1
|
Hatano E, Akhter N, Anada R, Ono M, Oohashi T, Kuboki T, Kamioka H, Okada M, Matsumoto T, Hara ES. The cell membrane as biofunctional material for accelerated bone repair. Acta Biomater 2024; 186:411-423. [PMID: 39089349 DOI: 10.1016/j.actbio.2024.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
The cell (plasma) membrane is enriched with numerous receptors, ligands, enzymes, and phospholipids that play important roles in cell-cell and cell-extracellular matrix interactions governing, for instance, tissue development and repair. We previously showed that plasma membrane nanofragments (PMNFs) act as nucleation sites for bone formation in vivo, and induce in vitro mineralization within 1 day. In this study, we optimized the methods for generating, isolating, and applying PMNFs as a cell-free therapeutic to expedite bone defect repair. The PMNFs were isolated from different mouse cell lines (chondrocytes, osteoblasts, and fibroblasts), pre-conditioned, lyophilized, and subsequently transplanted into 2 mm critical-sized calvarial defects in mice (n = 75). The PMNFs from chondrocytes, following a 3-day pre-incubation, significantly accelerated bone repair within 2 weeks, through a coordinated attraction of macrophages, endothelial cells, and osteoblasts to the healing site. In vitro experiments confirmed that PMNFs enhanced cell adhesion. Comparison of the PMNF efficacy with phosphatidylserine, amorphous calcium phosphate (ACP), and living cells confirmed the unique ability of PMNFs to promote accelerated bone repair. Importantly, PMNFs promoted nearly complete integration of the regenerated bone with native tissue after 6 weeks (% non-integrated bone area = 15.02), contrasting with the partial integration (% non-integrated bone area = 56.10; p < 0.01, Student's test) with transplantation of ACP. Vickers microhardness tests demonstrated that the regenerated bone after 6 weeks (30.10 ± 1.75) exhibited hardness similar to native bone (31.07 ± 2.46). In conclusion, this is the first study to demonstrate that cell membrane can be a promising cell-free material with multifaceted biofunctional properties that promote accelerated bone repair. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Emi Hatano
- Advanced Research Center for Oral and Craniofacial Sciences Dental School, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nahid Akhter
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Risa Anada
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takuo Kuboki
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Okada
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takuya Matsumoto
- Department of Biomaterials, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Emilio Satoshi Hara
- Advanced Research Center for Oral and Craniofacial Sciences Dental School, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
2
|
Xu J, Vecstaudza J, Wesdorp MA, Labberté M, Kops N, Salerno M, Kok J, Simon M, Harmand MF, Vancíková K, van Rietbergen B, Misciagna MM, Dolcini L, Filardo G, Farrell E, van Osch GJ, Locs J, Brama PA. Incorporating strontium enriched amorphous calcium phosphate granules in collagen/collagen-magnesium-hydroxyapatite osteochondral scaffolds improves subchondral bone repair. Mater Today Bio 2024; 25:100959. [PMID: 38327976 PMCID: PMC10847994 DOI: 10.1016/j.mtbio.2024.100959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Osteochondral defect repair with a collagen/collagen-magnesium-hydroxyapatite (Col/Col-Mg-HAp) scaffold has demonstrated good clinical results. However, subchondral bone repair remained suboptimal, potentially leading to damage to the regenerated overlying neocartilage. This study aimed to improve the bone repair potential of this scaffold by incorporating newly developed strontium (Sr) ion enriched amorphous calcium phosphate (Sr-ACP) granules (100-150 μm). Sr concentration of Sr-ACP was determined with ICP-MS at 2.49 ± 0.04 wt%. Then 30 wt% ACP or Sr-ACP granules were integrated into the scaffold prototypes. The ACP or Sr-ACP granules were well embedded and distributed in the collagen matrix demonstrated by micro-CT and scanning electron microscopy/energy dispersive x-ray spectrometry. Good cytocompatibility of ACP/Sr-ACP granules and ACP/Sr-ACP enriched scaffolds was confirmed with in vitro cytotoxicity assays. An overall promising early tissue response and good biocompatibility of ACP and Sr-ACP enriched scaffolds were demonstrated in a subcutaneous mouse model. In a goat osteochondral defect model, significantly more bone was observed at 6 months with the treatment of Sr-ACP enriched scaffolds compared to scaffold-only, in particular in the weight-bearing femoral condyle subchondral bone defect. Overall, the incorporation of osteogenic Sr-ACP granules in Col/Col-Mg-HAp scaffolds showed to be a feasible and promising strategy to improve subchondral bone repair.
Collapse
Affiliation(s)
- Jietao Xu
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, Netherlands
| | - Jana Vecstaudza
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1007, Riga, Latvia
| | - Marinus A. Wesdorp
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, Netherlands
| | - Margot Labberté
- School of Veterinary Medicine, University College Dublin, Dublin, D04 W6F6, Ireland
| | - Nicole Kops
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, Netherlands
| | - Manuela Salerno
- Applied and Translational Research Center, IRCCS Rizzoli Orthopaedic Institute, Bologna, 40136, Italy
| | - Joeri Kok
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, Netherlands
| | | | | | - Karin Vancíková
- School of Veterinary Medicine, University College Dublin, Dublin, D04 W6F6, Ireland
| | - Bert van Rietbergen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, Netherlands
| | | | | | - Giuseppe Filardo
- Applied and Translational Research Center, IRCCS Rizzoli Orthopaedic Institute, Bologna, 40136, Italy
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, Netherlands
| | - Gerjo J.V.M. van Osch
- Department of Orthopedics and Sports Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, Netherlands
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 GD, Netherlands
- Department of Biomechanical Engineering, Delft University of Technology, Delft, 2628 CD, Netherlands
| | - Janis Locs
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1007, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, LV-1048, Riga, Latvia
| | - Pieter A.J. Brama
- School of Veterinary Medicine, University College Dublin, Dublin, D04 W6F6, Ireland
| |
Collapse
|
3
|
Zhang Y, Ma S, Nie J, Liu Z, Chen F, Li A, Pei D. Journey of Mineral Precursors in Bone Mineralization: Evolution and Inspiration for Biomimetic Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2207951. [PMID: 37621037 DOI: 10.1002/smll.202207951] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/27/2023] [Indexed: 08/26/2023]
Abstract
Bone mineralization is a ubiquitous process among vertebrates that involves a dynamic physical/chemical interplay between the organic and inorganic components of bone tissues. It is now well documented that carbonated apatite, an inorganic component of bone, is proceeded through transient amorphous mineral precursors that transforms into the crystalline mineral phase. Here, the evolution on mineral precursors from their sources to the terminus in the bone mineralization process is reviewed. How organisms tightly control each step of mineralization to drive the formation, stabilization, and phase transformation of amorphous mineral precursors in the right place, at the right time, and rate are highlighted. The paradigm shifts in biomineralization and biomaterial design strategies are intertwined, which promotes breakthroughs in biomineralization-inspired material. The design principles and implementation methods of mineral precursor-based biomaterials in bone graft materials such as implant coatings, bone cements, hydrogels, and nanoparticles are detailed in the present manuscript. The biologically controlled mineralization mechanisms will hold promise for overcoming the barriers to the application of biomineralization-inspired biomaterials.
Collapse
Affiliation(s)
- Yuchen Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shaoyang Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaming Nie
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhongbo Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Faming Chen
- School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
4
|
Chen S, Liu D, Fu L, Ni B, Chen Z, Knaus J, Sturm EV, Wang B, Haugen HJ, Yan H, Cölfen H, Li B. Formation of Amorphous Iron-Calcium Phosphate with High Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301422. [PMID: 37232047 DOI: 10.1002/adma.202301422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Amorphous iron-calcium phosphate (Fe-ACP) plays a vital role in the mechanical properties of teeth of some rodents, which are very hard, but its formation process and synthetic route remain unknown. Here, the synthesis and characterization of an iron-bearing amorphous calcium phosphate in the presence of ammonium iron citrate (AIC) are reported. The iron is distributed homogeneously on the nanometer scale in the resulting particles. The prepared Fe-ACP particles can be highly stable in aqueous media, including water, simulated body fluid, and acetate buffer solution (pH 4). In vitro study demonstrates that these particles have good biocompatibility and osteogenic properties. Subsequently, Spark Plasma Sintering (SPS) is utilized to consolidate the initial Fe-ACP powders. The results show that the hardness of the ceramics increases with the increase of iron content, but an excess of iron leads to a rapid decline in hardness. Calcium iron phosphate ceramics with a hardness of 4 GPa can be achieved, which is higher than that of human enamel. Furthermore, the ceramics composed of iron-calcium phosphates show enhanced acid resistance. This study provides a novel route to prepare Fe-ACP, and presents the potential role of Fe-ACP in biomineralization and as starting material to fabricate acid-resistant high-performance bioceramics.
