1
|
Dalpiaz FL, Laçoli R, Pedrosa RC, Santin JR, Corrêa R, Wagner TM, Vasseur P, Férard JF, Radetski CM, Cotelle S. Alliumcepa exposed to Nativo® fungicide with and without swine liver enzyme biotransformation: A comparative genotoxicity study. CHEMOSPHERE 2025; 373:144149. [PMID: 39869997 DOI: 10.1016/j.chemosphere.2025.144149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/03/2025] [Accepted: 01/19/2025] [Indexed: 01/29/2025]
Abstract
The biotransformation of compounds is a critical point in understanding their toxic effects in both toxicology and ecotoxicology. The objective of this study was to evaluate whether there is a difference in the phytogenotoxic potential of the commercial fungicide Nativo® between non-biotransformed samples and samples biotransformed by swine liver enzymes. The fungicide Nativo is a mixture of Tebuconazole (TEB; 200 g L-1) and Trifloxystrobin (TRI; 100 g L-1). The test organism used in this study was Allium cepa, and the mitotic index (MI), chromosomic aberrations, and micronucleus frequency in A. cepa cells were compared between samples of non-biotransformed Nativo and biotransformed Nativo. The results showed that the Nativo biotransformated products were less genotoxic than the non-biotransformed Nativo, with the no-observed effect concentration (NOEC) values for micronuclei formation being four times lower after swine enzymes biotransformation, while MI was not altered. The no observed effect concentration values for micronuclei formation by the fungicide mixture were 7.8 and 3.9 mg L-1 for TEB and TRI, respectively, for the biotransformed samples, and 1.9 and 1.0 mg L-1 for the non-biotransformed samples, demonstrating that swine liver enzyme activity decreased genotoxicity. The results obtained in this study demonstrate the importance of considering biotransformation in phytogenotoxicity studies, as this process can significantly alter phytogenotoxic effects.
Collapse
Affiliation(s)
- Felippe L Dalpiaz
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, Brazil.
| | - Rosane Laçoli
- Universidade do Vale do Itajaí (UNIVALI), Laboratório de Remediação Ambiental, Itajaí, Brazil.
| | - Rozangela C Pedrosa
- Universidade Federal de Santa Catarina, Departamento de Bioquímica, Florianópolis, SC, Brazil.
| | - Jose R Santin
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciências Farmacêuticas, Itajaí, Brazil.
| | - Rogério Corrêa
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciências Farmacêuticas, Itajaí, Brazil.
| | - Theodoro M Wagner
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciências Farmacêuticas, Itajaí, Brazil.
| | - Paule Vasseur
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France.
| | - Jean-François Férard
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, Brazil.
| | - Claudemir M Radetski
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, Brazil.
| | - Sylvie Cotelle
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France.
| |
Collapse
|
2
|
Dalpiaz FL, Laçoli R, Butzke-Souza N, Santin JR, Poyer-Radetski L, Dallabona JA, Testolin RC, Almeida TCM, Radetski CM, Cotelle S. Eco(geno)toxicity of the new commercial insecticide Platinum Neo, a mixture of the neonicotinoid thiamethoxam and the pyrethroid lambda-cyhalothrin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124485. [PMID: 38960115 DOI: 10.1016/j.envpol.2024.124485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/08/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
New mixtures of pesticides are being placed on the market to increase the spectrum of phytosanitary action. Thus, the eco(geno)toxic effects of the new commercial mixture named Platinum Neo, as well as its constituents the neonicotinoid Thiamethoxam and the pyrethroid Lambda-Cyhalothrin, were investigated using the species Daphnia magna, Raphidocelis subcapitata, Danio rerio, and Allium cepa L. The lowest- and no-observed effect concentration (LOEC and NOEC) were measured in ecotoxicological tests. While Thiamethoxam was ecotoxic at ppm level, Lambda-Cyhalothrin and Platinum Neo formulation were ecotoxic at ppb level. The mitotic index (MI), chromosomal aberrations and micronucleus [MN] frequency were measured as indicators of phytogenotoxicity in A. cepa plants exposed for 12 h to the different insecticides and their mixture under different dilutions. There were significant alterations in the MI and MN frequency in comparison with the A. cepa negative control group, with Thiamethoxam, Lambda-Cyhalothrin, and Platinum Neo treatments all significantly reducing MI and increasing MN frequency. Thus, MI reduction was found at 13.7 mg L-1 for Thiamethoxam, 0.8 μg L-1 for Lambda-Cyahalothrin, and 2.7:2 μg L-1 for Platinum Neo, while MN induction was not observed at 14 mg L-1 for Thiamethoxam, 0.8 μg L-1 for Lambda-Cyahalothrin, and 1.4:1 μg L-1 for Platinum Neo. The insecticide eco(geno)toxicity hierarchy was Platinun Neo > Lambda-Cyhalothrin > Thiamethoxam, and the organism sensitivity hierarchy was daphnids > fish > algae > A. cepa. Eco(geno)toxicity studies of new pesticide mixtures can be useful for management, risk assessment, and avoiding impacts of these products on living beings.
Collapse
Affiliation(s)
- Felippe L Dalpiaz
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, Brazil
| | - Rosane Laçoli
- Universidade do Vale do Itajaí (UNIVALI), Laboratório de Remediação Ambiental, Itajaí, Brazil
| | - Nicolli Butzke-Souza
- Universidade do Vale do Itajaí (UNIVALI), Laboratório de Remediação Ambiental, Itajaí, Brazil
| | - José R Santin
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciências Farmacêuticas, Itajaí, Brazil
| | - Leticia Poyer-Radetski
- Universidade Federal de Santa Catarina, Departamento de Química, Florianópolis, SC, Brazil
| | - Juliana A Dallabona
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, Brazil
| | - Renan C Testolin
- Universidade do Vale do Itajaí (UNIVALI), Laboratório de Remediação Ambiental, Itajaí, Brazil
| | - Tito C M Almeida
- Universidade Federal de Santa Catarina, Curso de Oceanografia, Florianópolis, SC, Brazil
| | - Claudemir M Radetski
- Universidade do Vale do Itajaí (UNIVALI), Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Itajaí, Brazil.
| | - Sylvie Cotelle
- Université de Lorraine, CNRS, LIEC, F-57000, Metz, France
| |
Collapse
|
3
|
Li X, Li A, Zhang M, Gao T. Cytotoxicity and genotoxicity evaluation of chloroform using Vicia faba roots. Toxicol Ind Health 2023; 39:603-612. [PMID: 37518894 DOI: 10.1177/07482337231191573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Chloroform is a widely used industrial chemical that can also pollute the environment. The aims of this study were to examine the potential cytotoxicity and genotoxicity of chloroform on plant cells, using the Vicia faba bioassay. Chloroform was evaluated at concentrations of 0.1, 0.5, 1, 2, and 5 mg·L-1. The following parameters were analyzed: the mitotic index (MI), micronucleus (MN) frequency, chromosomal aberration (CA) frequency, and malondialdehyde (MDA) content. The results showed that exposure to increasing concentrations of chloroform caused a decrease in MI and an increase in the frequency of MN in Vicia faba root tip cells, relative to their controls. Moreover, various types of CA, including C-mitosis, fragments, bridges, laggard chromosomes, and multipolar mitosis, were observed in the treated cells. The frequency of MN was positively correlated with the frequency of CA in exposure to 0.1-1 mg·L-1 chloroform. Furthermore, chloroform exposure induced membrane lipid peroxidation damage in the Vicia faba radicle, and a linear correlation was observed between the MDA content and the frequency of MN or CA. These findings indicated that chloroform exposure can result in oxidative stress, cytotoxicity, and genotoxicity in plant cells.
Collapse
Affiliation(s)
- Xue Li
- College of Urban Environment, Lanzhou City University, Lanzhou, China
| | - Ang Li
- College of Urban Environment, Lanzhou City University, Lanzhou, China
| | - Ming Zhang
- College of Urban Environment, Lanzhou City University, Lanzhou, China
| | - Tianpeng Gao
- College of Urban Environment, Lanzhou City University, Lanzhou, China
- School of Biological and Environmental Engineering, Xi'an University, Xi'an, China
| |
Collapse
|
4
|
Alias C, Feretti D, Viola GVC, Zerbini I, Bisceglie F, Pelosi G, Zani C. Allium cepa tests: A plant-based tool for the early evaluation of toxicity and genotoxicity of newly synthetized antifungal molecules. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 889:503654. [PMID: 37491113 DOI: 10.1016/j.mrgentox.2023.503654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023]
Abstract
Many fungal genera such as Aspergillus, Penicillium, Fusarium and Alternaria are able to produce, among many other metabolites, the aflatoxins, a group of toxic and carcinogenic compounds. To reduce their formation, synthetic fungicides are used as an effective way of intervention. However, the extensive use of such molecules generates long-term residues into the food and the environment. The need of new antifungal molecules, with high specificity and low off-target toxicity is worth. The aim of this study was to evaluate: i) the toxicity and genotoxicity of newly synthesized molecules with a good anti-mycotoxic activity, and ii) the suitability of the Allium cepa multi-endpoint assay as an early screening method for chemicals. Eight compounds were tested for toxicity by using the A. cepa bulb root elongation test and for genotoxicity using the A. cepa bulb mitotic index, micronuclei and chromosome aberrations tests. Three molecules showed no toxicity, while two induced mild toxic effects in roots exposed to the highest dose (100 µM). A more pronounced toxic effect was caused by the other three compounds for which the EC50 was approximately 50 μM. Furthermore, all molecules showed a clear genotoxic activity, both in terms of chromosomal aberrations and micronuclei. Albeit the known good antifungal activity, the different molecules caused strong toxic and genotoxic effects. The results indicate the suitability of experiments with A. cepa as a research model for the evaluation of the toxic and genotoxic activities of new molecules in plants before they are released into the environment.
Collapse
Affiliation(s)
- Carlotta Alias
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Italy
| | - Donatella Feretti
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Italy
| | - Gaia V C Viola
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Italy
| | - Ilaria Zerbini
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Italy
| | - Franco Bisceglie
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Claudia Zani
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Italy.
| |
Collapse
|
5
|
da Costa Siqueira JT, Reis AC, Lopes JML, Ladeira LO, Viccini LF, de Mello Brandão H, Munk M, de Sousa SM. Chromosomal aberrations and changes in the methylation patterns of Lactuca sativa L. (Asteraceae) exposed to carbon nanotubes. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Bertanza G, Steimberg N, Pedrazzani R, Boniotti J, Ceretti E, Mazzoleni G, Menghini M, Urani C, Zerbini I, Feretti D. Wastewater toxicity removal: Integrated chemical and effect-based monitoring of full-scale conventional activated sludge and membrane bioreactor plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158071. [PMID: 35988629 DOI: 10.1016/j.scitotenv.2022.158071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The literature is currently lacking effect-based monitoring studies targeted at evaluating the performance of full-scale membrane bioreactor plants. In this research, a monitoring campaign was performed at a full-scale wastewater treatment facility with two parallel lines (traditional activated sludge and membrane bioreactor). Beside the standard parameters (COD, nitrogen, phosphorus, and metals), 6 polynuclear aromatic hydrocarbons, 29 insecticides, 2 herbicides, and 3 endocrine disrupting compounds were measured. A multi-tiered battery of bioassays complemented the investigation, targeting different toxic modes of action and employing various biological systems (uni/multicellular, prokaryotes/eukaryotes, trophic level occupation). A traffic light scoring approach was proposed to quickly visualize the impact of treatment on overall toxicity that occurred after the exposure to raw and concentrated wastewater. Analysis of the effluents of the CAS and MBR lines show very good performance of the two systems for removal of organic micropollutants and metals. The most noticeable differences between CAS and MBR occurred in the concentration of suspended solids; chemical analyses did not show major differences. On the other hand, bioassays demonstrated better performance for the MBR. Both treatment lines complied with the Italian law's "ecotoxicity standard for effluent discharge in surface water". Yet, residual biological activity was still detected, demonstrating the adequacy and sensitivity of the toxicological tools, which, by their inherent nature, allow the overall effects of complex mixtures to be taken into account.
