1
|
Pastok MW, Tomlinson CWE, Turberville S, Butler AM, Baslé A, Noble MEM, Endicott JA, Pohl E, Tatum NJ. Structural requirements for the specific binding of CRABP2 to cyclin D3. Structure 2024:S0969-2126(24)00389-7. [PMID: 39419021 DOI: 10.1016/j.str.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/31/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Cellular retinoic acid binding protein 2 (CRABP2) transports retinoic acid from the cytoplasm to the nucleus where it then transfers its cargo to retinoic acid receptor-containing complexes leading to activation of gene transcription. We demonstrate using purified proteins that CRABP2 is also a cyclin D3-specific binding protein and that the CRABP2 cyclin D3 binding site and the proposed CRABP2 nuclear localization sequence overlap. Both sequences are within the helix-loop-helix motif that forms a lid to the retinoic acid binding pocket. Mutations within this sequence that block both cyclin D3 and retinoic acid binding promote formation of a CRABP2 structure in which the retinoic acid binding pocket is occupied by an alternative lid conformation. Structural and functional analysis of CRABP2 and cyclin D3 mutants combined with AlphaFold models of the ternary CDK4/6-cyclin D3-CRABP2 complex supports the identification of an α-helical protein binding site on the cyclin D3 C-terminal cyclin box fold.
Collapse
Affiliation(s)
- Martyna W Pastok
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Charles W E Tomlinson
- Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
| | - Shannon Turberville
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Abbey M Butler
- Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
| | - Arnaud Baslé
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Martin E M Noble
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Jane A Endicott
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Ehmke Pohl
- Department of Chemistry, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK; Department of Biosciences, Durham University, Upper Mountjoy, South Road, Durham DH1 3LE, UK
| | - Natalie J Tatum
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
2
|
Lee HY, Lee JH, Baek J, Cho KA, Min KJ. Piperine improves the health span of Drosophila melanogaster with age- and sex-specific effect. Biogerontology 2024; 25:665-677. [PMID: 38548993 DOI: 10.1007/s10522-024-10100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/17/2024] [Indexed: 07/02/2024]
Abstract
Piperine, a dietary phytochemical isolated from the Piper species, has been used as a natural medicine for pain, flu, and fever in ancient China and India. Although the health benefits of piperine have been widely studied, research on its effect on aging is limited. This study aimed to determine whether piperine has the potential to mitigate aging-related changes in the fruit fly (Drosophila melanogaster), which is an excellent model organism for studies on aging. The experiments were conducted using the newly eclosed or 30-day-old D. melanogaster wild-type strain Cantonized-white. Piperine was dissolved in 99% ethanol and added to the sucrose-yeast medium at a final concentration of 10, 35, 70, or 100 μM. The study examined the effects of piperine supplementation on the lifespan of D. melanogaster and other physiological functions, such as fecundity, feeding, lipid content, and resistance to environmental stress. Log-rank tests, Shapiro-Wilk test, F-test, t-test, or Wilcoxon rank sum test were used to analyze the data. Piperine failed to change the lifespan and body weight, but increased the fecundity and decreased the feeding rate in one-week-old flies. However, when piperine was fed to 30-day-old flies, it increased the lifespan of male flies and the fecundity and feeding rate of female flies. These results indicate that piperine can improve the health of aged flies. The findings suggest that piperine has age-dependent and sex-specific anti-aging effects in fruit flies.
Collapse
Affiliation(s)
- Hye-Yeon Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Ji-Hyeon Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Jisun Baek
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Kyung A Cho
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Jeonnam-do, 58128, Republic of Korea
- Research Center, Medispan Co., Ltd., Seongnam-si, Gyeonggi-do, 13486, Republic of Korea
| | - Kyung-Jin Min
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
3
|
Khazaei-Koohpar H, Gholizadeh M, Hafezian SH, Esmaeili-Fard SM. Weighted single-step genome-wide association study for direct and maternal genetic effects associated with birth and weaning weights in sheep. Sci Rep 2024; 14:13120. [PMID: 38849438 PMCID: PMC11161479 DOI: 10.1038/s41598-024-63974-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Body weight is an important economic trait for sheep meat production, and its genetic improvement is considered one of the main goals in the sheep breeding program. Identifying genomic regions that are associated with growth-related traits accelerates the process of animal breeding through marker-assisted selection, which leads to increased response to selection. In this study, we conducted a weighted single-step genome-wide association study (WssGWAS) to identify potential candidate genes for direct and maternal genetic effects associated with birth weight (BW) and weaning weight (WW) in Baluchi sheep. The data used in this research included 13,408 birth and 13,170 weaning records collected at Abbas-Abad Baluchi Sheep Breeding Station, Mashhad-Iran. Genotypic data of 94 lambs genotyped by Illumina 50K SNP BeadChip for 54,241 markers were used. The proportion of variance explained by genomic windows was calculated by summing the variance of SNPs within 1 megabase (Mb). The top 10 window genomic regions explaining the highest percentages of additive and maternal genetic variances were selected as candidate window genomic regions associated with body weights. Our findings showed that for BW, the top-ranked genomic regions (1 Mb windows) explained 4.30 and 4.92% of the direct additive and maternal genetic variances, respectively. The direct additive genetic variance explained by the genomic window regions varied from 0.31 on chromosome 1 to 0.59 on chromosome 8. The highest (0.84%) and lowest (0.32%) maternal genetic variances were explained by genomic windows on chromosome 10 and 17, respectively. For WW, the top 10 genomic regions explained 6.38 and 5.76% of the direct additive and maternal genetic variances, respectively. The highest and lowest contribution of direct additive genetic variances were 1.37% and 0.42%, respectively, both explained by genomic regions on chromosome 2. For maternal effects on WW, the highest (1.38%) and lowest (0.41%) genetic variances were explained by genomic windows on chromosome 2. Further investigation of these regions identified several possible candidate genes associated with body weight. Gene ontology analysis using the DAVID database identified several functional terms, such as translation repressor activity, nucleic acid binding, dehydroascorbic acid transporter activity, growth factor activity and SH2 domain binding.
Collapse
Affiliation(s)
- Hava Khazaei-Koohpar
- Department of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| | - Mohsen Gholizadeh
- Department of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran.
| | - Seyed Hasan Hafezian
- Department of Animal Science and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| | | |
Collapse
|
4
|
Enikeev AD, Abramov PM, Elkin DS, Komelkov AV, Beliaeva AA, Silantieva DM, Tchevkina EM. Opposite Effects of CRABP1 and CRABP2 Homologs on Proliferation of Breast Cancer Cells and Their Sensitivity to Retinoic Acid. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2107-2124. [PMID: 38462454 DOI: 10.1134/s0006297923120131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 03/12/2024]
Abstract
Resistance of tumor cells to retinoic acid (RA), a promising therapeutic agent, is the major factor limiting the use of RA in clinical practice. The mechanisms of resistance to RA are still poorly understood. Cellular Retinoic Acid Binding Proteins, CRABP1 and CRABP2, are essential mediators of RA signaling, but role of the two CRABP homologs in regulating cellular sensitivity to RA has not been well studied. In addition, the effects of CRABP1 and CRABP2 on cell proliferation have not been compared. Here, using a broad panel of breast cancer cell lines with different levels of RA sensitivity/resistance, we show for the first time that in the RA-sensitive cells, CRABP1 expression is restricted by methylation, and protein levels are highly variable. In the moderately-RA-resistant cell lines, high level of CRABP1 is observed both at the mRNA and protein levels, unchanged by inhibition of DNA methylation. The cell lines with maximum resistance to RA are characterized by complete repression of CRABP1 expression realized at transcriptional and posttranscriptional levels, and exogenous expression of each of the CRABP homologs has no effect on the studied characteristics. CRABP1 and CRABP2 proteins have opposing effects on proliferation and sensitivity to RA. In particular, CRABP1 stimulates and CRABP2 reduces proliferation and resistance to RA in the initially RA-sensitive cells, while in the more resistant cells the role of each homolog in both of these parameters is reversed. Overall, we have shown for the first time that CRABP proteins exert different effects on the growth and sensitivity to RA of breast cancer cells (stimulation, suppression, or no effect) depending on the baseline level of RA-sensitivity, with the effects of CRABP1 and CRABP2 homologs on the studied properties always being opposite.
Collapse
Affiliation(s)
- Adel D Enikeev
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Pavel M Abramov
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Danila S Elkin
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Andrey V Komelkov
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Anastasiya A Beliaeva
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia
| | - Darya M Silantieva
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| | - Elena M Tchevkina
- Federal State Budgetary Institution "N. N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Moscow, 115522, Russia.
| |
Collapse
|
5
|
Yabut KCB, Isoherranen N. Impact of Intracellular Lipid Binding Proteins on Endogenous and Xenobiotic Ligand Metabolism and Disposition. Drug Metab Dispos 2023; 51:700-717. [PMID: 37012074 PMCID: PMC10197203 DOI: 10.1124/dmd.122.001010] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 03/16/2023] [Accepted: 02/10/2023] [Indexed: 04/05/2023] Open
Abstract
The family of intracellular lipid binding proteins (iLBPs) is comprised of 16 members of structurally related binding proteins that have ubiquitous tissue expression in humans. iLBPs collectively bind diverse essential endogenous lipids and xenobiotics. iLBPs solubilize and traffic lipophilic ligands through the aqueous milieu of the cell. Their expression is correlated with increased rates of ligand uptake into tissues and altered ligand metabolism. The importance of iLBPs in maintaining lipid homeostasis is well established. Fatty acid binding proteins (FABPs) make up the majority of iLBPs and are expressed in major organs relevant to xenobiotic absorption, distribution, and metabolism. FABPs bind a variety of xenobiotics including nonsteroidal anti-inflammatory drugs, psychoactive cannabinoids, benzodiazepines, antinociceptives, and peroxisome proliferators. FABP function is also associated with metabolic disease, making FABPs currently a target for drug development. Yet the potential contribution of FABP binding to distribution of xenobiotics into tissues and the mechanistic impact iLBPs may have on xenobiotic metabolism are largely undefined. This review examines the tissue-specific expression and functions of iLBPs, the ligand binding characteristics of iLBPs, their known endogenous and xenobiotic ligands, methods for measuring ligand binding, and mechanisms of ligand delivery from iLBPs to membranes and enzymes. Current knowledge of the importance of iLBPs in affecting disposition of xenobiotics is collectively described. SIGNIFICANCE STATEMENT: The data reviewed here show that FABPs bind many drugs and suggest that binding of drugs to FABPs in various tissues will affect drug distribution into tissues. The extensive work and findings with endogenous ligands suggest that FABPs may also alter the metabolism and transport of drugs. This review illustrates the potential significance of this understudied area.