Collapse
Affiliation(s)
- Song Chen
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Dachuan Liu
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Le Fu
- School of Materials Science and Engineering, Central South University, Changsha, 410017, P. R. China
| | - Bing Ni
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Zongkun Chen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Jennifer Knaus
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Elena V Sturm
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
- Section Crystallography, Department of Geo- and Environmental Sciences, Ludwigs-Maximilians-University Munich, Theresienstr. 41, 80333, Munich, Germany
| | - Bohan Wang
- School of Materials Science and Engineering, Central South University, Changsha, 410017, P. R. China
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo, PO Box 1109 Blindern, Oslo, 0376, Norway
| | - Hongji Yan
- Department of Medical Cell Biology, Uppsala University, Uppsala, 752 36, Sweden
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, 171 77, Sweden
- Department of Neuroscience, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Bin Li
- Orthopedic Institute, Department of Orthopaedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215006, P. R. China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215006, P.R.China
- Department of Orthopaedic Surgery, The Affiliated Haian Hospital of Nantong University, Haian,Nantong, Jiangsu, 226600, P.R.China
| |
Collapse
|
5
|
Surface Modification of Additively Fabricated Titanium-Based Implants by Means of Bioactive Micro-Arc Oxidation Coatings for Bone Replacement. J Funct Biomater 2022; 13:jfb13040285. [PMID: 36547545 PMCID: PMC9781821 DOI: 10.3390/jfb13040285] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
In this work, the micro-arc oxidation method is used to fabricate surface-modified complex-structured titanium implant coatings to improve biocompatibility. Depending on the utilized electrolyte solution and micro-arc oxidation process parameters, three different types of coatings (one of them-oxide, another two-calcium phosphates) were obtained, differing in their coating thickness, crystallite phase composition and, thus, with a significantly different biocompatibility. An analytical approach based on X-ray computed tomography utilizing software-aided coating recognition is employed in this work to reveal their structural uniformity. Electrochemical studies prove that the coatings exhibit varying levels of corrosion protection. In vitro and in vivo experiments of the three different micro-arc oxidation coatings prove high biocompatibility towards adult stem cells (investigation of cell adhesion, proliferation and osteogenic differentiation), as well as in vivo biocompatibility (including histological analysis). These results demonstrate superior biological properties compared to unmodified titanium surfaces. The ratio of calcium and phosphorus in coatings, as well as their phase composition, have a great influence on the biological response of the coatings.
Collapse
|
6
|
Shiu WT, Chang LY, Jiang Y, Shakouri M, Wu YH, Lin BH, Liu L. Synthesis and characterization of a near-infrared persistent luminescent Cr-doped zinc gallate-calcium phosphate composite. Phys Chem Chem Phys 2022; 24:21131-21140. [PMID: 36039710 DOI: 10.1039/d2cp03431j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Near-infrared (NIR)-emitting persistent luminescence (PersL) nanoparticles have attracted great attention as a novel optical probe for bioimaging and biosensing applications. These nanoparticles emit long-lasting luminescence after the removal of the excitation source, which effectively eliminates the interference from tissue autofluorescence. Cr-doped zinc gallate (ZnGa2O4:Cr3+, CZGO) is a representative NIR-emitting PersL material. On the other hand, amorphous calcium phosphate (ACP) is a widely used drug carrier due to its high biocompatibility. In this work, we present a design of an ACP-based drug carrier with PersL properties, by forming a CZGO-ACP composite. The PersL properties of CZGO were preserved by composite formation, while it is found that the Zn2+ could migrate from CZGO to ACP during composite formation, leading to different luminescence mechanisms between pure CZGO and the CZGO-ACP composite. The electronic structure of the composite was analyzed by synchrotron X-ray absorption spectroscopy, and a structure-luminescence correlation was proposed.
Collapse
Affiliation(s)
- Wai-Tung Shiu
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada.
| | - Lo-Yueh Chang
- National Synchrotron Radiation Research Centre, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Yingying Jiang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
| | - Mohsen Shakouri
- Canadian Light Source, 44 Innovation Blvd, Saskatoon, Saskatchewan, S7N 2V3, Canada
| | - Yu-Hao Wu
- National Synchrotron Radiation Research Centre, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Bi-Hsuan Lin
- National Synchrotron Radiation Research Centre, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Lijia Liu
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
7
|
Carmona FJ, Guagliardi A, Masciocchi N. Nanosized Calcium Phosphates as Novel Macronutrient Nano-Fertilizers. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2709. [PMID: 35957141 PMCID: PMC9370389 DOI: 10.3390/nano12152709] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 05/21/2023]
Abstract
The need for qualitatively and quantitatively enhanced food production, necessary for feeding a progressively increasing World population, requires the adoption of new and sustainable agricultural protocols. Among them, limiting the waste of fertilizers in the environment has become a global target. Nanotechnology can offer the possibility of designing and preparing novel materials alternative to conventional fertilizers, which are more readily absorbed by plant roots and, therefore, enhance nutrient use efficiency. In this context, during the last decade, great attention has been paid to calcium phosphate nanoparticles (CaP), particularly nanocrystalline apatite and amorphous calcium phosphate, as potential macronutrient nano-fertilizers with superior nutrient-use efficiency to their conventional counterparts. Their inherent content in macronutrients, like phosphorus, and gradual solubility in water have been exploited for their use as slow P-nano-fertilizers. Likewise, their large (specific) surfaces, due to their nanometric size, have been functionalized with additional macronutrient-containing species, like urea or nitrate, to generate N-nano-fertilizers with more advantageous nitrogen-releasing profiles. In this regard, several studies report encouraging results on the superior nutrient use efficiency showed by CaP nano-fertilizers in several crops than their conventional counterparts. Based on this, the advances of this topic are reviewed here and critically discussed, with special emphasis on the preparation and characterization approaches employed to synthesize/functionalize the engineered nanoparticles, as well as on their fertilization properties in different crops and in different (soil, foliar, fertigation and hydroponic) conditions. In addition, the remaining challenges in progress toward the real application of CaP as nano-fertilizers, involving several fields (i.e., agronomic or material science sectors), are identified and discussed.
Collapse
Affiliation(s)
- Francisco J. Carmona
- Departamento de Química Inorgánica, Universidad de Granada, Av. Fuentenueva S/N, 18071 Granada, Spain
| | - Antonietta Guagliardi
- Institute of Crystallography and To.Sca.Lab., Consiglio Nazionale Delle Ricerche, Via Valleggio 11, 22100 Como, Italy
| | - Norberto Masciocchi
- Dipartimento di Scienza e Alta Tecnologia e To.Sca.Lab., Università dell’Insubria, Via Valleggio 11, 22100 Como, Italy
| |
Collapse
|
8
|
|
9
|
Dorozhkin SV. Synthetic amorphous calcium phosphates (ACPs): preparation, structure, properties, and biomedical applications. Biomater Sci 2021; 9:7748-7798. [PMID: 34755730 DOI: 10.1039/d1bm01239h] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amorphous calcium phosphates (ACPs) represent a metastable amorphous state of other calcium orthophosphates (abbreviated as CaPO4) possessing variable compositional but rather identical glass-like physical properties, in which there are neither translational nor orientational long-range orders of the atomic positions. In nature, ACPs of a biological origin are found in the calcified tissues of mammals, some parts of primitive organisms, as well as in the mammalian milk. Manmade ACPs can be synthesized in a laboratory by various methods including wet-chemical precipitation, in which they are the first solid phases, precipitated after a rapid mixing of aqueous solutions containing dissolved ions of Ca2+ and PO43- in sufficient amounts. Due to the amorphous nature, all types of synthetic ACPs appear to be thermodynamically unstable and, unless stored in dry conditions or doped by stabilizers, they tend to transform spontaneously to crystalline CaPO4, mainly to ones with an apatitic structure. This intrinsic metastability of the ACPs is of a great biological relevance. In particular, the initiating role that metastable ACPs play in matrix vesicle biomineralization raises their importance from a mere laboratory curiosity to that of a reasonable key intermediate in skeletal calcifications. In addition, synthetic ACPs appear to be very promising biomaterials both for manufacturing artificial bone grafts and for dental applications. In this review, the current knowledge on the occurrence, structural design, chemical composition, preparation, properties, and biomedical applications of the synthetic ACPs have been summarized.
Collapse
|
10
|
Müller V, Jobbagy M, Djurado E. Coupling sol-gel with electrospray deposition: Towards nanotextured bioactive glass coatings. Ann Ital Chir 2021. [DOI: 10.1016/j.jeurceramsoc.2021.07.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Slay EE, Meldrum FC, Pensabene V, Amer MH. Embracing Mechanobiology in Next Generation Organ-On-A-Chip Models of Bone Metastasis. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:722501. [PMID: 35047952 PMCID: PMC8757701 DOI: 10.3389/fmedt.2021.722501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
Bone metastasis in breast cancer is associated with high mortality. Biomechanical cues presented by the extracellular matrix play a vital role in driving cancer metastasis. The lack of in vitro models that recapitulate the mechanical aspects of the in vivo microenvironment hinders the development of novel targeted therapies. Organ-on-a-chip (OOAC) platforms have recently emerged as a new generation of in vitro models that can mimic cell-cell interactions, enable control over fluid flow and allow the introduction of mechanical cues. Biomaterials used within OOAC platforms can determine the physical microenvironment that cells reside in and affect their behavior, adhesion, and localization. Refining the design of OOAC platforms to recreate microenvironmental regulation of metastasis and probe cell-matrix interactions will advance our understanding of breast cancer metastasis and support the development of next-generation metastasis-on-a-chip platforms. In this mini-review, we discuss the role of mechanobiology on the behavior of breast cancer and bone-residing cells, summarize the current capabilities of OOAC platforms for modeling breast cancer metastasis to bone, and highlight design opportunities offered by the incorporation of mechanobiological cues in these platforms.
