1
|
Liu J, Song R, Pan R, Yi W, Jin X, Song J, Cheng J, Zhang X, Su H. Extreme temperatures, PM 2.5 and trajectories of impaired thyroid hormone sensitivity: A longitudinal study of patients with schizophrenia. ENVIRONMENT INTERNATIONAL 2024; 191:108961. [PMID: 39173235 DOI: 10.1016/j.envint.2024.108961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND The climate change scenario has witnessed an increase in extreme temperature events (ETEs), including heat waves and cold spells, and a heightened occurrence of compounding with fine particulate matter (PM2.5). However, the impact of this phenomenon on the sensitivity to thyroid hormones (THs) in humans is unclear, especially in a group as specific as schizophrenia. METHODS A longitudinal study was constructed using longitudinal measurements of thyroid function in schizophrenia in the Anhui Mental Health Center. The latent growth mixture model was applied to assess the optimal trajectory of change in impaired THs sensitivity. We then used logistic regression to explore associations between heat waves, cold spells, and PM2.5 with impaired THs sensitivity trajectories in the total population and different gender and age subgroups. Furthermore, the effect of the frequency, intensity, and duration of ETEs in the above associations was explored, as well as an assessment of the interaction between ETEs and PM2.5. RESULTS Among 931 participants, we identified two classifications of trajectories of impaired THs sensitivity: "Low-stable" (n = 836, 89.80 %) and "Rise-slight down" (n = 95, 10.20 %). Logistic regression showed significant associations between each additional day of heat waves (≥3 days with temperature thresholds above the 95th percentile) and cold spells (≥3 days with temperature thresholds below the 5th percentile) and "Rise-slight down" trajectory, with odds ratios (95 % confidence intervals) of 1.06 (1.02, 1.10) and 1.19 (1.14, 1.24), respectively, and the strength of this association increased with the intensity and duration of ETEs. Subgroup analyses indicated that the association was more pronounced in males and the age group above 40 years. Furthermore, PM2.5 was found to interact with heat waves, with high concentrations exacerbating the effects of heat waves. CONCLUSIONS Our findings suggest that mitigating both ETEs and PM2.5 exposures may bring health co-benefits in preventing thyroid impairment in schizophrenia.
Collapse
Affiliation(s)
- Jintao Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Anhui Mental Health Center (Affiliated Psychological Hospital of Anhui Medical University), Hefei, Anhui, China
| | - Rong Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Anhui Mental Health Center (Affiliated Psychological Hospital of Anhui Medical University), Hefei, Anhui, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Anhui Mental Health Center (Affiliated Psychological Hospital of Anhui Medical University), Hefei, Anhui, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Anhui Mental Health Center (Affiliated Psychological Hospital of Anhui Medical University), Hefei, Anhui, China
| | - Xiaoyu Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Anhui Mental Health Center (Affiliated Psychological Hospital of Anhui Medical University), Hefei, Anhui, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Anhui Mental Health Center (Affiliated Psychological Hospital of Anhui Medical University), Hefei, Anhui, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Anhui Mental Health Center (Affiliated Psychological Hospital of Anhui Medical University), Hefei, Anhui, China
| | - Xulai Zhang
- Anhui Mental Health Center (Affiliated Psychological Hospital of Anhui Medical University), Hefei, Anhui, China.
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Center for Big Data and Population Health of IHM, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China; Anhui Mental Health Center (Affiliated Psychological Hospital of Anhui Medical University), Hefei, Anhui, China.
| |
Collapse
|
2
|
McInnis K, Haman F, Doucet É. Humans in the cold: Regulating energy balance. Obes Rev 2020; 21:e12978. [PMID: 31863637 DOI: 10.1111/obr.12978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/31/2022]
Abstract
For humans to maintain a stable core temperature in cold environments, an increase in energy expenditure (EE) is required. However, little is known about how cold stimulus impacts energy balance as a whole, as energy intake (EI) has been largely overlooked. This review focuses on the current state of knowledge regarding how cold exposure (CE) impacts both EE and EI, while highlighting key gaps and shortcomings in the literature. Animal models clearly reveal that CE produces large increases in EE, while decreasing environmental temperatures results in a significant negative dose-response effect in EI (r=-.787, P<.001), meaning animals eat more as temperature decreases. In humans, multiple methods are used to administer cold stimuli, which result in consistent yet quantitatively small increases in EE. However, only two studies have measured ad libitum food intake in combination with acute CE in humans. Chronic CE (i.e., cold acclimation) studies have been shown to produce minimal changes in body weight, with an average compensation of ~126%. Although more studies are required to investigate how cold impacts EI in humans, results presented in this review warrant caution before presenting or considering CE as a potential adjunct to weight loss strategies.
