, Fan Z, Zhou B, Akhmetova K, Din RU, Yang H, Hao Q, Qian P, Chesnokov I, Zhu G. Structural basis of DNA replication origin recognition by human Orc6 protein binding with DNA. Nucleic Acids Res 2020; 48:11146-11161. [PMID: 32986843 PMCID: PMC7641730 DOI: 10.1093/nar/gkaa751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 08/18/2020] [Accepted: 09/19/2020] [Indexed: 01/08/2023] Open
Abstract
The six-subunit origin recognition complex (ORC), a DNA replication initiator, defines the localization of the origins of replication in eukaryotes. The Orc6 subunit is the smallest and the least conserved among ORC subunits. It is required for DNA replication and essential for viability in all species. Orc6 in metazoans carries a structural homology with transcription factor TFIIB and can bind DNA on its own. Here, we report a solution structure of the full-length human Orc6 (HsOrc6) alone and in a complex with DNA. We further showed that human Orc6 is composed of three independent domains: N-terminal, middle and C-terminal (HsOrc6-N, HsOrc6-M and HsOrc6-C). We also identified a distinct DNA-binding domain of human Orc6, named as HsOrc6-DBD. The detailed analysis of the structure revealed novel amino acid clusters important for the interaction with DNA. Alterations of these amino acids abolish DNA-binding ability of Orc6 and result in reduced levels of DNA replication. We propose that Orc6 is a DNA-binding subunit of human/metazoan ORC and may play roles in targeting, positioning and assembling the functional ORC at the origins.
Collapse
Affiliation(s)
- Naining Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
- Department of Oral and Maxillofacial Surgery, Peking University ShenzhenHospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, China
| | - Yingying You
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
- Department of Oncology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Changdong Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Maxim Balasov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Lee Tung Lun
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Yanyan Geng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Chun Po Fung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Haitao Miao
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Honglei Tian
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - To To Choy
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Xiao Shi
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Zhuming Fan
- School of Biomedical Sciences, University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, 00000, China
| | - Bo Zhou
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Katarina Akhmetova
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Rahman Ud Din
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Hongyu Yang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University, Shenzhen, 518036, China
| | - Quan Hao
- School of Biomedical Sciences, University of Hong Kong, 21 Sassoon Road, Hong Kong SAR, 00000, China
| | - Peiyuan Qian
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Igor Chesnokov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Guang Zhu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| |
Collapse
|
23
|
Xu H, Huang J, Hua S, Liang L, He X, Zhan M, Lu L, Chu J. Interactome analysis of gene expression profiles identifies CDC6 as a potential therapeutic target modified by miR-215-5p in hepatocellular carcinoma. Int J Med Sci 2020; 17:2926-2940. [PMID: 33173413 PMCID: PMC7646103 DOI: 10.7150/ijms.51145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/07/2020] [Indexed: 01/11/2023] Open
Abstract
Background: Illustrating the pathogenesis of hepatocellular carcinoma (HCC) pathogenesis as well as identifying specific biomarkers are of great significance. Methods: The original CEL files were obtain from Gene Expression Omnibus, then affymetrix package was used to preprocess the CEL files, the function of DEGs were investigated by multiple bioinformatics approach. Finally, typical HCC cell lines and tissue samples were using to validate the role of CDC6 in vitro. Bioinformatics software was used to predict potential microRNA of CDC6. Luciferase assay was used to verify the interactions between CDC6 and microRNA. Results: A total of 445 DEGs were identified in HCC tissues based on two GEO datasets. GSEA results showed that the significant enriched gene sets were only associated with cell cycle signaling pathway. In the co-expression analysis, there were 370 hub genes from the blue modules were screened. We integrated DEGs, hub genes, TCGA cohort and GSEA analyses to further obtain 10 upregulated genes for validation. These genes were overexpressed in HCC tissues and negatively associated with overall and disease-free survival in HCC patients and related to immune cell infiltration in HCC microenvironments. Finally, Cell Division Cycle 6 (CDC6) was highlighted as one of the most probable genes among the 10 candidates participating in cancer process. The expression of CDC6 either in public datasets and HCC tissues sample were commonly high than the non-cancerous counterpart. Furthermore, we recognized that miR-215-5p, could directly bind to the 3'UTR of CDC6. In addition, CDC6 promoted proliferation via regulation of G1 phase checkpoint and was negative regulated by miR-215-5p to involve in the proliferation of HCC. Conclusion: Our study suggested that CDC6 served as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Hongfa Xu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, 519000, China
| | - Jianwen Huang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, 519000, China
| | - Shengni Hua
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, 519000, China
| | - Linjun Liang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, 519000, China
| | - Xu He
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, 519000, China
| | - Meixiao Zhan
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, 519000, China
| | - Ligong Lu
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, 519000, China
| | - Jing Chu
- Department of Urology, Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, 519000, China
| |
Collapse
|
24
|
Wu R, Amin A, Wang Z, Huang Y, Man-Hei Cheung M, Yu Z, Yang W, Liang C. The interaction networks of the budding yeast and human DNA replication-initiation proteins. Cell Cycle 2019; 18:723-741. [PMID: 30890025 DOI: 10.1080/15384101.2019.1586509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
DNA replication is a stringently regulated cellular process. In proliferating cells, DNA replication-initiation proteins (RIPs) are sequentially loaded onto replication origins during the M-to-G1 transition to form the pre-replicative complex (pre-RC), a process known as replication licensing. Subsequently, additional RIPs are recruited to form the pre-initiation complex (pre-IC). RIPs and their regulators ensure that chromosomal DNA is replicated exactly once per cell cycle. Origin recognition complex (ORC) binds to, and marks replication origins throughout the cell cycle and recruits other RIPs including Noc3p, Ipi1-3p, Cdt1p, Cdc6p and Mcm2-7p to form the pre-RC. The detailed mechanisms and regulation of the pre-RC and its exact architecture still remain unclear. In this study, pairwise protein-protein interactions among 23 budding yeast and 16 human RIPs were systematically and comprehensively examined by yeast two-hybrid analysis. This study tested 470 pairs of yeast and 196 pairs of human RIPs, from which 113 and 96 positive interactions, respectively, were identified. While many of these interactions were previously reported, some were novel, including various ORC and MCM subunit interactions, ORC self-interactions, and the interactions of IPI3 and NOC3 with several pre-RC and pre-IC proteins. Ten of the novel interactions were further confirmed by co-immunoprecipitation assays. Furthermore, we identified the conserved interaction networks between the yeast and human RIPs. This study provides a foundation and framework for further understanding the architectures, interactions and functions of the yeast and human pre-RC and pre-IC.