Collapse
Affiliation(s)
- Giorgio Bertanza
- DICATAM-Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, I-25123 Brescia, Italy; MISTRAAL Interdepartmental Research Center - MISTRAL - Inter-University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy.
| | - Nathalie Steimberg
- MISTRAAL Interdepartmental Research Center - MISTRAL - Inter-University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; DSCS-Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy.
| | - Roberta Pedrazzani
- MISTRAAL Interdepartmental Research Center - MISTRAL - Inter-University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; DIMI-Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, I-25123 Brescia, Italy.
| | - Jennifer Boniotti
- DSCS-Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy
| | - Elisabetta Ceretti
- DSMC-Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy.
| | - Giovanna Mazzoleni
- MISTRAAL Interdepartmental Research Center - MISTRAL - Inter-University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; DSCS-Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy.
| | - Michele Menghini
- DIMI-Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, I-25123 Brescia, Italy.
| | - Chiara Urani
- MISTRAAL Interdepartmental Research Center - MISTRAL - Inter-University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; DISAT-Department of Earth and Environmental Sciences, University of Milan-Bicocca, Piazza della Scienza 1, I-20126 Milano, Italy.
| | - Ilaria Zerbini
- DSMC-Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy.
| | - Donatella Feretti
- MISTRAAL Interdepartmental Research Center - MISTRAL - Inter-University Research Center "Integrated Models for Prevention and Protection in Environmental and Occupational Health", DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; DSMC-Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy.
| |
Collapse
|
7
|
de Souza RB, de Souza CP, Guimarães JR. Environmentally realistic concentrations of eprinomectin induce phytotoxic and genotoxic effects in Allium cepa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80983-80993. [PMID: 35727508 PMCID: PMC9209316 DOI: 10.1007/s11356-022-21403-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Eprinomectin, a veterinary drug within the family of avermectins, is widely used in the agricultural sector to combat a variety of parasites, mainly nematodes. However, only 10% of the drug is metabolized in the organism, so large quantities of the drug are released into the environment through urine and/or feces. Soil is the first and main environmental compartment to be contaminated by it, and nontargeted organisms can be affected. Thus, the present study aims to evaluate the phytotoxicity (through the evaluation of germination, root development, and germination speed) and genotoxicity (through an assessment of the induction of micronuclei and chromosomal aberrations) of eprinomectin. For the analyses, Allium cepa seeds were germinated in soil contaminated with a range of concentrations of eprinomectin: from 0.5 to 62.5 μg/g for the genotoxicity test and from 0.5 to 128.0 μg/g for the phytotoxicity test. The results showed that seed germination was not affected, but root development was affected at concentrations of 0.5 μg/g, 1.0 μg/g, 4.0 μg/g, 8.0 μg/g, 64.0 μg/g, and 128.0 μg/g, and germination speed was significantly changed at concentrations of 1.0 μg/g, 4.0 μg/g, 16.0 μg/g, 32.0 μg/g, and 64.0 μg/g. Significant differences in the mitotic index and genotoxicity index were observed only at concentrations of 2.5 μg/g and 12.5 μg/g, respectively. Only the 0.5 μg/g concentration did not show significant induction of micronuclei in the meristematic cells, but the damage observed at other concentrations did not persist in F1 cells. According to the results, eprinomectin is both phytotoxic and genotoxic, so the release of eprinomectin into the environment should be minimized.
Collapse
Affiliation(s)
- Raphael B de Souza
- School of Civil Engineering, Architecture and Urban Design, University of Campinas, Campinas, Brazil.
| | | | - José Roberto Guimarães
- School of Civil Engineering, Architecture and Urban Design, University of Campinas, Campinas, Brazil
| |
Collapse
|
8
|
Mota TFM, Sampaio AR, Vasconcelos MW, de Castilhos Ghisi N. Allium cepa test vs. insecticides: a scientometric and meta-analytical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42678-42691. [PMID: 35089509 DOI: 10.1007/s11356-021-15953-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/09/2021] [Indexed: 06/14/2023]
Abstract
Insecticides stand out as the most dangerous pesticides, and many of them can cause cytotoxic and genotoxic effects in organisms. For this reason, a systematic review was performed focusing on the effect of insecticides on Allium cepa system by two ways: (1) a scientometric study to identify trends and gaps in the literature on the evaluation of insecticides to guide future research efforts and (2) a meta-analytical approach compiling the information to obtain an overall result about insecticide effect on A. cepa. It was found that there is an increasing production of articles in this research area. The H-index of our data set was 11, with an average of 13.72 citations per item. The leader country in this research area was India, followed by Turkey and Brazil. The best cited research area was "Environmental Sciences" and "Environmental Sciences and Ecology," followed by "Cell Biology." The most used keywords were genotoxicity, pesticides, and insecticide. The meta-analytical test showed that the number of micronuclei found in onion cells treated with insecticides is higher than that in untreated ones, and the use of pesticides reduced the mitotic index. In conclusion, it is evident the need for more studies about biotechnology, nanotechnology, and biopesticides to develop safer pesticides.
Collapse
Affiliation(s)
- Thais Fernandes Mendonça Mota
- Collegiate of Biological Sciences, Universidade Estadual do Paraná (UNESPAR), Campus Paranavaí, Avenida Gabriel Esperidião, s/n, Jardim Morumbi, 87703-000 Paranavaí, Paraná, Brazil.
- Graduate Program in Biotechnology, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade Sao Cristovão, P.O. Box 157, Dois Vizinhos, Paraná, 85660-000, Brazil.
| | - Amanda Roberta Sampaio
- Graduate Program in Agroecossistems, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade Sao Cristovão, P.O. Box 157, Dois Vizinhos, Paraná, 85660-000, Brazil
| | - Marina Wust Vasconcelos
- Graduate Program in Biotechnology, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade Sao Cristovão, P.O. Box 157, Dois Vizinhos, Paraná, 85660-000, Brazil
| | - Nédia de Castilhos Ghisi
- Graduate Program in Biotechnology, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Dois Vizinhos, Estrada para Boa Esperança s/n, km 04, Comunidade Sao Cristovão, P.O. Box 157, Dois Vizinhos, Paraná, 85660-000, Brazil
| |
Collapse
|
9
|
The Butterfly Effect: Mild Soil Pollution with Heavy Metals Elicits Major Biological Consequences in Cobalt-Sensitized Broad Bean Model Plants. Antioxidants (Basel) 2022; 11:antiox11040793. [PMID: 35453478 PMCID: PMC9028058 DOI: 10.3390/antiox11040793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Among the heavy metals (HMs), only cobalt induces a polymorphic response in Vicia faba plants, manifesting as chlorophyll morphoses and a ‘break-through’ effect resulting in the elevated accumulation of other HMs, which makes Co-pretreated broad bean plants an attractive model for investigating soil pollution by HMs. In this study, Co-sensitized V. faba plants were used to evaluate the long-term effect of residual industrial pollution by examining biochemical (H2O2, ascorbic acid, malondialdehyde, free proline, flavonoid, polyphenols, chlorophylls, carotenoids, superoxide dismutase) and molecular (conserved DNA-derived polymorphism and transcript-derived polymorphic fragments) markers after long-term exposure. HM-polluted soil induced a significantly higher frequency of chlorophyll morphoses and lower levels of nonenzymatic antioxidants in Co-pretreated V. faba plants. Both molecular markers effectively differentiated plants from polluted and control soils into distinct clusters, showing that HMs in mildly polluted soil are capable of inducing changes in DNA coding regions. These findings illustrate that strong background abiotic stressors (pretreatment with Co) can aid investigations of mild stressors (slight levels of soil pollution) by complementing each other in antioxidant content reduction and induction of DNA changes.
Collapse
|
10
|
Assessment of Cytotoxicity and Genotoxicity Potential of Effluents from Bahir Dar Tannery Using Allium cepa. ADVANCES IN PUBLIC HEALTH 2022. [DOI: 10.1155/2022/5519304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tannery effluent plays a significant role in increasing pollution in the environment; in particular, it contains toxic heavy metals which cause toxic effects on plant genetic materials. Among tannery effluent chemicals, chromium and lead have cytotoxicity and genotoxicity potentials on Allium cepa. This investigation was undertaken to assess the physicochemical properties of tannery wastewater and their effect on the genetic materials of A. cepa. Effluent’s physicochemical characteristics were investigated using digital instruments for direct measurement and standard methods of atomic absorption spectrophotometer colorimetric analysis. A series of six onion bulbs were grown in 0%, 20%, 40%, 60%, 80%, and 100% concentrations of wastewater (v/v) ratio, and root tips from each onion bulb were cut and processed for analysis by aceto-orcein squash technique. Most of effluent components were above the discharge limit standards set by Federal Environmental Protection Agency and Ethiopian Environmental Protection Authority. The cytotoxicity effect on the root growth showed a significant reduction at high concentration. Simple regression analysis showed that the results of mitotic index were statistically significant (P < 0.05) in different concentrations. A decrease in mitotic index with increasing concentration of the effluent was observed. The effluent had induced chromosomal abnormalities such as laggard, fragmentation, stickiness, bridge, micronucleus, and binucleated and morphologically changed nuclei in A. cepa root cells among others. The results showed that cytotoxicity, genotoxicity, and chromosomal aberrations were induced by the tannery effluent. Industries shall think of biological waste treatment methods.
Collapse
|
11
|
El-Saber MM, Mahdi AA, Hassan AH, Farroh KY, Osman A. Effects of magnetite nanoparticles on physiological processes to alleviate salinity induced oxidative damage in wheat. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5550-5562. [PMID: 33709391 DOI: 10.1002/jsfa.11206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND One of the major abiotic stressors that have a serious effect on plant growth and productivity worldwide is the salinity of soil or irrigation water. The effect of foliar application of magnetite nanoparticles (size = 22.05 nm) at different concentrations (0, 0.25, 0.5, and 1.0 ppm) was investigated to improve salinity tolerance in two wheat cultivars, namely, Misr1 (Tolerant) and Gimmeza11 (Sensitive). Moreover, toxicological investigations of magnetite oxide nanoparticle in Wistar albino rats were estimated. RESULTS The magnetite nanoparticles positively affected growth, chlorophyll, and enzymatic antioxidants such as superoxide dismutase (SOD), stimulating reduced glutathione and improving the aggregation of several polypeptide chains that may be linked to the tolerance of saline stress. In contrast, magnetite nanoparticles reduced malondialdehyde (MDA). Inverse sequence-tagged repeat (ISTR) assay of DNA molecular marker showed the change in band numbers with the highest polymorphic bands with 90% polymorphism at primer F3, B5 and 20 positive bands in Gimmeza11 with 0.5 ppm magnetite nanoparticles. In the median lethal dose (LD50 ) study, no rats died after the oral administration of magnetite nanoparticle at different doses. Therefore, the iron oxide nanoparticle was nontoxic when administered orally by gavage. CONCLUSION Magnetite nanoparticles partially helped to alleviate the effects of salt stress by activating growth, chlorophyll content, SOD, glutathione, and soluble proteins in two wheat cultivars (Misr1 and Gimmeza11) and decreasing MDA content. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mahmoud M El-Saber
- Biochemistry Unit, Genetic Resources Department, Desert Research Center, Cairo, Egypt
| | - Asmaa A Mahdi
- Biochemistry Unit, Genetic Resources Department, Desert Research Center, Cairo, Egypt
| | - Ahmed H Hassan
- Genetics Unit, Genetic Resources Department, Desert Research Center, Cairo, Egypt
| | - Khaled Yehia Farroh
- Nanotechnology and Advanced Materials Central Lab, Agriculture Research Center, Giza, Egypt
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
12
|
Feng Y, Liu F, Li M, Cui Y, Jiang X, Yu X. Risk assessment and ecotoxicological effects of leachates extracted from industrial district soils of Nanjing, China. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1343-1353. [PMID: 33433767 DOI: 10.1007/s10646-020-02330-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
With the intensification of industrial development and urbanization, soil pollution is increasingly prominent. Therefore, the potential adverse effects caused by industrial activities need to be investigated. In this study, nine soil samples were collected from the industrial district of Nanjing, China, and the heavy metal concentrations were analyzed. Ambient severity of health (ASI) and ambient severity of ecology (ASII) caused by heavy metals in soil extracts were also evaluated via the multi-media environmental goals (MEG). The environmental risk assessment model was used to assess the health risk of soil extracts. The toxicity of soil extracts was diagnosed for wheat and Vicia faba. The results indicate that the contents of heavy metals were significantly different among the nine soil samples and mass concentration of heavy metals were as followed: Pb > Mn > As > Zn > Cd. Except for CK and S9, the total health impact of all sampling sites were greater than 1. Also, the total ecological hazard degrees of the five heavy metals were all greater than 1, which showed that the soil extracts were harmful to human health and ecological environment. According to the risk characterization model, the carcinogen risk of soil extracts was 1 to 10 orders of magnitude higher than that of non-carcinogens. Drinking water intake was the most direct and primary exposure route. In addition, the ecotoxicological results indicated that with the increase of heavy metal concentration, the activity of amylase (AMS) decreased, while the activity of peroxide (POD) increased, indicating that the soil extracts were toxic to V. faba. The micronucleus rates of V. faba root tips in the sampling soils were significantly higher compared with the control group, reflecting the higher genotoxicity. Our study provides theoretical support for the evaluation of potential health and ecological risks in this industrial district.
