1
|
Nuclear matrix associated RNAs in posterior silk glands show developmental dynamics in Bombyx mori in 5th instar larvae. BMC Res Notes 2022; 15:68. [PMID: 35183251 PMCID: PMC8858543 DOI: 10.1186/s13104-022-05951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 02/03/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES The nuclear matrix maintains and regulates chromatin structure. RNA is an integral component of the nuclear matrix and is essential to its structural maintenance. Bombyx mori is a major economic contributor in the sericulture industry and produces fibroin-the most important silk protein in its posterior silk glands during 5th instar larval stage. The present study investigates the composition of nuclear matrix RNA prepared from the posterior silk glands of Bombyx mori during fifth instar larval stage where maximum silk production occurs. The datasets from which the analysis is carried out are part of data note titled "Nuclear matrix associated RNA datasets of posterior silk glands of Bombyx mori during 5th instar larval development". RESULTS The results showed significant enrichment of nuclear matrix RNA from day 1, to day 5 and day 7. Nuclear RNA showed increased abundance from day 1 to day 5 and day 7. Nuclear matrix RNA exhibited repetitive RNA sequences, of which UGUCC and GCUGGU were the most abundant. Genes involved in metabolic pathways showed significant enrichment correlating with silk production. These results emphasize the role of dynamic, repetitive DNA transcripts in chromatin architecture and further reveal the close association between the nuclear matrix and gene expression.
Collapse
|
2
|
Maekawa Y, Yamazaki K, Ihara M, Nagase K, Kanazawa H. Simultaneous analysis of multiple oligonucleotides by temperature-responsive chromatography using a poly(N-isopropylacrylamide)-based stationary phase. Anal Bioanal Chem 2020; 412:5341-5351. [PMID: 32529301 PMCID: PMC7387324 DOI: 10.1007/s00216-020-02749-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 12/25/2022]
Abstract
Oligonucleotide therapeutics have contributed remarkably to healthcare, being well suited for the treatment of intractable diseases that are difficult to approach using conventional drug modalities. However, as common techniques of oligonucleotide analysis rely on reversed-phase or ion-exchange liquid chromatography and thus employ toxic organic solvents and/or ion-pairing reagents, better alternatives are highly sought after. Poly(N-isopropylacrylamide) (PNIPAAm) is widely used in temperature-responsive chromatography (TRC), which relies on column temperature variation to control the physical properties of the stationary phase and, unlike conventional reversed-phase liquid chromatography, avoids the use of toxic organic solvents and complicated gradient methods. Herein, PNIPAAm copolymer hydrogel-modified silica beads were used for the simultaneous analysis of multiple synthetic oligonucleotides by TRC to recognize differences in the length of single nucleotides, single bases, and the number of phosphorothioated sites. Temperature-responsive elution was observed in all cases. Each separation of all combinations of multiple oligonucleotides was better at higher temperatures above the lower critical solution temperature and was performed without the use of organic solvents and gradient methods. In the case of multiply phosphorothioated oligonucleotides, good separation was achieved using an aqueous solvent and isocratic elution in the absence of ion-pairing reagents. Thus, the developed procedure was concluded to be well suited for oligonucleotide analysis. Graphical abstract ![]()
Collapse
Affiliation(s)
- Yutaro Maekawa
- Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kaichi Yamazaki
- Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Miwa Ihara
- Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kenichi Nagase
- Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Hideko Kanazawa
- Faculty of Pharmacy, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| |
Collapse
|
3
|
Ohkubo A, Muto K, Watanabe R, Nishizawa S, Hisamatsu S, Kanamori T. Chemical synthesis and properties of modified oligonucleotides containing 5'-amino-5'-deoxy-5'-hydroxymethylthymidine residues. Bioorg Med Chem 2020; 28:115407. [PMID: 32156498 DOI: 10.1016/j.bmc.2020.115407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/13/2022]
Abstract
In this study, we designed 5'-amino-5'-deoxy-5'-hydroxymethylthymidine as a new oligonucleotide modification with an amino group directly attached to the 5'-carbon atom. We successfully synthesized two isomers of 5'-amino-5'-deoxy-5'-hydroxymethylthymidine via dihydroxylation of the 5'-vinyl group incorporated into 5'-deoxy-5'-C-methenylthymidine derivative. Moreover, it was found that the nuclease resistance, binding selectivity to single-stranded RNA, and triplex-forming ability of an oligonucleotide containing RT residues of the new compound were higher than those of the unmodified oligonucleotide.
Collapse
Affiliation(s)
- Akihiro Ohkubo
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan.
| | - Kousuke Muto
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | - Rintaro Watanabe
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | - Shuhei Nishizawa
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | - Shugo Hisamatsu
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | - Takashi Kanamori
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| |
Collapse
|
4
|
Wang L, Jiang S, Deng Z, Dedon PC, Chen S. DNA phosphorothioate modification-a new multi-functional epigenetic system in bacteria. FEMS Microbiol Rev 2019; 43:109-122. [PMID: 30289455 PMCID: PMC6435447 DOI: 10.1093/femsre/fuy036] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
Synthetic phosphorothioate (PT) internucleotide linkages, in which a nonbridging oxygen is replaced by a sulphur atom, share similar physical and chemical properties with phosphodiesters but confer enhanced nuclease tolerance on DNA/RNA, making PTs a valuable biochemical and pharmacological tool. Interestingly, PT modification was recently found to occur naturally in bacteria in a sequence-selective and RP configuration-specific manner. This oxygen-sulphur swap is catalysed by the gene products of dndABCDE, which constitute a defence barrier with DndFGH in some bacterial strains that can distinguish and attack non-PT-modified foreign DNA, resembling DNA methylation-based restriction-modification (R-M) systems. Despite their similar defensive mechanisms, PT- and methylation-based R-M systems have evolved to target different consensus contexts in the host cell because when they share the same recognition sequences, the protective function of each can be impeded. The redox and nucleophilic properties of PT sulphur render PT modification a versatile player in the maintenance of cellular redox homeostasis, epigenetic regulation and environmental fitness. The widespread presence of dnd systems is considered a consequence of extensive horizontal gene transfer, whereas the lability of PT during oxidative stress and the susceptibility of PT to PT-dependent endonucleases provide possible explanations for the ubiquitous but sporadic distribution of PT modification in the bacterial world.
Collapse
Affiliation(s)
- Lianrong Wang
- Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuhan 430071, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| | - Susu Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Masschusetts Avenue, Cambridge, Massachusetts, USA
| | - Shi Chen
- Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuhan 430071, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| |
Collapse
|
5
|
Mesyl phosphoramidate antisense oligonucleotides as an alternative to phosphorothioates with improved biochemical and biological properties. Proc Natl Acad Sci U S A 2019; 116:1229-1234. [PMID: 30622178 PMCID: PMC6347720 DOI: 10.1073/pnas.1813376116] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Forty years of research have shown that antisense oligonucleotides have great potential to target mRNAs of disease-associated genes and noncoding RNAs. Among the vast number of oligonucleotide backbone modifications, phosphorothioate modification is the most widely used in research and the clinic. However, along with their merits are notable drawbacks of phosphorothioate oligonucleotides, including decreased binding affinity to RNA, reduced specificity, and increased toxicity. Here we report the synthesis and in vitro evaluation of the DNA analog mesyl phosphoramidate oligonucleotide. This oligonucleotide type recruits RNase H and shows significant advantages over phosphorothioate in RNA affinity, nuclease stability, and specificity in inhibiting key processes of carcinogenesis. Thus, mesyl phosphoramidate oligonucleotides may be an attractive alternative to phosphorothioates. Here we describe a DNA analog in which the mesyl (methanesulfonyl) phosphoramidate group is substituted for the natural phosphodiester group at each internucleotidic position. The oligomers show significant advantages over the often-used DNA phosphorothioates in RNA-binding affinity, nuclease stability, and specificity of their antisense action, which involves activation of cellular RNase H enzyme for hybridization-directed RNA cleavage. Biological activity of the oligonucleotide analog was demonstrated with respect to pro-oncogenic miR-21. A 22-nt anti–miR-21 mesyl phosphoramidate oligodeoxynucleotide specifically decreased the miR-21 level in melanoma B16 cells, induced apoptosis, reduced proliferation, and impeded migration of tumor cells, showing superiority over isosequential phosphorothioate oligodeoxynucleotide in the specificity of its biological effect. Lower overall toxicity compared with phosphorothioate and more efficient activation of RNase H are the key advantages of mesyl phosphoramidate oligonucleotides, which may represent a promising group of antisense therapeutic agents.