Collapse
Affiliation(s)
- Kurt McInnis
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - François Haman
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Éric Doucet
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| |
Collapse
|
3
|
Comparison of iodine status pre- and post-mandatory iodine fortification of bread in South Australia: a population study using newborn thyroid-stimulating hormone concentration as a marker. Public Health Nutr 2019; 22:3063-3072. [DOI: 10.1017/s1368980019001915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractObjective:The present study aimed to evaluate the effect of mandatory iodine fortification of bread on the iodine status of South Australian populations using newborn thyroid-stimulating hormone (TSH) concentration as a marker.Design:The study used an interrupted time-series design.Setting:TSH data collected between 2005 and 2016 (n 211 033) were extracted from the routine newborn screening programme in South Australia for analysis. Iodine deficiency is indicated when more than 3 % of newborns have TSH > 5 mIU/l.Participants:Newborns were classified into three groups: the pre-fortification group (those born before October 2009); the transition group (born between October 2009 and June 2010); and the post-fortification group (born after June 2010).Results:The percentage of newborns with TSH > 5 mIU/l was 5·1, 6·2 and 4·6 % in the pre-fortification, transition and post-fortification groups, respectively. Based on a segmented regression model, newborns in the post-fortification period had a 10 % lower risk of having TSH > 5 mIU/l than newborns in the pre-fortification group (incidence rate ratio (IRR) = 0·90; 95 % CI 0·87, 0·94), while newborns in the transitional period had a 22 % higher risk of having TSH > 5 mIU/l compared with newborns in the pre-fortification period (IRR = 1·22; 95 % CI 1·13, 1·31).Conclusions:Using TSH as a marker, South Australia would be classified as mild iodine deficiency post-fortification in contrast to iodine sufficiency using median urinary iodine concentration as a population marker. Re-evaluation of the current TSH criteria to define iodine status in populations is warranted in this context.
Collapse
|
4
|
Cakir I, Diaz-Martinez M, Lining Pan P, Welch EB, Patel S, Ghamari-Langroudi M. Leptin Receptor Signaling in Sim1-Expressing Neurons Regulates Body Temperature and Adaptive Thermogenesis. Endocrinology 2019; 160:863-879. [PMID: 30802281 PMCID: PMC6435012 DOI: 10.1210/en.2019-00062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 02/20/2019] [Indexed: 11/19/2022]
Abstract
Leptin signals to regulate food intake and energy expenditure under conditions of normative energy homeostasis. The central expression and function of leptin receptor B (LepRb) have been extensively studied during the past two decades; however, the mechanisms by which LepRb signaling dysregulation contributes to the pathophysiology of obesity remains unclear. The paraventricular nucleus of the hypothalamus (PVN) plays a crucial role in regulating energy balance as well as the neuroendocrine axes. The role of LepRb expression in the PVN in regard to the regulation of physiological function of leptin has been controversial. The single-minded homolog 1 gene (Sim1) is densely expressed in the PVN and in parts of the amygdala, making Sim1-Cre mice a useful model for examining molecular mechanisms regulating PVN function. In this study, we characterized the physiological role of LepRb in Sim1-expressing neurons using LepRb-floxed × Sim1-Cre mice. Sim1-specific LepRb-deficient mice were surprisingly hypophagic on regular chow but gained more weight upon exposure to a high-fat diet than did their control littermates. We show that Sim1-specific deletion of a single LepRb gene copy caused decreased surface and core body temperatures as well as decreased energy expenditure in ambient room temperatures in both female and male mice. Furthermore, cold-induced adaptive (nonshivering) thermogenesis is disrupted in homozygous knockout mice. A defective thermoregulatory response was associated with defective cold-induced upregulation of uncoupling protein 1 in brown adipose tissue and reduced serum T4. Our study provides novel functional evidence supporting LepRb signaling in Sim1 neurons in the regulation of body weight, core body temperature, and cold-induced adaptive thermogenesis.