Collapse
Affiliation(s)
- King Clyde B Yabut
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| |
Collapse
|
6
|
Tang J, Ouyang H, Chen X, Jiang D, Tian Y, Huang Y, Shen X. Comparative Transcriptome Analyses of Leg Muscle during Early Growth between Geese ( Anser cygnoides) Breeds Differing in Body Size Characteristics. Genes (Basel) 2023; 14:genes14051048. [PMID: 37239409 DOI: 10.3390/genes14051048] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Goose is an important poultry commonly raised for meat. The early growth performance of geese significantly influences their market weight and slaughter weight, affecting the poultry industry's economic benefits. To identify the growth surge between the Shitou goose and the Wuzong goose, we collected the early growth body traits from 0 to 12 weeks. In addition, we investigated the transcriptomic changes in leg muscles at the high growth speed period to reveal the difference between the two geese breeds. We also estimated the growth curve parameters under three models, including the logistic, von Bertalanffy, and Gompertz models. The results showed that except for body length and keel length, the best-fitting model between the body weight and body size of the Shitou and Wuzong was the logistic model. The growth turning points of Shitou and Wuzong were 5.954 and 4.944 weeks, respectively, and the turning point of their body weight was 1459.01 g and 478.54 g, respectively. Growth surge occurred at 2-9 weeks in Shitou goose and at 1-7 weeks in Wuzong goose. The body size traits of the Shitou goose and Wuzong goose showed a trend of rapid growth in the early stage and slow growth in the later stage, and the Shitou goose growth was higher than the Wuzong goose. For transcriptome sequencing, a total of 87 differentially expressed genes (DEGs) were identified with a fold change ≥ 2 and a false discovery rate < 0.05. Many DEGs have a potential function for growth, such as CXCL12, SSTR4, FABP5, SLC2A1, MYLK4, and EIF4E3. KEGG pathway analysis identified that some DEGs were significantly enriched in the calcium signaling pathway, which may promote muscle growth. The gene-gene interaction network of DEGs was mainly related to the transmission of cell signals and substances, hematological system development, and functions. This study can provide theoretical guidance for the production and breeding management of the Shitou goose and Wuzong goose and help reveal the genetic mechanisms underlying diverse body sizes between two goose breeds.
Collapse
Affiliation(s)
- Jun Tang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institutes, Guangzhou 510225, China
| | - Hongjia Ouyang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institutes, Guangzhou 510225, China
| | - Xiaomei Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Danli Jiang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institutes, Guangzhou 510225, China
| | - Yunbo Tian
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institutes, Guangzhou 510225, China
| | - Yunmao Huang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institutes, Guangzhou 510225, China
| | - Xu Shen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Waterfowl Healthy Breeding Engineering Research Center, Guangdong Higher Education Institutes, Guangzhou 510225, China
| |
Collapse
|
7
|
Exploring and Identifying Candidate Genes and Genomic Regions Related to Economically Important Traits in Hanwoo Cattle. Curr Issues Mol Biol 2022; 44:6075-6092. [PMID: 36547075 PMCID: PMC9777506 DOI: 10.3390/cimb44120414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The purpose of the current review was to explore and summarize different studies concerning the detection and characterization of candidate genes and genomic regions associated with economically important traits in Hanwoo beef cattle. Hanwoo cattle, the indigenous premium beef cattle of Korea, were introduced for their marbled fat, tenderness, characteristic flavor, and juiciness. To date, there has been a strong emphasis on the genetic improvement of meat quality and yields, such as backfat thickness (BFT), marbling score (MS), carcass weight (CW), eye muscle area (EMA), and yearling weight (YW), as major selection criteria in Hanwoo breeding programs. Hence, an understanding of the genetics controlling these traits along with precise knowledge of the biological mechanisms underlying the traits would increase the ability of the industry to improve cattle to better meet consumer demands. With the development of high-throughput genotyping, genomewide association studies (GWAS) have allowed the detection of chromosomal regions and candidate genes linked to phenotypes of interest. This is an effective and useful tool for accelerating the efficiency of animal breeding and selection. The GWAS results obtained from the literature review showed that most positional genes associated with carcass and growth traits in Hanwoo are located on chromosomes 6 and 14, among which LCORL, NCAPG, PPARGC1A, ABCG2, FAM110B, FABP4, DGAT1, PLAG1, and TOX are well known. In conclusion, this review study attempted to provide comprehensive information on the identified candidate genes associated with the studied traits and genes enriched in the functional terms and pathways that could serve as a valuable resource for future research in Hanwoo breeding programs.
Collapse
|
8
|
Chen G, Zhou Y, Yu X, Wang J, Luo W, Pang M, Tong J. Genome-Wide Association Study Reveals SNPs and Candidate Genes Related to Growth and Body Shape in Bighead Carp (Hypophthalmichthys nobilis). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1138-1147. [PMID: 36350467 DOI: 10.1007/s10126-022-10176-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Growth is an economically important trait in bighead carp and other aquaculture species that affects production efficiency. Interestingly, the head of the bighead carp has a high market value in China; therefore, it is important to study the genetic bases of both growth and body shape traits. A genome-wide association study was performed based on 2b-RAD sequencing of 776 individuals to identify SNPs associated with growth and body shape traits, including body weight, body length, body height, and deheaded body length. In total, 26 significant and 19 suggestive SNPs were identified, and more than half of these significant SNPs were clustered in LG16. Two LGs (LG16 and LG21) contained QTLs associated with body weight. Fourteen SNPs of LG16 and two LG21 SNPs were found to be associated with body length. For body height, 12 significantly associated SNPs were identified in LG16. Additionally, 12 SNPs of LG16 and 3 SNPs of LG21 were found to be associated with deheaded body length. Forty-three genes were significantly or suggestively associated with body shape/growth traits based on GWAS results, 18 of which were candidate genes for all BW, BL, BH, and DBL traits. One of these genes, fndc5b, was selected for further analyses. Association analysis revealed that one SNP (g.245 C > T) in the introns of fndc5b was significantly associated with growth-related traits in growth-extreme samples. The mRNA levels of fndc5b in the brains of the lightweight group were significantly higher than those of the heavy-weight group. This study helps to reveal the genetic structure of growth and body development in fish and provides candidate genes for future molecular marker-assisted selection for fast growth and better body conformation in bighead carp.
Collapse
Affiliation(s)
- Geng Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Ying Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Junru Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Weiwei Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Meixia Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, 430072, China.
- University of Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
9
|
Horváth G, Balterer B, Micsonai A, Kardos J, Toke O. Multiple Timescale Dynamic Analysis of Functionally-Impairing Mutations in Human Ileal Bile Acid-Binding Protein. Int J Mol Sci 2022; 23:ijms231911346. [PMID: 36232642 PMCID: PMC9569817 DOI: 10.3390/ijms231911346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Human ileal bile acid-binding protein (hI-BABP) has a key role in the enterohepatic circulation of bile salts. Its two internal binding sites exhibit positive cooperativity accompanied by a site-selectivity of glycocholate (GCA) and glycochenodeoxycholate (GCDA), the two most abundant bile salts in humans. To improve our understanding of the role of dynamics in ligand binding, we introduced functionally impairing single-residue mutations at two key regions of the protein and subjected the mutants to NMR relaxation analysis and MD simulations. According to our results, mutation in both the vicinity of the C/D (Q51A) and the G/H (Q99A) turns results in a redistribution of motional freedom in apo hI-BABP. Mutation Q51A, deteriorating the site-selectivity of GCA and GCDA, results in the channeling of ms fluctuations into faster motions in the binding pocket hampering the realization of key side chain interactions. Mutation Q99A, abolishing positive binding cooperativity for GCDA, leaves ms motions in the C-terminal half unchanged but by decoupling βD from a dynamic cluster of the N-terminal half displays an increased flexibility in the vicinity of site 1. MD simulations of the variants indicate structural differences in the portal region and mutation-induced changes in dynamics, which depend on the protonation state of histidines. A dynamic coupling between the EFGH portal, the C/D-region, and the helical cap is evidenced highlighting the interplay of structural and dynamic effects in bile salt recognition in hI-BABP.
Collapse
Affiliation(s)
- Gergő Horváth
- NMR Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, H-1117 Budapest, Hungary
| | - Bence Balterer
- NMR Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, H-1117 Budapest, Hungary
| | - András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Orsolya Toke
- NMR Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, H-1117 Budapest, Hungary
- Correspondence: ; Tel.: +36-1-382-6575
| |
Collapse
|
10
|
Structural Insights into Mouse H-FABP. Life (Basel) 2022; 12:life12091445. [PMID: 36143481 PMCID: PMC9505153 DOI: 10.3390/life12091445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/03/2022] Open
Abstract
Intracellular fatty acid-binding proteins are evolutionarily highly conserved proteins. The major functions and responsibilities of this family are the regulation of FA uptake and intracellular transport. The structure of the H-FABP ortholog from mouse (Mus musculus) had not been revealed at the time this study was completed. Thus, further exploration of the structural properties of mouse H-FABP is expected to extend our knowledge of the model animal’s molecular mechanism of H-FABP function. Here, we report the high-resolution crystal structure and the NMR characterization of mouse H-FABP. Our work discloses the unique structural features of mouse H-FABP, offering a structural basis for the further development of small-molecule inhibitors for H-FABP.