Collapse
|
6
|
Abstract
Antisense oligodeoxynucleotides are a promising new class of antiviral agent. Because they bind in a sequence-specific manner to complementary regions of mRNA, oligos can inhibit gene expression in a sequence-specific manner. The ‘antisense’ approach has been used successfully to block cellular expression and replication of several viruses including Human Immunodeficiency Virus-1 (HIV-1), and Herpes Simplex Virus (HSV). However, the antiviral effect of oligodeoxynucleotides is not limited to sequence-specific inhibition of gene expression. Non sequence-specific effects are frequently observed, presumably as a result of their properties as polyanions. Occasionally (e.g. for HIV-1) these non sequence-specific effects are also therapeutic. The prospects for antisense oligodeoxynucleotide therapy for viral disease are discussed.
Collapse
Affiliation(s)
- J. L. Tonkinson
- Department of Medicine, Columbia University, College of Physicians and Surgeons, 630 W. 168 St., New York, NY 10032, USA
| | - C. A. Stein
- Department of Medicine, Columbia University, College of Physicians and Surgeons, 630 W. 168 St., New York, NY 10032, USA
| |
Collapse
|
7
|
Lavigne C, Yelle J, Sauve G, Thierry AR. Is antisense an appropriate nomenclature or design for oligodeoxynucleotides aimed at the inhibition of HIV-1 replication? AAPS PHARMSCI 2015. [DOI: 10.1208/ps040207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
The anti-inflammatory activity of a novel fused-cyclopentenone phosphonate and its potential in the local treatment of experimental colitis. Gastroenterol Res Pract 2015; 2015:939483. [PMID: 25949237 PMCID: PMC4408640 DOI: 10.1155/2015/939483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/15/2015] [Accepted: 03/23/2015] [Indexed: 11/17/2022] Open
Abstract
A novel fused-cyclopentenone phosphonate compound, namely, diethyl 3-nonyl-5-oxo-3,5,6,6a-tetrahydro-1H-cyclopenta[c]furan-4-ylphosphonate (P-5), was prepared and tested in vitro (LPS-activated macrophages) for its cytotoxicity and anti-inflammatory activity and in vivo (DNBS induced rat model) for its potential to ameliorate induced colitis. Specifically, the competence of P-5 to reduce TNFα, IL-6, INFγ, MCP-1, IL-1α, MIP-1α, and RANTES in LPS-activated macrophages was measured. Experimental colitis was quantified in the rat model, macroscopically and by measuring the activity of tissue MPO and iNOS and levels of TNFα and IL-1β. It was found that P-5 decreased the levels of TNFα and the tested proinflammatory cytokines and chemokines in LPS-activated macrophages. In the colitis-induced rat model, P-5 was effective locally in reducing mucosal inflammation. This activity was equal to the activity of local treatment with 5-aminosalicylic acid. It is speculated that P-5 may be used for the local treatment of IBD (e.g., with the aid of colon-specific drug platforms). Its mode of action involves inhibition of the phosphorylation of MAPK ERK but not of p38 and had no effect on IκBα.
Collapse
|
9
|
Dugovic B, Wagner M, Leumann CJ. Structure/affinity studies in the bicyclo-DNA series: Synthesis and properties of oligonucleotides containing bc(en)-T and iso-tricyclo-T nucleosides. Beilstein J Org Chem 2014; 10:1840-7. [PMID: 25161745 PMCID: PMC4142851 DOI: 10.3762/bjoc.10.194] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/22/2014] [Indexed: 12/11/2022] Open
Abstract
We present the synthesis of the two novel nucleosides iso-tc-T and bc(en)-T, belonging to the bicyclo-/tricyclo-DNA molecular platform. In both modifications the torsion around C6'-C7' within the carbocyclic ring is planarized by either the presence of a C6'-C7' double bond or a cyclopropane ring. Structural analysis of these two nucleosides by X-ray analysis reveals a clear preference of torsion angle γ for the gauche orientation with the furanose ring in a near perfect 2'-endo conformation. Both modifications were incorporated into oligodeoxynucleotides and their thermal melting behavior with DNA and RNA as complements was assessed. We found that the iso-tc-T modification was significantly more destabilizing in duplex formation compared to the bc(en)-T modification. In addition, duplexes with complementary RNA were less stable as compared to duplexes with DNA as complement. A structure/affinity analysis, including the already known bc-T and tc-T modifications, does not lead to a clear correlation of the orientation of torsion angle γ with DNA or RNA affinity. There is, however, some correlation between furanose conformation (N- or S-type) and affinity in the sense that a preference for a 3'-endo like conformation is associated with a preference for RNA as complement. As a general rule it appears that T m data of single modifications with nucleosides of the bicyclo-/tricyclo-DNA platform within deoxyoligonucleotides are not predictive for the stability of fully modified oligonucleotides.
Collapse
Affiliation(s)
- Branislav Dugovic
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Michael Wagner
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Christian J Leumann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
10
|
Hagihara S, Kusano S, Lin WC, Chao XG, Hori T, Imoto S, Nagatsugi F. Production of truncated protein by the crosslink formation of mRNA with 2'-OMe oligoribonucleotide containing 2-amino-6-vinylpurine. Bioorg Med Chem Lett 2012; 22:3870-2. [PMID: 22613261 DOI: 10.1016/j.bmcl.2012.04.123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 04/27/2012] [Accepted: 04/28/2012] [Indexed: 12/29/2022]
Abstract
The development of convenient methods for controlling the protein expression is an important challenge in the postgenomic era. We applied the crosslink forming oligonucleotide (CFO) as a terminator of the ribosomal translation. In this study, we demonstrated that the improved reactivity of our CFO under physiological conditions enabled the sequence-specific introduction of a steric block for a ribosome on mRNAs. In vitro and in cell translation experiments revealed that the crosslinked mRNA can produce the truncated proteins in which the translation terminates at the desired position.
Collapse
Affiliation(s)
- Shinya Hagihara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Miyagi 980-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Chemical modification of triplex-forming oligonucleotide to promote pyrimidine motif triplex formation at physiological pH. Biochimie 2012; 94:1032-40. [PMID: 22245184 DOI: 10.1016/j.biochi.2012.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 01/04/2012] [Indexed: 11/21/2022]
Abstract
Extreme instability of pyrimidine motif triplex DNA at physiological pH severely limits its use in wide variety of potential applications, such as artificial regulation of gene expression, mapping of genomic DNA, and gene-targeted mutagenesis in vivo. Stabilization of pyrimidine motif triplex at physiological pH is, therefore, crucial for improving its potential in various triplex-formation-based strategies in vivo. To this end, we investigated the effect of 3'-amino-2'-O,4'-C-methylene bridged nucleic acid modification of triplex-forming oligonucleotide (TFO), in which 2'-O and 4'-C of the sugar moiety were bridged with the methylene chain and 3'-O was replaced by 3'-NH, on pyrimidine motif triplex formation at physiological pH. The modification not only significantly increased the thermal stability of the triplex but also increased the binding constant of triplex formation about 15-fold. The increased magnitude of the binding constant was not significantly changed when the number and position of the modification in TFO changed. The consideration of the observed thermodynamic parameters suggested that the increased rigidity of the modified TFO in the free state resulting from the bridging of different positions of the sugar moiety with an alkyl chain and the increased hydration of the modified TFO in the free state caused by the introduction of polar nitrogen atoms may significantly increase the binding constant at physiological pH. The study on the TFO viability in human serum showed that the modification significantly increased the resistance of TFO against nuclease degradation. This study presents an effective approach for designing novel chemically modified TFOs with higher binding affinity of triplex formation at physiological pH and higher nuclease resistance under physiological condition, which may eventually lead to progress in various triplex-formation-based strategies in vivo.