Collapse
Affiliation(s)
- Isin Cakir
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Myriam Diaz-Martinez
- Vanderbilt University Institute of Imaging Science, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - E Brian Welch
- Vanderbilt University Institute of Imaging Science, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Sachin Patel
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Masoud Ghamari-Langroudi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
5
|
Laperrousaz E, Denis RG, Kassis N, Contreras C, López M, Luquet S, Cruciani-Guglielmacci C, Magnan C. Lipoprotein Lipase Expression in Hypothalamus Is Involved in the Central Regulation of Thermogenesis and the Response to Cold Exposure. Front Endocrinol (Lausanne) 2018; 9:103. [PMID: 29593657 PMCID: PMC5861133 DOI: 10.3389/fendo.2018.00103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/02/2018] [Indexed: 11/15/2022] Open
Abstract
Lipoprotein lipase (LPL) is expressed in different areas of the brain, including the hypothalamus and plays an important role in neural control of the energy balance, including feeding behavior and metabolic fluxes. This study tested the hypothesis that hypothalamic LPL participates in the control of body temperature. We first showed that cold exposure induces decreased activity and expression of LPL in the mouse hypothalamus. We then selectively deleted LPL in the mediobasal hypothalamus (MBH) through an adeno-associated virus approach in LPL-floxed mice and generated MBHΔ Lpl mice with 30-35% decrease in hypothalamic LPL activity. Results showed a decrease in body temperature in MBHΔ Lpl mice when compared with controls at 22°C. Exposure to cold (4°C for 4 h) decreased the body temperature of the control mice while that of the MBHΔ Lpl mice remained similar to that observed at 22°C. MBHΔ Lpl mice also showed increased energy expenditure during cold exposure, when compared to controls. Finally, the selective MBH deletion of LPL also increased the expression of the thermogenic PRMD16 and Dio2 in subcutaneous and perigonadal adipose tissues. Thus, the MBH LPL deletion seems to favor thermogenesis. These data demonstrate that for the first time hypothalamic LPL appears to function as a regulator of body temperature and cold-induced thermogenesis.
Collapse
Affiliation(s)
- Elise Laperrousaz
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Sorbonne Paris Cité, Université Denis Diderot, Paris, France
| | - Raphaël G Denis
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Sorbonne Paris Cité, Université Denis Diderot, Paris, France
| | - Nadim Kassis
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Sorbonne Paris Cité, Université Denis Diderot, Paris, France
| | - Cristina Contreras
- NeurObesity Group, Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CiMUS), University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, Spain
| | - Serge Luquet
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Sorbonne Paris Cité, Université Denis Diderot, Paris, France
| | - Céline Cruciani-Guglielmacci
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Sorbonne Paris Cité, Université Denis Diderot, Paris, France
| | - Christophe Magnan
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Sorbonne Paris Cité, Université Denis Diderot, Paris, France
| |
Collapse
|
6
|
Chatzitomaris A, Hoermann R, Midgley JE, Hering S, Urban A, Dietrich B, Abood A, Klein HH, Dietrich JW. Thyroid Allostasis-Adaptive Responses of Thyrotropic Feedback Control to Conditions of Strain, Stress, and Developmental Programming. Front Endocrinol (Lausanne) 2017; 8:163. [PMID: 28775711 PMCID: PMC5517413 DOI: 10.3389/fendo.2017.00163] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022] Open
Abstract
The hypothalamus-pituitary-thyroid feedback control is a dynamic, adaptive system. In situations of illness and deprivation of energy representing type 1 allostasis, the stress response operates to alter both its set point and peripheral transfer parameters. In contrast, type 2 allostatic load, typically effective in psychosocial stress, pregnancy, metabolic syndrome, and adaptation to cold, produces a nearly opposite phenotype of predictive plasticity. The non-thyroidal illness syndrome (NTIS) or thyroid allostasis in critical illness, tumors, uremia, and starvation (TACITUS), commonly observed in hospitalized patients, displays a historically well-studied pattern of allostatic thyroid response. This is characterized by decreased total and free thyroid hormone concentrations and varying levels of thyroid-stimulating hormone (TSH) ranging from decreased (in severe cases) to normal or even elevated (mainly in the recovery phase) TSH concentrations. An acute versus chronic stage (wasting syndrome) of TACITUS can be discerned. The two types differ in molecular mechanisms and prognosis. The acute adaptation of thyroid hormone metabolism to critical illness may prove beneficial to the organism, whereas the far more complex molecular alterations associated with chronic illness frequently lead to allostatic overload. The latter is associated with poor outcome, independently of the underlying disease. Adaptive responses of thyroid homeostasis extend to alterations in thyroid hormone concentrations during fetal life, periods of weight gain or loss, thermoregulation, physical exercise, and psychiatric diseases. The various forms of thyroid allostasis pose serious problems in differential diagnosis of thyroid disease. This review article provides an overview of physiological mechanisms as well as major diagnostic and therapeutic implications of thyroid allostasis under a variety of developmental and straining conditions.