Collapse
Affiliation(s)
- Rentian Wu
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China.,b Guangzhou HKUST Fok Ying Tung Research Institute , Guangzhou , China
| | - Aftab Amin
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China.,b Guangzhou HKUST Fok Ying Tung Research Institute , Guangzhou , China.,c School of Chinese Medicine , Hong Kong Baptist University , Guangzhou , China
| | - Ziyi Wang
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China
| | - Yining Huang
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China
| | - Marco Man-Hei Cheung
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China.,b Guangzhou HKUST Fok Ying Tung Research Institute , Guangzhou , China
| | - Zhiling Yu
- c School of Chinese Medicine , Hong Kong Baptist University , Guangzhou , China
| | - Wei Yang
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China.,d Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd , Hong Kong , China
| | - Chun Liang
- a Division of Life Science, Center for Cancer Research and State Key Lab for Molecular Neuroscience , Hong Kong University of Science and Technology , Hong Kong , China.,b Guangzhou HKUST Fok Ying Tung Research Institute , Guangzhou , China.,e ntelgen Limited , Hong Kong-Guangzhou-Foshan , China
| |
Collapse
|
25
|
Control of Eukaryotic DNA Replication Initiation-Mechanisms to Ensure Smooth Transitions. Genes (Basel) 2019; 10:genes10020099. [PMID: 30700044 PMCID: PMC6409694 DOI: 10.3390/genes10020099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 02/06/2023] Open
Abstract
DNA replication differs from most other processes in biology in that any error will irreversibly change the nature of the cellular progeny. DNA replication initiation, therefore, is exquisitely controlled. Deregulation of this control can result in over-replication characterized by repeated initiation events at the same replication origin. Over-replication induces DNA damage and causes genomic instability. The principal mechanism counteracting over-replication in eukaryotes is a division of replication initiation into two steps—licensing and firing—which are temporally separated and occur at distinct cell cycle phases. Here, we review this temporal replication control with a specific focus on mechanisms ensuring the faultless transition between licensing and firing phases.
Collapse
|
26
|
On KF, Jaremko M, Stillman B, Joshua-Tor L. A structural view of the initiators for chromosome replication. Curr Opin Struct Biol 2018; 53:131-139. [PMID: 30218786 DOI: 10.1016/j.sbi.2018.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/07/2018] [Indexed: 11/18/2022]
Affiliation(s)
- Kin Fan On
- W.M. Keck Structural Biology Laboratory, United States; Howard Hughes Medical Institute, United States; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Matt Jaremko
- W.M. Keck Structural Biology Laboratory, United States; Howard Hughes Medical Institute, United States; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States.
| | - Leemor Joshua-Tor
- W.M. Keck Structural Biology Laboratory, United States; Howard Hughes Medical Institute, United States; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States.
| |
Collapse
|
27
|
Lemmens B, Hegarat N, Akopyan K, Sala-Gaston J, Bartek J, Hochegger H, Lindqvist A. DNA Replication Determines Timing of Mitosis by Restricting CDK1 and PLK1 Activation. Mol Cell 2018; 71:117-128.e3. [PMID: 30008317 PMCID: PMC6039720 DOI: 10.1016/j.molcel.2018.05.026] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/27/2018] [Accepted: 05/21/2018] [Indexed: 12/26/2022]
Abstract
To maintain genome stability, cells need to replicate their DNA before dividing. Upon completion of bulk DNA synthesis, the mitotic kinases CDK1 and PLK1 become active and drive entry into mitosis. Here, we have tested the hypothesis that DNA replication determines the timing of mitotic kinase activation. Using an optimized double-degron system, together with kinase inhibitors to enforce tight inhibition of key proteins, we find that human cells unable to initiate DNA replication prematurely enter mitosis. Preventing DNA replication licensing and/or firing causes prompt activation of CDK1 and PLK1 in S phase. In the presence of DNA replication, inhibition of CHK1 and p38 leads to premature activation of mitotic kinases, which induces severe replication stress. Our results demonstrate that, rather than merely a cell cycle output, DNA replication is an integral signaling component that restricts activation of mitotic kinases. DNA replication thus functions as a brake that determines cell cycle duration.
Collapse
Affiliation(s)
- Bennie Lemmens
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet and Science for Life Laboratory, Stockholm, Sweden
| | - Nadia Hegarat
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Karen Akopyan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Joan Sala-Gaston
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jiri Bartek
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet and Science for Life Laboratory, Stockholm, Sweden; Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Helfrid Hochegger
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK.
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
28
|
Gpn2 and Rba50 Directly Participate in the Assembly of the Rpb3 Subcomplex in the Biogenesis of RNA Polymerase II. Mol Cell Biol 2018; 38:MCB.00091-18. [PMID: 29661922 DOI: 10.1128/mcb.00091-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/08/2018] [Indexed: 01/12/2023] Open
Abstract
RNA polymerase II (RNAPII) is one of the central enzymes in cell growth and organizational development. It is a large macromolecular complex consisting of 12 subunits. Relative to the clear definition of RNAPII structure and biological function, the molecular mechanism of how RNAPII is assembled is poorly understood, and thus the key assembly factors acting for the assembly of RNAPII remain elusive. In this study, we identified two factors, Gpn2 and Rba50, that directly participate in the assembly of RNAPII. Gpn2 and Rba50 were demonstrated to interact with Rpb12 and Rpb3, respectively. An interaction between Gpn2 and Rba50 was also demonstrated. When Gpn2 and Rba50 are functionally defective, the assembly of the Rpb3 subcomplex is disrupted, leading to defects in the assembly of RNAPII. Based on these results, we conclude that Gpn2 and Rba50 directly participate in the assembly of the Rpb3 subcomplex and subsequently the biogenesis of RNAPII.