Collapse
Affiliation(s)
- Ellen E. Slay
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Virginia Pensabene
- School of School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom
- School of Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Mahetab H. Amer
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
12
|
Liu X, Wu Z, Cavalli R, Cravotto G. Sonochemical Preparation of Inorganic Nanoparticles and Nanocomposites for Drug Release–A Review. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Xiaolin Liu
- Department of Drug Science and Technology and NIS−Centre for Nanostructured Interfaces and Surfaces, University of Turin, Turin, 10125, Italy
| | - Zhilin Wu
- Department of Drug Science and Technology and NIS−Centre for Nanostructured Interfaces and Surfaces, University of Turin, Turin, 10125, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology and NIS−Centre for Nanostructured Interfaces and Surfaces, University of Turin, Turin, 10125, Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology and NIS−Centre for Nanostructured Interfaces and Surfaces, University of Turin, Turin, 10125, Italy
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, 109807, Russia
| |
Collapse
|
13
|
Synthesis and biological evaluation of fluorescent hyaluronic acid modified amorphous calcium phosphate drug carriers for tumor-targeting. Int J Biol Macromol 2021; 182:1445-1454. [PMID: 34015404 DOI: 10.1016/j.ijbiomac.2021.05.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022]
Abstract
Cancer is becoming a major threat to national public health security. The integration of disease diagnosis and monitoring with treatment has become a hot spot for researchers. The amorphous calcium phosphate (ACP) nanoparticles prepared by the group in the previous stage could not precisely treat the lesion without tumor targeting and imaging characteristics. In this paper, water-soluble hyaluronic acid fluorescent carbon nanoparticles (HA-FCNs) were prepared and co-interacting with ACP nanoparticles to form hyaluronic acid fluorescent carbon/amorphous calcium phosphate (HA-FCNs/ACP) nanoparticles. The basic characteristics were characterized and the biological characteristics before and after drug loading were evaluated. HA-FCNs/ACP nanoparticles have good hemocompatibility, pH responsiveness, and enzymatic release. HA-FCNs and HA-FCNs/ACP nanoparticles are dispersed in the cytoplasm through the overexpressed CD44 receptors, which are actively targeted into A549 cells. Besides, the migration of A549 cells would be inhibited after cells were treated with drug-loaded nanomaterials. Therefore, the as-prepared nanoparticles can be used to monitor and treat focal sites through tumor-targeting bioimaging, pH-responsive, and enzymatic drug release properties, thus enabling integrated diagnosis and treatment.
Collapse
|
14
|
Sutthavas P, Habibovic P, van Rijt SH. The shape-effect of calcium phosphate nanoparticle based films on their osteogenic properties. Biomater Sci 2021; 9:1754-1766. [PMID: 33433541 DOI: 10.1039/d0bm01494j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium phosphates (CaPs) in the form of hydroxyapatite (HA) have been extensively studied in the context of bone regeneration due to their chemical similarity to natural bone mineral. While HA is known to promote osteogenic differentiation, the structural properties of the ceramic have been shown to affect the extent of this effect; several studies have suggested that nanostructured HA can improve the bioactivity. However, the role shape plays in the osteogenic potential is more elusive. Here we studied the effect of HA nanoparticle shape on the ability to induce osteogenesis in human mesenchymal stromal cells (hMSCs) by developing nanoparticle films using needle-, rice- and spherical-shaped HA. We showed that the HA films made from all three shapes of nanoparticles induced increased levels of osteogenic markers (i.e. runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2), alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin (OCN) on protein and gene level in comparison to hMSCs cultured on cover glass slides. Furthermore, their expression levels and profiles differed significantly as a function of nanoparticle shape. We also showed that nanoparticle films were more efficient in inducing osteogenic gene expression in hMSCs compared to adding nanoparticles to hMSCs in culture media. Finally, we demonstrated that hMSC morphology upon adhesion to the HA nanoparticle films is dependent on nanoparticle shape, with hMSCs exhibiting a more spread morphology on needle-shaped nanoparticle films compared to hMSCs seeded on rice- and spherical-shaped nanoparticle films. Our data suggests that HA nanoparticle films are efficient in inducing hMSC osteogenesis in basic cell culture conditions and that nanoparticle shape plays a vital role in cell adhesion and morphology and extent of induction of osteogenic differentiation.
Collapse
Affiliation(s)
- Pichaporn Sutthavas
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Sabine H van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
15
|
Santhakumar S, Oyane A, Nakamura M, Koga K, Miyata S, Muratsubaki K, Miyaji H. In situ precipitation of amorphous calcium phosphate nanoparticles within 3D porous collagen sponges for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111194. [DOI: 10.1016/j.msec.2020.111194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
|
16
|
Dong Q, Zhou X, Feng Y, Qian K, Liu H, Lu M, Chu C, Xue F, Bai J. Insights into self-healing behavior and mechanism of dicalcium phosphate dihydrate coating on biomedical Mg. Bioact Mater 2020; 6:158-168. [PMID: 32817922 PMCID: PMC7426540 DOI: 10.1016/j.bioactmat.2020.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022] Open
Abstract
Self-healing coatings have been developed as smart surface coatings for Mg and its alloys to retain local corrosion from the coating damages. In this study, we prepared dicalcium phosphate dihydrate (DCPD) coating on biomedical Mg, and found that the artificial scratches in DCPD coating can be efficiently sealed by anti-corrosive products in both Hank's and normal saline (NS) solutions. Besides, the in-depth study revealed that DCPD was served as not only a physical barrier but also a self-healing agent, demonstrating an autonomous self-healing coating without embedded extra corrosion inhibitors. Moreover, Hank's solution provided foreign-aid film-forming ions to promote self-healing behavior. The findings might offer new opportunities for further studies and applications of efficient self-healing coatings on biodegradable Mg implants. DCPD coating on Mg exhibited self-healing behavior in Hank's and NS solutions. DCPD was acted as not only a physical barrier but also a self-healing agent. DCPD was sensitive to pH, and offered Ca2+ and PO43− ions for self-healing. Hank's solution provided extra film-forming ions to promote self-healing behavior.
Collapse
Affiliation(s)
- Qiangsheng Dong
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China.,Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Xingxing Zhou
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Yuanjia Feng
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Kun Qian
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China.,Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Huan Liu
- College of Mechanics and Materials, Hohai University, Nanjing, 211100, China
| | - Mengmeng Lu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China.,Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Feng Xue
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China.,Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| | - Jing Bai
- School of Materials Science and Engineering, Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China.,Institute of Medical Devices (Suzhou), Southeast University, Suzhou, 215000, China
| |
Collapse
|
17
|
A Comprehensive Review of Bioactive Glass Coatings: State of the Art, Challenges and Future Perspectives. COATINGS 2020. [DOI: 10.3390/coatings10080757] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Bioactive glasses are promising biomaterials for bone and tissue repair and reconstruction, as they were shown to bond to both hard and soft tissues stimulating cells towards a path of regeneration and self-repair. Unfortunately, due to their relatively poor mechanical properties, such as brittleness, low bending strength and fracture toughness, their applications are limited to non-load-bearing implants. However, bioactive glasses can be successfully applied as coatings on the surface of metallic implants to combine the appropriate mechanical properties of metal alloys to bioactivity and biocompatibility of bioactive glasses. In this review, several available coating techniques to coat metal alloys using bioactive glasses are described, with a special focus on thermal spraying, which nowadays is the most used to deposit coatings on metallic implants.
Collapse
|
18
|
De Bonis A, Uskoković V, Barbaro K, Fadeeva I, Curcio M, Imperatori L, Teghil R, Rau JV. Pulsed laser deposition temperature effects on strontium-substituted hydroxyapatite thin films for biomedical implants. Cell Biol Toxicol 2020; 36:537-551. [PMID: 32377851 DOI: 10.1007/s10565-020-09527-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/14/2020] [Indexed: 02/08/2023]
Abstract
Substituting small molecule drugs with abundant and easily affordable ions may have positive effects on the way countless disease treatments are approached. The interest in strontium cation in bone therapies soared in the wake of the success of strontium ranelate in the treatment of osteoporosis. A new method for producing thin strontium-containing hydroxyapatite (Sr-HA, Ca9Sr(PO4)6(OH)2) films as coatings that render bioinert titanium implant bioactive is reported here. The method is based on the combination of a mechanochemical synthesis of Sr-HA targets and their deposition in form of thin films on top of titanium with the use of laser ablation at low pressure. The films were 1-2 μm in thickness and their formation was studied at different temperatures, including 25, 300, and 500 °C. Highly crystalline Sr-HA target transformed during pulsed laser deposition to a fully amorphous film, whose degree of long-range order recovered with temperature. Particle edges became somewhat sharper and surface roughness moderately increased with temperature, but the (Ca+Sr)/P atomic ratio, which increased 1.5 times during the film formation, remained approximately constant at different temperatures. Despite the mostly amorphous structure of the coatings, their affinity for capturing atmospheric carbon dioxide and accommodating it as carbonate ions that replace both phosphates and hydroxyls of HA was confirmed in an X-ray photoelectron spectroscopic analysis. As the film deposition temperature increased, the lattice voids got reduced in concentration and the structure gradually "closed," becoming more compact and entailing a linear increase in microhardness with temperature, by 0.03 GPa/°C for the entire 25-500 °C range. Biocompatibility and bioactivity of Sr-HA thin films deposited on titanium were confirmed in an interaction with dental pulp stem cells, suggesting that these coatings, regardless of the processing temperature, may be viable candidates for the surface components of metallic bone implants.