Collapse
|
12
|
Torigoe H, Rahman SMA, Takuma H, Sato N, Imanishi T, Obika S, Sasaki K. Interrupted 2'-o,4'-C-aminomethylene bridged nucleic acid modification enhances pyrimidine motif triplex-forming ability and nuclease resistance under physiological condition. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2011; 30:63-81. [PMID: 21259164 DOI: 10.1080/15257770.2010.543118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Due to instability of pyrimidine motif triplex DNA at physiological pH, triplex stabilization at physiological pH is crucial in improving its potential in various triplex formation-based strategies in vivo, such as regulation of gene expression, mapping of genomic DNA, and gene-targeted mutagenesis. To this end, we investigated the effect of our previously reported chemical modification, 2'-O,4'-C-aminomethylene bridged nucleic acid (2',4'- BNA(NC)) modification, introduced into interrupted and continuous positions of triplex-forming oligonucleotide (TFO) on pyrimidine motif triplex formation at physiological pH. The interrupted 2',4'-BNA(NC) modifications of TFO increased the binding constant of the triplex formation at physiological pH by more than 10-fold, and significantly increased the nuclease resistance of TFO. On the other hand, the continuous 2',4'-BNA(NC) modification of TFO showed lower ability to promote the triplex formation at physiological pH than the interrupted 2',4'-BNA(NC) modifications of TFO, and did not significantly change the nuclease resistance of TFO. Selection of the interruptedly 2',4'-BNA(NC)-modified positions in TFO was more favorable for achieving the higher binding affinity of the pyrimidine motif triplex formation at physiological pH and the higher nuclease resistance of TFO than that of the continuously 2',4'-BNA(NC)-modified positions in TFO. We conclude that the interrupted 2',4'-BNA(NC) modification of TFO could be a key chemical modification to enhance pyrimidine motif triplex-forming ability and nuclease resistance under physiological condition, and may eventually lead to progress in various triplex formation-based strategies in vivo.
Collapse
Affiliation(s)
- Hidetaka Torigoe
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Torigoe H, Rahman SMA, Takuma H, Sato N, Imanishi T, Obika S, Sasaki K. 2'-O,4'-C-aminomethylene-bridged nucleic acid modification with enhancement of nuclease resistance promotes pyrimidine motif triplex nucleic acid formation at physiological pH. Chemistry 2011; 17:2742-51. [PMID: 21264967 DOI: 10.1002/chem.201002745] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/28/2010] [Indexed: 11/08/2022]
Abstract
Due to the instability of pyrimidine motif triplex DNA at physiological pH, triplex stabilization at physiological pH is crucial in improving its potential in various triplex-formation-based strategies in vivo, such as gene expression regulation, genomic DNA mapping, and gene-targeted mutagenesis. To this end, we investigated the thermodynamic and kinetic effects of our previously reported chemical modification, 2'-O,4'-C-aminomethylene-bridged nucleic acid (2',4'-BNA(NC)) modification of triplex-forming oligonucleotide (TFO), on triplex formation at physiological pH. The thermodynamic analyses indicated that the 2',4'-BNA(NC) modification of TFO increased the binding constant of the triplex formation at physiological pH by more than 10-fold. The number and position of the 2',4'-BNA(NC) modification in TFO did not significantly affect the magnitude of the increase in the binding constant. The consideration of the observed thermodynamic parameters suggested that the increased rigidity and the increased degree of hydration of the 2',4'-BNA(NC)-modified TFO in the free state relative to the unmodified TFO may enable the significant increase in the binding constant. Kinetic data demonstrated that the observed increase in the binding constant by the 2',4'-BNA(NC) modification resulted mainly from the considerable decrease in the dissociation rate constant. The TFO stability in human serum showed that the 2',4'-BNA(NC) modification significantly increased the nuclease resistance of TFO. Our results support the idea that the 2',4'-BNA(NC) modification of TFO could be a key chemical modification to achieve higher binding affinity and higher nuclease resistance in the triplex formation under physiological conditions, and may lead to progress in various triplex-formation-based strategies in vivo.
Collapse
Affiliation(s)
- Hidetaka Torigoe
- Departmentof Applied Chemistry, Faculty of Science, Tokyo University of Science, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Morvan F, Debart F, Vasseur JJ. From anionic to cationic alpha-anomeric oligodeoxynucleotides. Chem Biodivers 2010; 7:494-535. [PMID: 20232324 DOI: 10.1002/cbdv.200900220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- François Morvan
- Institut des Biomolécules Max Mousseron, UMR 5247 CNRS, Université Montpellier 1 and Université Montpellier 2, Place Eugène Bataillon, CC1704, FR-34095 Montpellier cedex 5, France
| | | | | |
Collapse
|
15
|
Li L, Su Y, Zhao C, Zhao H, Liu G, Wang J, Xu Q. The role of Ret receptor tyrosine kinase in dopaminergic neuron development. Neuroscience 2006; 142:391-400. [PMID: 16879925 DOI: 10.1016/j.neuroscience.2006.06.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 06/06/2006] [Accepted: 06/09/2006] [Indexed: 01/25/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) is one of the most potent trophic factors identified for promoting survival and function of dopaminergic (DA) neurons in the midbrain. Ret, a member of the receptor tyrosine kinase (RTK) superfamily transduces GDNF signaling. The role of Ret in the development of DA neurons is not clear however. Here we demonstrate the involvement of Ret in the DA neuron development both in vitro and in vivo. The dopamine transporter (DAT) gene was clearly induced in rat embryonic neural precursors that had been transfected with Ret. Temporary blockade of Ret expression in embryos using Ret antisense oligonucleotides (Ret-AS-ODN) in vivo led to reduced striatal DA content and a decrease of tyrosine hydroxylase (TH) positive fibers in the striatum. Additionally, some DA neurons in the substantia nigra (SN) underwent apoptotic cell death following the Ret-AS-ODN treatment. Taken together, the data suggest that normal function of Ret is required in vivo for the maturation of DA neurons, in particular for cell survival and fiber innervation. We further demonstrated Ret-induced expression of DAT in vitro.
Collapse
Affiliation(s)
- L Li
- Beijing Institute for Neuroscience and Beijing Center of Neural Regeneration and Repairing, Capital University of Medical Sciences, Beijing, China 100069
| | | | | | | | | | | | | |
Collapse
|
16
|
Tromp JM, Schürch S. Gas-phase dissociation of oligoribonucleotides and their analogs studied by electrospray ionization tandem mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:1262-8. [PMID: 15978835 DOI: 10.1016/j.jasms.2005.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 03/22/2005] [Accepted: 03/23/2005] [Indexed: 05/03/2023]
Abstract
Oligoribonucleotides (RNA) and modified oligonucleotides were subjected to low-energy collision-induced dissociation in a hybrid quadrupole time-of-flight mass spectrometer to investigate their fragmentation pathways. Only very restricted data are available on gas-phase dissociation of oligoribonucleotides and their analogs and the fundamental mechanistic aspects still need to be defined to develop mass spectrometry-based protocols for sequence identification. Such methods are needed, because chemically modified oligonucleotides can not be submitted to standard sequencing protocols. In contrast to the dissociation of DNA, dissociation of RNA was found to be independent of nucleobase loss and it is characterized by cleavage of the 5'-P-O bond, resulting in the formation of c- and their complementary y-type ions. To evaluate the influence of different 2'-substituents, several modified tetraribonucleotides were analyzed. Oligoribonucleotides incorporating a 2'-methoxy-ribose or a 2'-fluoro-ribose show fragmentation that does not exhibit any preferred dissociation pathway because all different types of fragment ions are generated with comparable abundance. To analyze the role of the nucleobases in the fragmentation of the phosphodiester backbone, an oligonucleotide lacking the nucleobase at one position has been studied. Experiments indicated that the dissociation mechanism of RNA is not influenced by the nucleobase, thus, supporting a mechanism where dissociation is initiated by formation of an intramolecular cyclic transition state with the 2'-hydroxyl proton bridged to the 5'-phosphate oxygen.
Collapse
Affiliation(s)
- Jan M Tromp
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | | |
Collapse
|
17
|
Abstract
Hepatitis C virus (HCV) has infected millions of people worldwide and has emerged as a global health crisis. The currently available therapy is interferon (IFN) either alone or in combination with ribavirin. However, the disappointing efficacy of IFN has led to the considerable need for improved treatments and a number of new therapies are under evaluation in clinical trials. These include pegylated IFNs, which have altered physiochemical characteristics allowing once-weekly dosing. Combination of pegylated IFN with ribavirin should further improve sustained response rates. However, not all patients are successfully treated with IFNs, particularly those infected with genotype 1 of the virus, and it is likely that potent, specific drugs will be required. The majority of new approaches currently trying to combat this viral disease are aimed at inhibition of viral targets. Most effort has been directed towards inhibition of the NS3 serine protease, and potent inhibitors have now been described. However, a clinical candidate is yet to emerge against this difficult target. Considerable work by leading researchers has provided crystal structures of the key replicative enzymes, NS3 protease, NS3 helicase, NS5B polymerase and full-length NS3 protease-helicase, and there is much hope that such structural information will bear fruit. More recently, inhibition of host targets, particularly inosine monophosphate dehydrogenase (IMPDH), has become of interest and there are on-going clinical trials with such inhibitors. Research aimed at novel treatments for HCV disease is gathering pace and very recent developments in cell-based assay systems can only hasten the discovery of improved therapies.