Collapse
|
29
|
Sanchez JC, Kwan EX, Pohl TJ, Amemiya HM, Raghuraman MK, Brewer BJ. Defective replication initiation results in locus specific chromosome breakage and a ribosomal RNA deficiency in yeast. PLoS Genet 2017; 13:e1007041. [PMID: 29036220 PMCID: PMC5658192 DOI: 10.1371/journal.pgen.1007041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 10/26/2017] [Accepted: 09/21/2017] [Indexed: 01/23/2023] Open
Abstract
A form of dwarfism known as Meier-Gorlin syndrome (MGS) is caused by recessive mutations in one of six different genes (ORC1, ORC4, ORC6, CDC6, CDT1, and MCM5). These genes encode components of the pre-replication complex, which assembles at origins of replication prior to S phase. Also, variants in two additional replication initiation genes have joined the list of causative mutations for MGS (Geminin and CDC45). The identity of the causative MGS genetic variants strongly suggests that some aspect of replication is amiss in MGS patients; however, little evidence has been obtained regarding what aspect of chromosome replication is faulty. Since the site of one of the missense mutations in the human ORC4 alleles is conserved between humans and yeast, we sought to determine in what way this single amino acid change affects the process of chromosome replication, by introducing the comparable mutation into yeast (orc4Y232C). We find that yeast cells with the orc4Y232C allele have a prolonged S-phase, due to compromised replication initiation at the ribosomal DNA (rDNA) locus located on chromosome XII. The inability to initiate replication at the rDNA locus results in chromosome breakage and a severely reduced rDNA copy number in the survivors, presumably helping to ensure complete replication of chromosome XII. Although reducing rDNA copy number may help ensure complete chromosome replication, orc4Y232C cells struggle to meet the high demand for ribosomal RNA synthesis. This finding provides additional evidence linking two essential cellular pathways-DNA replication and ribosome biogenesis.
Collapse
Affiliation(s)
- Joseph C. Sanchez
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States of America
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Elizabeth X. Kwan
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Thomas J. Pohl
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States of America
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Haley M. Amemiya
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - M. K. Raghuraman
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
| | - Bonita J. Brewer
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, United States of America
- Department of Genome Sciences, University of Washington, Seattle, WA, United States of America
- * E-mail:
| |
Collapse
|
30
|
Seoane AI, Morgan DO. Firing of Replication Origins Frees Dbf4-Cdc7 to Target Eco1 for Destruction. Curr Biol 2017; 27:2849-2855.e2. [PMID: 28918948 DOI: 10.1016/j.cub.2017.07.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/12/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022]
Abstract
Robust progression through the cell-division cycle depends on the precisely ordered phosphorylation of hundreds of different proteins by cyclin-dependent kinases (CDKs) and other kinases. The order of CDK substrate phosphorylation depends on rising CDK activity, coupled with variations in substrate affinities for different CDK-cyclin complexes and the opposing phosphatases [1-4]. Here, we address the ordering of substrate phosphorylation by a second major cell-cycle kinase, Cdc7-Dbf4 or Dbf4-dependent kinase (DDK). The primary function of DDK is to initiate DNA replication by phosphorylating the Mcm2-7 replicative helicase [5-7]. DDK also phosphorylates the cohesin acetyltransferase Eco1 [8]. Sequential phosphorylations of Eco1 by CDK, DDK, and Mck1 create a phosphodegron that is recognized by the ubiquitin ligase SCFCdc4. DDK, despite being activated in early S phase, does not phosphorylate Eco1 to trigger its degradation until late S phase [8]. DDK associates with docking sites on loaded Mcm double hexamers at unfired replication origins [9, 10]. We hypothesized that these docking interactions sequester limiting amounts of DDK, delaying Eco1 phosphorylation by DDK until replication is complete. Consistent with this hypothesis, we find that overproduction of DDK leads to premature Eco1 degradation. Eco1 degradation also occurs prematurely if Mcm complex loading at origins is prevented by depletion of Cdc6, and Eco1 is stabilized if loaded Mcm complexes are prevented from firing by a Cdc45 mutant. We propose that the timing of Eco1 phosphorylation, and potentially that of other DDK substrates, is determined in part by sequestration of DDK at unfired replication origins during S phase.
