1
|
Zalecki M, Juranek J, Pidsudko Z, Mogielnicka-Brzozowska M, Kaleczyc J, Franke-Radowiecka A. Inferior vagal ganglion galaninergic response to gastric ulcers. PLoS One 2020; 15:e0242746. [PMID: 33227035 PMCID: PMC7682887 DOI: 10.1371/journal.pone.0242746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/06/2020] [Indexed: 01/17/2023] Open
Abstract
Galanin is a neuropeptide widely expressed in central and peripheral nerves and is known to be engaged in neuronal responses to pathological changes. Stomach ulcerations are one of the most common gastrointestinal disorders. Impaired stomach function in peptic ulcer disease suggests changes in autonomic nerve reflexes controlled by the inferior vagal ganglion, resulting in stomach dysfunction. In this paper, changes in the galaninergic response of inferior vagal neurons to gastric ulceration in a pig model of the disease were analyzed based on the authors' previous studies. The study was performed on 24 animals (12 control and 12 experimental). Gastric ulcers were induced by submucosal injections of 40% acetic acid solution into stomach submucosa and bilateral inferior vagal ganglia were collected one week afterwards. The number of galanin-immunoreactive perikarya in each ganglion was counted to determine fold-changes between both groups of animals and Q-PCR was applied to verify the changes in relative expression level of mRNA encoding both galanin and its receptor subtypes: GalR1, GalR2, GalR3. The results revealed a 2.72-fold increase in the number of galanin-immunoreactive perikarya compared with the controls. Q-PCR revealed that all studied genes were expressed in examined ganglia in both groups of animals. Statistical analysis revealed a 4.63-fold increase in galanin and a 1.45-fold increase in GalR3 mRNA as compared with the controls. No differences were observed between the groups for GalR1 or GalR2. The current study confirmed changes in the galaninergic inferior vagal ganglion response to stomach ulcerations and demonstrated, for the first time, the expression of mRNA encoding all galanin receptor subtypes in the porcine inferior vagal ganglia.
Collapse
Affiliation(s)
- Michal Zalecki
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
- * E-mail:
| | - Judyta Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Zenon Pidsudko
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Marzena Mogielnicka-Brzozowska
- Department of Animal Biochemistry and Biotechnology, Faculty of Animal Bioengineering, University of Warmia and Mazury, Olsztyn, Poland
| | - Jerzy Kaleczyc
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Amelia Franke-Radowiecka
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
2
|
Helkamaa T, Reenilä I, Tuominen RK, Soinila S, Väänänen A, Tilgmann C, Rauhala P. Increased catechol-O-methyltransferase activity and protein expression in OX-42-positive cells in the substantia nigra after lipopolysaccharide microinfusion. Neurochem Int 2007; 51:412-23. [PMID: 17573159 DOI: 10.1016/j.neuint.2007.04.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 04/20/2007] [Accepted: 04/20/2007] [Indexed: 11/22/2022]
Abstract
Activated microglial cells are found in the substantia nigra and the striatum of Parkinson's disease patients. These cells have been shown to express catechol-O-methyltransferase activity which may increase during pathological conditions. Lipopolysaccharides are potent activators of microglial cells. After paranigral lipopolysaccharide infusion to rats we observed intense microglial activation around the lesion area followed by a delayed injury in nigrostriatal pathway in 2 weeks. Simultaneously, catechol-O-methyltransferase activity in the substantia nigra was gradually increased up to 213%. In the Western blot the amount of soluble COMT and membrane bound COMT proteins were increased by 255% and 86%, respectively. Increased catechol-O-methyltransferase immunoreactivity was located primarily into the activated microglial cells in the lesion area. Interestingly, catechol-O-methyltransferase and OX-42 stained also intensively microglia/macrophage-like cells which surrounded the adjacent blood vessels. Inhibition of catechol-O-methyltransferase activity by tolcapone or entacapone did not increase lipopolysaccharide-induced neurotoxicity. We conclude that catechol-O-methyltransferase activity and protein expression were increased in the substantia nigra after inflammation induced by lipopolysaccharides. These changes in glial and perivascular catechol-O-methyltransferase activity may have clinical relevance for Parkinson's disease drug treatment due to increased metabolism of levodopa in the brain.