Collapse
Affiliation(s)
- B W Dymock
- Roche Discovery Welwyn, Broadwater Road, Welwyn Garden City, Herts, AL7 3AY, UK.
| |
Collapse
|
18
|
Affiliation(s)
- C F Bennett
- ISIS Pharmaceuticals, 2280 Faraday Ave., Carlsbad, CA 92008, USA.
| |
Collapse
|
19
|
Mizu M, Koumoto K, Anada T, Karinaga R, Kimura T, Nagasaki T, Shinkai S, Sakurai K. Enhancement of the Antisense Effect of Polysaccharide–Polynucleotide Complexes by Preventing the Antisense Oligonucleotide from Binding to Proteins in the Culture Medium. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2004. [DOI: 10.1246/bcsj.77.1101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Benimetskaya L, Stein CA. Antisense therapy: recent advances and relevance to prostate cancer. ACTA ACUST UNITED AC 2004; 1:20-30. [PMID: 15046709 DOI: 10.3816/cgc.2002.n.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Currently employed treatment options for patients with advanced and metastatic cancer such as surgery, radiation, hormone therapy, and chemotherapy are limited. In particular, the well known limitations of chemotherapy are at least in part due to a lack of specificity. The activation of dominant oncogenes and inactivation of tumor suppressor genes may represent novel targets for cancer therapy. Antisense therapy has been widely used to specifically and selectively inhibit the expression of selected genes at the messenger RNA level. Combinations of antisense oligonucleotides with chemotherapeutic agents may offer important advantages in cancer treatment. Several antisense drugs, especially oblimersen (G3139), have shown interesting results in experiments in animals, and have entered clinical trials. However, control oligonucleotides must be carefully chosen to separate antisense effects from the many potential nonspecific effects of oligonucleotides. This review summarizes the advantages and limitations of antisense therapy and its use in the treatment of androgen-independent prostate cancer.
Collapse
Affiliation(s)
- Luba Benimetskaya
- Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
21
|
Nakamura K, Kadotani Y, Ushigome H, Akioka K, Okamoto M, Ohmori Y, Yaoi T, Fushiki S, Yoshimura R, Yoshimura N. Antisense oligonucleotide for tissue factor inhibits hepatic ischemic reperfusion injury. Biochem Biophys Res Commun 2002; 297:433-41. [PMID: 12270110 DOI: 10.1016/s0006-291x(02)02024-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Tissue factor (TF) is an initiation factor for blood coagulation and its expression is induced on endothelial cells during inflammatory or immune responses. We designed an antisense oligodeoxynucleotide (AS-1/TF) for rat TF and studied its effect on hepatic ischemic reperfusion injury. AS-1/TF was delivered intravenously to Lewis rats. After 10 h, hepatic artery and portal vein were partially clamped. Livers were reperfused after 180 min and harvested. TF expression was studied using immunohistochemical staining. One of 10 rats survived in a 5-day survival rate and TF was strongly stained on endothelial cells in non-treatment group. However, by treatment with AS-1/TF, six of seven survived and TF staining was significantly reduced. Furthermore, we observed that fluorescein-labeled AS-1/TF was absorbed into endothelial cells. These results suggest that AS-1/TF can strongly suppress the expression of TF and thereby inhibit ischemic reperfusion injury to the rat liver.
Collapse
Affiliation(s)
- Kenji Nakamura
- Department of Organ Transplant and Endocrine Surgery, Research Institute for Neurological Diseases and Geriatrics, Kyoto Prefectural University of Medicine, 465 Hirokoji, Kawaramachi, Kamigyo-ku, Kyoto City, Kyoto 602-8566, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Park Y, Chang YS, Lee SW, Cho SY, Kim YK, Min KU, Kim YY, Cho SH, Sung YC. The enhanced effect of a hexameric deoxyriboguanosine run conjugation to CpG oligodeoxynucleotides on protection against allergic asthma. J Allergy Clin Immunol 2001; 108:570-6. [PMID: 11590383 DOI: 10.1067/mai.2001.118517] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oligodeoxynucleotides containing a CpG motif (CpG ODNs), as potent inducers of T(H)1 immunity, are considered promising candidates for immune modulation in asthma. We have previously demonstrated that conjugation of a hexameric deoxyriboguanosine run to the 3' terminus (3' dG(6)-run) of phosphodiester (PE) CpG ODNs enhanced their immuno-stimulatory activities in vitro. OBJECTIVE This study aimed to evaluate the effect of a 3' dG(6)-run conjugation to PE or phosphorothioate (PS) CpG ODNs on protection against murine allergic asthma in vivo. METHODS Balb/c mice were sensitized to ovalbumin by intraperitoneal injection with or without CpG ODNs (PS CpG ODNs, PE CpG ODNs, and those with 3' dG(6)-run) and subsequently challenged with ovalbumin. We evaluated airway hyperresponsiveness, eosinophil proportion in bronchoalveolar lavage fluid, airway inflammation, and ovalbumin-specific antibody responses. RESULTS The conjugation of a 3' dG(6)-run to PE CpG ODNs enhanced the production of IFN-gamma from ovalbumin-specific T(H) cells and prevented the development of asthma in terms of airway hyperresponsiveness, airway eosinophilia, and ovalbumin-specific IgE responses; these effects were comparable to those of PS CpG ODNs. Enhanced effects of the 3' dG(6)-run were also observed in PS CpG ODNs, though they were lower than those in PE CpG ODNs. CONCLUSION This study suggests that conjugation of a 3' dG(6)-run to CpG ODNs might provide an effective method for immune modulation of allergic asthma.
Collapse
Affiliation(s)
- Y Park
- National Laboratory of DNA Medicine, Division of Molecular and Life Sciences, Pohang University of Science and Technology, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Haar PJ, Stewart JE, Gillies GT, Prabhu SS, Broaddus WC. Quantitative three-dimensional analysis and diffusion modeling of oligonucleotide concentrations after direct intraparenchymal brain infusion. IEEE Trans Biomed Eng 2001; 48:560-9. [PMID: 11341530 DOI: 10.1109/10.918595] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We compared quantitative experimental results on the diffusion of 35S-labeled phosphorothioate oligonucleotide (PS-ODN) after intraparenchymal infusion in rat brain, with the distributions predicted by Fick's second law of diffusion. Fischer 344 rats underwent identical intracerebral infusions of 36S-PS-ODN. After 0, 5, 11, 23, and 47 h, groups of animals were sacrificed and sequential brain cryosections subjected to autoradiography. The resulting experimental data were compared to the predicted distributions, for estimation of the apparent free diffusion coefficient, D*. Volumes of distribution and total content of 36 S-PS-ODN in the parenchyma were also computed, to monitor loss of total material. The values for D* were within the expected range for the 21-mer PS-ODN used, but a progressive decrease in D* over time was noted. The model requires D* to remain constant and, thus, does not adequately explain the spread of 35S-PS-ODN following infusion. The progressive slowing of spread over time suggests that at later time points, 35S-PS-ODN may be fixed by tissue binding or cellular uptake in the brain. Loss of material via vascular and CSF clearance may also contribute to the lack of fit. Our results highlight issues to be addressed in the modeling and experimental design of the intraparenchymal infusion process.
Collapse
Affiliation(s)
- P J Haar
- Division of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, West Hospital, Richmond 23298, USA
| | | | | | | | | |
Collapse
|
24
|
Saito N, Sasaki T, Furuse M, Arakawa K, Shimada K. Effect of AVT antisense oligodeoxynucleotides on AVT release induced by hypertonic stimulation in chicks. Comp Biochem Physiol A Mol Integr Physiol 2001; 128:147-53. [PMID: 11137447 DOI: 10.1016/s1095-6433(00)00290-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In birds, arginine vasotocin (AVT) and mesotocin (MT) are the neurohypophyseal hormones. AVT is known to be an avian antidiuretic hormone and is released from the neurohypophysis by dehydration or hyperosmotic stimulation. The purpose of this study was to determine whether the mechanism of AVT synthesis is related to the mechanism of hormone release from the neurohypophysis. Four-day-old chicks received an AVT antisense oligodeoxynucleotide (ODN) injection into the cerebral ventricle (icv). Following antisense administration, the chicks received hypertonic saline stimulation. Plasma levels of AVT and MT were measured by radioimmunoassays. In control birds, a hypertonic saline injection resulted in the increase of plasma AVT level. The administration of a high dose (50 microg) of antisense ODN inhibited the increase of plasma AVT level induced by the hypertonic saline stimulation. Plasma levels of MT did not change with the administration of hypertonic saline or antisense ODN. These results suggest that the mechanisms that regulate the secretion of AVT from the neurohypophysis may be coupled to the mechanisms that regulate the synthesis of AVT.