Collapse
Affiliation(s)
- Agustin I Seoane
- Departments of Physiology and Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David O Morgan
- Departments of Physiology and Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
31
|
Tocilj A, On KF, Yuan Z, Sun J, Elkayam E, Li H, Stillman B, Joshua-Tor L. Structure of the active form of human origin recognition complex and its ATPase motor module. eLife 2017; 6. [PMID: 28112645 PMCID: PMC5291709 DOI: 10.7554/elife.20818] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/15/2017] [Indexed: 12/21/2022] Open
Abstract
Binding of the Origin Recognition Complex (ORC) to origins of replication marks the first step in the initiation of replication of the genome in all eukaryotic cells. Here, we report the structure of the active form of human ORC determined by X-ray crystallography and cryo-electron microscopy. The complex is composed of an ORC1/4/5 motor module lobe in an organization reminiscent of the DNA polymerase clamp loader complexes. A second lobe contains the ORC2/3 subunits. The complex is organized as a double-layered shallow corkscrew, with the AAA+ and AAA+-like domains forming one layer, and the winged-helix domains (WHDs) forming a top layer. CDC6 fits easily between ORC1 and ORC2, completing the ring and the DNA-binding channel, forming an additional ATP hydrolysis site. Analysis of the ATPase activity of the complex provides a basis for understanding ORC activity as well as molecular defects observed in Meier-Gorlin Syndrome mutations. DOI:http://dx.doi.org/10.7554/eLife.20818.001
Collapse
Affiliation(s)
- Ante Tocilj
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor, New York, United States.,Howard Hughes Medical Institute, Cold Spring Harbor, New York, United States.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States
| | - Kin Fan On
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor, New York, United States.,Howard Hughes Medical Institute, Cold Spring Harbor, New York, United States.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States
| | - Zuanning Yuan
- Biology Department, Brookhaven National Laboratory, New York, United States.,Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| | - Jingchuan Sun
- Biology Department, Brookhaven National Laboratory, New York, United States
| | - Elad Elkayam
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor, New York, United States.,Howard Hughes Medical Institute, Cold Spring Harbor, New York, United States.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States
| | - Huilin Li
- Biology Department, Brookhaven National Laboratory, New York, United States.,Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, United States
| | - Bruce Stillman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States
| | - Leemor Joshua-Tor
- W. M. Keck Structural Biology Laboratory, Cold Spring Harbor, New York, United States.,Howard Hughes Medical Institute, Cold Spring Harbor, New York, United States.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States
| |
Collapse
|
32
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
33
|
Sun J, Yuan Z, Bai L, Li H. Cryo-EM of dynamic protein complexes in eukaryotic DNA replication. Protein Sci 2017; 26:40-51. [PMID: 27589669 PMCID: PMC5192969 DOI: 10.1002/pro.3033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/27/2016] [Accepted: 08/29/2016] [Indexed: 12/21/2022]
Abstract
DNA replication in Eukaryotes is a highly dynamic process that involves several dozens of proteins. Some of these proteins form stable complexes that are amenable to high-resolution structure determination by cryo-EM, thanks to the recent advent of the direct electron detector and powerful image analysis algorithm. But many of these proteins associate only transiently and flexibly, precluding traditional biochemical purification. We found that direct mixing of the component proteins followed by 2D and 3D image sorting can capture some very weakly interacting complexes. Even at 2D average level and at low resolution, EM images of these flexible complexes can provide important biological insights. It is often necessary to positively identify the feature-of-interest in a low resolution EM structure. We found that systematically fusing or inserting maltose binding protein (MBP) to selected proteins is highly effective in these situations. In this chapter, we describe the EM studies of several protein complexes involved in the eukaryotic DNA replication over the past decade or so. We suggest that some of the approaches used in these studies may be applicable to structural analysis of other biological systems.
Collapse
Affiliation(s)
- Jingchuan Sun
- Cryo‐EM Structural Biology LaboratoryVan Andel Research InstituteGrand RapidsMichigan49503
| | - Zuanning Yuan
- Cryo‐EM Structural Biology LaboratoryVan Andel Research InstituteGrand RapidsMichigan49503
- The Biochemistry and Structural Biology ProgramStony Brook UniversityStony BrookNew York11794
| | - Lin Bai
- Cryo‐EM Structural Biology LaboratoryVan Andel Research InstituteGrand RapidsMichigan49503
| | - Huilin Li
- Cryo‐EM Structural Biology LaboratoryVan Andel Research InstituteGrand RapidsMichigan49503
| |
Collapse
|
34
|
Bai L, Yuan Z, Sun J, Georgescu R, O'Donnell ME, Li H. Architecture of the Saccharomyces cerevisiae Replisome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:207-228. [PMID: 29357060 DOI: 10.1007/978-981-10-6955-0_10] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eukaryotic replication proteins are highly conserved, and thus study of Saccharomyces cerevisiae replication can inform about this central process in higher eukaryotes including humans. The S. cerevisiae replisome is a large and dynamic assembly comprised of ~50 proteins. The core of the replisome is composed of 31 different proteins including the 11-subunit CMG helicase; RFC clamp loader pentamer; PCNA clamp; the heteroligomeric DNA polymerases ε, δ, and α-primase; and the RPA heterotrimeric single strand binding protein. Many additional protein factors either travel with or transiently associate with these replisome proteins at particular times during replication. In this chapter, we summarize several recent structural studies on the S. cerevisiae replisome and its subassemblies using single particle electron microscopy and X-ray crystallography. These recent structural studies have outlined the overall architecture of a core replisome subassembly and shed new light on the mechanism of eukaryotic replication.
Collapse
Affiliation(s)
- Lin Bai
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Zuanning Yuan
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA
- Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
| | - Jingchuan Sun
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Roxana Georgescu
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Michael E O'Donnell
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Huilin Li
- Cryo-EM Structural Biology Laboratory, Van Andel Research Institute, Grand Rapids, MI, USA.
- Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
35
|
Búa S, Sotiropoulou P, Sgarlata C, Borlado LR, Eguren M, Domínguez O, Ortega S, Malumbres M, Blanpain C, Méndez J. Deregulated expression of Cdc6 in the skin facilitates papilloma formation and affects the hair growth cycle. Cell Cycle 2016; 14:3897-907. [PMID: 26697840 DOI: 10.1080/15384101.2015.1120919] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Cdc6 encodes a key protein for DNA replication, responsible for the recruitment of the MCM helicase to replication origins during the G1 phase of the cell division cycle. The oncogenic potential of deregulated Cdc6 expression has been inferred from cellular studies, but no mouse models have been described to study its effects in mammalian tissues. Here we report the generation of K5-Cdc6, a transgenic mouse strain in which Cdc6 expression is deregulated in tissues with stratified epithelia. Higher levels of CDC6 protein enhanced the loading of MCM complexes to DNA in epidermal keratinocytes, without affecting their proliferation rate or inducing DNA damage. While Cdc6 overexpression did not promote skin tumors, it facilitated the formation of papillomas in cooperation with mutagenic agents such as DMBA. In addition, the elevated levels of CDC6 protein in the skin extended the resting stage of the hair growth cycle, leading to better fur preservation in older mice.