Collapse
Affiliation(s)
- Apostolos Chatzitomaris
- Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, Bochum, Germany
- *Correspondence: Apostolos Chatzitomaris,
| | - Rudolf Hoermann
- Private Consultancy, Research and Development, Yandina, QLD, Australia
| | | | - Steffen Hering
- Department for Internal Medicine, Cardiology, Endocrinology, Diabetes and Medical Intensive Care Medicine, Krankenhaus Bietigheim-Vaihingen, Bietigheim-Bissingen, Germany
| | - Aline Urban
- Department for Anesthesiology, Intensive Care and Palliative Medicine, Eastern Allgäu-Kaufbeuren Hospitals, Kaufbeuren, Germany
| | | | - Assjana Abood
- Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, Bochum, Germany
| | - Harald H. Klein
- Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, Bochum, Germany
- Ruhr Center for Rare Diseases (CeSER), Ruhr University of Bochum and Witten/Herdecke University, Bochum, Germany
| | - Johannes W. Dietrich
- Medical Department I, Endocrinology and Diabetology, Bergmannsheil University Hospitals, Ruhr University of Bochum, Bochum, Germany
- Ruhr Center for Rare Diseases (CeSER), Ruhr University of Bochum and Witten/Herdecke University, Bochum, Germany
| |
Collapse
|
7
|
Angelier F, Parenteau C, Ruault S, Angelier N. Endocrine consequences of an acute stress under different thermal conditions: A study of corticosterone, prolactin, and thyroid hormones in the pigeon (Columbia livia). Comp Biochem Physiol A Mol Integr Physiol 2016; 196:38-45. [PMID: 26924044 DOI: 10.1016/j.cbpa.2016.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 12/01/2022]
Abstract
In the context of global change, the physiological and hormonal stress responses have received much attention because of their implications in terms of allostasis. However, most studies have focused on glucocorticoids only as the "common" response to stressors while neglecting other endocrine axes and hormones (e.g. prolactin, thyroid hormones) that play a crucial role in metabolic adjustments. Interestingly, the responsiveness of all these endocrine axes to stress may depend on the energetic context and this context-dependent stress response has been overlooked so far. In the wild, temperature can vary to a large extent within a short time window and ambient temperature may affect these metabolic-related endocrine axes, and potentially, their responsiveness to an acute stressor. Here, we explicitly tested this hypothesis by examining the effect of a standardized stress protocol on multiple hormonal responses in the rock pigeon (Columbia livia). We tested the effect of an acute restraint stress on (1) corticosterone levels, (2) prolactin levels, and (3) thyroid hormone levels (triiodothyronine, thyroxine) in pigeons that were held either at cool temperature (experimental birds) or at room temperature (control birds) during the stress protocol. Although we found a significant influence of restraint stress on most hormone levels (corticosterone, prolactin, and thyroxine), triiodothyronine levels were not affected by the restraint stress. This demonstrates that stressors can have significant impact on multiple endocrine mechanisms. Importantly, all of these hormonal responses to stress were not affected by temperature, demonstrating that the exposure to cold temperature does not affect the way these hormone levels change in response to handling stress. This suggests that some endocrine responses to temperature decreases may be overridden by the endocrine responses to an acute restraint stress.
Collapse
Affiliation(s)
- Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-Université de La Rochelle, UMR 7372, 79360 Villiers en Bois, France.
| | - Charline Parenteau
- Centre d'Etudes Biologiques de Chizé, CNRS-Université de La Rochelle, UMR 7372, 79360 Villiers en Bois, France
| | - Stéphanie Ruault
- Centre d'Etudes Biologiques de Chizé, CNRS-Université de La Rochelle, UMR 7372, 79360 Villiers en Bois, France
| | - Nicole Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-Université de La Rochelle, UMR 7372, 79360 Villiers en Bois, France
| |
Collapse
|
8
|
Poly(ADP-ribosyl)ation of proteins and germ cell development in hyperthyroid rat testes. Mol Cell Biochem 2008; 323:119-29. [PMID: 19082780 DOI: 10.1007/s11010-008-9970-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 11/13/2008] [Indexed: 10/21/2022]
Abstract
The effect of increased serum levels of thyroid hormone (triiodothyronine, T3) on young rat testis spermatogenesis was studied by analysing molecular and morphological parameters. Hyperthyroidism was induced by either T3-treatment or 2- and 10-day cold exposure. The poly(ADP-ribosyl)ation of proteins catalysed by poly(ADP-ribose) polymerase, which is particularly active at specific stages of rat spermatogenesis, was analysed as molecular index of DNA damage and cell stress. Poly(ADP-ribose) polymerase activity rose after both T3-treatment and 2- and 10-day cold exposure, with a trend of 10-day cold-exposed rats towards control values. In all hyperthyroid rats poly(ADP-ribose) turnover, as a contribution of both poly(ADP-ribose) polymerase and poly(ADP-ribose) glycohydrolase), was enhanced with respect to euthyroid animals. Poly(ADP-ribosyl)ation of proteins occurred with long and branched polymers suggesting an increased involvement of the modification system in DNA repair. Morphological changes of germ tissue were observed in hyperthyroid rats, mainly a high reduction of mature cells in the seminiferous tubule, and evidence of germ cell apoptosis was obtained by TUNEL method. In control animals germ cell apoptosis was within physiological levels. Conversely, in hyperthyroid rats a dramatic increase in the number of TUNEL-positive cells (some spermatogonia and numerous primary spermatocytes) was found, even though the increase was lower in 10-day than in 2-day cold-exposed animals.