Collapse
Affiliation(s)
- Angela De Bonis
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Vuk Uskoković
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Engineering Gateway 4200, Irvine, CA, 92697, USA
| | - Katia Barbaro
- Istituto Zooprofilattico Sperimentale Lazio e Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178, Rome, Italy
| | - Inna Fadeeva
- AA Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninsky prospect 49, Moscow, Russia, 119991
| | - Mariangela Curcio
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Luca Imperatori
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133, Rome, Italy
| | - Roberto Teghil
- Dipartimento di Scienze, Università della Basilicata, Via dell'Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Julietta V Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133, Rome, Italy.
| |
Collapse
|
19
|
Han JH, Pack SP, Chung S. Solvo-hydrothermal synthesis of calcium phosphate nanostructures from calcium inositol hexakisphosphate precursor in water-ethanol mixed solutions. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0496-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Wu J, Ueda K, Narushima T. Fabrication of Ag and Ta co-doped amorphous calcium phosphate coating films by radiofrequency magnetron sputtering and their antibacterial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110599. [DOI: 10.1016/j.msec.2019.110599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 11/19/2019] [Accepted: 12/23/2019] [Indexed: 01/02/2023]
|
21
|
Sun R, Åhlén M, Tai CW, Bajnóczi ÉG, de Kleijne F, Ferraz N, Persson I, Strømme M, Cheung O. Highly Porous Amorphous Calcium Phosphate for Drug Delivery and Bio-Medical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 10:E20. [PMID: 31861727 PMCID: PMC7022897 DOI: 10.3390/nano10010020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
Abstract
Amorphous calcium phosphate (ACP) has shown significant effects on the biomineralization and promising applications in bio-medicine. However, the limited stability and porosity of ACP material restrict its practical applications. A storage stable highly porous ACP with Brunauer-Emmett-Teller surface area of over 400 m2/g was synthesized by introducing phosphoric acid to a methanol suspension containing amorphous calcium carbonate nanoparticles. Electron microscopy revealed that the porous ACP was constructed with aggregated ACP nanoparticles with dimensions of several nanometers. Large angle X-ray scattering revealed a short-range atomic order of <20 Å in the ACP nanoparticles. The synthesized ACP demonstrated long-term stability and did not crystallize even after storage for over 14 months in air. The stability of the ACP in water and an α-MEM cell culture medium were also examined. The stability of ACP could be tuned by adjusting its chemical composition. The ACP synthesized in this work was cytocompatible and acted as drug carriers for the bisphosphonate drug alendronate (AL) in vitro. AL-loaded ACP released ~25% of the loaded AL in the first 22 days. These properties make ACP a promising candidate material for potential application in biomedical fields such as drug delivery and bone healing.
Collapse
Affiliation(s)
- Rui Sun
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, SE-751 21 Uppsala, Sweden; (R.S.); (M.Å.); (F.d.K.); (N.F.)
| | - Michelle Åhlén
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, SE-751 21 Uppsala, Sweden; (R.S.); (M.Å.); (F.d.K.); (N.F.)
| | - Cheuk-Wai Tai
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Éva G. Bajnóczi
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden; (É.G.B.); (I.P.)
| | - Fenne de Kleijne
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, SE-751 21 Uppsala, Sweden; (R.S.); (M.Å.); (F.d.K.); (N.F.)
| | - Natalia Ferraz
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, SE-751 21 Uppsala, Sweden; (R.S.); (M.Å.); (F.d.K.); (N.F.)
| | - Ingmar Persson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden; (É.G.B.); (I.P.)
| | - Maria Strømme
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, SE-751 21 Uppsala, Sweden; (R.S.); (M.Å.); (F.d.K.); (N.F.)
| | - Ocean Cheung
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, SE-751 21 Uppsala, Sweden; (R.S.); (M.Å.); (F.d.K.); (N.F.)
| |
Collapse
|
22
|
Shi Y, Shen D, Zheng H, Wu Z, Shao C, Zhang L, Pan H, Tang R, Fu B. Therapeutic Management of Demineralized Dentin Surfaces Using a Mineralizing Adhesive To Seal and Mineralize Dentin, Dentinal Tubules, and Odontoblast Processes. ACS Biomater Sci Eng 2019; 5:5481-5488. [PMID: 33464067 DOI: 10.1021/acsbiomaterials.9b00619] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dentin hypersensitivity is attributable to the exposed dentin and its patent tubules. We proposed the therapeutic management of demineralized dentin surfaces using a mineralizing adhesive to seal and remineralize dentin, dentinal tubules, and odontoblast processes. An experimental self-etch adhesive and a mineralizing adhesive consisting of the self-etch adhesive and 20 wt % poly-aspartic acid-stabilized amorphous calcium phosphate (PAsp-ACP) nanoparticles were prepared and characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and scanning electron microscopy. After 60 acid-etched midcoronal dentin disks were treated with distilled water (control), a desensitizing agent (Gluma), the experimental self-etch adhesive, and the mineralizing adhesive, dentin permeability was measured and mineralization was evaluated by Raman, FTIR, XRD, TEM, and selected-area electron diffraction, irrespective of abrasive and acidic challenges. In vitro cytotoxicity of the adhesive and the mineralizing adhesive was assessed by Cell Counting Kit-8. The mineralizing adhesive possessed excellent biocompatibility. We proposed a hybrid mineralization layer composed of the light-cured mineralizing adhesive and the mineralized dentin surfaces, as well as interiorly mineralized resin tags and odontoblast processes inside of the dentinal tubules. This hybrid mineralization not only reduced dentin permeability but also resisted abrasive and acidic attacks.
Collapse
Affiliation(s)
- Ying Shi
- Key Laboratory for Oral Biomedical Research of Zhejiang Province, Hangzhou 310029, Zhejiang, China
| | - Dongni Shen
- Key Laboratory for Oral Biomedical Research of Zhejiang Province, Hangzhou 310029, Zhejiang, China
| | - Haiyan Zheng
- Key Laboratory for Oral Biomedical Research of Zhejiang Province, Hangzhou 310029, Zhejiang, China
| | | | | | - Leiqing Zhang
- Key Laboratory for Oral Biomedical Research of Zhejiang Province, Hangzhou 310029, Zhejiang, China
| | | | | | - Baiping Fu
- Key Laboratory for Oral Biomedical Research of Zhejiang Province, Hangzhou 310029, Zhejiang, China
| |
Collapse
|
23
|
Brunello G, Elsayed H, Biasetto L. Bioactive Glass and Silicate-Based Ceramic Coatings on Metallic Implants: Open Challenge or Outdated Topic? MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2929. [PMID: 31510062 PMCID: PMC6766230 DOI: 10.3390/ma12182929] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/19/2022]
Abstract
The overall success and long-term life of the medical implants are decisively based on the convenient osseointegration at the hosting tissue-implant interface. Therefore, various surface modifications and different coating approaches have been utilized to the implants to enhance the bone formation and speed up the interaction with the surrounding hosting tissues, thereby enabling the successful fixation of implants. In this review, we will briefly present the main metallic implants and discuss their biocompatibility and osseointegration ability depending on their chemical and mechanical properties. In addition, as the main goal of this review, we explore the main properties of bioactive glasses and silica-based ceramics that are used as coating materials for both orthopedic and dental implants. The current review provides an overview of these bioactive coatings, with a particular emphasis on deposition methods, coating adhesion to the substrates and apatite formation ability tested by immersion in Simulated Body Fluid (SBF). In vitro and in vivo performances in terms of biocompatibility, biodegradability and improved osseointegration are examined as well.
Collapse
Affiliation(s)
- Giulia Brunello
- Department of Management and Engineering, University of Padova, Stradella San Nicola 3, 36100 Vicenza, Italy.
- Department of Neurosciences, Section of Dentistry, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | - Hamada Elsayed
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 9, 35131 Padova, Italy.
- Ceramics Department, National Research Centre, El-Bohous Street, Cairo 12622, Egypt.
| | - Lisa Biasetto
- Department of Management and Engineering, University of Padova, Stradella San Nicola 3, 36100 Vicenza, Italy.
| |
Collapse
|
24
|
Melnik EV, Shkarina SN, Ivlev SI, Weinhardt V, Baumbach T, Chaikina MV, Surmeneva MA, Surmenev RA. In vitro degradation behaviour of hybrid electrospun scaffolds of polycaprolactone and strontium-containing hydroxyapatite microparticles. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Gelli R, Ridi F, Baglioni P. The importance of being amorphous: calcium and magnesium phosphates in the human body. Adv Colloid Interface Sci 2019; 269:219-235. [PMID: 31096075 DOI: 10.1016/j.cis.2019.04.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 11/25/2022]
Abstract
This article focuses on the relevance of amorphous calcium (and magnesium) phosphates in living organisms. Although crystalline calcium phosphate (CaP)-based materials are known to constitute the major inorganic constituents of human hard tissues, amorphous CaP-based structures, often in combination with magnesium, are frequently employed by Nature to build up components of our body and guarantee their proper functioning. After a brief description of amorphous calcium phosphate (ACP) formation mechanism and structure, this paper is focused on the stabilization strategies that can be used to enhance the lifetime of the poorly stable amorphous phase. The various locations of our body in which ACP (pure or in combination with Mg2+) can be found (i.e. bone, enamel, small intestine, calciprotein particles and casein micelles) are highlighted, showing how the amorphous nature of ACP is often of paramount importance for the achievement of a specific physiological function. The last section is devoted to ACP-based biomaterials, focusing on how these materials differ from their crystalline counterparts in terms of biological response.