Collapse
|
11
|
Zhang J, Zhuang H, Cao J, Geng A, Wang H, Chu Q, Yan Z, Zhang X, Zhang Y, Liu H. Breast Meat Fatty Acid Profiling and Proteomic Analysis of Beijing-You Chicken During the Laying Period. Front Vet Sci 2022; 9:908862. [PMID: 35782537 PMCID: PMC9240433 DOI: 10.3389/fvets.2022.908862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/09/2022] [Indexed: 01/05/2023] Open
Abstract
The disparity in fatty acids (FA) composition exhibits a significant impact on meat quality, however, the molecular regulatory mechanisms underlying this trait in chicken are far from clear. In this study, a total of 45 female Beijing-You chicken (BYC) hens, fed on the same diet, were collected at the slaughter age of 150, 300, or 450 days (D150, D300, and D450) from sexual maturation stage to culling stage (15 birds per age). Gas chromatography-mass spectrometry (GC-MS) and tandem mass tag labeling technology based on liquid chromatography mass spectrometry (TMT-LC-MS/MS) analysis strategies were applied to profile FA compositions and to compare differential expressed proteins (DEPs) between these different slaughter ages, respectively. The FA profiling showed that increasing hen ages resulted in increased contents of both saturated and unsaturated fatty acids. Proteomic analyses showed a total of 4,935 proteins in chicken breast muscle with the false discovery rate (FDR) < 1% and 664 of them were differentially expressed (fold change > 1.50 or < 0.67 and P < 0.01). There were 410 up- and 116 down-regulated proteins in D150 vs. D300 group, 32 up- and 20 down-regulated in D150 vs. D450 group, and 72 up- and 241 down-regulated in D300 vs. D450 group. A total of 57 DEPs related to FA/lipid-related metabolisms were obtained according to the enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). These DEPs were involved in 21 significantly enriched (P < 0.05) pathways, including well-known pathways for FA synthesis (metabolism, desaturation, and elongation) and the signaling pathways for lipid metabolism (PPAR, adipocytokine, calcium, VEGF, MAPK, and Wnt). In addition, there existed several representative DEPs (FABP, FABP3, apoA-I, apoA-IV, apoC-III, apoB, VTG1, and VTG2) involved in the regulation of FA/lipid transportation. The construction of the interaction networks indicated that HADH, ACAA2, HADHA, ACSL1, CD36, CPT1A, PPP3R1, and SPHK1 were the key core nodes. Finally, eight DEPs were quantified using parallel reaction monitoring (PRM) to validate the results from TMT analysis. These results expanded our understanding of how the laying age affects the FA compositions and metabolism in hen breast meat.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hong Zhuang
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, United States
| | - Jing Cao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ailian Geng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haihong Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qin Chu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhixun Yan
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaoyue Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yao Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Huagui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- *Correspondence: Huagui Liu
| |
Collapse
|
12
|
Toke O. Structural and Dynamic Determinants of Molecular Recognition in Bile Acid-Binding Proteins. Int J Mol Sci 2022; 23:505. [PMID: 35008930 PMCID: PMC8745080 DOI: 10.3390/ijms23010505] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022] Open
Abstract
Disorders in bile acid transport and metabolism have been related to a number of metabolic disease states, atherosclerosis, type-II diabetes, and cancer. Bile acid-binding proteins (BABPs), a subfamily of intracellular lipid-binding proteins (iLBPs), have a key role in the cellular trafficking and metabolic targeting of bile salts. Within the family of iLBPs, BABPs exhibit unique binding properties including positive binding cooperativity and site-selectivity, which in different tissues and organisms appears to be tailored to the local bile salt pool. Structural and biophysical studies of the past two decades have shed light on the mechanism of bile salt binding at the atomic level, providing us with a mechanistic picture of ligand entry and release, and the communication between the binding sites. In this review, we discuss the emerging view of bile salt recognition in intestinal- and liver-BABPs, with examples from both mammalian and non-mammalian species. The structural and dynamic determinants of the BABP-bile-salt interaction reviewed herein set the basis for the design and development of drug candidates targeting the transcellular traffic of bile salts in enterocytes and hepatocytes.
Collapse
Affiliation(s)
- Orsolya Toke
- Laboratory for NMR Spectroscopy, Structural Research Centre, Research Centre for Natural Sciences, 2 Magyar Tudósok Körútja, H-1117 Budapest, Hungary
| |
Collapse
|
13
|
Moriel-Carretero M. The Many Faces of Lipids in Genome Stability (and How to Unmask Them). Int J Mol Sci 2021; 22:12930. [PMID: 34884734 PMCID: PMC8657548 DOI: 10.3390/ijms222312930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Deep efforts have been devoted to studying the fundamental mechanisms ruling genome integrity preservation. A strong focus relies on our comprehension of nucleic acid and protein interactions. Comparatively, our exploration of whether lipids contribute to genome homeostasis and, if they do, how, is severely underdeveloped. This disequilibrium may be understood in historical terms, but also relates to the difficulty of applying classical lipid-related techniques to a territory such as a nucleus. The limited research in this domain translates into scarce and rarely gathered information, which with time further discourages new initiatives. In this review, the ways lipids have been demonstrated to, or very likely do, impact nuclear transactions, in general, and genome homeostasis, in particular, are explored. Moreover, a succinct yet exhaustive battery of available techniques is proposed to tackle the study of this topic while keeping in mind the feasibility and habits of "nucleus-centered" researchers.
Collapse
Affiliation(s)
- María Moriel-Carretero
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), Université de Montpellier, Centre National de la Recherche Scientifique, CEDEX 5, 34293 Montpellier, France
| |
Collapse
|
14
|
Validation of Recombinant Chicken Liver Bile Acid Binding Protein as a Tool for Cholic Acid Hosting. Biomolecules 2021; 11:biom11050645. [PMID: 33925706 PMCID: PMC8146743 DOI: 10.3390/biom11050645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 02/02/2023] Open
Abstract
Bile acids (BAs) are hydroxylated steroids derived from cholesterol that act at the intestinal level to facilitate the absorption of several nutrients and also play a role as signaling molecules. In the liver of various vertebrates, the trafficking of BAs is mediated by bile acid-binding proteins (L-BABPs). The ability to host hydrophobic or amphipathic molecules makes BABPs suitable for the distribution of a variety of physiological and exogenous substances. Thus, BABPs have been proposed as drug carriers, and more recently, they have also been employed to develop innovative nanotechnology and biotechnology systems. Here, we report an efficient protocol for the production, purification, and crystallization of chicken liver BABP (cL-BABP). By means of target expression as His6-tag cL-BABP, we obtained a large amount of pure and homogeneous proteins through a simple purification procedure relying on affinity chromatography. The recombinant cL-BABP showed a raised propensity to crystallize, allowing us to obtain its structure at high resolution and, in turn, assess the structural conservation of the recombinant cL-BABP with respect to the liver-extracted protein. The results support the use of recombinant cL-BABP for the development of drug carriers, nanotechnologies, and innovative synthetic photoswitch systems.
Collapse
|
15
|
An X, Zhang S, Li T, Chen N, Wang X, Zhang B, Ma Y. Transcriptomics analysis reveals the effect of Broussonetia papyrifera L. fermented feed on meat quality traits in fattening lamb. PeerJ 2021; 9:e11295. [PMID: 33987003 PMCID: PMC8086582 DOI: 10.7717/peerj.11295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/27/2021] [Indexed: 11/20/2022] Open
Abstract
To date, utilization of feed grains is increasing, which competes for human food. It is imperative to develop and utilize unconventional feed materials. Broussonetia papyrifera L. (B. papyrifera) is a good feeding material with high crude protein, crude fat, and low crude fiber, which is widely distributed in China. In this study, 12 Dorper ♂×Hu ♀ crossbred weaned male lambs were seleted into four groups based on the feed that ratio of the B. papyrifera fermented feed in the total mixed diet (0%, 6%, 18%, and 100%), to character the lambs' longissimus dorsi (LD) fatty acids, morphology and transcriptome. Results showed that the muscle fiber's diameter and area were the smallest in the 100% group. The highest content of beneficial fatty acids and the lowest content of harmful fatty acids in group 18%. RNA-seq identified 443 differentially expressed genes (DEGs) in the LD of lambs from 4 groups. Among these genes, 169 (38.1%) were up-regulated and 274 (61.9%) were down-regulated. The DEGs were mostly enriched in in fatty acid metabolism, arginine and proline metabolism, and PPAR signaling pathways. Our results provide knowledge to understand effect of different ratios of B. papyrifera fermented feed on sheep meat quality traits, also a basis for understanding of the molecular regulation mechanism of B. papyrifera fermented feed affecting on sheep meat quality.
Collapse
Affiliation(s)
- Xuejiao An
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Shengwei Zhang
- Gansu Provincial Farmer Education and Training Station, Lanzhou, China
| | - Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Nana Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xia Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Baojun Zhang
- Gansu Provincial Farmer Education and Training Station, Lanzhou, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
16
|
Kumar A, Kaur M, Ahlawat S, Sharma U, Singh MK, Singh KV, Chhabra P, Vijh RK, Yadav A, Arora R. Transcriptomic diversity in longissimus thoracis muscles of Barbari and Changthangi goat breeds of India. Genomics 2021; 113:1639-1646. [PMID: 33862183 DOI: 10.1016/j.ygeno.2021.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/24/2021] [Accepted: 04/07/2021] [Indexed: 01/13/2023]
Abstract
The present study is an attempt to examine the differential expression of genes in longissimus thoracis muscles between meat and wool type Indian goat breeds. Barbari goat is considered the best meat breed while Changthangi is famous for its fine fibre quality. RNA sequencing data was generated from four biological replicates of longissimus thoracis muscles of Barbari and Changthangi goats. A clear demarcation could be observed between the breeds in terms of expression of genes associated with lipid metabolism (FASN, SCD, THRSP, DGAT2 and FABP3). Most significant genes with high connectivity identified by gene co-expression network analysis were associated with triacylglycerol biosynthesis pathway in Barbari goat. Highly interactive genes identified in Changthangi goat were mainly associated with muscle fibre type. This study provides an insight into the differential expression of genes in longissimus thoracis muscles between Barbari and Changthangi goats that are adapted to and reared in different agro-climatic regions.
Collapse
Affiliation(s)
- Ashish Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India; Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Mandeep Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India; Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India.
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - Manoj Kumar Singh
- Incharge Barbari Goat Unit, Genetics and Breeding Division, Central Institute for Research on Goats, Makhdoom, Farah, 281122 Mathura, Uttar Pradesh, India.
| | - Karan Veer Singh
- ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India.
| | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India
| | - Ramesh Kumar Vijh
- ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India.
| | - Anita Yadav
- Kurukshetra University, Kurukshetra 136119, Haryana, India.