Collapse
Affiliation(s)
- N Saito
- Laboratory of Animal Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, 464-8601, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
25
|
Liang H, Reich CF, Pisetsky DS, Lipsky PE. The role of cell surface receptors in the activation of human B cells by phosphorothioate oligonucleotides. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1438-45. [PMID: 10903748 DOI: 10.4049/jimmunol.165.3.1438] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphorothioate oligodeoxynucleotides (sODN) containing the CpG motif or TCG repeats induce T cell-independent polyclonal activation of human B cells. To elucidate the mechanism of this response, the role of cell surface receptors was investigated. Sepharose beads coated with stimulatory but not nonstimulatory sODNs induced B cell proliferation comparably with soluble sODNs. The B cell stimulatory activity of Sepharose-bound sODN did not result from free sODN released from the beads since media incubated with coated beads were inactive. Using FITC-labeled sODNs as probes, binding to human B cells could be detected by flow cytometry. Binding was rapid, saturable, initially temperature independent, but with a rapid off-rate. Competition studies indicated that both stimulatory sODNs and minimally stimulatory sODNs bound to the same receptor. By contrast, phosphodiester oligonucleotides with the same nucleotide sequence as sODNs and bacterial DNA inhibited the binding of sODNs to B cells minimally. Charge appeared to contribute to the binding of sODNs to B cells since binding of sODNs was competitively inhibited by negatively charged molecules, including fucoidan, poly I, and polyvinyl sulfate. These data indicate that human B cells bind sODNs by a receptor-mediated mechanism that is necessary but not sufficient for polyclonal activation.
Collapse
Affiliation(s)
- H Liang
- Harold C. Simmons Arthritis Research Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | | | | | | |
Collapse
|
26
|
Miyashita T, Yamada K, Kondo K, Mori K, Shinozuka K. Investigation of a facile synthetic method for phosphorothioate dimer synthons in oligonucleotide phosphorothioates synthesis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2000; 19:955-62. [PMID: 10893714 DOI: 10.1080/15257770008033035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A facile synthetic method of a phosphorothioate dimer block was investigated. Dinucleoside phosphite triester intermediates were obtained in one-pot synthesis by the coupling of a protected nucleoside bearing free 5'-OH and a protected nucleoside bearing free 3'-OH in the presence of phosphorous trichloride (PCl3) and 1,2,4-triazole. The intermediates were easily sulfurized to afford the desired phosphorothioate dimer blocks in 33-64% overall yields.
Collapse
Affiliation(s)
- T Miyashita
- Chemistry Lab., Yamasa Corporation, Chiba, Japan.
| | | | | | | | | |
Collapse
|
27
|
Benimetskaya L, Tonkinson J, Stein CA. Determination of cellular internalization of fluoresceinated oligonucleotides. Methods Enzymol 1999; 313:287-97. [PMID: 10595362 DOI: 10.1016/s0076-6879(00)13018-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Hélin V, Gottikh M, Mishal Z, Subra F, Malvy C, Lavignon M. Cell cycle-dependent distribution and specific inhibitory effect of vectorized antisense oligonucleotides in cell culture. Biochem Pharmacol 1999; 58:95-107. [PMID: 10403523 DOI: 10.1016/s0006-2952(99)00083-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Factors limiting the use of antisense phosphodiester oligodeoxynucleotides (ODNs) as therapeutic agents are inefficient cellular uptake and intracellular transport to RNA target. To overcome these obstacles, ODN carriers have been developed, but the intracellular fate of ODNs is controversial and strongly depends on the means of vectorization. Polyamidoamine dendrimers are non-linear polycationic cascade polymers that are able to bind ODNs electrostatically. These complexes have been demonstrated to protect phosphodiester ODNs from nuclease degradation and also to increase their cellular uptake and pharmacological effectiveness. We studied the intracellular distribution of a fluorescein isothiocyanate-labeled ODN vectorized by a dendrimer vector and found that intracellular ODN distribution was dependent on the phase of the cell cycle, with a nuclear localization predominantly in the G2/M phase. In addition, in order to evaluate the relevance of ODN vectors in enhancing the inhibition of the targeted genes' expression, we developed a rapid screening system which measures the transient expression of two reporter genes, one used as target, the other as control and vice versa. This system was validated through investigating the effect of the dendrimer vector on ODN biological activity. Antisense sequence-specific inhibition of more than 70% of one reporter gene was obtained with a chimeric ODN containing four phosphorothioate groups, two at each end.
Collapse
Affiliation(s)
- V Hélin
- Laboratoire de Biochimie-Enzymologie, UMR 8532, Institut Gustave-Roussy, Villejuif, France.
| | | | | | | | | | | |
Collapse
|
29
|
Hélin V, Gottikh M, Mishal Z, Subra F, Malvy C, Lavignon M. Uptake and intracellular distribution of oligonucleotides vectorized by a PAMAM dendrimer. NUCLEOSIDES & NUCLEOTIDES 1999; 18:1721-2. [PMID: 10474256 DOI: 10.1080/07328319908044833] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We studied the uptake and intracellular distribution of an FITC labelled phosphodiester oligodeoxynucleotide (ODN) vectorized by a dendrimeric structure in cell culture.
Collapse
Affiliation(s)
- V Hélin
- UMR 1772, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | |
Collapse
|
30
|
Miyashita T, Mori K, Shinozuka K. Facile Synthesis of a Phosphotriester Intermediates for Solution-Phase Preparation of Oligonucleotide Phosphorothioates. CHEM LETT 1999. [DOI: 10.1246/cl.1999.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
31
|
Lapatschek MS, Gilbert RL, Wagner H, Miethke T. Activation of macrophages and B lymphocytes by an oligodeoxynucleotide derived from an acutely pathogenic simian immunodeficiency virus. ANTISENSE & NUCLEIC ACID DRUG DEVELOPMENT 1998; 8:357-70. [PMID: 9826263 DOI: 10.1089/oli.1.1998.8.357] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Certain CpG-containing DNA sequences from bacteria, viruses, or invertebrates elicit responses in the vertebrate innate immune system. These responses also account for many nonspecific effects of oligodeoxynucleotides used for antisense approaches. Here we describe a sequence from an acutely pathogenic simian immunodeficiency virus (SIV) that induces release of cytokines from macrophages and B lymphocyte proliferation. Furthermore, several similar sequences in other immunodeficiency viruses were found that also activate macrophages. These results led to the question if CpG-containing DNA, which is thought to play an immunostimulatory role in bacterial infections, has a similar role in infections by immunodeficiency viruses.
Collapse
Affiliation(s)
- M S Lapatschek
- Institute of Medical Microbiology, Immunology and Hygiene of the Technical University of Munich, Germany
| | | | | | | |
Collapse
|
32
|
Hoque AM, Papapetropoulos A, Venema RC, Catravas JD, Fuchs LC. Effects of antisense oligonucleotide to iNOS on hemodynamic and vascular changes induced by LPS. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:H1078-83. [PMID: 9724316 DOI: 10.1152/ajpheart.1998.275.3.h1078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lipopolysaccharide (LPS) causes impaired vascular contractility proposed to be mediated by induction of nitric oxide synthase (iNOS). Antisense (AS) oligonucleotide inhibits the translation of target mRNA into functional proteins. We hypothesize that in vivo pretreatment with AS oligonucleotide targeted to iNOS mRNA can prevent LPS-induced hyporeactivity to norepinephrine (NE). Three groups of conscious male Wistar rats received one of the following: saline, AS, or mismatch (MM) oligonucleotide at 0.4 mg/kg iv at 12 and 24 h before LPS (5 mg/kg iv). The fourth group received saline only. Mean arterial pressure (MAP) and heart rate (HR) were continuously recorded before and 6 h after LPS or saline administration. Aorta, lung lavage, and lung tissue were collected for determination of iNOS protein expression and NOS activity. Small mesenteric arteries ( approximately 250 micron) were isolated, denuded of endothelium, and maintained at a constant intraluminal pressure of 40 mmHg for study in vitro. LPS produced significant tachycardia that was not altered by AS or MM oligonucleotide. AS, but not MM oligonucleotide, reduced the accumulation of cGMP, the increase in conversion of L-[3H]arginine to L-[3H]citrulline, and iNOS protein expression in tissue from LPS-treated rats. Small mesenteric arterial contraction to NE was significantly impaired in vessels from LPS-treated rats and was restored by AS, but not MM, oligonucleotide. In a rat model of septic shock, AS oligonucleotide to iNOS mRNA inhibits NOS activity and iNOS protein expression and prevents the vascular hyporeactivity to NE, which may contribute to hypotension in shock.