Collapse
|
26
|
Uskoković V, Janković-Častvan I, Wu VM. Bone Mineral Crystallinity Governs the Orchestration of Ossification and Resorption during Bone Remodeling. ACS Biomater Sci Eng 2019; 5:3483-3498. [DOI: 10.1021/acsbiomaterials.9b00255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Vuk Uskoković
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, Engineering Gateway 4200, Irvine, California 92697, United States
- Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, Illinois 60607-7052, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 1600 Fourth Street, San Francisco, California 94158, United States
| | - Ivona Janković-Častvan
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade 11000, Serbia
| | - Victoria M. Wu
- Department of Bioengineering, University of Illinois, 851 South Morgan Street, Chicago, Illinois 60607-7052, United States
| |
Collapse
|
27
|
Masamoto K, Fujibayashi S, Yabutsuka T, Hiruta T, Otsuki B, Okuzu Y, Goto K, Shimizu T, Shimizu Y, Ishizaki C, Fukushima K, Kawai T, Hayashi M, Morizane K, Kawata T, Imamura M, Matsuda S. In vivo and in vitro bioactivity of a "precursor of apatite" treatment on polyetheretherketone. Acta Biomater 2019; 91:48-59. [PMID: 31009758 DOI: 10.1016/j.actbio.2019.04.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/20/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023]
Abstract
We recently developed a surface treatment, "precursor of apatite" (PrA), for polyetheretherketone (PrA-PEEK) via a simple, low-temperature process aiming to achieve stronger and faster adhesion to bone. The treatment involves three steps: H2SO4 immersion, exposure to O2 plasma discharge, and alkaline simulated body fluid (alkaline SBF) treatment. This method produces homogeneous fine particles of amorphous calcium phosphate on the PEEK, and we confirmed that PrA-PEEK had excellent apatite formation ability in an SBF immersion test. In the present study using PEEK implants in rabbit tibia, mechanical tests, and histological and radiological analyses revealed that PrA provided the PEEK substrate with excellent bone-bonding properties and osteo-conductivity at early stages (4 and 8 weeks), extending to 16 weeks. In vitro study using MC3T3-E1 cells revealed via XTT assay that PrA on the PEEK substrate resulted in no cytotoxicity, though PrA treatment seemed to suppress gene expression of integrin β-1 and Alp after 7-day incubation as shown by real-time PCR. On the whole, PrA treatment succeeded in giving in vivo bone-bonding properties to the PEEK substrate, and the treatment is a safe and promising method that can be applied in clinical settings. There was an inconsistency between in vivo and in vitro bioactivity, and this discrepancy indicated that apatite formation does not always need activation of osteoblasts at very early stage and that optimal conditions at cell and organism level may be different. STATEMENT OF SIGNIFICANCE: Polyetheretherketone (PEEK) is an attractive engineering polymer used for spine and dental surgery. To further improve clinical outcome of PEEK-based materials, we developed "Precursor of apatite" (PrA) treatment on the PEEK surface to confer bone-bonding properties. The advantages of this treatment are that it does not require high-temperature processing or special chemicals, and it is inexpensive. The present study clarified excellent in vivo bone-bonding property of PrA treatment. In addition, the results revealed important insights indicating that optimal conditions, especially wettability and crystallinity in calcium phosphate, differ at cell and organism levels. Moreover, our results indicated that prediction of in vivo bioactivity should be done in combination with multiple in vitro tests.
Collapse
|
28
|
Yin Y, Lee MS, Lee JE, Lim SY, Kim ES, Jeong J, Kim D, Kim J, Lee DS, Jeong JH. Effective systemic siRNA delivery using dual-layer protected long-circulating nanohydrogel containing an inorganic core. Biomater Sci 2019; 7:3297-3306. [DOI: 10.1039/c9bm00369j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PEG-dex-dopa nanohydrogel containing a CaP/siRNA core could achieve extended circulation with reduced RES accumulation, resulting in increased tumor accumulation.
Collapse
|
29
|
Song J, Wang H, Yang Y, Xiao Z, Lin H, Jin L, Xue Y, Lin M, Chen F, Zhu M, Zhao Y, Qiu Z, Li Y, Zhang X. Nanogels of carboxymethyl chitosan and lysozyme encapsulated amorphous calcium phosphate to occlude dentinal tubules. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:84. [PMID: 29892913 DOI: 10.1007/s10856-018-6094-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/26/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to develop of a rapid and effective method to occlude dentinal tubules using carboxymethyl chitosan and lysozyme (CMC/LYZ) nanogels with encapsulated amorphous calcium phosphate (ACP) based on the transformation of ACP to HAP. In this work, CMC/LYZ was used to stabilize ACP and form CMC/LYZ-ACP nanogels, and then the nanogel-encapsulated ACP was applied to exposed dentinal tubule surfaces. The morphology of the nanogels was examined by transmission electron microscopy (TEM). Distribution and quantity of elements in CMC/LYZ-ACP nanogels were determined by element mapping and energy dispersive X-Ray spectroscopy (EDX). Scanning electron microscopy (SEM) images, XRD measurements and nanoindentation were applied to check the efficacy of tubular occlusion. TEM revealed that CMC/LYZ-ACP nanogels were spherical dense gel particles with size approximately 50-500 nm. Element mapping and EDX indicated that C, N, O, Ca, P, and S in the microspheres are thoroughly represented. SEM images shows that the thickness of the coating layer was approximately 1-2 μm and the depth to which the mineralized substance enters the dentinal tubule was approximately 4-8 μm. XRD measurements and nanoindentation indicated that the occluding mineralized substance observed were similar to nature dentin. CMC can form spherical dense nanogels loaded with ACP under the participation of lysozyme. The CMC/LYZ-ACP nanogels could increase the dentinal tubule occluding effectiveness. These results indicated that finding and developing novel nanomaterials of CMC/LYZ-ACP would be an effective strategy for the treatment of dentin hypersensitivity.
Collapse
Affiliation(s)
- Jinhua Song
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Haorong Wang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yunqi Yang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Zuohui Xiao
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Haibao Lin
- School and Hospital of Stomatology, Jiamusi University, Jiamusi, China
| | - Lichun Jin
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yan Xue
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Mingli Lin
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Fuyu Chen
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Mengqi Zhu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yanhong Zhao
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Zhongjun Qiu
- State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin, China
| | - Yanqiu Li
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China.
| | - Xu Zhang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
30
|
Metoki N, Baik SI, Isheim D, Mandler D, Seidman DN, Eliaz N. Atomically resolved calcium phosphate coating on a gold substrate. NANOSCALE 2018; 10:8451-8458. [PMID: 29616690 DOI: 10.1039/c8nr00372f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Some articles have revealed that the electrodeposition of calcium phosphate (CaP) coatings entails a precursor phase, similarly to biomineralization in vivo. The chemical composition of the initial layer and its thickness are, however, still arguable, to the best of our knowledge. Moreover, while CaP and electrodeposition of metal coatings have been studied utilizing atom-probe tomography (APT), the electrodeposition of CaP ceramics has not been heretofore studied. Herein, we present an investigation of the CaP deposition on a gold substrate. Using APT and transmission electron microscopy (TEM) it is found that a mixture of phases, which could serve as transient precursor phases to hydroxyapatite (HAp), can be detected. The thickness of these phases is tens of nanometers, and they consist of amorphous CaP (ACP), dibasic calcium phosphate dihydrate (DCPD), and octacalcium phosphate (OCP). This demonstrates the value of using atomic-resolved characterization techniques for identifying the precursor phases. It also indicates that the kinetics of their transformation into the more stable HAp is not too fast to enable their observation. The coating gradually displays higher Ca/P atomic ratios, a porous nature, and concomitantly a change in its density.
Collapse
Affiliation(s)
- Noah Metoki
- Biomaterials and Corrosion Lab, Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv 6997801, Israel.
| | | | | | | | | | | |
Collapse
|
31
|
YAMAGUCHI T, YAMADA I, TAGAYA M. Film Formation by Precipitating Calcium Phosphate on Phospholipid Vesicle in Simulated Body Fluid Containing Trometamol. KOBUNSHI RONBUNSHU 2018. [DOI: 10.1295/koron.2017-0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tadashi YAMAGUCHI
- Department of Materials Science and Technology, Graduate School of Engineering, Nagaoka University of Technology
| | - Iori YAMADA
- Department of Materials Science and Technology, Faculty of Engineering, Nagaoka University of Technology
| | - Motohiro TAGAYA
- Department of Materials Science and Technology, Graduate School of Engineering, Nagaoka University of Technology
| |
Collapse
|
32
|
Multiscale characterization of the mineral phase at skeletal sites of breast cancer metastasis. Proc Natl Acad Sci U S A 2017; 114:10542-10547. [PMID: 28923958 DOI: 10.1073/pnas.1708161114] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Skeletal metastases, the leading cause of death in advanced breast cancer patients, depend on tumor cell interactions with the mineralized bone extracellular matrix. Bone mineral is largely composed of hydroxyapatite (HA) nanocrystals with physicochemical properties that vary significantly by anatomical location, age, and pathology. However, it remains unclear whether bone regions typically targeted by metastatic breast cancer feature distinct HA materials properties. Here we combined high-resolution X-ray scattering analysis with large-area Raman imaging, backscattered electron microscopy, histopathology, and microcomputed tomography to characterize HA in mouse models of advanced breast cancer in relevant skeletal locations. The proximal tibial metaphysis served as a common metastatic site in our studies; we identified that in disease-free bones this skeletal region contained smaller and less-oriented HA nanocrystals relative to ones that constitute the diaphysis. We further observed that osteolytic bone metastasis led to a decrease in HA nanocrystal size and perfection in remnant metaphyseal trabecular bone. Interestingly, in a model of localized breast cancer, metaphyseal HA nanocrystals were also smaller and less perfect than in corresponding bone in disease-free controls. Collectively, these results suggest that skeletal sites prone to tumor cell dissemination contain less-mature HA (i.e., smaller, less-perfect, and less-oriented crystals) and that primary tumors can further increase HA immaturity even before secondary tumor formation, mimicking alterations present during tibial metastasis. Engineered tumor models recapitulating these spatiotemporal dynamics will permit assessing the functional relevance of the detected changes to the progression and treatment of breast cancer bone metastasis.