Collapse
Affiliation(s)
- Teemu Helkamaa
- Institute of Biomedicine, Pharmacology, University of Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
3
|
Augustyniak RA, Victor RG, Morgan DA, Zhang W. L-NAME- and ADMA-induced sympathetic neural activation in conscious rats. Am J Physiol Regul Integr Comp Physiol 2005; 290:R726-32. [PMID: 16239367 DOI: 10.1152/ajpregu.00768.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although studies in anesthetized, sino-aortic denervated animals indicate that inhibition of central nitric oxide (NO) causes an excitatory influence on efferent sympathetic nerve activity (SNA) that is normally offset by baroreflex activation, studies in conscious animals have not provided clear-cut evidence for a sympathoexcitatory effect of N(omega)-nitro-l-arginine methyl ester (L-NAME) or the endogenous circulating NO synthase (NOS) inhibitor asymmetric dimethylarginine (ADMA). Thus our goals were to 1) use surgical sino-aortic denervation to test for a sympathoexcititatory effect of intravenous l-NAME in conscious rats, and 2) to determine whether SNA responses to intravenous L-NAME can be extrapolated directly to intravenous ADMA. We recorded mean arterial blood pressure and renal SNA in both intact and sino-aortic-denervated conscious rats during 3 h of continuous intravenous infusion with either L-NAME or ADMA. When we eliminated the confounding influence of the sino-aortic baroreceptors, L-NAME produced a progressive increase in SNA with the peak response exceeding the baseline level of nerve firing by 150%. The same type of frank sympathetic activation was observed with intravenous ADMA. Taken together, these data offer straightforward evidence for l-NAME, as well as ADMA-induced sympathetic activation with direct recordings of SNA in conscious animals. These data confirm and extend the concept that circulating endogenous NOS inhibitors can constitute an excitatory signal to SNA.
Collapse
Affiliation(s)
- Robert A Augustyniak
- Department of Internal Medicine, Division of Hypertension, The University of Texas Southwestern Medical Center at Dallas, USA
| | | | | | | |
Collapse
|
4
|
|
5
|
Heikki P, Timo W, Nureddin A, Sampsa V. Degeneration and regeneration of perivascular innervation in arterial grafts. J Craniofac Surg 2004; 15:570-81; discussion 582-4. [PMID: 15213532 DOI: 10.1097/00001665-200407000-00008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Because the understanding of postoperative changes in arterial graft innervation is limited, this study was performed to characterize neuronal degeneration and regeneration events immunohistochemically in femoral arterial grafts transplanted to carotid arteries in rats. Specimens taken 1 day, 3 days, 7 days, 1 month, 3 months, and 5 months after surgery were assessed for vasoactive intestinal peptide, neurofilaments, growth-associated protein 43, tyrosine hydroxylase, and nitric oxide synthase isoenzymes. During neuronal degeneration, vasoactive intestinal peptide disappeared within 1 day, transmitter-synthesizing enzymes (nitric oxide synthase and tyrosine hydroxylase) had vanished by day 7, and neurofilaments (cytoskeletal markers) had essentially disappeared after 1 week. In the regeneration phase, the most robust axonal growth, as visualized by growth-associated protein 43, was observed at 1 month, followed by a gradual increase in neurotransmitter markers at 1 and 3 months, whereas the neurofilaments increased gradually up to the end of the 5-month observation period. Reinnervation proceeded from the proximal carotid (host) trunk distally to the graft. Axonal re-growth occurred mainly in arterial adventitia. Innervation density, as visually assessed, was denser in the graft than in the host. These findings suggest that 1) the main sequence of degeneration and regeneration follows that reported in other models of neuronal degeneration; 2) reinnervation of the arterial grafts comes mainly from the host arteries; and 3) the innervation density in the graft may differ from that in the host, which may suggest target-derived regulation of innervation. The latter finding may have clinical implications. It suggests that for a good outcome it would be beneficial to choose a sparsely innervated graft rather than a densely innervated one.