Collapse
|
9
|
Hersteinsson P, Georgsson G, Adalsteinsson S, Gunnarsson E. The naked fox: hypotrichosis in arctic foxes (Alopex lagopus). Polar Biol 2007. [DOI: 10.1007/s00300-007-0264-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Young JB, Bürgi-Saville ME, Bürgi U, Landsberg L. Sympathetic nervous system activity in rat thyroid: potential role in goitrogenesis. Am J Physiol Endocrinol Metab 2005; 288:E861-7. [PMID: 15585591 DOI: 10.1152/ajpendo.00292.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of sympathetic innervation in regulation of thyroid function is incompletely understood. We, therefore, carried out studies in rats utilizing techniques of norepinephrine turnover to assess thyroid sympathetic activity in vivo. Thyroidal sympathetic activity was increased 95% by exposure to cold (4 degrees C), 42% by chronic ingestion of an iodine-deficient diet, and 32% in rats fed a goitrogenic diet (low-iodine diet supplemented with propylthiouracil). In addition, fasting for 2 days reduced sympathetic nervous system activity in thyroid by 38%. Thyroid growth and 125I uptake were also compared in intact and decentralized hemithyroids obtained from animals subjected to unilateral superior cervical ganglion decentralization. Unilateral superior cervical ganglion decentralization led to a reduction in thyroid weight, in 125I uptake by thyroid tissue, and in TSH-induced stimulation of 125I uptake in decentralized hemithyroids. These results suggest that sympathetic activity in thyroid contributes to gland enlargement and may modulate tissue responsiveness to TSH.
Collapse
Affiliation(s)
- James B Young
- Department of Medicine, Feinberg School of Medicine, Northwestern Univiversity, Chicago, Ward 4-161, 303 East Chicago Ave., Chicago, IL 60611-3008, USA.
| | | | | | | |
Collapse
|
11
|
Zaninovich AA, Rebagliati I, Raices M, Ricci C, Hagmuller K. Mitochondrial respiration in muscle and liver from cold-acclimated hypothyroid rats. J Appl Physiol (1985) 2003; 95:1584-90. [PMID: 12832427 DOI: 10.1152/japplphysiol.00363.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of long-term cold exposure on muscle and liver mitochondrial oxygen consumption in hypothyroid and normal rats were examined. Thyroid ablation was performed after 8-wk acclimation to 4 degrees C. Hypothyroid and normal controls remained in the cold for an additional 8 wk. At the end of 16-wk cold exposure, all hypothyroid rats were alive and normothermic and had normal body weight. At ambient temperature (24 degrees C), thyroid ablation induced a 65% fall in muscle mitochondrial oxygen consumption, which was reversed by thyroxine but not by norepinephrine administration. After cold acclimation was reached, suppression of thyroid function reduced muscle mitochondrial respiration by 30%, but the hypothyroid values remained about threefold higher than those in hypothyroid muscle in the warm. Blockade of beta- and alpha1-adrenergic receptors in both hypothyroid and normal rats produced hypothermia in vivo and a fall in muscle, liver, and brown adipose tissue mitochondria respiration in vitro. In normal rats, cold acclimation enhanced muscle respiration by 35%, in liver 18%, and in brown adipose tissue 450% over values in the warm. The results demonstrate that thyroid hormones, in the presence of norepinephrine, are major determinants of thermogenic activity in muscle and liver of cold-acclimated rats. After thyroid ablation, cold-induced nonshivering thermogenesis replaced 3,5,3'-triiodothyronine-induced thermogenesis, and normal body temperature was maintained.
Collapse
Affiliation(s)
- Angel A Zaninovich
- Hospital de Clínicas, Nuclear Medicine Center, Av. Córdoba 2351, 1120 Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
12
|
Chen WH, Sun LT, Tsai CL, Song YL, Chang CF. Cold-stress induced the modulation of catecholamines, cortisol, immunoglobulin M, and leukocyte phagocytosis in tilapia. Gen Comp Endocrinol 2002; 126:90-100. [PMID: 11944970 DOI: 10.1006/gcen.2001.7772] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The concentrations of norepinephrine in hypothalamus and norepinephrine and epinephrine in head kidney were significantly decreased in treated tilapia (Oreochromis aureus) during the time course of cold exposure (12 degrees) as compared to the control (25 degrees). The elevation of norepinephrine and epinephrine in plasma was detected earlier than that of cortisol in cold-treated tilapia. Phagocytic activity of leukocytes and the levels of plasma immunoglobulin M (IgM) were depressed in cold-treated tilapia as compared to the control group. Handling stress in the control (25 degrees) also resulted in increased plasma cortisol and decreased plasma IgM levels but not phagocytic activity. In vitro cortisol suppressed leukocyte phagocytosis in a dose (10(-12) to 10(-4) M)-dependent manner. Adrenergic agonist (phenylephrine and isoproterenol) had a significant suppression of phagocytosis only at the highest dose (10(-4) M). No effect on phagocytosis was detected in the treatment with norepinephrine and epinephrine. A combination of cortisol and isoproterenol (0.1 mM) had an additive effect in the suppression of phagocytosis. It is concluded that the cold stress modulated the changes of catecholamines and cortisol and further depressed phagocytic activity and antibody levels in tilapia. Cortisol could play a main and important role in the down-regulation of phagocytic activity. Adrenergic agonists also could interact with cortisol to further suppress immunity in tilapia.