Collapse
|
33
|
Eliaz N, Metoki N. Calcium Phosphate Bioceramics: A Review of Their History, Structure, Properties, Coating Technologies and Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E334. [PMID: 28772697 PMCID: PMC5506916 DOI: 10.3390/ma10040334] [Citation(s) in RCA: 393] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/15/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023]
Abstract
Calcium phosphate (CaP) bioceramics are widely used in the field of bone regeneration, both in orthopedics and in dentistry, due to their good biocompatibility, osseointegration and osteoconduction. The aim of this article is to review the history, structure, properties and clinical applications of these materials, whether they are in the form of bone cements, paste, scaffolds, or coatings. Major analytical techniques for characterization of CaPs, in vitro and in vivo tests, and the requirements of the US Food and Drug Administration (FDA) and international standards from CaP coatings on orthopedic and dental endosseous implants, are also summarized, along with the possible effect of sterilization on these materials. CaP coating technologies are summarized, with a focus on electrochemical processes. Theories on the formation of transient precursor phases in biomineralization, the dissolution and reprecipitation as bone of CaPs are discussed. A wide variety of CaPs are presented, from the individual phases to nano-CaP, biphasic and triphasic CaP formulations, composite CaP coatings and cements, functionally graded materials (FGMs), and antibacterial CaPs. We conclude by foreseeing the future of CaPs.
Collapse
Affiliation(s)
- Noam Eliaz
- Biomaterials and Corrosion Lab, Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv 6997801, Israel.
| | - Noah Metoki
- Biomaterials and Corrosion Lab, Department of Materials Science and Engineering, Tel-Aviv University, Ramat Aviv 6997801, Israel.
| |
Collapse
|
34
|
Khoshroo K, Jafarzadeh Kashi TS, Moztarzadeh F, Tahriri M, Jazayeri HE, Tayebi L. Development of 3D PCL microsphere/TiO2 nanotube composite scaffolds for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:586-598. [DOI: 10.1016/j.msec.2016.08.081] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/12/2016] [Accepted: 08/30/2016] [Indexed: 10/21/2022]
|
35
|
Zhou ZF, Sun TW, Chen F, Zuo DQ, Wang HS, Hua YQ, Cai ZD, Tan J. Calcium phosphate-phosphorylated adenosine hybrid microspheres for anti-osteosarcoma drug delivery and osteogenic differentiation. Biomaterials 2016; 121:1-14. [PMID: 28063979 DOI: 10.1016/j.biomaterials.2016.12.031] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/19/2016] [Accepted: 12/27/2016] [Indexed: 01/02/2023]
Abstract
Biocompatibility, biodegradability and bioactivity are significantly important in practical applications of various biomaterials for bone tissue engineering. Herein, we develop a functional inorganic-organic hybrid system of calcium phosphate-phosphorylated adenosine (CPPA). Both calcium phosphate and phosphorylated adenosine molecules in CPPA are fundamental components in mammalians and play important roles in biological metabolism. In this work, we report our three leading research qualities: (1) CPPA hybrid microspheres with hollow and porous structure are synthesized by a facile one-step microwave-assisted solvothermal method; (2) CPPA hybrid microspheres show high doxorubicin loading capacity and pH-responsive drug release properties, and demonstrate positive therapeutic effects on six osteosarcoma cell lines in vitro and a mouse model of 143B osteosarcoma subcutaneous tumor in vivo; (3) CPPA hybrid microspheres are favorable to promote osteogenic differentiation of human bone mesenchymal stem cells (hBMSCs) by activating the AMPK pathway, with satisfactory evidences from cellular alkaline phosphatase staining, alizarin red staining, real time PCR and western analysis. The as-prepared CPPA hybrid microspheres are promising in anti-osteosarcoma and bone regeneration, which simultaneously display excellent properties on drug delivery and osteogenic differentiation of hBMSCs.
Collapse
Affiliation(s)
- Zi-Fei Zhou
- Department of Orthopedic Surgery, Shanghai East Hospital, Tongji University, Shanghai 200120, PR China
| | - Tuan-Wei Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China.
| | - Dong-Qing Zuo
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Hong-Sheng Wang
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Ying-Qi Hua
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, PR China
| | - Zheng-Dong Cai
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, PR China.
| | - Jun Tan
- Department of Orthopedic Surgery, Shanghai East Hospital, Tongji University, Shanghai 200120, PR China.
| |
Collapse
|
36
|
Kattimani VS, Kondaka S, Lingamaneni KP. Hydroxyapatite–-Past, Present, and Future in Bone Regeneration. ACTA ACUST UNITED AC 2016. [DOI: 10.4137/btri.s36138] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Hydroxyapatite (HA) is an essential element required for bone regeneration. Different forms of HA have been used for a long time. The essence of bone regeneration always revolves around the healthy underlying bone or it may be the surroundings that give enough strength. HA is well known for bone regeneration through conduction or by acting as a scaffold for filling of defects from ancient times, but emerging trends of osteoinductive property of HA are much promising for new bone regeneration. Emerging technology has made the dreams of clinicians to realize the use of HA in different forms for various regenerative purposes both in vivo and in vitro. The nanostructured calcium apatite plays an important role in the construction of calcified tissues. The nanostructured material has the ability to attach biological molecules such as proteins, which can be used as functional materials in many aspects, and the capability of synthesizing controlled structures of apatite to simulate the basic structure of bone and other calcified tissues. The process of regeneration requires a biomimetic and biocompatible nanostructured novel material. The nanostructured bioceramic particles are of interest in synthetic bone grafts and bone cements both injectable and controlled setting, so that such composites will reinforce the strength of bioceramics. Extensive research is being carried out for bone regeneration using nanotechnology. Artificial bone formation is not far from now. Nanotechnology has made many dreams come true. This paper gives comprehensive insights into the history and evolution with changing trends in the use of HA for various regenerative purposes.
Collapse
Affiliation(s)
| | - Sudheer Kondaka
- Department of Prosthodontics, Lenora Institute of Dental Sciences, Rajahmundry, Andhra Pradesh, India
| | - Krishna Prasad Lingamaneni
- Department of Oral and Maxillofacial Surgery, SIBAR Institute of Dental Sciences, Guntur, Andhra Pradesh, India
| |
Collapse
|
37
|
Mohammadi H, Sepantafar M. Ion-Doped Silicate Bioceramic Coating of Ti-Based Implant. IRANIAN BIOMEDICAL JOURNAL 2016; 20:189-200. [PMID: 26979401 PMCID: PMC4983673 DOI: 10.7508/ibj.2016.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/08/2015] [Accepted: 09/02/2015] [Indexed: 01/05/2023]
Abstract
Titanium and its alloy are known as important load-bearing biomaterials. The major drawbacks of these metals are fibrous formation and low corrosion rate after implantation. The surface modification of biomedical implants through various methods such as plasma spray improves their osseointegration and clinical lifetime. Different materials have been already used as coatings on biomedical implant, including calcium phosphates and bioglass. However, these materials have been reported to have limited clinical success. The excellent bioactivity of calcium silicate (Ca-Si) has been also regarded as coating material. However, their high degradation rate and low mechanical strength limit their further coating application. Trace element modification of (Ca-Si) bioceramics is a promising method, which improves their mechanical strength and chemical stability. In this review, the potential of trace element-modified silicate coatings on better bone formation of titanium implant is investigated.
Collapse
Affiliation(s)
- Hossein Mohammadi
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| | - Mohammadmajid Sepantafar
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Metallurgy and Materials Engineering, Faculty of Engineering, University of Semnan, Semnan, Iran
| |
Collapse
|
38
|
Vilardell AM, Cinca N, Jokinen A, Garcia-Giralt N, Dosta S, Cano IG, Guilemany JM. Real-Time Protein and Cell Binding Measurements on Hydroxyapatite Coatings. J Funct Biomater 2016; 7:E23. [PMID: 27618911 PMCID: PMC5040996 DOI: 10.3390/jfb7030023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/27/2016] [Accepted: 08/16/2016] [Indexed: 12/31/2022] Open
Abstract
Although a lot of in vitro and in vivo assays have been performed during the last few decades years for hydroxyapatite bioactive coatings, there is a lack of exploitation of real-time in vitro interaction measurements. In the present work, real-time interactions for a plasma sprayed hydroxyapatite coating were measured by a Multi-Parametric Surface Plasmon Resonance (MP-SPR), and the results were compared with standard traditional cell viability in vitro assays. MP-SPR is proven to be suitable not only for measurement of molecule-molecule interactions but also molecule-material interaction measurements and cell interaction. Although SPR is extensively utilized in interaction studies, recent research of protein or cell adsorption on hydroxyapatite coatings for prostheses applications was not found. The as-sprayed hydroxyapatite coating resulted in 62.4% of crystalline phase and an average thickness of 24 ± 6 μm. The MP-SPR was used to measure lysozyme protein and human mesenchymal stem cells interaction to the hydroxyapatite coating. A comparison between the standard gold sensor and Hydroxyapatite (HA)-plasma coated sensor denoted a clearly favourable cell attachment on HA coated sensor as a significantly higher signal of cell binding was detected. Moreover, traditional cell viability and proliferation tests showed increased activity with culture time indicating that cells were proliferating on HA coating. Cells show homogeneous distribution and proliferation along the HA surface between one and seven days with no significant mortality. Cells were flattened and spread on rough surfaces from the first day, with increasing cytoplasmatic extensions during the culture time.