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal 132001, Haryana, India.
| |
Collapse
|
17
|
Meyer-Alert H, Wiseman S, Tang S, Hecker M, Hollert H. Identification of molecular toxicity pathways across early life-stages of zebrafish exposed to PCB126 using a whole transcriptomics approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111716. [PMID: 33396047 DOI: 10.1016/j.ecoenv.2020.111716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Although withdrawn from the market in the 1980s, polychlorinated biphenyls (PCBs) are still found ubiquitously in the aquatic environment and pose a serious risk to biota due to their teratogenic potential. In fish, early life-stages are often considered most sensitive with regard to their exposure to PCBs and other dioxin-like compounds. However, little is known about the molecular drivers of the frequently observed teratogenic effects. Therefore, the aims of our study were to: (1) characterize the baseline transcriptome profiles at different embryonic life-stages in zebrafish (Danio rerio); and (2) to identify the molecular response to PCB exposure and life-stage specific-effects of the chemical on associated processes. For both objectives, embryos were sampled at 12, 48, and 96 h post-fertilization (hpf) and subjected to Illumina sequence-by-synthesis and RNAseq analysis. Results revealed that with increasing age more genes and related pathways were upregulated both in terms of number and magnitude. Yet, other transcripts followed an opposite pattern with greater transcript abundance at the earlier time points. Additionally, embryos were exposed to PCB126, a potent agonist of the aryl hydrocarbon receptor (AHR). ClueGO network analysis revealed significant enrichment of genes associated with basic cell metabolism, communication, and homeostasis as well as eye development, muscle formation, and skeletal formation. We selected eight genes involved in the affected pathways for an in-depth characterization of their regulation throughout normal embryogenesis and after exposure to PCB126 by quantification of transcript abundances every 12 h until 118 hpf. Among these, fgf7 and c9 stood out because of their strong upregulation by PCB126 exposure at 48 and 96 hpf, respectively. Cyp2aa12 was upregulated from 84 hpf on. Fabp10ab, myhz1.1, col8a1a, sulf1, and opn1sw1 displayed specific regulation depending on the developmental stage. Overall, we demonstrate that (1) the developmental transcriptome of zebrafish is highly dynamic, and (2) dysregulation of gene expression by exposure to PCB126 was significant and in several cases not directly connected to AHR-signaling. Hence, this study improves the understanding of linkages between molecular events and apical outcomes that are of regulatory relevance.
Collapse
Affiliation(s)
- Henriette Meyer-Alert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany.
| | - Steve Wiseman
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada; Department of Biological Sciences and Water Institute for Sustainable Environments (WISE), University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Song Tang
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada; National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166 Jiangsu, China
| | - Markus Hecker
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Henner Hollert
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| |
Collapse
|
18
|
Xie P, Wan XP, Yang CX, Zhu JG, Xu YG, Gong DQ. Effects of incubation and chick rearing on intestinal morphology, digestive enzyme activities, and mRNA expression of nutrient transporter genes in the pigeon (Columba livia) under artificial farming conditions. Poult Sci 2020; 99:2785-2797. [PMID: 32359616 PMCID: PMC7597554 DOI: 10.1016/j.psj.2019.12.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/25/2019] [Accepted: 12/25/2019] [Indexed: 12/19/2022] Open
Abstract
The present study investigated the changes in morphology, enzyme activities in the pancreas and mucosa, and nutrient transporter gene expression in the duodenum and jejunum in male and female pigeons during the incubation and chick-rearing periods. Forty-two pairs of White King pigeons with 2 fertile eggs per pair were randomly divided into 7 groups by different breeding stages. The crypt depth of the duodenum and jejunum reached the peak at day 1 (R1) and day 7 (R7) of chick rearing, respectively. The jejunum surface area increased to a maximum value at R1. Amylase activity in the pancreas decreased to the lowest value at R1, whereas trypsin and lipase activities peaked at 17 D of incubation (I17) and R7, respectively. In male pigeons, mucosal Na+-K+-ATPase activity in the duodenum and jejunum was the highest at R15 and it was at I17 in female pigeons. Jejunum sucrose activity in female pigeons was higher at I4 than that at I17 (P < 0.05). The gene expression of FAT/CD36 and I-FABP in the duodenum gradually increased and then declined in the late chick-rearing period. SGLT1 in the jejunum decreased to a lower level at I17 and R25 in male pigeons (P < 0.05). GLUT2 expression in female duodenum and male jejunum decreased to a lower value at I17 compared with that at R15 (P < 0.05). In the late of incubation (from I10 to I17), expression of duodenum CAT1, B0AT1, and PepT1 and jejunum CAT1, ASCT1, and PepT1 in female pigeons was significantly reduced (P < 0.05), whereas opposite results were found in male jejunum CAT1 and duodenum ASCT1. In conclusion, variations of intestinal morphology, activities of pancreatic and mucosal enzymes, and gene expression of nutrient transporters during incubation and chick-rearing periods, underlying potential changes of digestive and absorptive function and intestinal adaptation with sexual effects, may represent a complicated response to stimuli of different breeding stages.
Collapse
Affiliation(s)
- P Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China; College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - X P Wan
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - C X Yang
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - J G Zhu
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - Y G Xu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - D Q Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
19
|
Xu XL, Mao HG, Liu HH, Dong XY, Zou XT, Yin ZZ. Bioinformatics analysis and tissue-specific expression of intestinal-type fatty acid binding protein in domestic pigeons (Columba livia). JOURNAL OF APPLIED ANIMAL RESEARCH 2020. [DOI: 10.1080/09712119.2020.1735397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Xiu Li Xu
- Animal Science College, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hai Guang Mao
- Animal Science College, Zhejiang University, Hangzhou, People’s Republic of China
| | - Hong Hua Liu
- Animal Science College, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xin Yang Dong
- Animal Science College, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xiao Ting Zou
- Animal Science College, Zhejiang University, Hangzhou, People’s Republic of China
| | - Zhao Zheng Yin
- Animal Science College, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
20
|
Lei CX, Li MM, Tian JJ, Wen JK, Li YY. Transcriptome analysis of golden pompano (Trachinotus ovatus) liver indicates a potential regulatory target involved in HUFA uptake and deposition. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 33:100633. [PMID: 31733535 DOI: 10.1016/j.cbd.2019.100633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
Abstract
Promoting highly unsaturated fatty acid (HUFA) uptake and deposition can improve nutritional value of farmed fish and reduce dietary fish oil addition. Previously, we found that the golden pompano Trachinotus ovatus liver HUFA content increased with the increasing of dietary HUFA. Therefore, we examined the common genes and pathways responsible for HUFA uptake and deposition in T. ovatus liver using transcriptome sequencing technology after feeding with either 1.0% or 2.1% HUFA for 8 weeks. Results showed that a total of 140 and 147 genes were significantly upregulated and downregulated, respectively. Five bile acid synthesis-related genes (CYP7A1, CYP8B1, AKR1D1, SCP2 and ACOT8), which are related to dietary fat emulsification were downregulated in 2.1% HUFA group, implying that the cholate synthesized through the classical pathway might be the main bile acid form in fat emulsification. Moreover, fatty acid transport protein (FATP)-6, fatty acid binding protein (FABP)-1, -4, and -6 increased with HUFA deposition, especially FATP6 and FABP4, suggesting that the two genes may be important mediators involved in HUFA uptake and deposition. KEGG analysis showed that most of the differential genes described above were involved in peroxisome proliferator activator receptor (PPAR) signaling pathway, and PPARγ increased with HUFA deposition, indicating that PPARγ might be a key regulator of HUFA uptake and deposition by regulating the genes involved in fatty acid emulsification and transport. This study focused on the liver, which is the center of intermediary metabolism, providing a comprehensive understanding of the molecular regulation of HUFA uptake and deposition in T. ovatus, which should be further investigated to develop potential measures to improve HUFA content.
Collapse
Affiliation(s)
- Cai-Xia Lei
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Meng-Meng Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jing-Jing Tian
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Ji-Kai Wen
- College of Life Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yuan-You Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
21
|
Association of Twelve Candidate Gene Polymorphisms with the Intramuscular Fat Content and Average Backfat Thickness of Chinese Suhuai Pigs. Animals (Basel) 2019; 9:ani9110858. [PMID: 31652864 PMCID: PMC6912197 DOI: 10.3390/ani9110858] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Appropriate intramuscular fat content (IFC) is the goal of consumers and the direction that breeders must pursue. However, it is difficult to improve the IFC but not average backfat thickness (ABT) by traditional breeding methods, and pigs must be slaughtered to accurately measure IFC. Marker-assisted selection (MAS) provides an economic and efficient method to improve the IFC in pigs. Our research indicated that the FABP3 (rs1110770079) single nucleotide polymorphism (SNP) could be a candidate gene associated with IFC (but not ABT), and IFC could be improved by selecting the individuals with a favorable genotype (GG) of FABP3 (rs1110770079) SNP for pig breeding. Abstract The present study aimed to identify the molecular markers for genes that influence intramuscular fat content (IFC), but not average backfat thickness (ABT). A total of 330 Suhuai pigs were slaughtered, and measurements of IFC and ABT were obtained. Phenotypic and genetic correlations between IFC and ABT were calculated. Thirteen single nucleotide polymorphisms (SNPs) among 12 candidate genes for IFC were analyzed, including FABP3, LIPE, IGF1, IGF2, LEP, LEPR, MC4R, PHKG1, RETN, RYR1, SCD, and UBE3C. Associations of the evaluated SNPs with IFCIFC and ABT were performed. Our results showed that the means of IFC and ABT were 1.99 ± 0.03 % and 26.68 ± 0.28 mm, respectively. The coefficients of variation (CVs) of IFC and ABT were 31.21% and 19.36%, respectively. The phenotypic and genetic correlations between IFC and ABT were moderate. Only the FABP3 (rs1110770079) was associated with IFC (p < 0.05) but not with ABT. Besides, there was a tendency for associations of RYR1 (rs344435545) and SCD (rs80912566) with IFC (p < 0.1). Our results indicated that the FABP3 (rs1110770079) SNP could be used as a marker to improve IFC without changing ABT in the Suhuai pig breeding system.
Collapse
|
22
|
Le Foll C. Hypothalamic Fatty Acids and Ketone Bodies Sensing and Role of FAT/CD36 in the Regulation of Food Intake. Front Physiol 2019; 10:1036. [PMID: 31474875 PMCID: PMC6702519 DOI: 10.3389/fphys.2019.01036] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022] Open
Abstract
The obesity and type-2 diabetes epidemic is escalating and represents one of the costliest biomedical challenges confronting modern society. Moreover, the increasing consumption of high fat food is often correlated with an increase in body mass index. In people predisposed to be obese or already obese, the impaired ability of the brain to monitor and respond to alterations in fatty acid (FA) metabolism is increasingly recognized as playing a role in the pathophysiological development of these disorders. The brain senses and regulates metabolism using highly specialized nutrient-sensing neurons located mainly in the hypothalamus. The same neurons are able to detect variation in the extracellular levels of glucose, FA and ketone bodies as a way to monitor nutrient availability and to alter its own activity. In addition, glial cells such as astrocytes create major connections to neurons and form a tight relationship to closely regulate nutrient uptake and metabolism. This review will examine the different pathways by which neurons are able to detect free fatty acids (FFA) to alter its activity and how high fat diet (HFD)-astrocytes induced ketone bodies production interplays with neuronal FA sensing. The role of HFD-induced inflammation and how FA modulate the reward system will also be investigated here.