Collapse
Affiliation(s)
- Yu Feng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Feng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
- College of Environmental Science and Engineering, Jilin Normal University, Siping, 136000, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Yibin Cui
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Xiaofeng Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiezhi Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
13
|
Bertanza G, Boniotti J, Ceretti E, Feretti D, Mazzoleni G, Menghini M, Pedrazzani R, Steimberg N, Urani C, Viola GCV, Zerbini I, Ziliani E. Environmental Footprint of Wastewater Treatment: A Step Forward in the Use of Toxicological Tools. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18136827. [PMID: 34202094 PMCID: PMC8297069 DOI: 10.3390/ijerph18136827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/02/2022]
Abstract
The assessment of the actual impact of discharged wastewater on the whole ecosystem and, in turn, on human health requires the execution of bioassays. In effect, based on the chemical characterization alone, the synergistic/antagonistic effect of mixtures of pollutants is hardly estimable. The aim of this work was to evaluate the applicability of a battery of bioassays and to suggest a smart procedure for results representation. Two real wastewater treatment plants were submitted to analytical campaigns. Several baseline toxicity assays were conducted, together with tests for the determination of endocrine activity, genetic toxicity and carcinogenicity of wastewater. A “traffic light” model was adopted for an easy-to-understand visualization of the results. Although the legal prescriptions of chemical parameters are fully complied with, bioassays show that a certain biological activity still residues in the treated effluents. Moreover, influent and effluent responses are not always appreciably different. Some tests employing human cells were revealed to be only partially adequate for environmental applications. An interesting and helpful development of the present approach would consist in the estimation of biological equivalents of toxicity, as shown for the estrogenic compound 17-β-estradiol.
Collapse
Affiliation(s)
- Giorgio Bertanza
- DICATAM—Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, I-25123 Brescia, Italy; (G.B.); (M.M.)
- MISTRAAL Interdepartmental University Research Center—MISTRAL—Integrated Study Models for the Protection of Health and Prevention in Life and Work Environments, DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; (D.F.); (G.M.); (N.S.); (C.U.)
| | - Jennifer Boniotti
- DSCS—Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy;
| | - Elisabetta Ceretti
- DSMC—Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; (E.C.); (G.C.V.V.); (I.Z.)
| | - Donatella Feretti
- MISTRAAL Interdepartmental University Research Center—MISTRAL—Integrated Study Models for the Protection of Health and Prevention in Life and Work Environments, DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; (D.F.); (G.M.); (N.S.); (C.U.)
- DSMC—Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; (E.C.); (G.C.V.V.); (I.Z.)
| | - Giovanna Mazzoleni
- MISTRAAL Interdepartmental University Research Center—MISTRAL—Integrated Study Models for the Protection of Health and Prevention in Life and Work Environments, DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; (D.F.); (G.M.); (N.S.); (C.U.)
- DSCS—Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy;
| | - Michele Menghini
- DICATAM—Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, I-25123 Brescia, Italy; (G.B.); (M.M.)
| | - Roberta Pedrazzani
- MISTRAAL Interdepartmental University Research Center—MISTRAL—Integrated Study Models for the Protection of Health and Prevention in Life and Work Environments, DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; (D.F.); (G.M.); (N.S.); (C.U.)
- DIMI—Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, I-25123 Brescia, Italy
- Correspondence: ; Tel.: +39-030-3715505; Fax: +39-030-3702448
| | - Nathalie Steimberg
- MISTRAAL Interdepartmental University Research Center—MISTRAL—Integrated Study Models for the Protection of Health and Prevention in Life and Work Environments, DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; (D.F.); (G.M.); (N.S.); (C.U.)
- DSCS—Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy;
| | - Chiara Urani
- MISTRAAL Interdepartmental University Research Center—MISTRAL—Integrated Study Models for the Protection of Health and Prevention in Life and Work Environments, DSCS, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; (D.F.); (G.M.); (N.S.); (C.U.)
- DISAT—Department of Earth and Environmental Sciences, University of Milan—Bicocca, Piazza della Scienza 1, I-20126 Milano, Italy
| | - Gaia Claudia Viviana Viola
- DSMC—Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; (E.C.); (G.C.V.V.); (I.Z.)
| | - Ilaria Zerbini
- DSMC—Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, I-25123 Brescia, Italy; (E.C.); (G.C.V.V.); (I.Z.)
| | - Emanuele Ziliani
- DICAr—Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 1, I-27100 Pavia, Italy;
| |
Collapse
|
14
|
Zhang H, Hu L, Zhong G, Huo Z, Chen Y, Zhao S, Huang L. Preliminary assessment of genotoxic effects induced by radiation from EAST using Vicia fabamicronucleus assay. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:239-253. [PMID: 33508813 DOI: 10.1088/1361-6498/abe0d1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
During long-pulse deuterium plasma operations in the Experimental Advanced Superconducting Tokamak (EAST), a mixed radiation field is generated, which is mainly composed of fusion neutrons, gamma rays, and x-rays. More accurate and effective dose monitoring methods have been developed and established to determine the ionizing radiation intensity both for the stable operation of the device and for the radiation safety of personnel. As far as we know, there are few reports about the biological effects of radiation induced by fusion neutrons andγradiation, which are of vital importance for the assessment of radiation hazards presented by fusion devices, such as EAST, to human beings and the environment. In this study, three positions in the EAST hall were selected to detect genotoxic effects induced by nuclear fusion radiation using aVicia fabamicronucleus (MN) test for the first time. The doses of neutrons and gamma rays at these places were measured by thermoluminescence dosimeters four times between June 2019 and May 2020. The radiation doses decreased as the distances from the EAST device shell gradually increased from S1 to S3. The radiation in the EAST hall resulted in a significant induction of MN in theVicia fabaroot tip cells compared to a negative control, which was different from the MN frequency induced by fission neutrons,γ-rays and other kinds of radiation in previous studies. These results indicate the existence of potential genotoxic effects induced by radiation from EAST which is different from other radiation and suggest that personnel should not be permitted to enter the experimental hall during the discharge process, and that radiation protection measures should be taken during necessary maintenance to avoid radiation damage. These newly acquired results will certainly increase our knowledge about the biological effects induced by radiation from nuclear fusion and provide good data support for developing more effective environmental and personnel fusion radiation protection.
Collapse
Affiliation(s)
- Hong Zhang
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1126, 350 Shushanhu Road, Hefei 230031, People's Republic of China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Liqun Hu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1126, 350 Shushanhu Road, Hefei 230031, People's Republic of China
| | - Guoqiang Zhong
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1126, 350 Shushanhu Road, Hefei 230031, People's Republic of China
| | - Zhipeng Huo
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1126, 350 Shushanhu Road, Hefei 230031, People's Republic of China
| | - Yuqing Chen
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1126, 350 Shushanhu Road, Hefei 230031, People's Republic of China
| | - Sheng Zhao
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1126, 350 Shushanhu Road, Hefei 230031, People's Republic of China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Liangsheng Huang
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, P.O. Box 1126, 350 Shushanhu Road, Hefei 230031, People's Republic of China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
15
|
Montalbano S, Degola F, Bartoli J, Bisceglie F, Buschini A, Carcelli M, Feretti D, Galati S, Marchi L, Orsoni N, Pelosi G, Pioli M, Restivo FM, Rogolino D, Scaccaglia M, Serra O, Spadola G, Viola GCV, Zerbini I, Zani C. The AFLATOX ® Project: Approaching the Development of New Generation, Natural-Based Compounds for the Containment of the Mycotoxigenic Phytopathogen Aspergillus flavus and Aflatoxin Contamination. Int J Mol Sci 2021; 22:4520. [PMID: 33926042 PMCID: PMC8123576 DOI: 10.3390/ijms22094520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
The control of the fungal contamination on crops is considered a priority by the sanitary authorities of an increasing number of countries, and this is also due to the fact that the geographic areas interested in mycotoxin outbreaks are widening. Among the different pre- and post-harvest strategies that may be applied to prevent fungal and/or aflatoxin contamination, fungicides still play a prominent role; however, despite of countless efforts, to date the problem of food and feed contamination remains unsolved, since the essential factors that affect aflatoxins production are various and hardly to handle as a whole. In this scenario, the exploitation of bioactive natural sources to obtain new agents presenting novel mechanisms of action may represent a successful strategy to minimize, at the same time, aflatoxin contamination and the use of toxic pesticides. The Aflatox® Project was aimed at the development of new-generation inhibitors of aflatoxigenic Aspergillus spp. proliferation and toxin production, through the modification of naturally occurring molecules: a panel of 177 compounds, belonging to the thiosemicarbazones class, have been synthesized and screened for their antifungal and anti-aflatoxigenic potential. The most effective compounds, selected as the best candidates as aflatoxin containment agents, were also evaluated in terms of cytotoxicity, genotoxicity and epi-genotoxicity to exclude potential harmful effect on the human health, the plants on which fungi grow and the whole ecosystem.
Collapse
Affiliation(s)
- Serena Montalbano
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
| | - Francesca Degola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
| | - Jennifer Bartoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
| | - Franco Bisceglie
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
- Interdepartmental Centre for Molecular and Translational Oncology COMT, University of Parma, 43124 Parma, PR, Italy;
| | - Mauro Carcelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
| | - Donatella Feretti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, BS, Italy; (D.F.); (G.C.V.V.); (I.Z.); (C.Z.)
| | - Serena Galati
- Interdepartmental Centre for Molecular and Translational Oncology COMT, University of Parma, 43124 Parma, PR, Italy;
| | - Laura Marchi
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Via Gramsci 14, 43125 Parma, PR, Italy;
| | - Nicolò Orsoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
| | - Marianna Pioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
| | - Francesco M. Restivo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
| | - Dominga Rogolino
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
| | - Mirco Scaccaglia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
| | - Olga Serra
- Medical Oncology and Breast Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43125 Parma, PR, Italy;
| | - Giorgio Spadola
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, PR, Italy; (S.M.); (J.B.); (F.B.); (A.B.); (M.C.); (N.O.); (G.P.); (M.P.); (F.M.R.); (D.R.); (M.S.); (G.S.)
| | - Gaia C. V. Viola
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, BS, Italy; (D.F.); (G.C.V.V.); (I.Z.); (C.Z.)
| | - Ilaria Zerbini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, BS, Italy; (D.F.); (G.C.V.V.); (I.Z.); (C.Z.)
| | - Claudia Zani
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 11 Viale Europa, 25123 Brescia, BS, Italy; (D.F.); (G.C.V.V.); (I.Z.); (C.Z.)
| |
Collapse
|
16
|
Alias C, Feretti D, Benassi L, Abbà A, Gelatti U, Sorlini S, Zerbini I, Piovani G. The release of contaminants from steel slags and natural aggregates: Evaluation of toxicity and genotoxicity. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:66-77. [PMID: 32926468 DOI: 10.1002/em.22407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Steel slags (SS) are the major waste produced by iron and steel industry. Slags may be reused as recycled materials, instead of natural aggregates (NA), to reduce the final disposal in a landfill and the exploitation of raw materials. However, the reuse of SS may generate a potential release of toxic compounds for the environment and humans. The purpose of this study was to evaluate the toxicity and genotoxicity of SS, in comparison with NA, by using an integrated chemical-biological approach to enable their safe reuse in engineering applications. Leaching solutions from samples were obtained by using short-term leaching tests (CEN EN 12457-2, 2004) usually adopted for the evaluation of waste recovery and final disposal. Chemical analyses of leachates were performed according to the Italian legislation on waste recovery (Ministerial Decree 186/2006). The leaching solutions were assayed by using toxicity test on Daphnia magna. Moreover, mutagenicity/genotoxicity tests on Salmonella typhimurium, Allium cepa, and human leucocytes and fibroblasts were carried out. The releases of pollutants from all samples were within the limits of the Italian legislation for waste recovery. Despite the effects that SS and NA could have on different cells, in terms of toxicity and genotoxicity, globally, SS do not seem to be any more hazardous than NA. This ecotoxicological assessment, never studied before, is important for promoting further studies that may support the decision-making process regarding the use of such types of materials.