Collapse
Affiliation(s)
- Sabela Búa
- a DNA Replication Group; Molecular Oncology Program; Spanish National Cancer Reserch Center (CNIO) ; Madrid , Spain
| | - Peggy Sotiropoulou
- b Interdisciplinary Research Institute; Université Libre de Bruxelles ; Bruxelles , Belgium
| | - Cecilia Sgarlata
- a DNA Replication Group; Molecular Oncology Program; Spanish National Cancer Reserch Center (CNIO) ; Madrid , Spain
| | - Luis R Borlado
- a DNA Replication Group; Molecular Oncology Program; Spanish National Cancer Reserch Center (CNIO) ; Madrid , Spain
| | - Manuel Eguren
- c Cell Division and Cancer Group; Molecular Oncology Program; Spanish National Cancer Research Center (CNIO) ; Madrid , Spain
| | - Orlando Domínguez
- d Genomics Unit, Biotechnology Program; Spanish National Cancer Research Center (CNIO) ; Madrid , Spain
| | - Sagrario Ortega
- e Transgenic Mice Unit; Biotechnology Program; Spanish National Cancer Research Center (CNIO) ; Madrid , Spain
| | - Marcos Malumbres
- c Cell Division and Cancer Group; Molecular Oncology Program; Spanish National Cancer Research Center (CNIO) ; Madrid , Spain
| | - Cedric Blanpain
- b Interdisciplinary Research Institute; Université Libre de Bruxelles ; Bruxelles , Belgium
| | - Juan Méndez
- a DNA Replication Group; Molecular Oncology Program; Spanish National Cancer Reserch Center (CNIO) ; Madrid , Spain
| |
Collapse
|
36
|
Juríková M, Danihel Ľ, Polák Š, Varga I. Ki67, PCNA, and MCM proteins: Markers of proliferation in the diagnosis of breast cancer. Acta Histochem 2016; 118:544-52. [PMID: 27246286 DOI: 10.1016/j.acthis.2016.05.002] [Citation(s) in RCA: 430] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/05/2016] [Accepted: 05/16/2016] [Indexed: 12/22/2022]
Abstract
The proliferative activity of tumour cells represents an important prognostic marker in the diagnosis of cancer. One of the methods for assessing the proliferative activity of cells is the immunohistochemical detection of cell cycle-specific antigens. For example, Ki67, proliferating cell nuclear antigen (PCNA), and minichromosome maintenance (MCM) proteins are standard markers of proliferation that are commonly used to assess the growth fraction of a cell population. The function of Ki67, the widely used marker of proliferation, still remains unclear. In contrast, PCNA and MCM proteins have been identified as important participants of DNA replication. All three proteins only manifest their expression during the cell division of normal and neoplastic cells. Since the expression of these proliferative markers was confirmed in several malignant tumours, their prognostic and predictive values have been evaluated to determine their significance in the diagnosis of cancer. This review offers insight into the discovery of the abovementioned proteins, as well as their current molecular and biological importance. In addition, the functions and properties of all three proteins and their use as markers of proliferation in the diagnosis of breast cancer are described. This work also reveals new findings about the role of Ki67 during the mitotic phase of the cell cycle. Finally, information is provided about the advantages and disadvantages of using all three antigens in the diagnosis of cancer.
Collapse
Affiliation(s)
- Miroslava Juríková
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia.
| | - Ľudovít Danihel
- Institute of Pathological Anatomy, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia
| | - Štefan Polák
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Špitálska 24, 813 72 Bratislava, Slovakia
| |
Collapse
|
37
|
Abstract
Protein phosphatase 2A (PP2A) plays a critical multi-faceted role in the regulation of the cell cycle. It is known to dephosphorylate over 300 substrates involved in the cell cycle, regulating almost all major pathways and cell cycle checkpoints. PP2A is involved in such diverse processes by the formation of structurally distinct families of holoenzymes, which are regulated spatially and temporally by specific regulators. Here, we review the involvement of PP2A in the regulation of three cell signaling pathways: wnt, mTOR and MAP kinase, as well as the G1→S transition, DNA synthesis and mitotic initiation. These processes are all crucial for proper cell survival and proliferation and are often deregulated in cancer and other diseases.
Collapse
Affiliation(s)
- Nathan Wlodarchak
- a McArdle Laboratory for Cancer Research, University of Wisconsin-Madison , Madison , WI , USA
| | - Yongna Xing
- a McArdle Laboratory for Cancer Research, University of Wisconsin-Madison , Madison , WI , USA
| |
Collapse
|
38
|
Hutchins JRA, Aze A, Coulombe P, Méchali M. Characteristics of Metazoan DNA Replication Origins. DNA REPLICATION, RECOMBINATION, AND REPAIR 2016. [PMCID: PMC7120227 DOI: 10.1007/978-4-431-55873-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Chang F, Riera A, Evrin C, Sun J, Li H, Speck C, Weinreich M. Cdc6 ATPase activity disengages Cdc6 from the pre-replicative complex to promote DNA replication. eLife 2015; 4. [PMID: 26305410 PMCID: PMC4547096 DOI: 10.7554/elife.05795] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 07/22/2015] [Indexed: 12/21/2022] Open
Abstract
To initiate DNA replication, cells first load an MCM helicase double hexamer at origins in a reaction requiring ORC, Cdc6, and Cdt1, also called pre-replicative complex (pre-RC) assembly. The essential mechanistic role of Cdc6 ATP hydrolysis in this reaction is still incompletely understood. Here, we show that although Cdc6 ATP hydrolysis is essential to initiate DNA replication, it is not essential for MCM loading. Using purified proteins, an ATPase-defective Cdc6 mutant ‘Cdc6-E224Q’ promoted MCM loading on DNA. Cdc6-E224Q also promoted MCM binding at origins in vivo but cells remained blocked in G1-phase. If after loading MCM, Cdc6-E224Q was degraded, cells entered an apparently normal S-phase and replicated DNA, a phenotype seen with two additional Cdc6 ATPase-defective mutants. Cdc6 ATP hydrolysis is therefore required for Cdc6 disengagement from the pre-RC after helicase loading to advance subsequent steps in helicase activation in vivo. DOI:http://dx.doi.org/10.7554/eLife.05795.001 Before a cell divides, it first creates copies of its DNA