Collapse
Affiliation(s)
- Wen-Hsiung Chen
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Republic of China
| | | | | | | | | |
Collapse
|
13
|
Kowalczyk P, Sotowska-Brochocka J. Changes in thyroid hormones in the serum and the thyroid gland of hibernating frogs, Rana temporaria L. Gen Comp Endocrinol 2000; 119:172-80. [PMID: 10936037 DOI: 10.1006/gcen.2000.7510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hypothalamo-pituitary-gonadal axis spontaneously activates in hibernating frogs, Rana temporaria, under constant conditions (0-4 degrees, darkness). The hypothesis that the spontaneous hibernatory activation involves other regulatory processes preparing the frogs for breeding and posthibernatory activity was tested. The serum concentrations and glandular contents of thyroid hormones (THs) were determined during hibernation. It was shown that (i) in both sexes, serum thyroxine and triiodothyronine levels significantly increased in the middle of January (week 13/14, between day 92 and 98 of hibernation); (ii) the peak of THs blood concentration was accompanied by a slow decrease of free forms of THs and the bound forms of both hormones dropped rapidly over this period; (iii) after a decrease on day 111, the low level of serum THs (but higher than before the peak) was sustained to the end of hibernation; (iv) the thyroid content of free THs significantly rose after their "surge" into the blood, reached maximal values in the middle of February, and remained at this level to the end of hibernation (last week of March); (v) in spring, after spawning, the THs levels in glands and in serum were much lower than those at the end of hibernation or were not detectable; and (vi) the results were confirmed during the second season, when the material in the period of expected elevation of serum THs was collected every other day.
Collapse
Affiliation(s)
- P Kowalczyk
- Department of Vertebrate Physiology, Warsaw University, Al. Zwirki i Wigury 93, Warsaw, 02-089, Poland.
| | | |
Collapse
|
14
|
Beard JL, Brigham DE, Kelley SK, Green MH. Plasma thyroid hormone kinetics are altered in iron-deficient rats. J Nutr 1998; 128:1401-8. [PMID: 9687562 DOI: 10.1093/jn/128.8.1401] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Iron deficiency anemia is associated with lower plasma thyroid hormone concentrations in rodents and, in some studies, in humans. The objective of this project was to determine if plasma triiodothyronine (T3) and thyroxine (T4) kinetics were affected by iron deficiency. Studies were done at a near-thermoneutral temperature (30 degrees C), and a cool environmental temperature (15 degrees C), to determine plasma T3 and T4 kinetics as a function of dietary iron intake and environmental need for the hormones. Weanling male Sprague-Dawley rats were fed either a low Fe diet [iron-deficient group (ID), <5 microg/g Fe] or a control diet [control group (CN), 35 microg/g Fe] at each temperature for 7 wk before the tracer kinetic studies. An additional ID group receiving exogenous thyroid hormone replacement was also used at the cooler temperature. For T4, the disposal rate was >60% lower (89 +/- 6 vs. 256 +/- 53 pmol/h, P < 0.001) in ID rats than in controls at 30 degrees C, and approximately 40% lower (192 +/- 27 vs. 372 +/- 26 pmol/h, P < 0.01) in ID rats at 15 degrees C. Exogenous T4 replacement in a cohort of ID rats at 15 degrees C normalized the T4 concentration and the disposal rate. For T3, the disposal rate was significantly lower in ID rats in a cool environment (92 +/- 11 vs. 129 +/- 11 pmol/h, P < 0.01); thyroxine replacement again normalized the T3 disposal rate (126 +/- 12 pmol/h). Neither liver nor brown fat thyroxine 5'-deiodinase activities were sufficiently different to explain the lower T3 disposal rates in iron deficiency. Thus, plasma thyroid hormone kinetics in iron deficiency anemia are corrected by simply providing more thyroxine. This suggests a central regulatory defect as the primary lesion and not peripheral alterations.