Collapse
Affiliation(s)
- Christelle Le Foll
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Different modes of barrel opening suggest a complex pathway of ligand binding in human gastrotropin. PLoS One 2019; 14:e0216142. [PMID: 31075121 PMCID: PMC6510414 DOI: 10.1371/journal.pone.0216142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/15/2019] [Indexed: 11/19/2022] Open
Abstract
Gastrotropin, the intracellular carrier of bile salts in the small intestine, binds two ligand molecules simultaneously in its internal cavity. The molecular rearrangements required for ligand entry are not yet fully clear. To improve our understanding of the binding process we combined molecular dynamics simulations with previously published structural and dynamic NMR parameters. The resulting ensembles reveal two distinct modes of barrel opening with one corresponding to the transition between the apo and holo states, whereas the other affecting different protein regions in both ligation states. Comparison of the calculated structures with NMR-derived parameters reporting on slow conformational exchange processes suggests that the protein undergoes partial unfolding along a path related to the second mode of the identified barrel opening motion.
Collapse
|
24
|
Horváth G, Egyed O, Tang C, Kovács M, Micsonai A, Kardos J, Toke O. Ligand entry in human ileal bile acid-binding protein is mediated by histidine protonation. Sci Rep 2019; 9:4825. [PMID: 30886237 PMCID: PMC6423008 DOI: 10.1038/s41598-019-41180-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/28/2019] [Indexed: 01/07/2023] Open
Abstract
Human ileal bile acid-binding protein (hI-BABP) has a key role in the intracellular transport of bile salts. To explore the role of histidine protonation in the binding process, the pH-dependence of bile salt binding and internal dynamics in hI-BABP was investigated using NMR spectroscopy and biophysical tools. Thermodynamic and kinetic measurements show an increase in the overall binding affinity and the association rate constant of the first binding step below the pKa of the histidines, suggesting that ligand binding is favoured by the protonated state. The overlap between residues exhibiting a high sensitivity to pH in their backbone amide chemical shifts and protein regions undergoing a global ms conformational exchange indicate a connection between the two processes. According to 15N NMR relaxation dispersion analysis, the slow motion is most pronounced at and above the pKa of the histidines. In agreement with the NMR measurements, MD simulations show a stabilization of the protein by histidine protonation. Hydrogen-bonding and van der Waals interactions mediating the flow of information between the C/D- and G/H-turn regions hosting the three histidines, suggest a complex way of pH-governed allosteric regulation of ligand entry involving a transition between a closed and a more open protein state.
Collapse
Affiliation(s)
- Gergő Horváth
- Laboratory for NMR Spectroscopy, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, H-1117, Budapest, Hungary
| | - Orsolya Egyed
- Laboratory for NMR Spectroscopy, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, H-1117, Budapest, Hungary
| | - Changguo Tang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri, 63110, USA
| | - Mihály Kovács
- Department of Biochemistry, ELTE-MTA "Momentum" Motor Enzymology Research Group, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary
| | - András Micsonai
- Department of Biochemistry, MTA-ELTE NAP B Neuroimmunology Research Group, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary
| | - József Kardos
- Department of Biochemistry, MTA-ELTE NAP B Neuroimmunology Research Group, Institute of Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117, Budapest, Hungary
| | - Orsolya Toke
- Laboratory for NMR Spectroscopy, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, H-1117, Budapest, Hungary.
| |
Collapse
|
25
|
Zhang Y, Cao X, Gao J. Cloning of fatty acid-binding protein 2 (fabp2) in loach (Misgurnus anguillicaudatus) and its expression in response to dietary oxidized fish oil. Comp Biochem Physiol B Biochem Mol Biol 2018; 229:26-33. [PMID: 30594644 DOI: 10.1016/j.cbpb.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 11/28/2022]
Abstract
Fatty acid-binding protein 2 (FABP2) is involved in the uptake of dietary fatty acids and intracellular fatty acid transport. In the present study, cDNA of fabp2 in loach (Misgurnus anguillicaudatus) was cloned and its full length was 956 bp, encoding 134 amino acids. Gene expression of fabp2 was investigated in different development stages and different tissues of loach, showing that the expression of fabp2 was recorded at 2 days after hatching (DAH), 10DAH, 20DAH and 35DAH, and higher in loach intestine, muscle and brain, compared with other tissues. We also investigated the effects of dietary oxidized fish oil (OFO) on the expression of intestinal fabp2 in loach juveniles by using fluorescence in situ hybridization (FISH) and real-time quantitative PCR. Fabp2 gene was expressed mainly by the intestinal epithelium cells of loach juveniles. The expression of intestinal fabp2 in loaches fed with OFO diet was significantly up-regulated on day 1 and 3, and down-regulated on day 10 after feeding, compared with those loaches fed with dietary fresh fish oil (FO), which were in accordance with the fluorescence intensities of FISH exhibiting in the corresponding feeding time. The present study indicated that dietary oxidized fish oil could affect the expression of fabp2 in the loach. Our results serve as reference to better understand the functional characterization of fabp2 in loach and other fish species.
Collapse
Affiliation(s)
- Yin Zhang
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Xiaojuan Cao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Gao
- College of Fisheries, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
26
|
Xu H, Liao Z, Wang C, Wei Y, Liang M. Hepatic transcriptome of the euryhaline teleost Japanese seabass (Lateolabrax japonicus) fed diets characterized by α-linolenic acid or linoleic acid. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 29:106-116. [PMID: 30465939 DOI: 10.1016/j.cbd.2018.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/04/2018] [Accepted: 11/04/2018] [Indexed: 11/16/2022]
Abstract
To investigate the different effects of dietary α-linolenic acid (ALA) and linoleic acid (LA) on the euryhaline fish Japanese seabass, a feeding trial followed by hepatic transcriptome assay was conducted. Two experimental diets containing 10% LA-rich sunflower seed oil (diet LA) or 10% ALA-rich perilla oil (diet ALA) were used in the feeding trial. LA and ALA in diets were characteristically incorporated into fish tissues while no significant difference was observed in growth performance and body proximate composition between groups LA and ALA. Compared to LA, ALA up-regulated transcription of 49 unigenes and down-regulated those of 311 unigenes. Quantitative RT-PCR studies on eight lipid metabolism-related genes and seven randomly selected genes were conducted to validate the transcriptomic results. Lipid metabolism-related genes ApoA1, ApoA4, ApoE, FABP1, FABP3, FABP4, FATP6, and DGAT1, as well as ribosomal proteins L9e, L13e, and S4e, were transcriptionally down-regulated by ALA. The differentially expressed genes (DEGs) were primarily enriched in Gene Ontology terms such as Lipid transport, Protein metabolic process, and Ribosome biogenesis, as well as in KEGG pathways such as Complement and coagulation cascades and Ribosome. The Protein-Protein Interaction (PPI) network based on the peptide biosynthesis-related DEGs showed that ribosomal proteins such as SAe, L4e, S4e, L15e, L9e, and L13Ae had high betweenness centrality in the dietary regulation of peptide biosynthetic processes. In conclusion, under the present experimental conditions, a high level of dietary α-linolenic acid tended to suppress lipid transport and protein biosynthetic processes in the liver of Japanese seabass at the gene expression level.
Collapse
Affiliation(s)
- Houguo Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, China
| | - Zhangbin Liao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, Shandong 266071, China
| | - Chengqiang Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, Shandong 266071, China
| | - Yuliang Wei
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, China
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, China.
| |
Collapse
|
27
|
Sepe FN, Chiasserini D, Parnetti L. Role of FABP3 as biomarker in Alzheimer's disease and synucleinopathies. FUTURE NEUROLOGY 2018. [DOI: 10.2217/fnl-2018-0003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipids are fundamental components of brain cells as they are involved in several essential processes like remodeling of plasma membrane, synaptic function and receptor–ligand interactions. Systemic and brain alterations in lipid metabolism have been linked to the pathogenesis of neurodegenerative disorders like dementia and parkinsonisms. Intracellular transport of lipids is regulated by fatty acid-binding proteins. Recently, a member of this family, the fatty acid-binding protein 3 has been proposed as a potential biomarker across a range of neurodegenerative diseases, including Alzheimer's disease and dementia with Lewy bodies. In this special report, we describe recent progresses in characterizing the role of fatty acid-binding protein 3 in neurodegeneration and its putative role as biomarker measurable in biological fluids.
Collapse
Affiliation(s)
- Federica Nicoletta Sepe
- Center for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Davide Chiasserini
- Stoller Biomarker Discovery Centre, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Lucilla Parnetti
- Center for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
28
|
Cui H, Zheng M, Zhao G, Liu R, Wen J. Identification of differentially expressed genes and pathways for intramuscular fat metabolism between breast and thigh tissues of chickens. BMC Genomics 2018; 19:55. [PMID: 29338766 PMCID: PMC5771206 DOI: 10.1186/s12864-017-4292-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 11/10/2017] [Indexed: 11/15/2022] Open
Abstract
Background Intramuscular fat (IMF) is one of the important factors influencing meat quality, however, for chickens, the molecular regulatory mechanisms underlying this trait have not yet been clear. In this study, a systematic identification of differentially expressed genes (DEGs) and molecular regulatory mechanism related to IMF metabolism between Beijing-you chicken breast and thigh at 42 and 90 days of age was performed. Results IMF contents, Gene Ontology (GO) terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed, The results showed that both IMF contents in breast at 42 and 90 d were significantly lower (P < 0.05 or P < 0.01) than those in thigh. By microarray, 515 common known DEGs and 36 DEGs related to IMF metabolism were identified between the breast and thigh at 42 and 90 d. Compared to thigh, the expression levels of PPARG had significantly down-regulated (P < 0.01) in breast, but the expression levels of RXRA and CEBPB had significantly up-regulated (P < 0.01). However, the expression levels of LPL, FABP4, THRSP, RBP7, LDLR, FABP3, CPT2 and PPARGC1A had significantly down-regulated in breast (P < 0.01), supporting that PPARG and its down-stream genes had the important regulatory function to IMF deposition. In addition, based on of DEGs, KEGG analysis revealed that PPAR signaling pathway and cell junction-related pathways (focal adhesion and ECM-receptor interaction, which play a prominent role in maintaining the integrity of tissues), might contribute to the IMF metabolism in chicken. Conclusions Our data had screened the potential candidate genes associated with chicken IMF metabolism, and imply that IMF metabolism in chicken is regulated and mediated not only by related functional genes and PPAR pathway, but also by others involved in cell junctions. These findings establish the groundwork and provide new clues for deciphering the molecular mechanisms underlying IMF deposition in poultry. Further studies at the translational and posttranslational level are now required to validate the genes and pathways identified here. Electronic supplementary material The online version of this article (10.1186/s12864-017-4292-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huanxian Cui
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Maiqing Zheng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Guiping Zhao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Ranran Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, Beijing, 100193, China
| | - Jie Wen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,State Key Laboratory of Animal Nutrition, Beijing, 100193, China.