Collapse
Affiliation(s)
- Carlotta Alias
- B+LabNet Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
| | - Donatella Feretti
- B+LabNet Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
- Medical and Surgical Specialties, Radiological Sciences, and Public Health Department, University of Brescia, Brescia, Italy
| | - Laura Benassi
- B+LabNet Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
| | - Alessandro Abbà
- B+LabNet Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
- Civil, Environmental, Architectural Engineering and Mathematics Department, University of Brescia, Brescia, Italy
| | - Umberto Gelatti
- B+LabNet Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
- Medical and Surgical Specialties, Radiological Sciences, and Public Health Department, University of Brescia, Brescia, Italy
| | - Sabrina Sorlini
- B+LabNet Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
- Civil, Environmental, Architectural Engineering and Mathematics Department, University of Brescia, Brescia, Italy
| | - Ilaria Zerbini
- B+LabNet Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
- Medical and Surgical Specialties, Radiological Sciences, and Public Health Department, University of Brescia, Brescia, Italy
| | - Giovanna Piovani
- B+LabNet Environmental Sustainability Laboratory, University of Brescia, Brescia, Italy
- Molecular and Translational Medicine Department, University of Brescia, Brescia, Italy
| |
Collapse
|
17
|
Macar O, Kalefetoğlu Macar T, Çavuşoğlu K, Yalçın E. Determination of protective effect of carob (Ceratonia siliqua L.) extract against cobalt(II) nitrate-induced toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40253-40261. [PMID: 32661972 DOI: 10.1007/s11356-020-10009-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Cobalt (Co) is widely used in many industrial fields such as batteries and paints. Cobalt, a dangerous heavy metal, can be found in high concentrations in natural and human habitats. Although cobalt is an important micronutrient, it is toxic to living organisms when exposed to high amounts. Carob (Ceratonia siliqua L.) is a tree native to The Mediterranean region. Carob bean, which has high nutritional and economic value, is used against cardiovascular and gastrointestinal diseases. In addition, the antioxidant properties of carob are gaining importance in recent years. In this study, the protective effects of carob extract against the toxicity of cobalt on Allium cepa L. were investigated. For this purpose, 150 mg/L and 300 mg/L carob extract solutions and 5.5 mg/kg cobalt solutions were applied to A. cepa L. bulbs. Root emergence, weight gain, root elongation, and mitotic index (MI) decreased, while the frequency of chromosomal abnormalities (CAs) and micronucleus (MN) increased as a result of Co application. Furthermore, Co treatment triggered a noticeable rise in the activities of superoxide dismutase (SOD) and catalase (CAT) enzymes as well as the malondialdehyde (MDA) amount and the abnormalities in the meristematic cells. On the other hand, applications of carob extracts mitigated cobalt-induced damages in a dose-dependent manner in all parameters. Therefore, the current study showed that the strong preventive potential of carob extract against phytotoxicity and genotoxicity is caused by Co in a model plant. The protective effects of carob extract on Co-induced toxicity were demonstrated for the first time in terms of reducing genotoxicity and oxidative stress response.
Collapse
Affiliation(s)
- Oksal Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, Giresun, Turkey
| | - Tuğçe Kalefetoğlu Macar
- Şebinkarahisar School of Applied Sciences, Department of Food Technology, Giresun University, Giresun, Turkey.
| | - Kültiğin Çavuşoğlu
- Faculty of Science and Arts, Department of Biology, Giresun University, Giresun, Turkey
| | - Emine Yalçın
- Faculty of Science and Arts, Department of Biology, Giresun University, Giresun, Turkey
| |
Collapse
|
18
|
Liu Y, Liu YJ, Liu J. Study on the Removal Effects and Genotoxicity Evaluation of Phenols in a Semi-Coking Wastewater Treatment Stages. J WATER CHEM TECHNO+ 2020. [DOI: 10.3103/s1063455x20040086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Gameiro PH, Assis KH, Hasenack H, Arenzon A, Dias Silva KU, Torres de Lemos C, Ferrão Vargas VM. Evaluation of effect of hazardous contaminants in areas for the abstraction of drinking water. ENVIRONMENTAL RESEARCH 2020; 188:109862. [PMID: 32846646 DOI: 10.1016/j.envres.2020.109862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
The lower portion of Taquari River is influenced by compounds from anthropic activities causing concern about the drinking water supplied to cities in the region. The study objective was to investigate the presence of contaminants at drinking water abstraction sites, defining the mutagenic effects of these stressors as an ecosystem quality parameter and its possible effects on human health. Geographic Information System techniques were used to investigate sources of contamination and it was found that agricultural activities predominated with a few medium and high potential pollutant agricultural activities, besides a soil area that was contaminated and undergoing an intervention process. Mutagenic effects were evaluated by Salmonella/microsome assay using TA98, TA97a, TA100, YG1041 and YG1042 strains in the presence and absence of metabolic activation (S9). Mutagenesis found in organic sediment extracts and surface water samples showed the prevalence of direct-acting mutagens at the drinking water abstraction sites. Taquari (Ta032, the sampling points were named according to the initial letters of the river (Ta), followed by the number of kilometers from the mouth) showed the highest mutagenic potency in sediment, while Ta063, at Bom Retiro do Sul, presented it in the water sample. In the Triunfo region (Ta011) there were significant responses in sediment and in water samples. The samples at General Câmara (Ta006) showed the least presence of contaminants. The Allium cepa test applied to sediments in natura showed significant micronucleus induction in Ta032 in accordance with the Salmonella/microssome assay. The test performed on Danio rerio embryos (FET) in the in natura water samples did not present significant responses. Chemical analyses of polycyclic aromatic hydrocarbons and metals already identified as chemical markers in the area indicated a small contribution to the mutagenic potency, calling attention to the fact that other direct-acting pollutants may be present at the drinking water abstraction sites.
Collapse
Affiliation(s)
- Paula Hauber Gameiro
- Programa de Pós-graduação Em Ecologia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves, 9500, 91501-970, Cx Postal 15007, Porto Alegre, RS, Brazil
| | - Kauê Hohn Assis
- Divisão de Laboratórios, Fundação Estadual de Proteção Ambiental Henrique Luís Roessler (FEPAM), Rua Aurélio Porto, 37, 90620-090, Porto Alegre, RS, Brazil
| | - Heinrich Hasenack
- Centro de Ecologia (UFRGS), Av. Bento Gonçalves, 9500. Setor 4, Prédio 43411, 91.501-970, Campus Do Vale, Porto Alegre, RS, Brazil
| | - Alexandre Arenzon
- Centro de Ecologia (UFRGS), Av. Bento Gonçalves, 9500. Setor 4, Prédio 43411, 91.501-970, Campus Do Vale, Porto Alegre, RS, Brazil
| | - Kewen Ubirajara Dias Silva
- Divisão de Laboratórios, Fundação Estadual de Proteção Ambiental Henrique Luís Roessler (FEPAM), Rua Aurélio Porto, 37, 90620-090, Porto Alegre, RS, Brazil
| | - Clarice Torres de Lemos
- Divisão de Laboratórios, Fundação Estadual de Proteção Ambiental Henrique Luís Roessler (FEPAM), Rua Aurélio Porto, 37, 90620-090, Porto Alegre, RS, Brazil
| | - Vera Maria Ferrão Vargas
- Divisão de Laboratórios, Fundação Estadual de Proteção Ambiental Henrique Luís Roessler (FEPAM), Rua Aurélio Porto, 37, 90620-090, Porto Alegre, RS, Brazil; Centro de Ecologia (UFRGS), Av. Bento Gonçalves, 9500. Setor 4, Prédio 43411, 91.501-970, Campus Do Vale, Porto Alegre, RS, Brazil.
| |
Collapse
|
20
|
Feretti D, Acito M, Dettori M, Ceretti E, Fatigoni C, Posadino S, Zerbini I, Villarini M, Moretti M, Castiglia P, Azara A. Genotoxicity of source, treated and distributed water from four drinking water treatment plants supplied by surface water in Sardinia, Italy. ENVIRONMENTAL RESEARCH 2020; 185:109385. [PMID: 32222631 DOI: 10.1016/j.envres.2020.109385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/05/2019] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
High levels of disinfection by-products (DBPs) are constantly found in drinking water distributed in Sardinia, an Italian island with a tourist vocation and critical issues related to the drinking water supply. To reduce the concentration of trihalomethanes the disinfectant in use was changed - chlorine dioxide was adopted instead of hypochlorite. However, this caused the appearance of other DBPs (e.g., chlorites) in water distributed to the population. Thus, the use of monochloramine as a secondary disinfectant (associated with chlorine dioxide as the primary disinfectant) was evaluated in four drinking water treatment plants supplied by artificial basins located in the central-northern part of Sardinia. Raw, disinfected and distributed waters were studied for genotoxicity using a battery of in vitro tests on different cells (bacteria, plant and mammalian cells) to detect different genetic endpoints (i.e., point and chromosome mutations and DNA damage). Moreover, a chemical and microbiological characterisation of water samples was performed. All samples of water distributed to the people showed mutagenic or genotoxic effects in different cells/organisms. In particular, chromosome aberrations in plant cells and DNA damage in human cells were observed. In this study, the use of chloramines associated with other disinfectants did not eliminate the mutagenicity present in the raw water and when the raw water was not mutagenic it introduced mutagenic/genotoxic substances. A careful management of drinking water is needed to reduce health hazards associated with the mutagenicity of drinking water.
Collapse
Affiliation(s)
- Donatella Feretti
- Department of Medical and Surgical Specialties, Radiological Science and Public Health, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Mattia Acito
- Department of Pharmaceutical Sciences (Unit of Public Health), University of Perugia, Via del Giochetto, 06122, Perugia, Italy.
| | - Marco Dettori
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella 4, 07100, Sassari, Italy.
| | - Elisabetta Ceretti
- Department of Medical and Surgical Specialties, Radiological Science and Public Health, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Cristina Fatigoni
- Department of Pharmaceutical Sciences (Unit of Public Health), University of Perugia, Via del Giochetto, 06122, Perugia, Italy.
| | - Stefano Posadino
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella 4, 07100, Sassari, Italy.
| | - Ilaria Zerbini
- Department of Medical and Surgical Specialties, Radiological Science and Public Health, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Milena Villarini
- Department of Pharmaceutical Sciences (Unit of Public Health), University of Perugia, Via del Giochetto, 06122, Perugia, Italy.
| | - Massimo Moretti
- Department of Pharmaceutical Sciences (Unit of Public Health), University of Perugia, Via del Giochetto, 06122, Perugia, Italy.
| | - Paolo Castiglia
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella 4, 07100, Sassari, Italy.
| | - Antonio Azara
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Via P. Manzella 4, 07100, Sassari, Italy.
| |
Collapse
|
21
|
Screening of cytotoxic and genotoxic potency of two pesticides (malathion and cypermethrin) on Allium cepa L. Mol Cell Toxicol 2020. [DOI: 10.1007/s13273-020-00077-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Silveira EO, Lutterbeck CA, Machado ÊL, Rodrigues LR, Rieger A, Beckenkamp F, Lobo EA. Biomonitoring of urban wastewaters treated by an integrated system combining microalgae and constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135864. [PMID: 31972924 DOI: 10.1016/j.scitotenv.2019.135864] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/20/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
The objectives of the present study were to apply different, toxicological assays for monitoring the toxicity of treated and untreated urban effluents produced at a university campus. The research was conducted at the wastewater treatment plant of the University of Santa Cruz do Sul, (UNISC), from october 2018 to april 2019. An integrated system with, anaerobic reactor (AR), microalgae (MA) and constructed wetlands (CWs) was, proposed for detoxification of the wastewaters produced at the university campus with a hydraulic detention time of 17 days. Daphnia, magna (ecotoxicity) and Allium cepa (phytotoxicity, cytotoxicity, and, genotoxicity) were used as tools to monitor the efficiency of the integrated system. Obtained results showed that the integrated system (MA, + CWs) presented good COD and BOD5 reductions, besides removal rates of, almost 98% for N-NH3, being much more efficient than the UNISC wastewater, treatment plant (UWTTP). The results of ecotoxicity presented the raw wastewaters (RW) as slightly toxic and an absence of ecotoxicity in all the treatments steps. Regarding phytotoxicity, the results showed no significant differences between the treatments. The cytogenetic assays indicated a significant increase in mitotic index (MI) (p < 0.001) after treatment by CWs compared to the final treatment UWTTP while the results, regarding binucleated cells (BNC) did not present significant differences, among the treatments. Micronucleus (MN) indexes were significantly different between the UWWPT and the integrated system (p < 0.01). In relation to chromosome aberrations (CA) the results indicate a significant difference between the CWs and UWWTP treatments (p < 0.01) and, RW and CWs (p < 0.001), confirming the detoxifying potential of the integrated system when compared to UWWPT. Thus, the results of the present research highlight the relevance in the proposition of the integrated system as an alternative of cleaner technology to the detriment of conventional technologies applied in wastewater treatment.
Collapse
Affiliation(s)
- Elizandro Oliveira Silveira
- Laboratory of Ecotechnology and Applied Limnology, Institute of Hydraulic Research - IPH- Federal University of Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
| | - Carlos Alexandre Lutterbeck
- Graduate Program in Environmental Technology, University of Santa Cruz do Sul - UNISC, Santa Cruz do Sul, RS, Brazil.
| | - Ênio Leandro Machado
- Graduate Program in Environmental Technology, University of Santa Cruz do Sul - UNISC, Santa Cruz do Sul, RS, Brazil
| | - Lúcia Ribeiro Rodrigues
- Laboratory of Ecotechnology and Applied Limnology, Institute of Hydraulic Research - IPH- Federal University of Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Alexandre Rieger
- Laboratory of Biotechnology and Genetics, Department of Biology and Pharmacy, University of Santa Cruz do Sul - UNISC, Santa Cruz do Sul, RS, Brazil
| | - Fábia Beckenkamp
- Laboratory of Biotechnology and Genetics, Department of Biology and Pharmacy, University of Santa Cruz do Sul - UNISC, Santa Cruz do Sul, RS, Brazil
| | - Eduardo Alcayaga Lobo
- Graduate Program in Environmental Technology, University of Santa Cruz do Sul - UNISC, Santa Cruz do Sul, RS, Brazil
| |
Collapse
|
23
|
Wijeyaratne WMDN, Wickramasinghe PGMU. Treated Textile Effluents: Cytotoxic and Genotoxic Effects in the Natural Aquatic Environment. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:245-252. [PMID: 31858153 DOI: 10.1007/s00128-019-02768-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Textile effluent treatment methods use biological and chemical treatments to reduce the toxicity and to comply with standard effluent discharge limits. However, trace amounts of pollutants can affect the biological organisms in the receiving environment. The present study used Allium cepa bio assay to assess the cytotoxic and genotoxic effects of treated textile effluents discharged to the natural environment. The results of the bioassay indicated that treated textile effluents can induce alterations in the mitotic index. Also nuclear buds, bi nuclei, condensed nuclei, were recorded in the bioassay and the severity of them decreased towards downstream of the effluent discharge point. Therefore, it can be concluded that even the discharged effluents comply with the standard limits, there is a possibility of causing cytotoxic and genotoxic effects in the organisms living in the natural environment.