Collapse
Affiliation(s)
- J L Beard
- Nutrition Department, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
15
|
Abstract
Poor temperature regulation in both human and animal models has been associated with iron deficiency anemia. The review examines the evidence for causality in both animals and humans, as well as provides an overview of temperature regulation in homeotherms. A number of investigations conclude that anemia is a central component of the inability of iron-deficient individuals to temperature regulate when they are cold stressed. This is apparently due to effects both on heat production and heat loss rates. The former is related to poor thyroid function in iron deficiency and the latter to the competing demands for tissue oxygenation vs. decreased flood flow to minimize heat losses to the environment. Future research needs are outlined that require integration of endocrinology, physiology, and nutrition disciplines.
Collapse
|
16
|
|
17
|
de Martino Rosaroll P, Venditti P, Di Meo S, De Leo T. Effect of cold exposure on electrophysiological properties of rat heart. EXPERIENTIA 1996; 52:577-82. [PMID: 8698093 DOI: 10.1007/bf01969732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Male rats exposed to the cold (4 degrees C) for five or ten days exhibited modifications in their thyroid state, as documented by increases in serum thyroid hormone levels, to which differently graded modifications of heart weight/body weight ratio, heart rate, and resting metabolic rate were associated. The values of the above mentioned thyroid state indicators returned to those of the control when the animals, kept at cold for ten days, were re-exposed to room temperature (24 degrees C) for an additional 10 days. The configuration of action potentials, recorded in vitro at 26 degrees C from fibres of anterior papillary muscles, was different in control rats of different age and was affected by prolonged cold exposure. In fact, the action potential duration (APD) increased after ten days of cold exposure. In the re-exposed group the APD was not different from that of the controls. Such a pattern was not significantly modified when the stimulation frequency increased from 1 Hz to 5 Hz. The above results suggest that in cold exposure, as in experimental hyperthyroidism, thyroid hormone might exert a cardiac chronotropic effect by modifying heart electrophysiological properties. Thus thyroid hormone should play a basic role during the exposure to cold environment, stimulating the body metabolism and increasing heart rate as a response to the requirement for greater tissue perfusion.
Collapse
|
18
|
Rauhala P, Idänpään-Heikkilä JJ, Lang A, Tuominen RK, Männistö PT. Cold exposure attenuates effects of secretagogues on serum prolactin and growth hormone levels in male rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1995; 268:E758-65. [PMID: 7733277 DOI: 10.1152/ajpendo.1995.268.4.e758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The stimulatory effect of morphine, dexmedetomidine (an alpha 2-adrenoceptor agonist), 1-(3-chlorophenyl)-piperazine (m-CPP, a 5-HT1B agonist), U-50488H (a kappa-opioid receptor agonist), pimozide (a dopamine antagonist), and restraint stress on prolactin and growth hormone (GH) secretion was compared during cold exposure (4 degrees C) and under basal conditions (30 degrees C) in male rats. Rectal temperature was also measured. The stimulatory effect of morphine, dexmedetomidine, m-CPP, and partially U-50488H on prolactin secretion was attenuated in rats kept at 4 degrees C. Cold exposure did not abolish prolactin release induced by pimozide and restraint stress. Cold exposure also antagonized the effect of morphine and dexmedetomidine on GH secretion. The stimulatory effect of morphine on prolactin and GH secretion was restored in the warm environment despite the sustained hypothermia. Cold exposure blocked the stimulatory effect of morphine on prolactin secretion in rats that were tolerant to the hypothermic effect of morphine. Thus hypothermia caused by morphine, dexmedetomidine, and m-CPP during cold exposure is not the sole factor in the antagonistic effect of cold. We suggest that cold exposure releases some compound(s) modulating hypothalamic neural pathways.
Collapse
Affiliation(s)
- P Rauhala
- Department of Pharmacology and Toxicology, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
19
|
Reed HL, Quesada M, Hesslink RL, D'Alesandro MM, Hays MT, Christopherson RJ, Turner BV, Young BA. Changes in serum triiodothyronine kinetics and hepatic type I 5'-deiodinase activity of cold-exposed swine. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 266:E786-95. [PMID: 8203516 DOI: 10.1152/ajpendo.1994.266.5.e786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Swine exposed to cold air have elevated serum values of total triiodothyronine (TT3) and free T3 (FT3). To characterize the mechanism of these increases, we measured in vivo kinetic parameters after a bolus intravenous injection of 125I-labeled T3 by use of both multicompartmental (MC) and noncompartmental (NC) methods and in vitro hepatic type I iodothyronine 5'-deiodinase (5'D-I) activity. Ten ad libitum-fed 5-mo-old boars were divided into two groups, living for 25 days in either control (22 degrees C) or cold (4 degrees C) conditions. Cold-exposed animals consumed 50% more calories than control animals but showed no difference in total body weight, percent body fat, or plasma volume. Thyroid gland weight was increased 86% (P < 0.004), as was serum total thyroxine (TT4) (48%), free T4 (FT4) (61%), TT3 (103%), and FT3 (107%), whereas serum thyrotropin (TSH) was not different in cold-exposed compared with control animals. The T3 plasma clearance rate was similar between groups when both MC and NC techniques were used. However, T3 plasma appearance rate (PAR) was elevated in cold-treated animals 110% over controls by MC (P < 0.001) and 83% by NC methods (P < 0.001). The animal total hormone pool of T3 was increased 76% (MC) and 53% (NC) compared with control (P < 0.01). The Michaelis constant of hepatic 5'D-I was not different between groups, but the maximum enzyme velocity increased (106%; P < 0.02). Therefore cold exposure for 25 days is associated with increased energy intake, thyroid size, T3 PAR, and hepatic 5'D-I activity with little change in serum TSH.