| |
Collapse
|
29
|
Horváth G, Biczók L, Majer Z, Kovács M, Micsonai A, Kardos J, Toke O. Structural insight into a partially unfolded state preceding aggregation in an intracellular lipid-binding protein. FEBS J 2017; 284:3637-3661. [DOI: 10.1111/febs.14264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/15/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Gergő Horváth
- Laboratory for NMR Spectroscopy; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest Hungary
| | - László Biczók
- Institute of Materials and Environmental Chemistry; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest Hungary
| | - Zsuzsa Majer
- Institute of Chemistry; Eötvös Loránd University; Budapest Hungary
| | - Mihály Kovács
- Department of Biochemistry; ELTE-MTA ‘Momentum’ Motor Enzymology Research Group; Eötvös Loránd University; Budapest Hungary
| | - András Micsonai
- Department of Biochemistry; MTA-ELTE NAP B Neuroimmunology Research Group; Institute of Biology; Eötvös Loránd University; Budapest Hungary
| | - József Kardos
- Department of Biochemistry; MTA-ELTE NAP B Neuroimmunology Research Group; Institute of Biology; Eötvös Loránd University; Budapest Hungary
| | - Orsolya Toke
- Laboratory for NMR Spectroscopy; Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest Hungary
| |
Collapse
|
30
|
D'Onofrio M, Barracchia CG, Bortot A, Munari F, Zanzoni S, Assfalg M. Molecular differences between human liver fatty acid binding protein and its T94A variant in their unbound and lipid-bound states. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1152-1159. [PMID: 28668637 DOI: 10.1016/j.bbapap.2017.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/15/2017] [Accepted: 06/26/2017] [Indexed: 01/12/2023]
Abstract
Liver fatty acid binding protein (L-FABP) is an abundant cytosolic protein playing a central role in intracellular lipid trafficking. The L-FABP T94A variant, originating from one of the most common polymorphisms in the FABP family, is associated with several lipid-related disorders. However, the molecular factors that determine the observed functional differences are currently unknown. In our work, we performed a high resolution comparative molecular analysis of L-FABP T94T and L-FABP T94A in their unbound states and in the presence of representative ligands of the fatty acid and bile acid classes. We collected residue-resolved NMR spectral fingerprints of the two variants, and compared secondary structures, backbone dynamics, side chain arrangements, binding site occupation, and intermolecular contacts. We found that threonine to alanine replacement did not result in strongly perturbed structural and dynamic features, although differences in oleic acid binding by the two variants were detected. Based on chemical shift perturbations at sites distant from position 94 and on differences in intermolecular contacts, we suggest that long-range communication networks in L-FABP propagate the effect of amino acid substitution at sites relevant for ligand binding or biomolecular recognition.
Collapse
Affiliation(s)
| | | | - Andrea Bortot
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Francesca Munari
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Serena Zanzoni
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Michael Assfalg
- Department of Biotechnology, University of Verona, 37134 Verona, Italy.
| |
Collapse
|
31
|
Ma YF, Chen L, He J, Tian Y, Xu XQ, Du X, Lu LZ. Gene Expression Patterns of Geese Expression Patterns of L-FABP, Spot 14, OB and APO A1 Genes in Different Tissues of Overfed and Control Geese. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2017. [DOI: 10.1590/1806-9061-2016-0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- YF Ma
- Jinhua Polytechnic, China
| | - L Chen
- Institute of Animal Husbandry and Veterinary Science, China
| | - J He
- Institute of Animal Husbandry and Veterinary Science, China
| | - Y Tian
- Institute of Animal Husbandry and Veterinary Science, China
| | - XQ Xu
- Institute of Animal Husbandry and Veterinary Science, China
| | - X Du
- Institute of Animal Husbandry and Veterinary Science, China
| | - LZ Lu
- Institute of Animal Husbandry and Veterinary Science, China
| |
Collapse
|
32
|
Long term betaine supplementation regulates genes involved in lipid and cholesterol metabolism of two muscles from an obese pig breed. Meat Sci 2017; 124:25-33. [DOI: 10.1016/j.meatsci.2016.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 12/15/2022]
|
33
|
Xu H, Zhang Y, Wang C, Wei Y, Zheng K, Liang M. Cloning and characterization of fatty acid-binding proteins (fabps) from Japanese seabass (Lateolabrax japonicus) liver, and their gene expressions in response to dietary arachidonic acid (ARA). Comp Biochem Physiol B Biochem Mol Biol 2017; 204:27-34. [DOI: 10.1016/j.cbpb.2016.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 11/16/2022]
|
34
|
Wang Y, Chen H, Han D, Chen Y, Muhatai G, Kurban T, Xing J, He J. Correlation of the A-FABP Gene Polymorphism and mRNA Expression with Intramuscular Fat Content in Three-Yellow Chicken and Hetian-Black Chicken. Anim Biotechnol 2016; 28:37-43. [DOI: 10.1080/10495398.2016.1194288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yong Wang
- Key Laboratory of Tarim Animal Husbandry Science & Technology of Xinjiang Production and Construction Groups, College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region, China
| | - Hongwei Chen
- Key Laboratory of Tarim Animal Husbandry Science & Technology of Xinjiang Production and Construction Groups, College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region, China
| | - Diangang Han
- Kunming Airport Entry-Exit Inspection and Quarantine Bureau, Kunming, China
| | - Ying Chen
- Key Laboratory of Tarim Animal Husbandry Science & Technology of Xinjiang Production and Construction Groups, College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region, China
| | - Gemingguli Muhatai
- Key Laboratory of Tarim Animal Husbandry Science & Technology of Xinjiang Production and Construction Groups, College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region, China
| | - Tursunjan Kurban
- Key Laboratory of Tarim Animal Husbandry Science & Technology of Xinjiang Production and Construction Groups, College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region, China
| | - Jinming Xing
- Key Laboratory of Tarim Animal Husbandry Science & Technology of Xinjiang Production and Construction Groups, College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region, China
| | - Jianzhong He
- Key Laboratory of Tarim Animal Husbandry Science & Technology of Xinjiang Production and Construction Groups, College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
35
|
Li M, Jiang L, Zhang H, Wang D, Zhang M, Zhang L. Clinical significance of elevated serum A-FABP and free fatty acid in neonates with hypoxic ischemic brain damage. Exp Ther Med 2016; 12:746-752. [PMID: 27446270 PMCID: PMC4950262 DOI: 10.3892/etm.2016.3411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/27/2016] [Indexed: 12/15/2022] Open
Abstract
The main function of adipocyte fatty acid-binding protein (A-FABP) is to regulate fatty acid metabolism as its molecular chaperone. The clinical significance of A-FABP in hypoxic-ischemic brain damage (HIBD) neonates is not yet clear. Free fatty acid (FFA) in cerebral cortex increases along with hypoxia ischemia degree. Thus, we aimed to investigate whether FFA can induce A-FABP expression and elevate the serum A-FABP level in HIBD neonates. In the present study, 42 HIBD neonates were selected including 11 cases as mild, 16 cases as moderate and 15 cases as severe. The serum was collected from peripheral vein at 72 h after the first visit (acute stage) and 7 days after birth (recovery stage), and the serum from 10 normal neonates was used as the control. The serum level of A-FABP and FFA in 42 neonates with acute phase and recovery phase HIBD were detected using ELISA and copper colorimetric method. The overall serum A-FABP content in HIBD neonates at the acute stage was significantly higher compared to the normal neonates (P<0.05). The serum A-FABP level in severe HIBD neonates was significantly higher than that in mild HIBD, moderate HIBD and normal neonates (P<0.05). The serum FFA level in HIBD neonates at the acute stage was 1,521.57±605.63 µmol/l, which was significantly higher than that in the normal neonates 838.24±294.22 µmol/l. The serum FFA levels in mild, moderate and severe HIBD neonates were significantly higher than those in the normal neonates. The overall A-FABP level in HIBD neonates at the recovery stage was significantly lower compared to the acute stage, which was significant in severe HIBD neonates. A-FABP levels in mild and moderate HIBD neonates at recovery stage were decreased compared with the acute stage, although there was no statistical difference. There was a positive correlation between serum A-FABP and FFA in HIBD neonates at acute stage (r=0.369, P<0.05). In conclusion, serum A-FABP and FFA levels were signifcantly increased in HIBD neonates at acute stage, and were positively correlated. The serum A-FABP level in HIBD neonates at recovery stage was significantly lower than that in the acute stage. The results suggested that serum A-FABP and FFA levels at acute stage can reflect the severity of HIBD. The detection of serum A-FABP and FFA can be applied as indicators for the early diagnosis of HIBD, but also provides a basis for the clinical evaluation of HIBD treatment.
Collapse
Affiliation(s)
- Mei Li
- Department of Pediatrics, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Lian Jiang
- Department of Pediatrics, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Huifen Zhang
- Department of Pediatrics, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Dandan Wang
- Department of Pathology, Wuxi Maternal and Child Health Hospital, Wuxi, Jiangsu 214002, P.R. China
| | - Min Zhang
- Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Lianshan Zhang
- Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
36
|
Horváth G, Bencsura Á, Simon Á, Tochtrop GP, DeKoster GT, Covey DF, Cistola DP, Toke O. Structural determinants of ligand binding in the ternary complex of human ileal bile acid binding protein with glycocholate and glycochenodeoxycholate obtained from solution NMR. FEBS J 2016; 283:541-55. [PMID: 26613247 DOI: 10.1111/febs.13610] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/03/2015] [Accepted: 11/24/2015] [Indexed: 01/13/2023]
Abstract
UNLABELLED Besides aiding digestion, bile salts are important signal molecules exhibiting a regulatory role in metabolic processes. Human ileal bile acid binding protein (I-BABP) is an intracellular carrier of bile salts in the epithelial cells of the distal small intestine and has a key role in the enterohepatic circulation of bile salts. Positive binding cooperativity combined with site selectivity of glycocholate and glycochenodeoxycholate, the two most abundant bile salts in the human body, make human I-BABP a unique member of the family of intracellular lipid binding proteins. Solution NMR structure of the ternary complex of human I-BABP with glycocholate and glycochenodeoxycholate reveals an extensive network of hydrogen bonds and hydrophobic interactions stabilizing the bound bile salts. Conformational changes accompanying bile salt binding affects four major regions in the protein including the C/D, E/F and G/H loops as well as the helical segment. Most of these protein regions coincide with a previously described network of millisecond time scale fluctuations in the apo protein, a motion absent in the bound state. Comparison of the heterotypic doubly ligated complex with the unligated form provides further evidence of a conformation selection mechanism of ligand entry. Structural and dynamic aspects of human I-BABP-bile salt interaction are discussed and compared with characteristics of ligand binding in other members of the intracellular lipid binding protein family. PROTEIN DATA BANK ACCESSION NUMBERS The coordinates of the 10 lowest energy structures of the human I-BABP : GCDA : GCA complex as well as the distance restraints used to calculate the final ensemble have been deposited in the Brookhaven Protein Data Bank with accession number 2MM3.