so that the two daughter cells both receive a complete copy of its genetic blueprint. The DNA is arranged in a double helix that is made of two single DNA strands that twist together. The process of copying the DNA requires a group or ‘complex’ of proteins called the MCM helicase complex that binds to this double-stranded DNA molecule. MCM then separates the two DNA strands to allow the production of new DNA strands in a process that uses the original strands as templates. After copying, the two resulting DNA double helices each have one of the original strands and one new strand. An enzyme called Cdc6 works together with several other proteins to help MCM bind to double-stranded DNA. Cdc6 uses energy to promote DNA copying, but it is not clear how this works. Here, Chang et al. studied the activity of yeast Cdc6. A mutant form of Cdc6 that lacked its enzyme activity still promoted MCM binding to DNA. However, yeast cells with this mutant enzyme were unable to copy their DNA and did not divide. Next, Chang et al. used a technique called ‘single particle electron microscopy’ to investigate how the MCM complex, DNA and Cdc6 interact with each other. These experiments show that normal Cdc6 enzymes detach from the MCM complex after the energy is used to allow DNA copying and cell division to proceed. However, the mutant Cdc6 enzymes remain stuck to the complex, which blocks DNA copying. In cells, if the mutant Cdc6 enzymes are deliberately destroyed after the MCM complex binds to DNA, DNA copying proceeds normally. This implies that Cdc6 inhibits MCM activity as long it remains bound to the complex. A similar sequence of steps occurs when helicases bind to DNA in bacteria, which suggests that this important process has been maintained during billions of years of evolution. The next steps will be to understand how Cdc6 is able to inhibit the MCM complex, and how Cdc6's enzyme activity enables it to detach from the complex later on. DOI:http://dx.doi.org/10.7554/eLife.05795.002
Collapse
Affiliation(s)
- FuJung Chang
- Van Andel Research Institute, Grand Rapids, United States
| | - Alberto Riera
- Faculty of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
| | - Cecile Evrin
- Faculty of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
| | - Jingchuan Sun
- Biosciences Department, Brookhaven National Laboratory, New York, United States
| | - Huilin Li
- Biosciences Department, Brookhaven National Laboratory, New York, United States
| | - Christian Speck
- Faculty of Medicine, Hammersmith Hospital Campus, Imperial College London, London, United Kingdom
| | | |
Collapse
|
40
|
Lee JP, Liu C, Li T, Zhu G, Li X. Development of stapled helical peptides to perturb the Cdt1-Mcm6 interaction. J Pept Sci 2015; 21:593-8. [DOI: 10.1002/psc.2779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/07/2015] [Accepted: 03/10/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Jonghan Peter Lee
- Department of Chemistry; The University of Hong Kong; Hong Kong China
| | - Changdong Liu
- Division of Life Science; The Hong Kong University of Sciences and Technology; Hong Kong China
| | - Tianlu Li
- Department of Chemistry; The University of Hong Kong; Hong Kong China
| | - Guang Zhu
- Division of Life Science; The Hong Kong University of Sciences and Technology; Hong Kong China
| | - Xuechen Li
- Department of Chemistry; The University of Hong Kong; Hong Kong China
- State Key Laboratory of Synthetic Chemistry; The University of Hong Kong; Hong Kong China
| |
Collapse
|
41
|
Riera A, Tognetti S, Speck C. Helicase loading: how to build a MCM2-7 double-hexamer. Semin Cell Dev Biol 2014; 30:104-9. [PMID: 24637008 DOI: 10.1016/j.semcdb.2014.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/06/2014] [Indexed: 12/27/2022]
Abstract
A central step in eukaryotic initiation of DNA replication is the loading of the helicase at replication origins, misregulation of this reaction leads to DNA damage and genome instability. Here we discuss how the helicase becomes recruited to origins and loaded into a double-hexamer around double-stranded DNA. We specifically describe the individual steps in complex assembly and explain how this process is regulated to maintain genome stability. Structural analysis of the helicase loader and the helicase has provided key insights into the process of double-hexamer formation. A structural comparison of the bacterial and eukaryotic system suggests a mechanism of helicase loading.
Collapse
Affiliation(s)
- Alberto Riera
- DNA Replication Group, Faculty of Medicine, Institute of Clinical Sciences, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Silvia Tognetti
- DNA Replication Group, Faculty of Medicine, Institute of Clinical Sciences, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Christian Speck
- DNA Replication Group, Faculty of Medicine, Institute of Clinical Sciences, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
42
|
Colombi P, Webster BM, Fröhlich F, Lusk CP. The transmission of nuclear pore complexes to daughter cells requires a cytoplasmic pool of Nsp1. ACTA ACUST UNITED AC 2013; 203:215-32. [PMID: 24165936 PMCID: PMC3812967 DOI: 10.1083/jcb.201305115] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nuclear pore complexes (NPCs) are essential protein assemblies that span the nuclear envelope and establish nuclear-cytoplasmic compartmentalization. We have investigated mechanisms that control NPC number in mother and daughter cells during the asymmetric division of budding yeast. By simultaneously tracking existing NPCs and newly synthesized NPC protomers (nups) through anaphase, we uncovered a pool of the central channel nup Nsp1 that is actively targeted to the bud in association with endoplasmic reticulum. Bud targeting required an intact actin cytoskeleton and the class V myosin, Myo2. Selective inhibition of cytoplasmic Nsp1 or inactivation of Myo2 reduced the inheritance of NPCs in daughter cells, leading to a daughter-specific loss of viability. Our data are consistent with a model in which Nsp1 releases a barrier that otherwise prevents NPC passage through the bud neck. It further supports the finding that NPC inheritance, not de novo NPC assembly, is primarily responsible for controlling NPC number in daughter cells.