Collapse
|
24
|
The Potential Risk Assessment of Phenoxyethanol with a Versatile Model System. Sci Rep 2020; 10:1209. [PMID: 31988350 PMCID: PMC6985251 DOI: 10.1038/s41598-020-58170-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/06/2020] [Indexed: 01/30/2023] Open
Abstract
In this study, the toxic effects of phenoxyethanol (Phy-Et), which is widely used in cosmetic industry, has been investigated with Allium test by means of physiological, cytogenetic, anatomical and biochemical parameters. To determine the changes in physiological reactions weight gain, relative injury rate, germination percentage and root length were investigated. Malondialdehyde, superoxide dismutase, glutathion and catalase levels were analyzed as biochemical parameters for determining the presence of oxidative stress. Mitotic index, micronucleus and chromosomal abnormality frequencies were studied as cytogenetic evaluation and the anatomical changes in root tip cells were investigated by cross sections. Changes in surface polarity and wettability were investigated by taking contact angle measurements of pressed root preparations. The mechanism of toxicity has been tried to be explained by these contact angles and this is the first study using contact angle measurements in toxicity tests. Consequently, exposure to Phy-Et resulted in a decrease in all measured physiological parameters and in mitotic index. In contrast, significant increases in the micronucleus and chromosomal abnormality frequencies were observed and the most significant toxic effect was found in 10 mM Phy-Et treated group. Phy-Et application induced oxidative damage and caused a significant increase in malondialdehyde level and a decrease in glutathione level compared to control group. Also a response occured against oxidative damage in superoxide dismutase and catalase activity and the activities increased in 2.5 mM and 5 mM Phy-Et treated groups and decreased in 10 mM Phy-Et treated groups. Furthermore, Phy-Et treatment resulted in some anatomical damages and changes such as necrosis, cell deformation and thickening of the cortex cell wall in root tip meristem cells of A. cepa. In the contact angle measurements taken against water, it was found that the wettability and hydrophilicity of the root preparations treated with Phy-Et were reduced, and this was the explanation of the growth abnormalities associated with water uptake. As a result, it was found that Phy-Et application caused toxic effects on many viability parameters and A. cepa test material was a reliable biomarker in determining these effects.
Collapse
|
25
|
Alvarenga IFS, Dos Santos FE, Silveira GL, Andrade-Vieira LF, Martins GC, Guilherme LRG. Investigating arsenic toxicity in tropical soils: A cell cycle and DNA fragmentation approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134272. [PMID: 31783468 DOI: 10.1016/j.scitotenv.2019.134272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/21/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Arsenic (As) is a metalloid and a toxicant that is found naturally in many environmental compartments, soils included. Soils with high levels of As occur worldwide and might pose a threat not only to humans, but also to many ecosystems. Considering the scarcity of studies regarding cytogenotoxic effects of model plants in As-contaminated soil, mainly in tropical areas, this study proposes the use of Allium cepa root tip bioassays for a fast-track assessment of As toxicity in tropical soils. For this end, root tip cells of A. cepa were exposed to an Oxisol, an Inceptisol and a Tropical Artificial Soil (TAS) contaminated with increasing doses of As (0, 8, 14.5, 26, 46.5, 84, 150, and 270 mg kg-1). The effects of As on cell cycle, micronucleus formation, and DNA fragmentation were evaluated. In general, root tip cells exposure to As increases the frequency of chromosome abnormalities and micronucleus, in turn, decreasing the frequency of mitotic index. As-treated cells also presented an increase in the percentage of DNA damage observed in comet assay. Overall, the effects of As in TAS were more pronounced, than in the Oxisol, being the Inceptisol the less toxic. A discussion of each As effect in cells and the link with the soil type is presented and reveals that clastogenic effects of As in A. cepa cells seemed to be the mode of action of this soil contaminant.
Collapse
|
26
|
Methodological Protocol for Assessing the Environmental Footprint by Means of Ecotoxicological Tools: Wastewater Treatment Plants as an Example Case. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2020. [DOI: 10.1007/978-1-0716-0150-1_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Khadra A, Pinelli E, Ezzariai A, Mohamed O, Merlina G, Lyamlouli K, Kouisni L, Hafidi M. Assessment of the genotoxicity of antibiotics and chromium in primary sludge and compost using Vicia faba micronucleus test. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109693. [PMID: 31550565 DOI: 10.1016/j.ecoenv.2019.109693] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
The objective of this study was to investigate chemical, biological and eco-toxicological parameters of a compost produced through the co-composting of dewatered primary sludge (DPS) and date palm waste to evaluate in which extent it can exploited as a bio-fertilizer. DPS and date palm waste were co-composted in aerobic conditions for 210 days. Physico-chemical parameters were evaluated during composting (total organic carbon, total nitrogen, pH, available forms of phosphorus). Furthermore, heavy metals (Cd, Cu, Cr, Pb, Ni, Zn) and antibiotics (fluoroquinolones, macrolides and tetracyclines) content were analyzed in the DPS. To evaluate the genotoxicity of substrates, Vicia faba micronucleus test was carried out. Single and combined toxicities of a mixture of antibiotics (ciprofloxacin, enroflxacin, nalidixic acid, roxithromycin and sulfapyridin) and chromium (Cr2 (SO4)3 and K2Cr2O7) were examined. Although the final compost product showed a significant decrease of the genotoxicity, almost 50% of the micronucleus frequency still remained, which could be explained by the persistence of several recalcitrant compounds such as chromium and some antibiotics. Overall, the presence of antibiotics and chromium showed that some specific combination of contaminants represent an ecological risk for soil health and ecosystems even at environmentally negligible concentrations.
Collapse
Affiliation(s)
- Ahmed Khadra
- Laboratoire Ecologie et Environnement (Unité Associée Au CNRST, URAC 32), Faculté des Sciences Semlalia, Université Cadi Ayyad, BP 2390, Marrakech, Morocco
| | - Eric Pinelli
- EcoLab, Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Avenue de l'Agrobiopôle, F-31326, Castanet-Tolosan, France
| | | | - Oubane Mohamed
- Laboratoire Ecologie et Environnement (Unité Associée Au CNRST, URAC 32), Faculté des Sciences Semlalia, Université Cadi Ayyad, BP 2390, Marrakech, Morocco
| | - Georges Merlina
- EcoLab, Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Avenue de l'Agrobiopôle, F-31326, Castanet-Tolosan, France
| | - Karim Lyamlouli
- University Mohammed VI Polytechnic (UM6P), Agrobiosciences Program, Benguerir, Morocco
| | - Lamfeddal Kouisni
- University Mohammed VI Polytechnic (UM6P), Agrobiosciences Program, Benguerir, Morocco
| | - Mohamed Hafidi
- Laboratoire Ecologie et Environnement (Unité Associée Au CNRST, URAC 32), Faculté des Sciences Semlalia, Université Cadi Ayyad, BP 2390, Marrakech, Morocco; University Mohammed VI Polytechnic (UM6P), Agrobiosciences Program, Benguerir, Morocco.
| |
Collapse
|
28
|
Bartoli J, Montalbano S, Spadola G, Rogolino D, Pelosi G, Bisceglie F, Restivo FM, Degola F, Serra O, Buschini A, Feretti D, Zani C, Carcelli M. Antiaflatoxigenic Thiosemicarbazones as Crop-Protective Agents: A Cytotoxic and Genotoxic Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10947-10953. [PMID: 31498626 DOI: 10.1021/acs.jafc.9b01814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aflatoxins are secondary fungal metabolites that can contaminate feed and food. They are a cause of growing concern worldwide, because they are potent carcinogenic agents. Thiosemicarbazones are molecules that possess interesting antiaflatoxigenic properties, but in order to use them as crop-protective agents, their cytotoxic and genotoxic profiles must first be assessed. In this paper, a group of thiosemicarbazones and a copper complex are reported as compounds able to antagonize aflatoxin biosynthesis, fungal growth, and sclerotia biogenesis in Aspergillus flavus. The two most interesting thiosemicarbazones found were noncytotoxic on several cell lines (CRL1790, Hs27, HFL1, and U937), and therefore, they were submitted to additional analysis of mutagenicity and genotoxicity on bacteria, plants, and human cells. No mutagenic activity was observed in bacteria, whereas genotoxic activity was revealed by the Alkaline Comet Assay on U937 cells and by the test of chromosomal aberrations in Allium cepa.
Collapse
Affiliation(s)
- Jennifer Bartoli
- Department of Chemistry, Life Sciences and Environmental Sustainability and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB) , Università di Parma , Parco Area delle Scienze , 43124 Parma , Italy
| | - Serena Montalbano
- Department of Chemistry, Life Sciences and Environmental Sustainability and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB) , Università di Parma , Parco Area delle Scienze , 43124 Parma , Italy
| | - Giorgio Spadola
- Department of Chemistry, Life Sciences and Environmental Sustainability and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB) , Università di Parma , Parco Area delle Scienze , 43124 Parma , Italy
| | - Dominga Rogolino
- Department of Chemistry, Life Sciences and Environmental Sustainability and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB) , Università di Parma , Parco Area delle Scienze , 43124 Parma , Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB) , Università di Parma , Parco Area delle Scienze , 43124 Parma , Italy
| | - Franco Bisceglie
- Department of Chemistry, Life Sciences and Environmental Sustainability and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB) , Università di Parma , Parco Area delle Scienze , 43124 Parma , Italy
| | - Francesco Maria Restivo
- Department of Chemistry, Life Sciences and Environmental Sustainability and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB) , Università di Parma , Parco Area delle Scienze , 43124 Parma , Italy
| | - Francesca Degola
- Department of Chemistry, Life Sciences and Environmental Sustainability and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB) , Università di Parma , Parco Area delle Scienze , 43124 Parma , Italy
| | - Olga Serra
- Department of Chemistry, Life Sciences and Environmental Sustainability and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB) , Università di Parma , Parco Area delle Scienze , 43124 Parma , Italy
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB) , Università di Parma , Parco Area delle Scienze , 43124 Parma , Italy
| | - Donatella Feretti
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health , University of Brescia , Viale Europa 11 , 25123 Brescia , Italy
| | - Claudia Zani
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health , University of Brescia , Viale Europa 11 , 25123 Brescia , Italy
| | - Mauro Carcelli
- Department of Chemistry, Life Sciences and Environmental Sustainability and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB) , Università di Parma , Parco Area delle Scienze , 43124 Parma , Italy
| |
Collapse
|
29
|
Jiang X, Chen H, Liao Y, Ye Z, Li M, Klobučar G. Ecotoxicity and genotoxicity of polystyrene microplastics on higher plant Vicia faba. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:831-838. [PMID: 31051394 DOI: 10.1016/j.envpol.2019.04.055] [Citation(s) in RCA: 466] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/28/2019] [Accepted: 04/10/2019] [Indexed: 05/20/2023]
Abstract
Nano- and microplastics have been widely spread in environmental matrices, especially in marine and terrestrial systems. In this study, higher plant Vicia faba root tips were exposed to 5 μm and 100 nm with 10, 50 and 100 mg/L polystyrene fluorescent microplastics (PS-MPs) for 48 h. Root length, weight, oxidative stress and genotoxicity of V. faba were assessed to investigate toxic effects of PS-MPs. The results showed that the biomass and catalase (CAT) enzymes activity of V. faba roots decreased under 5 μm PS-MPs whereas superoxide dismutase (SOD) and peroxidase (POD) enzymes activity significantly increased. Under the 100 nm PS-MPs exposure a significant decrease of growth was observed only at the highest concentration (100 mg/L). However, micronucleus (MN) test and antioxidative enzymes activities showed that 100 nm PS-MPs induce higher genotoxic and oxidative damage to V. faba than 5 μm PS-MPs. Furthermore, the laser confocal scanning microscopy (LCSM) demonstrated that 100 nm PS-MPs can accumulate in V. faba root and most probably block cell connections or cell wall pores for transport of nutrients. These findings provide a new insight into the toxic effects of microplastics on V. faba, and further apply to the ecological risk assessment of microplastics on higher plants.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Hao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yuanchen Liao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Ziqi Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Mei Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Göran Klobučar
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, 10000, Croatia
| |
Collapse
|
30
|
Caritá R, Mazzeo DEC, Marin-Morales MA. Comparison of the toxicogenetic potential of sewage sludges from different treatment processes focusing agricultural use. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:21475-21483. [PMID: 31127510 DOI: 10.1007/s11356-019-05453-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/12/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
A problem that has been dragging in recent decades is the final disposal of the waste produced in the wastewater treatment process. In addition to its high amount of organic matter and nutrients, this waste, known as sewage sludge (SS), may also contain toxic compounds that, when in the environment, can cause deleterious effects to organisms and lead to severe and irreversible consequences to human health. In order to understand the potential of inducing cellular and chromosomal instabilities, the species Allium cepa was employed to assess the presence of toxic agents in SS samples. Seeds of A. cepa were exposed to several dilutions of aqueous extract of SSs from 5 wastewater treatment plants (WWTPs), whose characteristics of treated sewage and the technologies employed differ among them. The results obtained showed that all the studied SSs induced significant genotoxic and mutagenic alterations, even in smaller dilutions tested. With these results, it was also possible to observe that SSs from WWTPs that present system of activated sludge and receive sewage of industrial origin induced a greater number of toxicogenetic alterations in the test organism. The high frequencies of chromosomal and nuclear aberrations observed, induced by contaminants present in the SS, represent worrying results because it proves a direct action of this agent on the genetic material of the exposed organism. Therefore, the agronomic application of SS in agriculture requires additional and more effective technologies in order to promote its complete decontamination and its safe disposal in the environment.