Collapse
Affiliation(s)
- Gergő Horváth
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ákos Bencsura
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ágnes Simon
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gregory P Tochtrop
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA.,Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St Louis, MO, USA
| | - Gregory T DeKoster
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Douglas F Covey
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St Louis, MO, USA
| | - David P Cistola
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA
| | - Orsolya Toke
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
37
|
Bai S, Wang G, Zhang W, Zhang S, Rice BB, Cline MA, Gilbert ER. Broiler chicken adipose tissue dynamics during the first two weeks post-hatch. Comp Biochem Physiol A Mol Integr Physiol 2015; 189:115-23. [PMID: 26263851 DOI: 10.1016/j.cbpa.2015.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/30/2015] [Accepted: 08/02/2015] [Indexed: 11/28/2022]
Abstract
Selection of broiler chickens for growth has led to increased adipose tissue accretion. To investigate the post-hatch development of adipose tissue, the abdominal, clavicular, and subcutaneous adipose tissue depots were collected from broiler chicks at 4 and 14 days post-hatch. As a percent of body weight, abdominal fat increased (P<0.001) with age. At day 4, clavicular and subcutaneous fat depots were heavier (P<0.003) than abdominal fat whereas at day 14, abdominal and clavicular weighed more (P<0.003) than subcutaneous fat. Adipocyte area and diameter were greater in clavicular and subcutaneous than abdominal fat at 4 and 14 days post-hatch (P<0.001). Glycerol-3-phosphate dehydrogenase (G3PDH) activity increased (P<0.001) in all depots from day 4 to 14, and at both ages was greatest in subcutaneous, intermediate in clavicular, and lowest in abdominal fat (P<0.05). In clavicular fat, peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer binding protein (CEBP)α, CEBPβ, fatty acid synthase (FASN), fatty acid binding protein 4 (FABP4), lipoprotein lipase (LPL), neuropeptide Y (NPY), and NPY receptor 5 (NPYR5) mRNA increased and NPYR2 mRNA decreased from day 4 to 14 (P<0.001). Thus, there are site-specific differences in broiler chick adipose development, with larger adipocytes and greater G3PDH activity in subcutaneous fat at day 4, more rapid growth of abdominal fat, and clavicular fat intermediate for most traits. Adipose tissue expansion was accompanied by changes in gene expression of adipose-associated factors.
Collapse
Affiliation(s)
- Shiping Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an 625014, Sichuan, China
| | - Guoqing Wang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Wei Zhang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Shuai Zhang
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Brittany Breon Rice
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Mark Andrew Cline
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Elizabeth Ruth Gilbert
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
38
|
Fasting for 21days leads to changes in adipose tissue and liver physiology in juvenile checkered garter snakes (Thamnophis marcianus). Comp Biochem Physiol A Mol Integr Physiol 2015; 190:68-74. [PMID: 26358832 DOI: 10.1016/j.cbpa.2015.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/17/2022]
Abstract
Snakes often undergo periods of prolonged fasting and, under certain conditions, can survive years without food. Despite this unique phenomenon, there are relatively few reports of the physiological adaptations to fasting in snakes. At post-prandial day 1 (fed) or 21 (fasting), brain, liver, and adipose tissues were collected from juvenile checkered garter snakes (Thamnophis marcianus). There was greater glycerol-3-phosphate dehydrogenase (G3PDH)-specific activity in the liver of fasted than fed snakes (P=0.01). The mRNA abundance of various fat metabolism-associated factors was measured in brain, liver, and adipose tissue. Lipoprotein lipase (LPL) mRNA was greater in fasted than fed snakes in the brain (P=0.04). Adipose triglyceride lipase (ATGL; P=0.006) mRNA was greater in the liver of fasted than fed snakes. In adipose tissue, expression of peroxisome proliferator-activated receptor (PPAR)γ (P=0.01), and fatty acid binding protein 4 (P=0.03) was greater in fed than fasted snakes. Analysis of adipocyte morphology revealed that cross-sectional area (P=0.095) and diameter (P=0.27) were not significantly different between fed and fasted snakes. Results suggest that mean adipocyte area can be preserved during fasting by dampening lipid biosynthesis while not changing rates of lipid hydrolysis. In the liver, however, extensive lipid remodeling may provide energy and lipoproteins to maintain lipid structural integrity during energy restriction. Because the duration of fasting was not sufficient to change adipocyte size, results suggest that the liver is important as a short-term provider of energy in the snake.
Collapse
|
39
|
Bayır M, Bayır A, Wright JM. Divergent spatial regulation of duplicated fatty acid-binding protein (fabp) genes in rainbow trout (Oncorhynchus mykiss). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 14:26-32. [DOI: 10.1016/j.cbd.2015.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 12/14/2022]
|
40
|
Rowland A, Hallifax D, Nussio MR, Shapter JG, Mackenzie PI, Brian Houston J, Knights KM, Miners JO. Characterization of the comparative drug binding to intra- (liver fatty acid binding protein) and extra- (human serum albumin) cellular proteins. Xenobiotica 2015; 45:847-57. [PMID: 25801059 DOI: 10.3109/00498254.2015.1021403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. This study compared the extent, affinity, and kinetics of drug binding to human serum albumin (HSA) and liver fatty acid binding protein (LFABP) using ultrafiltration and surface plasmon resonance (SPR). 2. Binding of basic and neutral drugs to both HSA and LFABP was typically negligible. Binding of acidic drugs ranged from minor (fu > 0.8) to extensive (fu < 0.1). Of the compounds screened, the highest binding to both HSA and LFABP was observed for the acidic drugs torsemide and sulfinpyrazone, and for β-estradiol (a polar, neutral compound). 3. The extent of binding of acidic drugs to HSA was up to 40% greater than binding to LFABP. SPR experiments demonstrated comparable kinetics and affinity for the binding of representative acidic drugs (naproxen, sulfinpyrazone, and torsemide) to HSA and LFABP. 4. Simulations based on in vitro kinetic constants derived from SPR experiments and a rapid equilibrium model were undertaken to examine the impact of binding characteristics on compartmental drug distribution. Simulations provided mechanistic confirmation that equilibration of intracellular unbound drug with the extracellular unbound drug is attained rapidly in the absence of active transport mechanisms for drugs bound moderately or extensively to HSA and LFABP.
Collapse
Affiliation(s)
- Andrew Rowland
- a Department of Clinical Pharmacology , Flinders University , Adelaide , Australia
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu JJ, Green P, John Mann J, Rapoport SI, Sublette ME. Pathways of polyunsaturated fatty acid utilization: implications for brain function in neuropsychiatric health and disease. Brain Res 2015; 1597:220-46. [PMID: 25498862 PMCID: PMC4339314 DOI: 10.1016/j.brainres.2014.11.059] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/11/2014] [Accepted: 11/27/2014] [Indexed: 12/28/2022]
Abstract
Essential polyunsaturated fatty acids (PUFAs) have profound effects on brain development and function. Abnormalities of PUFA status have been implicated in neuropsychiatric diseases such as major depression, bipolar disorder, schizophrenia, Alzheimer's disease, and attention deficit hyperactivity disorder. Pathophysiologic mechanisms could involve not only suboptimal PUFA intake, but also metabolic and genetic abnormalities, defective hepatic metabolism, and problems with diffusion and transport. This article provides an overview of physiologic factors regulating PUFA utilization, highlighting their relevance to neuropsychiatric disease.
Collapse
Affiliation(s)
- Joanne J Liu
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; New York Medical College, Valhalla, NY, USA
| | - Pnina Green
- Laboratory of Metabolic Research, Felsenstein Medical Research Center, Tel Aviv University, Petach Tikva, Israel
| | - J John Mann
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA; Department of Radiology, Columbia University, New York, NY, USA
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - M Elizabeth Sublette
- Department of Molecular Imaging & Neuropathology, New York State Psychiatric Institute, New York, NY, USA; Department of Psychiatry, Columbia University, New York, NY, USA.
| |
Collapse
|
42
|
Zhang W, Bai S, Liu D, Cline MA, Gilbert ER. Neuropeptide Y promotes adipogenesis in chicken adipose cells in vitro. Comp Biochem Physiol A Mol Integr Physiol 2014; 181:62-70. [PMID: 25461485 DOI: 10.1016/j.cbpa.2014.11.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/10/2014] [Accepted: 11/14/2014] [Indexed: 01/26/2023]
Abstract
Neuropeptide Y is an evolutionarily conserved neurotransmitter that stimulates food intake in higher vertebrate species and promotes adipogenesis in mammals. The objective of this study was to determine if NPY also enhances adipogenesis in birds, using chickens as a model. The stromal-vascular fraction of cells was isolated from the abdominal fat of 14 day-old broiler chicks and effects of exogenous chicken NPY on proliferation and differentiation determined. Based on a thymidine analog incorporation assay and gene expression analysis, there was no effect of NPY on proliferation during the first 12 hours post-treatment in cells that were induced to proliferate. However, there were effects of NPY treatment on proliferation and lipid accumulation during the first 6 days post-induction of differentiation. Neuropeptide Y supplementation during induction of differentiation was associated with greater glycerol-3-phosphate dehydrogenase activity and staining for neutral lipids, indicative of augmented lipid accumulation. This was also accompanied by increased proliferation during differentiation, which was characterized by up-regulation of proliferation and preadipocyte marker mRNA, and a greater number of proliferating cells in groups that were treated with NPY. Additionally, NPY treatment was associated with increased expression of fatty acid binding protein 4 and lipoprotein lipase during differentiation. In conclusion, these results suggest that NPY plays a role in promoting adipogenesis in chickens and that the mechanisms involve an increase in the synthesis of new preadipocytes and increased lipid synthesis and storage.