Collapse
Affiliation(s)
- A M Hoque
- Vascular Biology Center and Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | |
Collapse
|
33
|
Gilar M, Belenky A, Budman Y, Smisek DL, Cohen AS. Study of phosphorothioate-modified oligonucleotide resistance to 3'-exonuclease using capillary electrophoresis. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1998; 714:13-20. [PMID: 9746230 DOI: 10.1016/s0378-4347(98)00160-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effect of phosphorothioate (PS) internucleotide linkages on the stability of phosphodiester oligodeoxyribonucleotides (ODNs) was investigated using 25-mer ODNs containing single or multiple PS backbone modifications. The in vitro stability of the oligomers was measured both in 3'-exonuclease solution and in plasma. For the separation of ODNs, capillary electrophoresis with a replaceable polymer separation matrix was used. As expected, DNA fragments with PS linkages at the 3'-end were found to be more resistant to 3'-exonuclease hydrolysis. Also increasing exonuclease resistance was the non-specific adsorption of phosphorothioate ODNs to enzyme.
Collapse
Affiliation(s)
- M Gilar
- Hybridon, Inc., Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
34
|
Chow G, Nietfeld JJ, Knudson CB, Knudson W. Antisense inhibition of chondrocyte CD44 expression leading to cartilage chondrolysis. ARTHRITIS AND RHEUMATISM 1998; 41:1411-9. [PMID: 9704639 DOI: 10.1002/1529-0131(199808)41:8<1411::aid-art10>3.0.co;2-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To better define critical functions of the hyaluronan receptor CD44 in cartilage. METHODS Articular chondrocytes and cartilage tissue slices were treated with CD44 sequence-specific antisense phosphorothioate oligonucleotides. CD44 expression was probed by immunofluorescence microscopy, enzyme-linked immunosorbent assay, and Western blotting. RESULTS Antisense oligonucleotides demonstrated a dose- and time-dependent inhibition of CD44 protein expression; negative controls showed no effect. Similar to osteoarthritic cartilage, antisense-treated cartilage slices displayed a near-total loss of stainable proteoglycan-rich matrix. CONCLUSION CD44 expression is needed for maintenance of cartilage homeostasis.
Collapse
Affiliation(s)
- G Chow
- Rush Medical College, Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
35
|
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are represented by a superfamily of structurally and functionally related enzymes of which more than 30 different forms have so far been identified and grouped into seven broad gene families, some of which contain multiple genes and many splice variants, within a given gene family. Since all of the forms of PDE have the potential to regulate levels of the second messenger, cAMP or cGMP, and some of the forms appear to be tissue specific in their expression and differentially regulated, it would be useful to be able to selectively inhibit a given form of PDE, to study the physiological consequences of this inhibition, with the intent of possible therapeutic application. While gene family-specific pharmacological inhibitors exist for six of the seven gene families, none of these inhibitors is yet capable of distinguishing PDE members within a given gene family in its inhibition. One approach to selectively inhibit a specific form of PDE, without affecting others, is through use of antisense oligonucleotides to block the expression of a given PDE form. This article describes ways to optimally develop and test antisense oligonucleotides to inhibit expression of PDE.
Collapse
Affiliation(s)
- P M Epstein
- Department of Pharmacology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| |
Collapse
|
36
|
Arima H, Sakamoto T, Aramaki Y, Ishidate K, Tsuchiya S. Specific inhibition of nitric oxide production in macrophages by phosphorothioate antisense oligonucleotides. J Pharm Sci 1997; 86:1079-84. [PMID: 9344161 DOI: 10.1021/js970099g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of antisense oligonucleotides (ODNs) on nitric oxide (NO) production induced by lipopolysaccharide (LPS) were investigated using thioglycollate-induced mouse peritoneal macrophages. Antisense phosphorothioate ODNs (S-oligo) corresponding to a sequence in the neighborhood of the AUG initiation codon of a mouse inducible nitric oxide synthase (iNOS) mRNA, which has a G-quartet motif in its antisense sequence, inhibited NO induction in a dose-dependent manner. Antisense phosphodiester ODNs (D-oligo), 5'- and 3'-terminal phosphorothioate-modified antisense ODNs and control scramble and missense S-oligos had no such effect. In addition, control nonsense and two mismatched S-oligos, which include G-quartet motif in their sequences, inhibited NO induction to approximately 50% of those in the control. Antisense S-oligo showed the inhibitory effect on NO production by exposure of macrophages to various concentrations of LPS. Western blot analysis using anti-mouse inducible nitric oxide synthase (iNOS) antibody revealed that antisense S-oligo specifically removed an immunoreactive band at 130 kDa. In addition, the results of reverse transcription-polymerase chain reaction (RT-PCR) revealed that the antisense effect originated from a specific reduction of the targeted iNOS mRNA by hybridization with the antisense S-oligo. Furthermore, no ODNs affected beta-actin mRNA and tumor necrosis factor alpha (TNF-alpha) expression in macrophages stimulated by LPS. These findings demonstrated that antisense S-oligo inhibited NO production derived from iNOS expression in macrophages by an antisense mechanism, including the aptameric effect partially mediated by the G-quartet motif.
Collapse
Affiliation(s)
- H Arima
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
| | | | | | | | | |
Collapse
|
37
|
Li B, Hughes JA, Phillips MI. Uptake and efflux of intact antisense phosphorothioate deoxyoligonucleotide directed against angiotensin receptors in bovine adrenal cells. Neurochem Int 1997; 31:393-403. [PMID: 9246681 DOI: 10.1016/s0197-0186(96)00109-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Antisense oligonucleotide (AS-ODN) inhibition of angiotensin receptors (AT1-R) offers a potentially novel therapeutic approach for hypertension, left ventricular hypertrophy and other aspects of cardiovascular disease. To clarify questions concerning cellular uptake and retention of these oligos, we quantified the trafficking and stability of phosphorothioated modified AS-ODN to AT1 receptor mRNA in adrenal cells, using visual and chromatographic analysis. The AS-ODN to AT1 receptor mRNA was effective in significantly inhibiting AT1 receptor binding in a dose dependent manner. FITC-labeled ODNs were used to determine the cellular uptake in bovine adrena cortex cells; using confocal microscopy, rapid cellular uptake of 15-mer ODNs was observed. Uptake is initially rapid (30 min to 4 h) followed by a slower uptake process 24 h and after. The cellular accumulation of ODN involves a dynamic balance between influx and efflux processes. Efflux of FITC-ODN had a f1/2 = 4.6 days. Uptake was time and dose dependent. No obvious degradation of intracellular ODNs occurred as shown by intact peaks for 15-mer ODN on thin layer chromatography. The results suggest that the AS-ODN to AT1 receptor mRNA was resistant to cellular nucleases. The FITC-ODN accumulated mainly in the nucleus and remained there intact for up to 3 days. No significant change in target mRNA was observed by quantitative RT-PCR. Therefore the antisense inhibition mechanism of this ODN does not appear to stimulate RNase H or block transcription. Since the ODN accesses the nucleus, the results imply that the ODN inhibits specific mRNA transport into the cytoplasm. The data show that AS-ODN, for inhibition of AT1 receptors, is rapidly taken up and stable in cells and produces specific inhibition of AT1 receptors.
Collapse
Affiliation(s)
- B Li
- Department of Physiology, College of Medicine, University of Florida, Gainesville 32610-0274, USA
| | | | | |
Collapse
|
38
|
Lavigne C, Thierry AR. Enhanced antisense inhibition of human immunodeficiency virus type 1 in cell cultures by DLS delivery system. Biochem Biophys Res Commun 1997; 237:566-71. [PMID: 9299405 DOI: 10.1006/bbrc.1997.7191] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The relatively poor cell uptake of oligonucleotides and subsequent transport to the cytoplasm and nucleus is the main limitation in antisense therapeutics. The use of lipid-based carrier system is one of the most promising approaches to overcome these problems. In this study, we report the use of a new lipidic formulation to deliver a phosphorothioate oligonucleotide antisense directed against the regulatory gene rev of the HIV-1 genome and its application to the inhibition of HIV-1 in different cell culture models. Antiviral activity of either DLS-complexed or non-complexed oligonucleotides (ODNs) was compared in acutely and chronically infected cells. We have demonstrated that substantial antisense activity could be achieved at subnanomolar concentrations with DLS-complexed ODN in both acute and chronic infection systems. DLS-association highly improved inhibitory activity of the antisense ODN in acutely infected Molt-3 cells (100-fold) and primary cells (1000-fold) and in chronically infected H9 cells (1,500,000-fold). We have shown that anti-HIV activity of phosphorothioate ODNs can be strongly enhanced by using the DLS carrier system.