Collapse
Affiliation(s)
- Renata Caritá
- Department of Biology, Institute of Biosciences, UNESP - São Paulo State University, Av. 24-A, 1515, CP 199, Rio Claro, SP, 13506-900, Brazil
| | - Dânia Elisa Christofoletti Mazzeo
- Department of Biochemistry and Microbiology, Institute of Biosciences, UNESP - São Paulo State University, Av. 24-A, 1515, Rio Claro, SP, 13506-900, Brazil
| | - Maria Aparecida Marin-Morales
- Department of Biology, Institute of Biosciences, UNESP - São Paulo State University, Av. 24-A, 1515, CP 199, Rio Claro, SP, 13506-900, Brazil.
| |
Collapse
|
31
|
Kayumov AR, Solovyev DA, Bobrov DE, Rizvanov AA. Current Approaches to the Evaluation of Soil Genotoxicity. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00652-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
32
|
Khallef M, Benouareth DE, Konuk M, Liman R, Bouchelaghem S, Hazzem S, Kerdouci K. The effect of silver nanoparticles on the mutagenic and the genotoxic properties of the urban wastewater liquid sludges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:18403-18410. [PMID: 31049867 DOI: 10.1007/s11356-019-05225-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/17/2019] [Indexed: 05/17/2023]
Abstract
Nanoparticles are very effective compounds to transform and detoxicate common environmental contaminants. For this reason, crude urban liquid wastewater sludges were treated by silver nanoparticles (Ag-NPs, 100 nm) for 24 h. Both Ag-NPs' treated and untreated sludges were examined for the evaluation if there are possible mutagenic/anti-mutagenic, cytotoxic, and genotoxic/anti-genotoxic effects by Ames and Allium cepa tests. The results were then subjected to statistical analyses by using SPSS software and p < 0.05 was accepted as a significant value. The data obtained from the Ames test showed that while untreated crude liquid sludge had a significant mutagenic effect, Ag-NP-treated one decreased its mutagenicity. Similar effects were also observed in the chromosome aberration-Allium cepa tests. Significant chromosome aberrations observed were C-metaphase, sticky metaphase, sticky anaphase, anaphase bridge, vagrant chromosome, and multipolar anaphases. Both tests demonstrated that silver nanoparticle treatment decreased the major mutagenicity and genotoxicity detected in the liquid wastewater sludges.
Collapse
Affiliation(s)
- Messaouda Khallef
- Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre et de l'Univers, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
| | - Djamel Eddine Benouareth
- Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre et de l'Univers, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
| | - Muhsin Konuk
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Üsküdar University, Altunizade, 34662, Istanbul, Turkey.
| | - Recep Liman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Usak University, 64200, Usak, Turkey
| | - Sara Bouchelaghem
- Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre et de l'Univers, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
| | - Sara Hazzem
- Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre et de l'Univers, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
| | - Khadra Kerdouci
- Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre et de l'Univers, Université 8 Mai 1945 Guelma, BP 401, 24000, Guelma, Algeria
| |
Collapse
|
33
|
Sposito JCV, Francisco LFV, do Amaral Crispim B, da Silva Dantas FG, de Souza JP, Viana LF, Solórzano JCJ, de Oliveira KMP, Barufatti A. Influence of Land Use and Cover on Toxicogenetic Potential of Surface Water from Central-West Brazilian Rivers. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 76:483-495. [PMID: 30770948 DOI: 10.1007/s00244-019-00603-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
The objective of this study was to evaluate toxicogenetic potential of surface water samples from rivers of center-west Brazil and analyze the influence of land use and cover and physicochemical parameters in genetic damage. Samples were collected during winter (June) and summer (November) at sampling sites from Dourados and Brilhante Rivers (Mato Grosso do Sul/Brazil). The toxicogenetic variables, including chromosomal alterations, micronuclei, and mitotic index, were analyzed in meristematic cells of Allium cepa; and micronuclei, nuclear abnormalities, and DNA strand breaks (arbitrary units, AUT) were analyzed in erythrocytes of Astyanax lacustris. The rivers presented physicochemical values outside the Brazilian laws, which can be a characteristic of human pollution (domestic sewage and local agriculture). The results of A. cepa test suggest that the water samples from Dourados and Brilhante rivers exerted significant (p < 0.05) cytotoxic and genotoxic effects, in both periods of collection, especially alterations in mitotic index. In blood cells of A. lacustris, genotoxic effect of the water samples from the rivers also was observed as significant nuclear abnormalities, DNA breaks (UAT), in both sampling periods, compared with the negative control. Spearman correlation analyses revealed that data of land use and cover and physicochemical parameters were statistically correlated with DNA damages in bioassays. This study demonstrates toxicogenetic potential of water samples from Dourados and Brilhante rivers; furthermore, the type of land use and land cover and physicochemical parameters were revealed to have influence on toxicogenetic damage.
Collapse
Affiliation(s)
- Juliana Caroline Vivian Sposito
- Faculty of Exact Sciences and Technology, Federal University of Grande Dourados/UFGD, Street João Rosa Góes, Vila Progresso, Dourados, MS, 79.825-070, Brazil
| | - Luiza Flavia Veiga Francisco
- Faculty of Exact Sciences and Technology, Federal University of Grande Dourados/UFGD, Street João Rosa Góes, Vila Progresso, Dourados, MS, 79.825-070, Brazil
| | - Bruno do Amaral Crispim
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados/UFGD, Street João Rosa Góes, Vila Progresso, Dourados, MS, 79.825-070, Brazil
| | - Fabiana Gomes da Silva Dantas
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados/UFGD, Street João Rosa Góes, Vila Progresso, Dourados, MS, 79.825-070, Brazil
| | - Jéssica Pereira de Souza
- Faculty of Exact Sciences and Technology, Federal University of Grande Dourados/UFGD, Street João Rosa Góes, Vila Progresso, Dourados, MS, 79.825-070, Brazil
| | | | | | - Kelly Mari Pires de Oliveira
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados/UFGD, Street João Rosa Góes, Vila Progresso, Dourados, MS, 79.825-070, Brazil
| | - Alexeia Barufatti
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados/UFGD, Street João Rosa Góes, Vila Progresso, Dourados, MS, 79.825-070, Brazil.
| |
Collapse
|
34
|
Allium cepa Bio Assay to Assess the Water and Sediment Cytogenotoxicity in a Tropical Stream Subjected to Multiple Point and Nonpoint Source Pollutants. J Toxicol 2019; 2019:5420124. [PMID: 30941171 PMCID: PMC6421030 DOI: 10.1155/2019/5420124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/11/2019] [Accepted: 02/10/2019] [Indexed: 11/18/2022] Open
Abstract
The present study was conducted to assess the cytotoxicity of water and sediments of an industrial effluent receiving water body in the western province of Sri Lanka using Allium cepa bioassay. Six sampling sites (Site A: Urban; B: Industrial; C: Water intake for public water supply; D: Industrial; E: Agricultural; F: Reference) were selected from the study area. Ten replicate water and sediment samples were collected from each site, and physical and chemical parameters were measured using standard analytical methods. Cytotoxicity of water and sediment elutriates were measured using Allium cepa bioassay. Despite the significant spatial variations, the overall water and sediment quality parameters of the study sites were in accordance with the standard ambient environment parameters to sustain a healthy aquatic life. In the A. cepa bulbs exposed to water samples, significant root growth variations were not observed within 48 hours of exposure. However, significant root length variations were observed in A. cepa bulbs exposed to sediment elutriates within the 48-hour exposure and the percentage root growth inhibition increased with increase of exposure time. Similar trend was observed in mitotic activity indicating significantly lower mitotic indices (compared to that of the reference site) in A. cepa root tip cells exposed to sediment elutriates than those exposed to water samples. Further, the highest number of nuclear abnormalities was recorded from root tip cells of A. cepa exposed to water and sediment samples from sites B, C, and D. Therefore, it is of extreme importance to identify the composition and speciation of these cytogenotoxic compounds in the tropical climatic conditions and to propose possible clean-up or treatment solutions to overcome this environmental and public health risk associated problem.
Collapse
|
35
|
Toxic effects of engineered nanoparticles (metal/metal oxides) on plants using Allium cepa as a model system. COMPREHENSIVE ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/bs.coac.2019.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Pamplona-Silva MT, Gonçalves LC, Marin-Morales MA. Genetic toxicity of water contaminated by microcystins collected during a cyanobacteria bloom. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:223-230. [PMID: 30269018 DOI: 10.1016/j.ecoenv.2018.09.090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/10/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
Microcystin-LR (MCLR) is a toxin mainly produced by Microcystis aeruginosa, cyanobacteria most commonly found in eutrophic environments. Cyanobacteria blooms have affected Salto Grande reservoir (Americana, State of São Paulo/Brazil) for several decades, often observed during periods of drought. In this study, the genotoxic effects of MCLR (95% purity) and water samples contaminated by this toxin were evaluated during cyanobacteria bloom using assays with the test organism Allium cepa. The results showed genotoxic action for pure microcystin and cytotoxic, genotoxic and mutagenic action for water samples collected during flowering. Chromosomal aberration assays have shown that MCLR induces chromosomal breaks that persist in the daughter cells as MN. Therefore, it is possible to infer a clastogenic action for this toxin. The MCLR present in the environmental samples was shown to be more cytogenotoxic for the cells than the different concentrations tested in this study with the pure substance. This amplified toxic action can be related to a synergistic effect between the MCLR and other compounds present in the environmental samples. The genotoxicity studies with MCLR show inconsistent and inconclusive results, so this toxin needs to be better investigated in order to obtain further information about the action mode of it is on the biological system.
Collapse
Affiliation(s)
- Maria Tereza Pamplona-Silva
- São Paulo State University (Unesp), Institute of Bioscience, Rio Claro. Av. 24-A, 1515, 13.506-900 Rio Claro, SP, Brazil.
| | - Letícia Cristina Gonçalves
- São Paulo State University (Unesp), Institute of Bioscience, Rio Claro. Av. 24-A, 1515, 13.506-900 Rio Claro, SP, Brazil.
| | - Maria Aparecida Marin-Morales
- São Paulo State University (Unesp), Institute of Bioscience, Rio Claro. Av. 24-A, 1515, 13.506-900 Rio Claro, SP, Brazil.
| |
Collapse
|
37
|
Saini S, Kaur I, Katnoria JK. Sorption technique as a tool for reduction of genotoxicity. Toxicol Ind Health 2018; 34:898-907. [PMID: 30384802 DOI: 10.1177/0748233718803018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, the Allium cepa root chromosomal aberration assay was used to determine the genotoxic effects of copper and cadmium ions solutions before and after sorption processes. The sorption process was carried out using unmodified Dendrocalamus strictus charcoal powder, nitrilotriacetic acid (NTA)-modified D. strictus charcoal powder, and Saccharomyces cerevisiae. The frequency of total chromosomal aberrations was observed to be 24.30-45.13% for copper and 13.16-45.14% for cadmium at different concentrations (1-500 mg/l) before the sorption process. Both metal ions solutions resulted in significant reduction of chromosomal aberrations after all the modes of the sorption processes. However, the order of reduction of percentage chromosomal aberrations for copper and cadmium solutions was found to be 45.29-70.04% and 47.80-84.57%, respectively (NTA-modified D. strictus charcoal powder); >44.53-54.32% and 37.10-79.40%, respectively (unmodified D. strictus charcoal powder); >15.59-48.51% and 13.63-21.50%, respectively (S. cerevisiae).