Collapse
Affiliation(s)
- H L Reed
- Department of Medicine, Endocrine Service, Madigan Army Medical Center, Tacoma, Washington 98431-5000
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Shiota M, Fujimoto Y, Inagami M, Hiramatsu M, Moriyama M, Kimura K, Ohta M, Sugano T. Adaptive changes in zonation for gluconeogenic capacity in liver lobules of cold-exposed rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 265:E559-64. [PMID: 8238330 DOI: 10.1152/ajpendo.1993.265.4.e559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The rate of gluconeogenesis from lactate increased in perfused livers after exposure of rats to cold for 5 days, and it returned to the control rate after 20 days [M. Shiota, T. Tanaka, and T. Sugano. Am. J. Physiol. 249 (Endocrinol. Metab. 12): E281-E286, 1985.]. The relationship between the increased gluconeogenic activity and its zonal distribution in liver lobules was studied in cold-exposed rats that had been starved for 24 h by examination of preparations enriched for periportal hepatocytes (PP-H) and for perivenous hepatocytes (PV-H), which had been isolated by the digitonin-collagenase perfusion technique. In the control group, the rate of gluconeogenesis from lactate or alanine was three times higher in PP-H than in PV-H. The rate of gluconeogenesis from these substrates in PP-H was not changed by exposure of rats to cold. The rates of PV-H increased to the level in PP-H after 5 days of exposure of rats to cold and then returned to the control rates after 20 days. The rate of gluconeogenesis from fructose was not altered in either preparation of cells by cold treatment of rats. The change in gluconeogenic capacity in PV-H caused by exposure of rats to cold was unrelated to changes in the activity of the malate-aspartate shuttle and of pyruvate kinase. The increased capacity in mitochondrial respiration was observed in both preparations of cells by cold treatment of rats for 5 days. The activity of phosphoenolpyruvate carboxykinase was higher in PP-H than in PV-H in the control group.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Shiota
- Department of Veterinary Physiology, College of Agriculture, University of Osaka Prefecture, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Whitaker EM, Hussain SH, Hervey GR, Tobin G, Rayfield KM. Is increased metabolism in rats in the cold mediated by the thyroid? J Physiol 1990; 431:543-56. [PMID: 2100316 PMCID: PMC1181790 DOI: 10.1113/jphysiol.1990.sp018346] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
1. In the rat variation of metabolic heat production is the principal effector of thermoregulation. There is a continuous relationship between ambient temperature and metabolic rat over the whole range of tolerable environmental temperature. The mechanism that controls metabolic rate is unknown; this paper reports an attempt to test whether thyroid hormones provide the controlling pathway. 2. First, the changes in metabolic rate and in the plasma concentrations of thyroid stimulating hormone (TSH), triiodothyronine (T3) and thyroxine (T4) were measured in rats living in a controlled environment, first at 23 degrees C and then at 6 degrees C. Metabolic rate increased from approximately 290 to 470 kJ day-1 when the temperature was lowered, a factor of ca 1.6, and the diurnal rhythm disappeared. The concentration of TSH increased from approximately 320 to 450 ng ml-1 (with loss of diurnal rhythm) and of T3 from ca 0.7 to 1.0 nmol l-1, a factor of ca 1.4 in each case. T4 concentration did not change. 3. Next, a dose schedule of T3 was found that, when injected I.V. via indwelling jugular cannulae in the same rats in an environment at 23 degrees C, maintained an increase in T3 concentration rather greater than had been found at 6 degrees C. 4. This dose of T3, given to the same rats at 23 degrees C, did not affect metabolic rate (or its diurnal pattern). 5. It is therefore unlikely that the increase in T3 concentration evoked the increase in metabolic rate when ambient temperature was changed from 23 to 6 degrees C; and therefore that the thyroid controls variation of metabolic rate in 'everyday' thermoregulation in the rat.
Collapse
|
22
|
Pittman QJ, Thornhill JA. Neuropeptide Mechanisms Affecting Temperature Control. BEHAVIORAL ASPECTS OF NEUROENDOCRINOLOGY 1990. [DOI: 10.1007/978-3-642-75837-9_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|