Collapse
Affiliation(s)
- C Lavigne
- Département de Microbiologie et Immunologie, Faculté de Médecine, Université de Montréal, Québec, Canada.
| | | |
Collapse
|
39
|
Koppelhus U, Zachar V, Nielsen PE, Liu X, Eugen-Olsen J, Ebbesen P. Efficient in vitro inhibition of HIV-1 gag reverse transcription by peptide nucleic acid (PNA) at minimal ratios of PNA/RNA. Nucleic Acids Res 1997; 25:2167-73. [PMID: 9153317 PMCID: PMC146729 DOI: 10.1093/nar/25.11.2167] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have tested the inhibitory potential of peptide nucleic acid (PNA) on in vitro reverse transcription of the HIV-1 gag gene. PNA was designed to target different regions of the HIV-1 gag gene and the effect on reverse transcription by HIV-1, MMLV and AMV reverse transcriptases (RTs) was investigated. We found that a bis-PNA (parallel antisense 10mer linked to antiparallel antisense 10mer) was superior to both the parallel antisense 10mer and antiparallel antisense 10mer in inhibiting reverse transcription of the gene, thus indicating triplex formation at the target sequence. A complete arrest of reverse transcription was obtained at approximately 6-fold molar excess of the bis-PNA with respect to the gag RNA. At this molar ratio we found no effect on in vitro translation of gag RNA. A 15mer duplex-forming PNA was also found to inhibit reverse transcription at very low molar ratios of PNA/ gag RNA. Specificity of the inhibition of reverse transcription by PNA was confirmed by RNA sequencing, which revealed that all tested RTs were stopped by the PNA/RNA complex at the predicted site. We propose that the effect of PNA is exclusively due to steric hindrance, as we found no signs of RNA degradation that would indicate PNA-mediated RNase H activation of the tested RTs. In conclusion, PNA appears to have a potential to become a specific and efficient inhibitor of reverse transcription in vivo , provided sufficient intracellular levels are achievable.
Collapse
Affiliation(s)
- U Koppelhus
- Department of Virus and Cancer, Danish Cancer Society, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | |
Collapse
|
40
|
Khaled AR, Soares LS, Butfiloski EJ, Stekman I, Sobel ES, Schiffenbauer J. Inhibition of the p50 (NKkappaB1) subunit of NF-kappaB by phosphorothioate-modified antisense oligodeoxynucleotides reduces NF-kappaB expression and immunoglobulin synthesis in murine B cells. CLINICAL IMMUNOLOGY AND IMMUNOPATHOLOGY 1997; 83:254-63. [PMID: 9175914 DOI: 10.1006/clin.1997.4354] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
NF-kappaB is a regulatory protein of immune response genes and a candidate for targeting in immunosuppressive therapy. NF-kappaB proteins are formed from components of which p50 (NFkappaB1) is a subunit. By targeting p50 gene expression with specific antisense 3' phosphorothioate-oligodeoxynucleotides (3' PS-ODNs), an effect upon NF-kappaB regulation and immunoglobulin synthesis in murine B cells was achieved. A 49% decrease in p50 protein was induced by treatment of WEHI 231 B cells with p50 antisense 3' PS-ODNs and not by control 3' PS-ODNs. p50 antisense specifically reduced the expression of NF-kappaB by 51%, but not the transcription factor, Oct-1. In the BXSB murine model of autoimmunity, p50 antisense inhibited NF-kappaB expression and total IgM and IgG synthesis, but, more importantly, dsDNA antibodies were reduced 90%. These results validate the use of p50 antisense to reduce NF-kappaB expression and, by downregulating the immune response, has application in the treatment of autoimmune disorders.
Collapse
Affiliation(s)
- A R Khaled
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville 32620, USA
| | | | | | | | | | | |
Collapse
|
41
|
Yamaguchi K, Papp B, Zhang D, Ali AN, Agrawal S, Byrn RA. The multiple inhibitory mechanisms of GEM 91, a gag antisense phosphorothioate oligonucleotide, for human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 1997; 13:545-54. [PMID: 9135872 DOI: 10.1089/aid.1997.13.545] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
GEM 91 (gene expression modulator) is a 25-mer oligonucleotide phosphorothioate complementary to the gag initiation site of HIV-1. GEM 91 has been studied in various in vitro cell culture models to examine inhibitory effects on different stages of HIV-1 replication. Experiments were focused on the binding of virions to the cell surface, inhibition of virus entry, reverse transcription (HIV DNA production), inhibition of steady state viral mRNA levels, inhibition of virus production from chronically infected cells, and inhibition of HIV genome packaging within virions. Experiments were also performed in vitro in an attempt to generate strains of HIV with reduced sensitivity to GEM 91. We observed sequence-dependent inhibition of virus entry/reverse transcription and a reduction in steady state viral RNA levels. We also observed sequence-independent inhibition of virion binding to cells and inhibition of virus production by chronically infected cells. Using in vitro methods that were successful in generating HIV strains with reduced sensitivity to AZT, we were unable to generate strains with reduced sensitivity to GEM 91.
Collapse
Affiliation(s)
- K Yamaguchi
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
42
|
Vlassov VV, Vlassova IE, Pautova LV. Oligonucleotides and polynucleotides as biologically active compounds. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1997; 57:95-143. [PMID: 9175432 DOI: 10.1016/s0079-6603(08)60279-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- V V Vlassov
- Institute of Bioorganic Chemistry, Novosibirsk, Russia
| | | | | |
Collapse
|
43
|
Püschl A, Kehler J, Dahl O. Solution Phase Synthesis of Dithymidine Phosphorothioate by a Phosphotriester Method Using NewS-Protecting Groups. ACTA ACUST UNITED AC 1997. [DOI: 10.1080/07328319708002529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Antisense oligodeoxynucleotides: Internalization, compartmentalization and non-sequence specificity. ACTA ACUST UNITED AC 1996. [DOI: 10.1007/bf02172107] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Vidalin O, Major ME, Rayner B, Imbach JL, Trépo C, Inchauspé G. In vitro inhibition of hepatitis C virus gene expression by chemically modified antisense oligodeoxynucleotides. Antimicrob Agents Chemother 1996; 40:2337-44. [PMID: 8891141 PMCID: PMC163531 DOI: 10.1128/aac.40.10.2337] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have explored different domains within the hepatitis C virus (HCV) 5' noncoding region as potential targets for inhibition of HCV translation by antisense oligodeoxynucleotides (ODNs). Inhibition assays were performed with two different cell-free systems, rabbit reticulocyte lysate and wheat germ extract, and three types of chemical structures for the ODNs were evaluated: natural phosphodiesters (beta-PO), alpha-anomer phosphodiesters (alpha-PO), and phosphorothioates (PS). A total of six original ODNs, displaying sequence-specific inhibition ranging from 62 to 96%, that mapped in the pyrimidine-rich tract (nucleotides [nt] 104 to 127) and in the initiator AUG codon (nt 338 to 357) were identified. Two ODNs, which were targeted at the initiatory AUG (nt 341 to 367 and 351 to 377) and which had been previously described as active against genotype 1b and 2a sequences, were shown to exhibit inhibition of expression (> 95%) of a type 1a sequence. Control experiments with the irrelevant chloramphenicol acetyltransferase sequence as a marker and randomized ODNs demonstrated that levels of inhibition associated with the use of PS compounds (of as much as 94%) were mainly due to nonspecific effects. Both alpha- and beta-PO ODNs were found equally active, and no difference could be seen in the activity of beta-PO when it was tested in either rabbit reticulocyte lysate or wheat germ extract, suggesting that RNase H-independent mechanisms may be involved in the inhibitions observed. However, specific RNA cleavage products generated from beta-PO inhibition experiments could be identified, indicating that, with these compounds, control of translation also involves RNase H-dependent mechanisms. This study further delimits the existence of favorable target sequences for the action of ODNs within the HCV 5' noncoding region and indicates the possibility of using nuclease-resistant alpha-PO compounds in cellular studies.