Collapse
Affiliation(s)
- Saraswati Saini
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Inderpreet Kaur
- Department of Chemistry, Centre for Advanced Studies, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Jatinder Kaur Katnoria
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
38
|
Tovar-Sánchez E, Cervantes-Ramírez T, Castañeda-Bautista J, Gómez-Arroyo S, Ortiz-Hernández L, Sánchez-Salinas E, Mussali-Galante P. Response of Zea mays to multimetal contaminated soils: a multibiomarker approach. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:1161-1177. [PMID: 30120659 DOI: 10.1007/s10646-018-1974-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Heavy metals present in mine tailings pollute agroecosystems, put the integrity of the environment at risk and become a major route of exposure to humans. The present study was carried out in Taxco, Guerrero, Mexico, where millions of tons of mine tailings have been deposited. Soils from this region are used for agricultural activities. Maize (Zea mays) was selected as a test plant, because it is one of the most common and important cereal crops in Mexico and worldwide. Thirteen metals were selected and their bioaccumulation in roots, leaves and fruits were measured in plants cultivated in soils contaminated with mine tailings and those cultivated in non-contaminated soils. The effect of metal bioaccumulation on: macro and micromorphology, size, biomass, coloration leaf patterns and on DNA damage levels in different structures were determined. The bioaccumulation pattern was: root > leaf > fruit, being only Mn and Cr bioaccumulated in all three structures and V in the roots and leaves. A significant effect of metal bioaccumulation on 50% of the size and leaf shape and 55% of the biomass characters in Z. mays exposed plants was detected. Regarding micromorphological characters, a significant effect of metal bioaccumulation on 67% of the leaf characters and on 100% of the color basal leaf characters was noted. The effect of metal bioaccumulation on the induction of DNA damage (leaf > fruit > root) was detected employing single cell gel electrophoresis analysis. An approach, in which multi endpoints are used is necessary to estimate the extent of the detrimental effects of metal pollution on agroecosystem integrity contaminated with mine tailings.
Collapse
Affiliation(s)
- Efraín Tovar-Sánchez
- Laboratorio de Marcadores Moleculares, Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, Mexico
| | - Tatiana Cervantes-Ramírez
- Laboratorio de Marcadores Moleculares, Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, Mexico
- Maestría en Biología Integrativa de la Biodiversidad y la Conservación, Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, Mexico
| | - Javier Castañeda-Bautista
- Laboratorio de Marcadores Moleculares, Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, Mexico
| | - Sandra Gómez-Arroyo
- Laboratorio de Genotoxicología Ambiental, Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, Mexico
| | - Laura Ortiz-Hernández
- Laboratorio de Investigaciones Ambientales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos. Avenida Universidad 1001, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Enrique Sánchez-Salinas
- Laboratorio de Investigaciones Ambientales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos. Avenida Universidad 1001, Colonia Chamilpa, Cuernavaca, Morelos, Mexico
| | - Patricia Mussali-Galante
- Laboratorio de Investigaciones Ambientales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos. Avenida Universidad 1001, Colonia Chamilpa, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
39
|
Artemisinin-Based Combination Therapy Depressed Mitosis and Induced Chromosome Aberration in Onion Root Cells. J Toxicol 2018; 2018:4671326. [PMID: 30210539 PMCID: PMC6126092 DOI: 10.1155/2018/4671326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/31/2018] [Indexed: 11/18/2022] Open
Abstract
Artemisinin-based combination therapy is used to treat uncomplicated malaria disease in most endemic countries. Although most antimalarial drugs are effective in killing the parasite, there is a concern of induced toxicity to the cell. Here, the cytogenotoxicity of dihydroartemisinin-piperaquine phosphate (DHAP), a coformulation for artemisinin-based combination therapy, was evaluated using Allium cepa model. The toxicity on the mitotic index varies with the duration of exposure and dose tested. Chromosome aberrations observed include chromosome fragments, chromosome bridges, binucleated cells, and micronucleated cells. This study showed that DHAP can depress mitosis and induce chromosome abnormalities. Their accumulation in cells may be inhibitory to cell division and growth. This calls for caution in the administration of artemisinin combination therapy for the treatment of malaria ailment. Wide spacing of dosage is therefore suggested in order to avoid the risk of genetic damage.
Collapse
|
40
|
Verma S, Srivastava A. Morphotoxicity and cytogenotoxicity of pendimethalin in the test plant Allium cepa L. - A biomarker based study. CHEMOSPHERE 2018; 206:248-254. [PMID: 29753287 DOI: 10.1016/j.chemosphere.2018.04.177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Pesticides have brought tremendous benefits to mankind by increasing food production and controlling various crop diseases. But their prolonged and extensive use has been reported to induce toxicity. Biological markers used for the evaluation of toxic effects of pesticides have increased these days. The aim of this study was to determine the morphotoxic and cytogenotoxic effects of pesticide pendimethalin applied to the soil by using morphological and genotoxic biomarkers in the test plant Allium cepa L. A pot experiment was set up in which pendimethalin was added to soil at the rate of 0, 0.033, 0.044, 0.055 and 0.066 g kg-1 soil. Similar sized onion bulbs were planted in each pot and 3 replicates were maintained for each dose of pendimethalin at 1, 7, 15, 30 and 45 days after treatment. Average root number (ARN) and average length of roots (ALR) of onion bulbs were recorded and on the day 3 of sowing roots were harvested and fixed for cytological analysis. Morphological biomarkers revealed significant concentration and duration dependent inhibition of ARN and ALR as compared to control which shows the morphotoxicity of pendimethalin. The results also showed inhibitory effect on the mitotic index (%) of A. cepa while relative abnormality rate (%) increased. Further, we observed aberrations in both the dividing and non-dividing cells along with spotting of few ring chromosomes. Reduced mitotic index, increased relative abnormality rate; various chromosomal and interphase nuclear aberrations all being mitosis endpoint markers reflect the cytogenotoxicity of pendimethalin, even at lower concentrations.
Collapse
Affiliation(s)
- Sonam Verma
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow, 226007, UP, India.
| | - Alka Srivastava
- In Vitro Culture and Plant Genetics Unit, Department of Botany, Faculty of Science, University of Lucknow, Lucknow, 226007, UP, India.
| |
Collapse
|
41
|
da Silva Souza T, de Souza VV, Lascola MB. Assessment of surface water using Allium cepa test and histological analysis in Rhamdia quelen. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:420. [PMID: 29934915 DOI: 10.1007/s10661-018-6795-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to assess the cytotoxic, genotoxic, and mutagenic potentials of water samples collected in the Alegre River Basin, located in a predominantly rural area with no sewage treatment facilities in the Espírito Santo State, Brazil, using Allium cepa test. Also, gills and liver of Rhamdia quelen, a common fish species of the region, were histologically analyzed. A semi-quantitative analysis was performed and a histopathological alterations index (HAI) was determined. Our findings indicated that the waters of this river basin were cytotoxic (mitotic index reduction) and/or genotoxic (chromosomal abnormalities induction). Mutagenicity (micronuclei induction) was not observed for any water sample. The values for HAI showed that the waters caused moderate histological alterations in R. quelen. Liver was more sensitive than gills. It is necessary to implement a sewage treatment system and raise awareness on inappropriate management and disposal of agrochemicals in order to allow the recovery of Alegre River.
Collapse
Affiliation(s)
- Tatiana da Silva Souza
- Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Rua Alto Universitário, s/número, Guararema, Alegre, Espírito Santo, 29500-000, Brasil.
| | - Victor Ventura de Souza
- Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Rua Alto Universitário, s/número, Guararema, Alegre, Espírito Santo, 29500-000, Brasil
| | - Mylena Boeque Lascola
- Departamento de Biologia, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Rua Alto Universitário, s/número, Guararema, Alegre, Espírito Santo, 29500-000, Brasil
| |
Collapse
|
42
|
García-Bores AM, Arciniegas-Arciniegas A, Reyna-Campos A, Céspedes-Acuña C, Avila-Suárez B, Alarcón-Enos J, Flores-Maya S, Espinosa-González AM, de Vivar-Romo AR, Pérez-Plasencia C, Avila-Acevedo JG. Phytochemical Composition and Biological Activities of Dyssodia tagetiflora Lag. Chem Biodivers 2017; 15. [PMID: 29224253 DOI: 10.1002/cbdv.201700415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/06/2017] [Indexed: 12/28/2022]
Abstract
While plants of the genus Dyssodia are used by man to a certain extent, few phytochemical and pharmacological studies have been performed with species of this genus. D. tagetiflora is an endemic plant of Mexico and has been used as fodder. The aim of this research was to isolate and identify the main bioactive components and evaluate the insecticidal, antioxidant, genotoxic and cytoprotective activities of D. tagetiflora. The isolated substances included an essential oil composed of six monoterpenes, and extracts containing two flavonols, three flavonol-glycosides and four thiophenes. The compounds were characterized using spectroscopic and spectrometric methods, including GC/MS, MS and NMR. The essential oil showed insecticidal activity against Drosophila melanogaster larvae. The methanolic extract of D. tagetiflora (DTME) had strong antioxidant activity against DPPH and ABTS radicals; DTME showed no evidence of genotoxic or cytotoxic effects. In contrast, DTME showed a cytoprotective effect attenuating the formation of H2 O2 -induced micronuclei in Vicia faba roots. This report is the first to describe the phytochemical and biological activity of D. tagetiflora.
Collapse
Affiliation(s)
- Ana María García-Bores
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México
| | - Amira Arciniegas-Arciniegas
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, México
| | - Alma Reyna-Campos
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México
| | - Carlos Céspedes-Acuña
- Laboratorio de Fitoquímica-Ecológica, Grupo de Química y Biotecnología de Productos Naturales Bioactivos, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Av. Andrés Bello s/n, P.O. Box 447, Ñuble, 3780000, Chillán, Chile
| | - Betsaida Avila-Suárez
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México
| | - Julio Alarcón-Enos
- Laboratorio de Fitoquímica-Ecológica, Grupo de Química y Biotecnología de Productos Naturales Bioactivos, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Av. Andrés Bello s/n, P.O. Box 447, Ñuble, 3780000, Chillán, Chile
| | - Saul Flores-Maya
- Laboratorio de Recursos Naturales, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México
| | - Adriana Montserrat Espinosa-González
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México
| | - Alfonso Romo de Vivar-Romo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, México
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica Funcional, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México
| | - José Guillermo Avila-Acevedo
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De los Barrios No. 1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México
| |
Collapse
|
43
|
Rogolino D, Gatti A, Carcelli M, Pelosi G, Bisceglie F, Restivo FM, Degola F, Buschini A, Montalbano S, Feretti D, Zani C. Thiosemicarbazone scaffold for the design of antifungal and antiaflatoxigenic agents: evaluation of ligands and related copper complexes. Sci Rep 2017; 7:11214. [PMID: 28894265 PMCID: PMC5593876 DOI: 10.1038/s41598-017-11716-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/29/2017] [Indexed: 11/09/2022] Open
Abstract
The issue of food contamination by aflatoxins presently constitutes a social emergency, since they represent a severe risk for human and animal health. On the other hand, the use of pesticides has to be contained, since this generates long term residues in food and in the environment. Here we present the synthesis of a series of chelating ligands based on the thiosemicarbazone scaffold, to be evaluated for their antifungal and antiaflatoxigenic effects. Starting from molecules of natural origin of known antifungal properties, we introduced the thio- group and then the corresponding copper complexes were synthesised. Some molecules highlighted aflatoxin inhibition in the range 67–92% at 100 μM. The most active compounds were evaluated for their cytotoxic effects on human cells. While all the copper complexes showed high cytotoxicity in the micromolar range, one of the ligand has no effect on cell proliferation. This hit was chosen for further analysis of mutagenicity and genotoxicity on bacteria, plants and human cells. Analysis of the data underlined the importance of the safety profile evaluation for hit compounds to be developed as crop-protective agents and at the same time that the thiosemicarbazone scaffold represents a good starting point for the development of aflatoxigenic inhibitors.