Collapse
Affiliation(s)
- Paolo Colombi
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520
| | | | | | | |
Collapse
|
43
|
Evrin C, Fernández-Cid A, Riera A, Zech J, Clarke P, Herrera MC, Tognetti S, Lurz R, Speck C. The ORC/Cdc6/MCM2-7 complex facilitates MCM2-7 dimerization during prereplicative complex formation. Nucleic Acids Res 2013; 42:2257-69. [PMID: 24234446 PMCID: PMC3936773 DOI: 10.1093/nar/gkt1148] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The replicative mini-chromosome-maintenance 2–7 (MCM2-7) helicase is loaded in Saccharomyces cerevisiae and other eukaryotes as a head-to-head double-hexamer around origin DNA. At first, ORC/Cdc6 recruits with the help of Cdt1 a single MCM2-7 hexamer to form an ‘initial’ ORC/Cdc6/Cdt1/MCM2-7 complex. Then, on ATP hydrolysis and Cdt1 release, the ‘initial’ complex is transformed into an ORC/Cdc6/MCM2-7 (OCM) complex. However, it remains unclear how the OCM is subsequently converted into a MCM2-7 double-hexamer. Through analysis of MCM2-7 hexamer-interface mutants we discovered a complex competent for MCM2-7 dimerization. We demonstrate that these MCM2-7 mutants arrest during prereplicative complex (pre-RC) assembly after OCM formation, but before MCM2-7 double-hexamer assembly. Remarkably, only the OCM complex, but not the ‘initial’ ORC/Cdc6/Cdt1/MCM2-7 complex, is competent for MCM2-7 dimerization. The MCM2-7 dimer, in contrast to the MCM2-7 double-hexamer, interacts with ORC/Cdc6 and is salt-sensitive, classifying the arrested complex as a helicase-loading intermediate. Accordingly, we found that overexpression of the mutants cause cell-cycle arrest and dominant lethality. Our work identifies the OCM complex as competent for MCM2-7 dimerization, reveals MCM2-7 dimerization as a limiting step during pre-RC formation and defines critical mechanisms that explain how origins are licensed.
Collapse
Affiliation(s)
- Cecile Evrin
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College, Du Cane Road, London W12 0NN, UK and Microscopy Unit, Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Forterre P. Why Are There So Many Diverse Replication Machineries? J Mol Biol 2013; 425:4714-26. [DOI: 10.1016/j.jmb.2013.09.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/20/2013] [Accepted: 09/24/2013] [Indexed: 11/29/2022]
|
45
|
Bleichert F, Balasov M, Chesnokov I, Nogales E, Botchan MR, Berger JM. A Meier-Gorlin syndrome mutation in a conserved C-terminal helix of Orc6 impedes origin recognition complex formation. eLife 2013; 2:e00882. [PMID: 24137536 PMCID: PMC3791464 DOI: 10.7554/elife.00882] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/05/2013] [Indexed: 02/06/2023] Open
Abstract
In eukaryotes, DNA replication requires the origin recognition complex (ORC), a six-subunit assembly that promotes replisome formation on chromosomal origins. Despite extant homology between certain subunits, the degree of structural and organizational overlap between budding yeast and metazoan ORC has been unclear. Using 3D electron microscopy, we determined the subunit organization of metazoan ORC, revealing that it adopts a global architecture very similar to the budding yeast complex. Bioinformatic analysis extends this conservation to Orc6, a subunit of somewhat enigmatic function. Unexpectedly, a mutation in the Orc6 C-terminus linked to Meier-Gorlin syndrome, a dwarfism disorder, impedes proper recruitment of Orc6 into ORC; biochemical studies reveal that this region of Orc6 associates with a previously uncharacterized domain of Orc3 and is required for ORC function and MCM2-7 loading in vivo. Together, our results suggest that Meier-Gorlin syndrome mutations in Orc6 impair the formation of ORC hexamers, interfering with appropriate ORC functions. DOI:http://dx.doi.org/10.7554/eLife.00882.001.
Collapse
Affiliation(s)
- Franziska Bleichert
- Miller Institute for Basic Research in Science, University of California, Berkeley, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Maxim Balasov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, United States
| | - Igor Chesnokov
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham School of Medicine, Birmingham, United States
| | - Eva Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Michael R Botchan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - James M Berger
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
46
|
Hoggard T, Shor E, Müller CA, Nieduszynski CA, Fox CA. A Link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast. PLoS Genet 2013; 9:e1003798. [PMID: 24068963 PMCID: PMC3772097 DOI: 10.1371/journal.pgen.1003798] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 07/30/2013] [Indexed: 01/19/2023] Open
Abstract
Eukaryotic DNA replication origins are selected in G1-phase when the origin recognition complex (ORC) binds chromosomal positions and triggers molecular events culminating in the initiation of DNA replication (a.k.a. origin firing) during S-phase. Each chromosome uses multiple origins for its duplication, and each origin fires at a characteristic time during S-phase, creating a cell-type specific genome replication pattern relevant to differentiation and genome stability. It is unclear whether ORC-origin interactions are relevant to origin activation time. We applied a novel genome-wide strategy to classify origins in the model eukaryote Saccharomyces cerevisiae based on the types of molecular interactions used for ORC-origin binding. Specifically, origins were classified as DNA-dependent when the strength of ORC-origin binding in vivo could be explained by the affinity of ORC for origin DNA in vitro, and, conversely, as ‘chromatin-dependent’ when the ORC-DNA interaction in vitro was insufficient to explain the strength of ORC-origin binding in vivo. These two origin classes differed in terms of nucleosome architecture and dependence on origin-flanking sequences in plasmid replication assays, consistent with local features of chromatin promoting ORC binding at ‘chromatin-dependent’ origins. Finally, the ‘chromatin-dependent’ class was enriched for origins that fire early in S-phase, while the DNA-dependent class was enriched for later firing origins. Conversely, the latest firing origins showed a positive association with the ORC-origin DNA paradigm for normal levels of ORC binding, whereas the earliest firing origins did not. These data reveal a novel association between ORC-origin binding mechanisms and the regulation of origin activation time. Cell division requires the duplication of chromosomes, protein-DNA complexes harboring genetic information. Specific chromosomal positions, origins, initiate this duplication. Multiple origins are required for accurate, efficient duplication—an insufficient number leads to mistakes in the genetic material and pathologies such as cancer. Origins are chosen when the origin recognition complex (ORC) binds to them. The molecular interactions controlling this binding remain unclear. Understanding these interactions will lead to new ways to control cell division, which could aid in treatments of disease. Experiments were performed in the eukaryotic microbe budding yeast to define the types of molecular interactions ORC uses to bind origins. Yeasts are useful for these studies because chromosome duplication and structure are well conserved from yeast to humans. While ORC-DNA interactions were important, interactions between ORC and chromosomal proteins played a role. In addition, different origins relied on different types of molecular interactions with ORC. Finally, ORC-protein interactions but not ORC-DNA interactions were associated with enhanced origin function during chromosome-duplication, revealing an unanticipated link between the types of molecular interactions ORC uses to select an origin and the ultimate function of that origin. These results have implications for interfering with ORC-origin interactions to control cell division.