Collapse
Affiliation(s)
- O Vidalin
- Institut National de la Santé et de la Recherche Médicale U271, Lyon, France
| | | | | | | | | | | |
Collapse
|
46
|
Wiesler WT, Caruthers MH. Synthesis of Phosphorodithioate DNA via Sulfur-Linked, Base-Labile Protecting Groups(1). J Org Chem 1996; 61:4272-4281. [PMID: 11667326 DOI: 10.1021/jo960274y] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphorodithioate DNA, a new and potentially useful DNA analog with a deoxynucleoside-OPS(2)O-deoxynucleoside internucleotide linkage, was synthesized from deoxynucleoside 3'-phosphorothioamidites having a variety of thioesters and thiocarbonates as base-labile phosphorus protecting groups. The major challenge in the synthesis of this DNA analog was to derive a reaction pathway whereby activation of deoxynucleoside 3'-phosphorothioamidites occurred rapidly and in high yield under conditions that minimize Arbuzov rearrangements, exchange reactions, unwanted oxidation to phosphorothioates, and several other side reactions. Of the various phosphorus protecting groups examined for this purpose, a thorough evaluation of these parameters led to the conclusion that beta-(benzoylmercapto)ethyl was preferred. Synthesis of phosphorodithioate DNA began by preparing deoxynucleoside 3'-phosphorothioamidites from the appropriately protected deoxynucleoside, tris(pyrrolidino)phosphine, and ethanedithiol monobenzoate via a one-flask synthesis procedure. These synthons were activated with tetrazole and condensed with a deoxynucleoside on a polymer support to yield the deoxynucleoside thiophosphite. Subsequent steps involved oxidation with sulfur to generate the completely protected phosphorodithioate triester, acylation of unreacted deoxynucleoside, and removal of the 5'-protecting group. Yields per cycle were usually 97-98% with 2-5% phosphorothioate contamination as determined by (31)P NMR. By using deoxynucleoside 3'-phosphorothioamidites and deoxynucleoside 3'-phosphoroamidites, deoxyoligonucleotides having phosphorodithioate and the natural phosphate internucleotide linkages in any predetermined order can also be synthesized.
Collapse
Affiliation(s)
- William T. Wiesler
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215
| | | |
Collapse
|
47
|
Bielinska A, Kukowska-Latallo JF, Johnson J, Tomalia DA, Baker JR. Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers. Nucleic Acids Res 1996; 24:2176-82. [PMID: 8668551 PMCID: PMC145901 DOI: 10.1093/nar/24.11.2176] [Citation(s) in RCA: 294] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Starburst polyamidoamine (PAMAM) dendrimers are a new type of synthetic polymer characterized by a branched spherical shape and a high density surface charge. We have investigated the ability of these dendrimers to function as an effective delivery system for antisense oligonucleotides and 'antisense expression plasmids' for the targeted modulation of gene expression. Dendrimers bind to various forms of nucleic acids on the basis of electrostatic interactions, and the ability of DNA-dendrimer complexes to transfer oligonucleotides and plasmid DNA to mediate antisense inhibition was assessed in an in vitro cell culture system. Cell lines that permanently express luciferase gene were developed using dendrimer mediated transfection. Transfections of antisense oligonucleotides or antisense cDNA plasmids into these cell lines using dendrimers resulted in a specific and dose dependent inhibition of luciferase expression. This inhibition caused approximately 25-50% reduction of baseline luciferase activity. Binding of the phosphodiester oligonucleotides to dendrimers also extended their intracellular survival. While dendrimers were not cytotoxic at the concentrations effective for DNA transfer, some non-specific suppression of luciferase expression was observed. Our results indicate that Starburst dendrimers can be effective carriers for the introduction of regulatory nucleic acids and facilitate the suppression of the specific gene expression.
Collapse
Affiliation(s)
- A Bielinska
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109-0666, USA
| | | | | | | | | |
Collapse
|
48
|
Peyrottes S, Vasseur JJ, Imbach JL, Rayner B. Oligodeoxynucleoside phosphoramidates (P-NH2): synthesis and thermal stability of duplexes with DNA and RNA targets. Nucleic Acids Res 1996; 24:1841-8. [PMID: 8657564 PMCID: PMC145873 DOI: 10.1093/nar/24.10.1841] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Syntheses of non ionic oligodeoxynucleoside phosphoramidates (P-NH2) and mixed phosphoramidate- phosphodiester oligomers were accomplished on automated solid supported DNA synthesizer using both H-phosphonate and phosphoramidite chemistries, in combination with t-butylphenoxyacetyl for N-protection of nucleoside bases, an oxalyl anchored solid support and a final treatment with methanolic ammonia. Thermal stabilities of the hybrids formed between these new analogues and their DNA and RNA complementary strands were determined and compared with those of the corresponding unmodified oligonucleotides, as well as of the phosphorothioate and methylphosphonate derivatives. Dodecathymidines containing P-NH2 links form less stable duplexes with DNA targets, d(C2A12C2) (deltaTm/modification -1.4 degrees C) and poly dA (deltaTm/modification -1.1 degrees C) than the corresponding phosphodiester and methylphosphonate analogues, but the hybrids are slightly more stable than the one obtained with phosphorothioate derivative. The destabilization is more pronounced with poly rA as the target (deltaTm/modification -3 degrees C) and could be compared with that found with the dodecathymidine methylphosphonate. The modification is less destabilizing in an heteropolymer-RNA duplex (deltaTm/modification -2 degrees C). As expected, the P-NH2 modifications are highly resistant towards the action of various nucleases. It is also demonstrated that an all P-NH2 oligothymidine does not elicit Escherichia coli RNase H hydrolysis of the poly rA target but that the modification may be exploited in chimeric oligonucleotides combining P-NH2 sections with a central phosphodiester section.
Collapse
Affiliation(s)
- S Peyrottes
- Laboratoire de Chimie Bio-Organique, Université Montpellier II, Montpellier, France
| | | | | | | |
Collapse
|
49
|
Ogawa S, Pfaff DW. Application of antisense DNA method for the study of molecular bases of brain function and behavior. Behav Genet 1996; 26:279-92. [PMID: 8754251 DOI: 10.1007/bf02359384] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The antisense DNA method has been used successfully not only in vitro but also with in vivo systems to block effectively the expression of specific genes. An increasing number of studies have shown that antisense DNA administered directly into the brain can modify various kinds of behaviors. These findings strongly suggest that the antisense DNA method can be widely used as a powerful tool for the study of the molecular bases of behavior. In addition to traditional methods of behavioral genetics, the antisense DNA method may provide a new approach for the study of the effects of gene in behavioral function. In this article, we review recent studies reporting in vivo effects of antisense DNA on brain function and behavior.
Collapse
Affiliation(s)
- S Ogawa
- Laboratory of Neurobiology and Behavior, Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
50
|
Zhang SP, Zhou LW, Morabito M, Lin RC, Weiss B. Uptake and distribution of fluorescein-labeled D2 dopamine receptor antisense oligodeoxynucleotide in mouse brain. J Mol Neurosci 1996; 7:13-28. [PMID: 8835779 DOI: 10.1007/bf02736845] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To determine the uptake and distribution of oligodeoxynucleotides in brain, a 20-mer phosphorothioated oligodeoxynucleotide complementary to a portion of the D2 dopamine receptor mRNA was fluorescently labeled with fluorescein isothiocyanate (FITC) and injected into the lateral cerebral ventricles of mice. At various survival times after the injection, the brains were removed, fixed, sectioned, and viewed under a fluorescent microscope. The results showed that the oligodeoxynucleotide was rapidly taken up into the brain. Initially the label was relatively diffusely spread throughout the interstitial spaces of the brain, then became redistributed to the cellular compartments. The signal extended from those forebrain nuclei located immediately in contact with the ventricles, such as the corpus striatum, septum, and hippocampus, to areas further removed from the ventricles, such as the cerebral cortex, nucleus accumbens, and substantia nigra. When the FITC-labeled D2 antisense oligodeoxynucleotide was given once daily for 4 d, the signal intensity seen 24 h after the last injection appeared to be of greater intensity overall compared to that seen after a single injection. At early time-points the oligodeoxynucleotide signals appeared to be punctuated and were found in cell bodies as well as in proximal dendritic processes. However, not all cells were equally labeled, suggesting an uneven uptake and accumulation of the D2 antisense into the various cell types. At later time-points the fluorescent signal appeared granular; at these times the injected material was largely degraded. These studies show that a D2 dopamine receptor antisense oligodeoxynucleotide is rapidly taken up from cerebral ventricles into brain, becomes widely distributed throughout the brain tissue to areas far removed from direct contact with the ventricles, and appears to accumulate to a different extent in the various brain areas and cell types.
Collapse
Affiliation(s)
- S P Zhang
- Department of Pharmacology, Medical College of Pennsylvania, Philadelphia, USA
| | | | | | | | | |
Collapse
|