Collapse
Affiliation(s)
- Dominga Rogolino
- Department of Chemistry, Life Sciences and Environmental Sustainability and CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici), Università di Parma, Parco Area delle Scienze, 43124, Parma, Italy.
| | - Anna Gatti
- Department of Chemistry, Life Sciences and Environmental Sustainability and CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici), Università di Parma, Parco Area delle Scienze, 43124, Parma, Italy
| | - Mauro Carcelli
- Department of Chemistry, Life Sciences and Environmental Sustainability and CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici), Università di Parma, Parco Area delle Scienze, 43124, Parma, Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability and CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici), Università di Parma, Parco Area delle Scienze, 43124, Parma, Italy
| | - Franco Bisceglie
- Department of Chemistry, Life Sciences and Environmental Sustainability and CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici), Università di Parma, Parco Area delle Scienze, 43124, Parma, Italy
| | - Francesco Maria Restivo
- Department of Chemistry, Life Sciences and Environmental Sustainability and CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici), Università di Parma, Parco Area delle Scienze, 43124, Parma, Italy
| | - Francesca Degola
- Department of Chemistry, Life Sciences and Environmental Sustainability and CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici), Università di Parma, Parco Area delle Scienze, 43124, Parma, Italy
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability and CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici), Università di Parma, Parco Area delle Scienze, 43124, Parma, Italy
| | - Serena Montalbano
- Department of Chemistry, Life Sciences and Environmental Sustainability and CIRCMSB (Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici), Università di Parma, Parco Area delle Scienze, 43124, Parma, Italy
| | - Donatella Feretti
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Claudia Zani
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| |
Collapse
|
44
|
Ragazzo P, Feretti D, Monarca S, Dominici L, Ceretti E, Viola G, Piccolo V, Chiucchini N, Villarini M. Evaluation of cytotoxicity, genotoxicity, and apoptosis of wastewater before and after disinfection with performic acid. WATER RESEARCH 2017; 116:44-52. [PMID: 28292679 DOI: 10.1016/j.watres.2017.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/13/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
Disinfection with performic acid (PFA) represents an emerging technology in wastewater treatment. Many recent studies indicate its effectiveness and suitability as a disinfectant for different applications; several have demonstrated its reliability as an alternative to chlorine for disinfecting secondary effluents from urban wastewater treatment plants (WWTPs). Some disinfection technologies, in relation to their oxidative power, lead to the formation of disinfection by-products (DBPs), some of which are of concern for their toxic and carcinogenic potential. The aim of this study was to investigate potential genotoxic, cytotoxic, and mutagenic effects of this disinfection agent on treated secondary effluent coming from a municipal WWTP. A strategy with multiple short-term tests and different target cells (bacterial, plant, and mammalian) was adopted to explore a relatively wide range of potential genotoxic events. The Ames test (point mutation in Salmonella), the micronucleus (chromosomal damage) and Comet tests (primary DNA damage) on human hepatic cells (HepG2) were conducted to detect mutagenicity and chromosomal DNA alterations. DNA fragmentation and mitochondrial potential assays were conducted to evaluate apoptosis in the same kinds of cells. Mutagenic and clastogenic effect potentials were evaluated by examining micronucleus formation in Allium cepa root cells. In all the in vitro tests, carried out on both disinfected and non-disinfected effluents, negative results were always obtained for mutagenic and genotoxic effects. In the Allium cepa tests, however, some non-concentrated wastewater samples after PFA treatment induced a slight increase in micronucleus frequencies in root cells, but not in a dose-related manner. In conclusion, PFA applied for disinfection to a secondary effluent from a municipal wastewater treatment plant did not contribute to the release of genotoxic or mutagenic compounds. Further studies are required to establish to which extent these findings can be generalized to support PFA for other disinfection applications.
Collapse
Affiliation(s)
- Patrizia Ragazzo
- Azienda Servizi Integrati S.p.A., Via Calnova, 31, 30027, San Donà di Piave, VE, Italy.
| | - Donatella Feretti
- University of Brescia, Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, Italy
| | - Silvano Monarca
- University of Perugia, Department of Pharmaceutical Sciences (Unit of Public Health), Italy
| | - Luca Dominici
- University of Perugia, Department of Pharmaceutical Sciences (Unit of Public Health), Italy
| | - Elisabetta Ceretti
- University of Brescia, Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, Italy
| | - Gaia Viola
- University of Brescia, Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, Italy
| | - Valentina Piccolo
- Azienda Servizi Integrati S.p.A., Via Calnova, 31, 30027, San Donà di Piave, VE, Italy
| | - Nicoletta Chiucchini
- Azienda Servizi Integrati S.p.A., Via Calnova, 31, 30027, San Donà di Piave, VE, Italy
| | - Milena Villarini
- University of Perugia, Department of Pharmaceutical Sciences (Unit of Public Health), Italy
| |
Collapse
|
45
|
Lippia graveolens photochemopreventive effect against UVB radiation-induced skin carcinogenesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 167:72-81. [DOI: 10.1016/j.jphotobiol.2016.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/24/2016] [Accepted: 12/05/2016] [Indexed: 12/14/2022]
|
46
|
de Souza RB, de Souza CP, Bueno OC, Fontanetti CS. Genotoxicity evaluation of two metallic-insecticides using Allium cepa and Tradescantia pallida: A new alternative against leaf-cutting ants. CHEMOSPHERE 2017; 168:1093-1099. [PMID: 27816288 DOI: 10.1016/j.chemosphere.2016.10.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/23/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
In order to combat leaf-cutting ants, the pesticide sulfluramid used to be the most widely utilized active ingredient. However, its use was banned in 2009 by the Stockholm Convention, although some countries were allowed to continue using it. As an effective alternative to its replacement, researchers developed a metallic-insecticide system, which is a natural product linked to metal complexes. Thus, the aim of this study was to evaluate the ability of these new metallic-insecticides in change the genetic material of non-target organisms. The tests were performed utilizing chromosomal aberrations and micronucleus tests in the Allium cepa test system and the Trad-MCN test in Tradescantia pallida. To better understand the results, one of the components of the formula, 5-methyl-phenanthroline, was also analyzed according to the same parameters. To A. cepa, the results showed that one of the metallic insecticides induced cytotoxicity and genotoxicity at different concentrations, while the other metallic-insecticide showed chromosomal instability only at the highest concentration. The analysis of 5-methyl-phenanthroline revealed that it can be related with the positive results, since genotoxic effects were induced. In the Trad-MCN test, none of the metallic-insecticides showed genotoxic activity, although one of them induced more micronucleus formation.
Collapse
Affiliation(s)
- Raphael Bastão de Souza
- UNESP - Univ Estadual Paulista, Institute of Biosciences, Department of Biology, Rio Claro, São Paulo, Brazil
| | - Cleiton Pereira de Souza
- UNESP - Univ Estadual Paulista, Institute of Biosciences, Department of Biology, Rio Claro, São Paulo, Brazil
| | - Odair Correa Bueno
- UNESP - Univ Estadual Paulista, Institute of Biosciences, Department of Biology, Rio Claro, São Paulo, Brazil
| | - Carmem Silvia Fontanetti
- UNESP - Univ Estadual Paulista, Institute of Biosciences, Department of Biology, Rio Claro, São Paulo, Brazil.
| |
Collapse
|
47
|
Vlastos D, Dailianis S, Kindou A, Antonopoulou M, Gianni A, Zacharias I. Assessing the environmental/human risk of potential genotoxicants in water samples from lacustrine ecosystems: The case of lakes in Western Greece. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 574:246-252. [PMID: 27639021 DOI: 10.1016/j.scitotenv.2016.09.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/04/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Lakes, representing major freshwater resources, play a crucial role for both humans and ecosystems. Based on the increasing international interest in the contamination of water resources by genotoxic compounds, the present study aimed to evaluate the genotoxic potential of surface water samples collected from the five (5) lakes (Amvrakia, Lysimachia, Ozeros, Trichonida, Kastraki) located in Aitoloakarnania regional unit (Western Greece). The genotoxic potential of surface water samples was evaluated by employing the Cytokinesis Block MicroNucleus (CBMN) assay in cultured human lymphocytes. In the former assay, lymphocytes were treated with 1, 2 and 5% (v/v) of surface water from each lake. Statistically significant differences (1.7 to 3.3 fold increase in MN frequencies vs. the control) were seen at the dose of 5% (v/v) in all studied lakes. At the dose of 2% (v/v) statistically significant differences (1.7 to 2.6 fold increase in MN frequencies vs. the control) were observed in all studied lakes except Trichonida lake. Finally, at the dose of 1% (v/v) statistically significant differences (2.3 and 2.5 fold increase in MN frequencies vs. the control) were observed in the Ozeros and Lysimachia lakes. The evaluation of the potential genotoxic effects and the analysis of the physicochemical parameters of lakes' surface water samples is a first step in our effort to evaluate the water quality, in terms of the presence and environmental/human risk of genotoxicants in the studied lake ecosystems. The present study showed for the first time the presence of genotoxic substances in surface waters of the studied lakes.
Collapse
Affiliation(s)
- Dimitris Vlastos
- Department of Environmental and Natural Resources Management, University of Patras, 30100, Agrinio, Greece.
| | - Stefanos Dailianis
- Department of Biology, Section of Animal Biology, School of Natural Sciences, University of Patras, 26500, Patras, Greece
| | - Aggeliki Kindou
- Department of Environmental and Natural Resources Management, University of Patras, 30100, Agrinio, Greece
| | - Maria Antonopoulou
- Department of Environmental and Natural Resources Management, University of Patras, 30100, Agrinio, Greece
| | - Areti Gianni
- Department of Environmental and Natural Resources Management, University of Patras, 30100, Agrinio, Greece
| | - Ierotheos Zacharias
- Department of Environmental and Natural Resources Management, University of Patras, 30100, Agrinio, Greece
| |
Collapse
|
48
|
Liu Y, Liu J, Zhang A, Liu Z. Treatment effects and genotoxicity relevance of the toxic organic pollutants in semi-coking wastewater by combined treatment process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:13-19. [PMID: 27707598 DOI: 10.1016/j.envpol.2016.04.095] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 06/06/2023]
Abstract
The removal effects of main toxic organic pollutants in semi-coking wastewater by combined treatment process were investigated, while the genotoxicity relevance of wastewater from different treatment units were monitored by using Vicia faba bioassays. Results showed that 37 kinds of toxic organic pollutants were detected in the crude sewage, most of them were removed by physicochemical pretreatment, and the total concentration of organic pollutants decreased from 4826 mg L-1 to 546 mg L-1. After pretreatment, benzenes, phenols, quinolines and indoles in the wastewater were mainly removed by anaerobic/aerobic biodegradation, but the polycyclic aromatic hydrocarbons (PAHs) were removed mainly by advanced treatment, total concentration of toxic organic pollutants was lower than 0.5 mg L-1 in the effluent. Genotoxicity evaluation results showed that the wastewater from coagulating sedimentation unit or foregoing had significant mutagenic properties. However, the micronuclei (MN) frequency (‰, which was calculated by observing 1000 cells) induced by wastewater after adsorption with modified coke was only 8.06‰, it was no significant difference compared with negative control (7.43‰). It could be concluded that the adsorption treatment was required for the safety of effluent, and the physicochemical-biochemical combined process in this study was suitable for high concentration semi-coking wastewater treatment.
Collapse
Affiliation(s)
- Yongjun Liu
- Key Lab of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China.
| | - Jing Liu
- Key Lab of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China
| | - Aining Zhang
- Key Lab of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China
| | - Zhe Liu
- Key Lab of Northwest Water Resource, Ecology and Environment, Ministry of Education, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China
| |
Collapse
|
49
|
Karami Mehrian S, De Lima R. Nanoparticles cyto and genotoxicity in plants: Mechanisms and abnormalities. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.enmm.2016.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Mišík M, Krupitza G, Mišíková K, Mičieta K, Nersesyan A, Kundi M, Knasmueller S. The Tradescantia micronucleus assay is a highly sensitive tool for the detection of low levels of radioactivity in environmental samples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 219:1044-1048. [PMID: 27614909 DOI: 10.1016/j.envpol.2016.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/29/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
Environmental contamination with radioactive materials of geogenic and anthropogenic origin is a global problem. A variety of mutagenicity test procedures has been developed which enable the detection of DNA damage caused by ionizing radiation which plays a key role in the adverse effects caused by radioisotopes. In the present study, we investigated the usefulness of the Tradescantia micronucleus test (the most widely used plant based genotoxicity bioassay) for the detection of genetic damage caused by environmental samples and a human artifact (ceramic plate) which contained radioactive elements. We compared the results obtained with different exposure protocols and found that direct exposure of the inflorescences is more sensitive and that the number of micronuclei can be further increased under "wet" conditions. The lowest dose rate which caused a significant effect was 1.2 μGy/h (10 h). Comparisons with the results obtained with other systems (i.e. with mitotic cells of higher plants, molluscs, insects, fish and human lymphocytes) show that the Tradescantia MN assay is one to three orders of magnitude more sensitive as other models, which are currently available. Taken together, our findings indicate that this method is due to its high sensitivity a unique tool, which can be used for environmental biomonitoring in radiation polluted areas.
Collapse
Affiliation(s)
- Miroslav Mišík
- Institute of Cancer Research, Department of Internal Medicine I, Borschkegasse 8a, Vienna 1090, Austria
| | - Georg Krupitza
- Department of Pathology, Medical University of Vienna, AKH, Vienna, Austria
| | - Katarina Mišíková
- Department of Botany, Comenius University in Bratislava, Faculty of Natural Sciences, Slovakia
| | - Karol Mičieta
- Department of Botany, Comenius University in Bratislava, Faculty of Natural Sciences, Slovakia
| | - Armen Nersesyan
- Institute of Cancer Research, Department of Internal Medicine I, Borschkegasse 8a, Vienna 1090, Austria
| | - Michael Kundi
- Center for Public Health, Institute of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Siegfried Knasmueller
- Institute of Cancer Research, Department of Internal Medicine I, Borschkegasse 8a, Vienna 1090, Austria.
| |
Collapse
|