Collapse
Affiliation(s)
- A M Vilardell
- Centre de Projecció Tèrmica (CPT), Department Ciència dels Materials i Enginyeria Metal lúrgica, Universitat de Barcelona Martí i Franquès 1, Barcelona E-08028, Spain.
| | - N Cinca
- Centre de Projecció Tèrmica (CPT), Department Ciència dels Materials i Enginyeria Metal lúrgica, Universitat de Barcelona Martí i Franquès 1, Barcelona E-08028, Spain.
| | - A Jokinen
- BioNavis Ltd., Hermiankatu 6-8H, 33720 Tampere , Finland.
| | - N Garcia-Giralt
- URFOA, IMIM (Institut Hospital del Mar d'Investigacions Mèdiques), RETICEF, Doctor Aiguader 80, Barcelona 08003, Spain.
| | - S Dosta
- Centre de Projecció Tèrmica (CPT), Department Ciència dels Materials i Enginyeria Metal lúrgica, Universitat de Barcelona Martí i Franquès 1, Barcelona E-08028, Spain.
| | - I G Cano
- Centre de Projecció Tèrmica (CPT), Department Ciència dels Materials i Enginyeria Metal lúrgica, Universitat de Barcelona Martí i Franquès 1, Barcelona E-08028, Spain.
| | - J M Guilemany
- Centre de Projecció Tèrmica (CPT), Department Ciència dels Materials i Enginyeria Metal lúrgica, Universitat de Barcelona Martí i Franquès 1, Barcelona E-08028, Spain.
| |
Collapse
|
39
|
Gao P, Zhang X, Wang H, Zhang Q, Li H, Li Y, Duan Y. Biocompatible and colloidally stabilized mPEG-PE/calcium phosphate hybrid nanoparticles loaded with siRNAs targeting tumors. Oncotarget 2016; 7:2855-66. [PMID: 26625203 PMCID: PMC4823076 DOI: 10.18632/oncotarget.6428] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022] Open
Abstract
Calcium phosphate nanoparticles are safe and effective delivery vehicles for small interfering RNA (siRNA), as a result of their excellent biocompatibility. In this work, mPEG-PE (polyethylene glycol-L-α-phosphatidylethanolamine) was synthesized and used to prepare nanoparticles composed of mPEG-PE and calcium phosphate for siRNA delivery. Calcium phosphate and mPEG-PE formed the stable hybrid nanoparticles through self-assembly resulting from electrostatic interaction in water. The average size of the hybrid nanoparticles was approximately 53.2 nm with a negative charge of approximately -16.7 mV, which was confirmed by dynamic light scattering (DLS) measurements. The nanoparticles exhibited excellent stability in serum and could protect siRNA from ribonuclease (RNase) degradation. The cellular internalization of siRNA-loaded nanoparticles was evaluated in SMMC-7721 cells using a laser scanning confocal microscope (CLSM) and flow cytometry. The hybrid nanoparticles could efficiently deliver siRNA to cells compared with free siRNA. Moreover, the in vivo distribution of Cy5-siRNA-loaded hybrid nanoparticles was observed after being injected into tumor-bearing nude mice. The nanoparticles concentrated in the tumor regions through an enhanced permeability and retention (EPR) effect based on the fluorescence intensities of tissue distribution. A safety evaluation of the nanoparticles was performed both in vitro and in vivo demonstrating that the hybrid nanoparticle delivery system had almost no toxicity. These results indicated that the mPEG-PE/CaP hybrid nanoparticles could be a stable, safe and promising siRNA nanocarrier for anticancer therapy.
Collapse
Affiliation(s)
- Pei Gao
- State Key Laboratory for Modification of Chemical Fibres and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Xiangyu Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibres and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qinghong Zhang
- State Key Laboratory for Modification of Chemical Fibres and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - He Li
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yaogang Li
- State Key Laboratory for Modification of Chemical Fibres and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| |
Collapse
|
40
|
Borges FA, Filho EDA, Miranda MCR, Dos Santos ML, Herculano RD, Guastaldi AC. Natural rubber latex coated with calcium phosphate for biomedical application. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:1256-68. [PMID: 26307406 DOI: 10.1080/09205063.2015.1086945] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Natural rubber latex (NRL) is a flexible biomembrane that possesses angiogenic properties and has recently been used for guided bone regeneration, enhancing healing without fibrous tissue, allergies or rejection. Calcium phosphate (Ca/P) ceramics have chemical, biological, and mechanical properties similar to mineral phase of bone, and ability to bond to the host tissue, although it can disperse from where it is applied. Therefore, to create a composite that could enhance the properties of both materials, NRL biomembranes were coated with Ca/P. NRL biomembranes were soaked in 1.5 times concentrated SBF solution for seven days, avoiding the use of high temperatures. SEM showed that Ca/P has been coated in NRL biomembrane, XRD showed low crystallinity and FTIR showed that is the carbonated type B. Furthermore, hemolysis of erythrocytes, quantified spectrophotometrically using materials (Ca/P, NRL, and NRL + Ca/P) showed no hemolytic effects up to 0.125 mg/mL (compounds and mixtures), indicating no detectable disturbance of the red blood cell membranes. The results show that the biomimetic is an appropriate method to coat NRL with Ca/P without using high temperatures, aiming a new biomembrane to improve guided bone regeneration.
Collapse
Affiliation(s)
- Felipe Azevedo Borges
- a Biochemistry & Chemistry Technology Department - IQ , São Paulo State University , Araraquara , SP , Brazil
| | - Edson de Almeida Filho
- b Physical Chemistry Department - IQ , São Paulo State University , Araraquara , SP , Brazil
| | - Matheus Carlos Romeiro Miranda
- a Biochemistry & Chemistry Technology Department - IQ , São Paulo State University , Araraquara , SP , Brazil.,c Bioprocess & Biotechnology Department - FCF , São Paulo State University , Araraquara , SP , Brazil
| | - Márcio Luiz Dos Santos
- b Physical Chemistry Department - IQ , São Paulo State University , Araraquara , SP , Brazil
| | | | | |
Collapse
|
41
|
Brasinika D, Tsigkou O, Tsetsekou A, Missirlis YF. Bioinspired synthesis of hydroxyapatite nanocrystals in the presence of collagen andl-arginine: Candidates for bone regeneration. J Biomed Mater Res B Appl Biomater 2015; 104:458-69. [DOI: 10.1002/jbm.b.33413] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/12/2015] [Accepted: 02/26/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Despoina Brasinika
- Section of Metallurgy and Materials Technology; School of Mining Engineering and Metallurgy; National Technical University of Athens; 15780 Athens Greece
| | - Olga Tsigkou
- Department of Mechanical and Aeronautical Engineering; Laboratory of Biomechanics and Biomedical Engineering; University of Patras; 26504 Rio Greece
| | - Athena Tsetsekou
- Section of Metallurgy and Materials Technology; School of Mining Engineering and Metallurgy; National Technical University of Athens; 15780 Athens Greece
| | - Yiannis F. Missirlis
- Department of Mechanical and Aeronautical Engineering; Laboratory of Biomechanics and Biomedical Engineering; University of Patras; 26504 Rio Greece
| |
Collapse
|
42
|
Qi C, Zhu YJ, Zhang YG, Jiang YY, Wu J, Chen F. Vesicle-like nanospheres of amorphous calcium phosphate: sonochemical synthesis using the adenosine 5′-triphosphate disodium salt and their application in pH-responsive drug delivery. J Mater Chem B 2015; 3:7347-7354. [DOI: 10.1039/c5tb01340b] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amorphous calcium phosphate vesicle-like nanospheres synthesized sonochemically using ATP can be used as pH-responsive drug nanocarriers.
Collapse
Affiliation(s)
- Chao Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Yong-Gang Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Ying-Ying Jiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Jin Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| |
Collapse
|
43
|
Ding GJ, Zhu YJ, Qi C, Sun TW, Wu J, Chen F. Amorphous calcium phosphate nanowires prepared using beta-glycerophosphate disodium salt as an organic phosphate source by a microwave-assisted hydrothermal method and adsorption of heavy metals in water treatment. RSC Adv 2015. [DOI: 10.1039/c5ra04624f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amorphous calcium phosphate nanowires were prepared using β-glycerophosphate disodium salt as the phosphate source by a microwave-assisted hydrothermal method.