Collapse
Affiliation(s)
- Timothy Hoggard
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Program in Cellular and Molecular Biology, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erika Shor
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Carolin A. Müller
- Centre for Genetics and Genomics, University of Nottingham Queen's Medical Centre, Nottingham, United Kingdom
| | - Conrad A. Nieduszynski
- Centre for Genetics and Genomics, University of Nottingham Queen's Medical Centre, Nottingham, United Kingdom
- * E-mail: (CAN); (CAF)
| | - Catherine A. Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Program in Cellular and Molecular Biology, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (CAN); (CAF)
| |
Collapse
|
47
|
Evrin C, Fernández-Cid A, Zech J, Herrera MC, Riera A, Clarke P, Brill S, Lurz R, Speck C. In the absence of ATPase activity, pre-RC formation is blocked prior to MCM2-7 hexamer dimerization. Nucleic Acids Res 2013; 41:3162-72. [PMID: 23376927 PMCID: PMC3597701 DOI: 10.1093/nar/gkt043] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The origin recognition complex (ORC) of Saccharomyces cerevisiae binds origin DNA and cooperates with Cdc6 and Cdt1 to load the replicative helicase MCM2–7 onto DNA. Helicase loading involves two MCM2–7 hexamers that assemble into a double hexamer around double-stranded DNA. This reaction requires ORC and Cdc6 ATPase activity, but it is unknown how these proteins control MCM2–7 double hexamer formation. We demonstrate that mutations in Cdc6 sensor-2 and Walker A motifs, which are predicted to affect ATP binding, influence the ORC–Cdc6 interaction and MCM2–7 recruitment. In contrast, a Cdc6 sensor-1 mutant affects MCM2–7 loading and Cdt1 release, similar as a Cdc6 Walker B ATPase mutant. Moreover, we show that Orc1 ATP hydrolysis is not involved in helicase loading or in releasing ORC from loaded MCM2–7. To determine whether Cdc6 regulates MCM2–7 double hexamer formation, we analysed complex assembly. We discovered that inhibition of Cdc6 ATPase restricts MCM2–7 association with origin DNA to a single hexamer, while active Cdc6 ATPase promotes recruitment of two MCM2–7 hexamer to origin DNA. Our findings illustrate how conserved Cdc6 AAA+ motifs modulate MCM2–7 recruitment, show that ATPase activity is required for MCM2–7 hexamer dimerization and demonstrate that MCM2–7 hexamers are recruited to origins in a consecutive process.
Collapse
Affiliation(s)
- Cecile Evrin
- DNA Replication Group, MRC Clinical Sciences Centre, Imperial College, London W12 0NN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
The initiation of DNA replication represents a committing step to cell proliferation. Appropriate replication onset depends on multiprotein complexes that help properly distinguish origin regions, generate nascent replication bubbles, and promote replisome formation. This review describes initiation systems employed by bacteria, archaea, and eukaryotes, with a focus on comparing and contrasting molecular mechanisms among organisms. Although commonalities can be found in the functional domains and strategies used to carry out and regulate initiation, many key participants have markedly different activities and appear to have evolved convergently. Despite significant advances in the field, major questions still persist in understanding how initiation programs are executed at the molecular level.
Collapse
Affiliation(s)
- Alessandro Costa
- Clare Hall Laboratories, London Research Institute, Cancer Research UK, Hertfordshire, EN6 3LD United Kingdom
| | - Iris V. Hood
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720
| | - James M. Berger
- Department of Molecular and Cell Biology, California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720
| |
Collapse
|
49
|
Kim DH, Zhang W, Koepp DM. The Hect domain E3 ligase Tom1 and the F-box protein Dia2 control Cdc6 degradation in G1 phase. J Biol Chem 2012; 287:44212-20. [PMID: 23129771 DOI: 10.1074/jbc.m112.401778] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The accurate replication of genetic information is critical to maintaining chromosomal integrity. Cdc6 functions in the assembly of pre-replicative complexes and is specifically required to load the Mcm2-7 replicative helicase complex at replication origins. Cdc6 is targeted for protein degradation by multiple mechanisms in Saccharomyces cerevisiae, although only a single pathway and E3 ubiquitin ligase for Cdc6 has been identified, the SCF(Cdc4) (Skp1/Cdc53/F-box protein) complex. Notably, Cdc6 is unstable during the G(1) phase of the cell cycle, but the ubiquitination pathway has not been previously identified. Using a genetic approach, we identified two additional E3 ubiquitin ligase components required for Cdc6 degradation, the F-box protein Dia2 and the Hect domain E3 Tom1. Both Dia2 and Tom1 control Cdc6 turnover during G(1) phase of the cell cycle and act separately from SCF(Cdc4). Ubiquitination of Cdc6 is significantly reduced in dia2Δ and tom1Δ cells. Tom1 and Dia2 each independently immunoprecipitate Cdc6, binding to a C-terminal region of the protein. Tom1 and Dia2 cannot compensate for each other in Cdc6 degradation. Cdc6 and Mcm4 chromatin association is aberrant in tom1Δ and dia2Δ cells in G(1) phase. Together, these results present evidence for a novel degradation pathway that controls Cdc6 turnover in G(1) that may regulate pre-replicative complex assembly.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
50
|
Okayama H. Cdc6: a trifunctional AAA+ ATPase that plays a central role in controlling the G1-S transition and cell survival. J Biochem 2012; 152:297-303. [DOI: 10.1093/jb/mvs083] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|