Collapse
Affiliation(s)
- Wei Zhang
- Animal and Poultry Sciences, Blacksburg, VA 24061,United States
| | - Shiping Bai
- Animal and Poultry Sciences, Blacksburg, VA 24061,United States
| | - Dongmin Liu
- Human Nutrition, Foods and Exercise, Blacksburg, VA 24061,United States
| | | | | |
Collapse
|
43
|
Horváth G, Egyed O, Toke O. Temperature Dependence of Backbone Dynamics in Human Ileal Bile Acid-Binding Protein: Implications for the Mechanism of Ligand Binding. Biochemistry 2014; 53:5186-98. [DOI: 10.1021/bi500553f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Gergő Horváth
- Institute of Organic Chemistry,
Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| | - Orsolya Egyed
- Institute of Organic Chemistry,
Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| | - Orsolya Toke
- Institute of Organic Chemistry,
Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| |
Collapse
|
44
|
Mahalingam R, Peng HP, Yang AS. Prediction of fatty acid-binding residues on protein surfaces with three-dimensional probability distributions of interacting atoms. Biophys Chem 2014; 192:10-9. [PMID: 24934883 DOI: 10.1016/j.bpc.2014.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/22/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
Abstract
Protein-fatty acid interaction is vital for many cellular processes and understanding this interaction is important for functional annotation as well as drug discovery. In this work, we present a method for predicting the fatty acid (FA)-binding residues by using three-dimensional probability density distributions of interacting atoms of FAs on protein surfaces which are derived from the known protein-FA complex structures. A machine learning algorithm was established to learn the characteristic patterns of the probability density maps specific to the FA-binding sites. The predictor was trained with five-fold cross validation on a non-redundant training set and then evaluated with an independent test set as well as on holo-apo pair's dataset. The results showed good accuracy in predicting the FA-binding residues. Further, the predictor developed in this study is implemented as an online server which is freely accessible at the following website, http://ismblab.genomics.sinica.edu.tw/.
Collapse
Affiliation(s)
| | - Hung-Pin Peng
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Institute of Biomedical Informatics, National Yang-Ming University, Taipei 11221, Taiwan; Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei 115, Taiwan
| | - An-Suei Yang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
45
|
Yi B, Wang J, Wang S, Yuan D, Sun J, Li Z, Mao Y, Hou Q, Liu W. Overexpression of Banna mini-pig inbred line fatty acid binding protein 3 promotes adipogenesis in 3T3-L1 preadipocytes. Cell Biol Int 2014; 38:918-23. [PMID: 24737696 DOI: 10.1002/cbin.10285] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 03/10/2014] [Indexed: 11/08/2022]
Abstract
Fatty acid binding protein 3 (H-FABP, FABP3) has been significantly associated with intramuscular fat (IMF) content in pigs, which is positively correlated with palatability of pork. However, its underlying function is not fully elucidated. We have investigated the effects of overexpression of the FABP3 gene on differentiation and adipogenesis of 3T3-L1 preadipocytes in the fat Banna mini-pig inbred line (fBMIL). Eukaryotic vectors that expressed the FABP3 protein were constructed, and stably established in the 3T3-L1 preadipocytes cell line. Cells were induced in a standard differentiation cocktail. Morphological changes and the degree of adipogenesis were measured by Oil Red O staining assay and triacylglycerol content measurement, respectively. mRNA expression levels of triacylglycerol metabolism-related genes were measured by qPCR. FABP3 significantly promoted differentiation of 3T3-L1 cells and enhanced triacylglycerol levels (P < 0.05). mRNA of the peroxisome proliferator-activated receptor γ (PPARγ), adipocyte fatty acid binding protein (422/aP2) and glycerol-3-phosphate dehydrogenase (GPDH) gene increased markedly (P < 0.05). In conclusion, expression of the FABP3 gene enhances adipogenesis in 3T3-L1 preadipocytes primarily by upregulating lipogenic PPARγ, 422/aP2 and GPDH genes.
Collapse
Affiliation(s)
- Bao Yi
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Böhm M, Schultz S, Koussoroplis AM, Kainz MJ. Tissue-specific fatty acids response to different diets in common carp (Cyprinus carpio L.). PLoS One 2014; 9:e94759. [PMID: 24733499 PMCID: PMC3986219 DOI: 10.1371/journal.pone.0094759] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 03/20/2014] [Indexed: 12/16/2022] Open
Abstract
Fish depend on dietary fatty acids (FA) to support their physiological condition and health. Exploring the FA distribution in common carp (Cyprinus carpio), one of the world's most consumed freshwater fish, is important to understand how and where FA of different sources are allocated. We investigated diet effects on the composition of polar and neutral lipid fatty acids (PLFA and NLFA, respectively) in eight different tissues (dorsal and ventral muscle, heart, kidney, intestine, eyes, liver and adipose tissue) of common carp. Two-year old carp were exposed to three diet sources (i.e., zooplankton, zooplankton plus supplementary feeds containing vegetable, VO, or fish oil, FO) with different FA composition. The PLFA and NLFA response was clearly tissue-specific after 210 days of feeding on different diets. PLFA were generally rich in omega-3 polyunsaturated FA and only marginally influenced by dietary FA, whereas the NLFA composition strongly reflected dietary FA profiles. However, the NLFA composition in carp tissues varied considerably at low NLFA mass ratios, suggesting that carp is able to regulate the NLFA composition and thus FA quality in its tissues when NLFA contents are low. Finally, this study shows that FO were 3X more retained than VO as NLFA particularly in muscle tissues, indicating that higher nutritional quality feeds are selectively allocated into tissues and thus available for human consumption.
Collapse
Affiliation(s)
- Markus Böhm
- WasserCluster –Biologische Station Lunz, Dr. Carl Kupelwieser, Lunz am See, Austria
- University of Vienna, Department of Limnology, Wien, Austria
| | - Sebastian Schultz
- WasserCluster –Biologische Station Lunz, Dr. Carl Kupelwieser, Lunz am See, Austria
- University of Vienna, Department of Limnology, Wien, Austria
| | | | - Martin J. Kainz
- WasserCluster –Biologische Station Lunz, Dr. Carl Kupelwieser, Lunz am See, Austria
| |
Collapse
|
47
|
Wang W, Lopaschuk GD. Metabolic therapy for the treatment of ischemic heart disease: reality and expectations. Expert Rev Cardiovasc Ther 2014; 5:1123-34. [DOI: 10.1586/14779072.5.6.1123] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Kim GW, Moon BS, Kim HY, Lee JW, Kim KJ, Yoo JY. Association of FABP3 Genotypes and Carcass Characteristics in Pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2013. [DOI: 10.5187/jast.2013.55.6.551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Parmar MB, Wright JM. Comparative genomic organization and tissue-specific transcription of the duplicated fabp7 and fabp10 genes in teleost fishes. Genome 2013; 56:691-701. [DOI: 10.1139/gen-2013-0172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A whole-genome duplication (WGD) early in the teleost fish lineage makes fish ideal organisms to study the fate of duplicated genes and underlying evolutionary trajectories that have led to the retention of ohnologous gene duplicates in fish genomes. Here, we compare the genomic organization and tissue-specific transcription of the ohnologous fabp7 and fabp10 genes in medaka, three-spined stickleback, and spotted green pufferfish to the well-studied duplicated fabp7 and fabp10 genes of zebrafish. Teleost fabp7 and fabp10 genes contain four exons interrupted by three introns. Polypeptide sequences of Fabp7 and Fabp10 show the highest sequence identity and similarity with their orthologs from vertebrates. Orthology was evident as the ohnologous Fabp7 and Fabp10 polypeptides of teleost fishes each formed distinct clades and clustered together with their orthologs from other vertebrates in a phylogenetic tree. Furthermore, ohnologous teleost fabp7 and fabp10 genes exhibit conserved gene synteny with human FABP7 and chicken FABP10, respectively, which provides compelling evidence that the duplicated fabp7 and fabp10 genes of teleost fishes most likely arose from the well-documented WGD. The tissue-specific distribution of fabp7a, fabp7b, fabp10a, and fabp10b transcripts provides evidence of diverged spatial transcriptional regulation between ohnologous gene duplicates of fabp7 and fabp10 in teleost fishes.
Collapse
Affiliation(s)
- Manoj B. Parmar
- Department of Biology, Dalhousie University, 1355 Oxford Street, P.O. Box 15000, Halifax, NS B3H 4R2, Canada
| | - Jonathan M. Wright
- Department of Biology, Dalhousie University, 1355 Oxford Street, P.O. Box 15000, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
50
|
Parmar MB, Shams R, Wright JM. Genomic organization and transcription of the medaka and zebrafish cellular retinol-binding protein (rbp) genes. Mar Genomics 2013; 11:1-10. [PMID: 23632098 DOI: 10.1016/j.margen.2013.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/25/2013] [Accepted: 04/07/2013] [Indexed: 01/10/2023]
Abstract
In this study, we examined the evolutionary trajectories and the common ancestor of medaka rbp genes by comparing them to the well-studied rbp/RBP genes from zebrafish and other vertebrates. We describe here gene structure, sequence identity, phylogenetic analysis and conserved gene synteny of medaka rbp genes and their putative proteins as well as the tissue-specific distribution of rbp transcripts in adult medaka and zebrafish. Medaka rbp genes consist of four exons separated by three introns that encode putative polypeptides of 134-138 amino acids, a genomic organization characteristic of rbp genes. Medaka Rbp sequences share highest sequence identity and similarity with their orthologs in vertebrates, and form a distinct clade with them in phylogenetic analysis. Conserved gene synteny was evident among medaka, zebrafish and human rbp/RBP genes, which provides compelling evidence that the medaka rbp1, rbp2a, rbp2b, rbp5, rbp7a and rbp7b genes arose from a common ancestor of vertebrates. Moreover, the duplicated rbp2 and rbp7 genes most likely exist owing to a whole-genome duplication (WGD) event specific to the teleost fish lineage. Selection pressure and the nonparametric relative rate test of the medaka and zebrafish duplicated rbp2 and rbp7 genes suggest that these duplicated genes are subjected to purifying selection and one paralog might have evolved at an accelerated rate compared to its sister duplicate since the WGD. The steady-state levels of medaka and zebrafish rbp1, rbp2a, rbp2b and rbp5 transcripts in various tissues suggest that medaka rbp1, rbp2a and rbp2b genes have retained the regulatory elements of an ancestral RBP1 and RBP2 genes, and the medaka rbp5 gene has acquired new function. Furthermore, the tissue-specific regulations of rbp7a and rbp7b genes have diverged markedly in medaka and zebrafish since the teleost-specific WGD.
Collapse
Affiliation(s)
- Manoj B Parmar
- Department of Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| | | | | |
Collapse
|