Collapse
Affiliation(s)
- Guan-Jun Ding
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics, Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics, Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Chao Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics, Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Tuan-Wei Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics, Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Jin Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics, Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics, Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| |
Collapse
|
44
|
Ding GJ, Zhu YJ, Qi C, Lu BQ, Wu J, Chen F. Porous microspheres of amorphous calcium phosphate: block copolymer templated microwave-assisted hydrothermal synthesis and application in drug delivery. J Colloid Interface Sci 2014; 443:72-9. [PMID: 25535849 DOI: 10.1016/j.jcis.2014.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/30/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
Abstract
Amorphous calcium phosphate (ACP) microspheres with a porous and hollow structure have been prepared using an aqueous solution containing CaCl2 as a calcium source, adenosine triphosphate disodium salt (Na2ATP) as a phosphorus source in the presence of a block copolymer methoxyl poly(ethylene glycol)-block-poly(D,L-lactide) (mPEG-PLA) by the microwave-assisted hydrothermal method. The effects of microwave hydrothermal temperature and the concentrations of CaCl2 and Na2ATP on the crystal phase and morphology of the product are investigated. The as-prepared ACP porous hollow microspheres have a relatively high specific surface area of 232.9 m(2) g(-1) and an average pore size of 9.9 nm. A typical anticancer drug, docetaxel, is used to evaluate the drug loading ability and drug release behavior of ACP porous hollow microspheres in phosphate buffered saline (PBS) with different pH values of 4.5 and 7.4. The experiments reveal that the ACP porous hollow microspheres have a high drug loading capacity and favorable pH-responsive drug release property, and the ACP porous hollow microsphere drug delivery system shows a high ability to damage tumor cells. It is expected that the as-prepared ACP porous hollow microspheres are promising for the applications in various biomedical fields such as drug delivery.
Collapse
Affiliation(s)
- Guan-Jun Ding
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China.
| | - Chao Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Bing-Qiang Lu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Jin Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| | - Feng Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, PR China
| |
Collapse
|
45
|
Zhang F, Allen AJ, Levine LE, Vaudin MD, Skrtic D, Antonucci JM, Hoffman KM, Giuseppetti AA, Ilavsky J. Structural and dynamical studies of acid-mediated conversion in amorphous-calcium-phosphate based dental composites. Dent Mater 2014; 30:1113-25. [PMID: 25082155 DOI: 10.1016/j.dental.2014.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/06/2014] [Accepted: 07/07/2014] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To investigate the complex structural and dynamical conversion process of the amorphous-calcium-phosphate (ACP)-to-apatite transition in ACP based dental composite materials. METHODS Composite disks were prepared using zirconia hybridized ACP fillers (0.4 mass fraction) and photo-activated Bis-GMA/TEGDMA resin (0.6 mass fraction). We performed an investigation of the solution-mediated ACP-to-apatite conversion mechanism in controlled acidic aqueous environment with in situ ultra-small angle X-ray scattering based coherent X-ray photon correlation spectroscopy and ex situ X-ray diffraction, as well as other complementary techniques. RESULTS We established that the ACP-to-apatite conversion in ACP composites is a two-step process, owing to the sensitivity to local structural changes provided by coherent X-rays. Initially, ACP undergoes a local microstructural rearrangement without losing its amorphous character. We established the catalytic role of the acid and found the time scale of this rearrangement strongly depends on the pH of the solution, which agrees with previous findings about ACP without the polymer matrix being present. In the second step, ACP is converted to an apatitic form with the crystallinity of the formed crystallites being poor. Separately, we also confirmed that in the regular Zr-modified ACP the rate of ACP conversion to hydroxyapatite is slowed significantly compared to unmodified ACP, which is beneficial for targeted slow release of functional calcium and phosphate ions from dental composite materials. SIGNIFICANCE For the first time, we were able to follow the complete solution-mediated transition process from ACP to apatite in this class of dental composites in a controlled aqueous environment. A two-step process, suggested previously, was conclusively identified.
Collapse
Affiliation(s)
- Fan Zhang
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA.
| | - Andrew J Allen
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Lyle E Levine
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Mark D Vaudin
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Drago Skrtic
- Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD 20899, USA
| | - Joseph M Antonucci
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Kathleen M Hoffman
- Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD 20899, USA
| | - Anthony A Giuseppetti
- Volpe Research Center, American Dental Association Foundation, Gaithersburg, MD 20899, USA
| | - Jan Ilavsky
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| |
Collapse
|
46
|
Hu J, Zhou Y, Huang L, Liu J, Lu H. Effect of nano-hydroxyapatite coating on the osteoinductivity of porous biphasic calcium phosphate ceramics. BMC Musculoskelet Disord 2014; 15:114. [PMID: 24690170 PMCID: PMC3994218 DOI: 10.1186/1471-2474-15-114] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 03/05/2014] [Indexed: 12/14/2022] Open
Abstract
Background Porous biphasic calcium phosphate (BCP) ceramics exhibit good biocompatibility and bone conduction but are not inherently osteoinductive. To overcome this disadvantage, we coated conventional porous BCP ceramics with nano-hydroxyapatite (nHA). nHA was chosen as a coating material due to its high osteoinductive potential. Methods We used a hydrothermal deposition method to coat conventional porous BCP ceramics with nHA and assessed the effects of the coating on the physical and mechanical properties of the underlying BCP. Next, its effects on mesenchymal stem cell (MSC) attachment, proliferation, viability, and osteogenic differentiation were investigated. Results nHA formed a deposited layer on the BCP surface, and synthesized nHA had a rod-like shape with lengths ranging from ~50–200 nm and diameters from ~15–30 mm. The nHA coating did not significantly affect the density, porosity, flexural strength, or compressive strength of the underlying BCP (P > 0.1). Scanning electron microscopy showed MSC attachment to the scaffolds, with a healthy morphology and anchorage to nHA crystals via cytoplasmic processes. The densities of MSCs attached on BCP and nHA-coated BCP scaffolds were 62 ± 26 cells/mm2 and 63 ± 27 cells/mm2 (P > 0.1), respectively, after 1 day and 415 ± 62 cells/mm2 and 541 ± 35 cells/mm2 (P < 0.05) respectively, after 14 days. According to an MTT assay, MSC viability was higher on nHA-coated BCP scaffolds than on BCP scaffolds (P < 0.05). In addition, MSCs on nHA-coated BCP scaffolds produced more alkaline phosphatase, collagen type I, and osteocalcin than MSCs on BCP scaffolds (P < 0.05). Conclusions Our results demonstrate that BCP scaffolds coated with nHA were more conducive for MSC adhesion, proliferation, and osteogenic differentiation than conventional, uncoated BCP scaffolds, indicating that nHA coating can enhance the osteoinductive potential of BCP ceramics, making this material more suitable for applications in bone tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | - Hongbin Lu
- Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
47
|
Qi C, Zhu YJ, Chen F. Microwave hydrothermal transformation of amorphous calcium carbonate nanospheres and application in protein adsorption. ACS APPLIED MATERIALS & INTERFACES 2014; 6:4310-4320. [PMID: 24568728 DOI: 10.1021/am4060645] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Calcium carbonate and calcium phosphate are the main components of biominerals. Among all of the forms of biominerals, amorphous calcium carbonate (ACC) and amorphous calcium phosphate (ACP) are the most important forms because they play a pivotal role in the process of biomineralization and are the precursors to the crystalline polymorphs. In this work, we first synthesized ACC in vitro using adenosine 5'-triphosphate disodium salt (ATP) as the stabilizer and investigated the transformation of the ACC under microwave hydrothermal conditions, and ACC/ACP composite nanospheres and carbonated hydroxyapatite (CHA) nanospheres were successfully prepared. In this novel strategy, ATP has two main functions: it serves as the stabilizer for ACC and the phosphorus source for ACP and CHA. Most importantly, the morphology and the size of the ACC precursor can be well-preserved after microwave heating, so it provides a new method for the preparation of calcium phosphate nanostructured materials using phosphorus-containing biomolecule-stabilized ACC as the precursor. Furthermore, the as-prepared ACC/ACP composite nanospheres have excellent biocompatibility and high protein adsorption capacity, indicating that they are promising for applications in biomedical fields such as drug delivery and protein adsorption.
Collapse
Affiliation(s)
- Chao Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, P. R. China
| | | | | |
Collapse
|
48
|
In situ grafting polyethylene glycol chains onto amorphous calcium phosphate nanoparticles to improve the storage stability and organic solvent redispersibility. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.12.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Redispersible and stable amorphous calcium phosphate nanoparticles functionalized by an organic bisphosphate. CHINESE CHEM LETT 2014. [DOI: 10.1016/j.cclet.2013.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Yi D, Wu C, Ma B, Ji H, Zheng X, Chang J. Bioactive bredigite coating with improved bonding strength, rapid apatite mineralization and excellent cytocompatibility. J Biomater Appl 2013; 28:1343-53. [DOI: 10.1177/0885328213508165] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have shown that bredigite (Ca7MgSi4O16) bioceramics possessed excellent biocompatibility, apatite-mineralization ability and mechanical properties. In this paper, the bredigite coating on Ti-6Al-4 V substrate was prepared by plasma spraying technique. The main compositions of the coating were bredigite crystal phase with small parts of amorphous phases. The bonding strength of the coating to Ti-6Al-4 V substrate reached 49.8 MPa, which was significantly higher than that of hydroxyapatite coating and other silicate-based bioceramic coatings prepared by same method. After immersed in simulated body fluid for 2 days, a distinct apatite layer was deposited on the surface of bredigite coating, indicating that the prepared bredigite coating has excellent apatite-mineralization ability. The prepared bredigite coating supported the attachment and proliferation of rabbit bone marrow stem cells. The proliferation level of bone marrow stem cells was significantly higher than that on the hydroxyapatite coating. Our further study showed that the released SiO44– and Mg2+ ions from bredigite coating as well as the formed nano-apatite layer on the coating surface might mainly contribute to the improvement of cell proliferation. The results indicated that the bredigite coating may be applied on orthopedic implants due to its excellent bonding strength, apatite mineralization and cytocompatibility.
Collapse
Affiliation(s)
- Deliang Yi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Bing Ma
- School of Life Science, East China Normal University, Shanghai, China
| | - Heng Ji
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai, China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|