Collapse
Affiliation(s)
- Penttilä Heikki
- Department of Oral and Maxillofacial Diseases, Surgical Hospital, Helsinki University Central Hospital, Helsinki, Finland.
| | | | | | | |
Collapse
|
6
|
Abstract
The distinction between metabolic and structural changes occurring in autonomic neurons during diabetes has not been fully clarified. Here we demonstrate that nitric oxide synthase-containing (nitrergic) neurons innervating the penis and gastric pylorus of streptozotocin-induced diabetic rats undergo a selective degenerative process in two phases. In the first phase, nitrergic nerve fibers lose some of their neuronal nitric oxide synthase content and function. In the second phase, nitrergic degeneration takes place in the cell bodies in the ganglia, leading to complete loss of nitrergic function. The changes in the first phase are reversible with insulin replacement; however, the neurodegeneration in the second phase is irreversible. Neurodegeneration is due to apoptotic cell death in the ganglia, which is selective for the nitrergic neurones.
Collapse
Affiliation(s)
- Selim Cellek
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| | | | | |
Collapse
|
7
|
Fong AY, Krstew EV, Barden J, Lawrence AJ. Immunoreactive localisation of P2Y1 receptors within the rat and human nodose ganglia and rat brainstem: comparison with [alpha 33P]deoxyadenosine 5'-triphosphate autoradiography. Neuroscience 2002; 113:809-23. [PMID: 12182888 DOI: 10.1016/s0306-4522(02)00237-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present study employed standard peroxidase immunohistochemistry to map the distribution of P2Y(1) receptors in the rat brainstem and nodose ganglia and characterised the binding profile of [alpha(33)P]dATP. Binding of [alpha(33)P]dATP was fully displaceable by adenosine 5'-triphosphate (ATP), and was found on both human and rat nodose ganglia, and throughout the rat brainstem, including the nucleus tractus solitarius and ventrolateral medulla. [Alpha(33)P]dATP binding in the human nodose ganglia was significantly displaced by both 2-methylthio ATP and alpha,beta-methylene ATP, but not by uridine 5'-triphosphate, pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid, 8,8'-(carbonylbis(imino-4,1-phenylenecarbonylimino-4,1-phenylenecarbonylimino))bis(1,3,5-naphtalenetrisulfonic) acid (NF279) or N-ethylcarboxamidoadenosine. [Alpha(33)P]dATP binding in the rat nodose ganglia and brainstem was significantly displaced by only 2-methylthio ATP, suggesting that [alpha(33)P]dATP is binding to P2Y receptors in the rat. Binding of [alpha(33)P]dATP was also significantly displaced by alpha,beta-methylene adenosine 5'-diphosphate, suggesting a component of the binding is to endogenous ecto-5'-nucleotidase, however, almost all binding could be displaced by a combination of receptor agonists (2-methylthio ATP, uridine 5'-triphosphate and alpha,beta-methylene ATP), suggesting preferential binding to receptors. Immunoreactivity to P2Y(1) receptor (P2Y(1)-IR) exhibited similar distribution patterns to [alpha(33)P]dATP binding, with a clear topographic profile. Particularly dense P2Y(1)-IR labeling was evident in cells and fibres of the dorsal vagal complex. Immunolabeling was also present in the dorsal motor nucleus of the vagus and nucleus ambiguus, indicating the possibility of P2Y(1) receptors on vagal efferents. Unilateral vagal ligation was also performed to examine the transport of P2Y(1) receptor, using both immunohistochemistry and [alpha(33)P]dATP autoradiography. Accumulations of both P2Y(1)-IR and [alpha(33)P]dATP binding were apparent adjacent to both ligatures, suggesting bi-directional transport of P2Y(1) receptors along the rat vagus nerve. This current study represents the first description of P2Y(1) receptor distribution within the rodent brainstem and nodose ganglion and also characterises [alpha(33)P]dATP binding to P2Y receptors.
Collapse
Affiliation(s)
- A Y Fong
- Department of Pharmacology, P.O. Box 13E, Monash University, Wellington Road, Clayton, Vic 3800, Australia
| | | | | | | |
Collapse
|
8
|
Abstract
To assess whether diabetes alters the content and/or expression of neuroactive agents and protooncogenes in afferent neurons of the vagus nerve, the nodose ganglia of streptozotocin (STZ)-induced diabetic rats were studied at 8, 16, and 24 weeks after induction of diabetes. Neuronal nitric oxide synthase (nNOS), tyrosine hydroxylase (TH), the immediate early gene c-Jun, vasoactive intestinal peptide (VIP) and calcitonin gene related peptide (CGRP) content and expression were measured in nodose ganglia of control, diabetic, and diabetic+insulin-treated rats using immunocytochemistry and reverse transcription-polymerase chain reaction (RT-PCR). The numbers of nNOS-immunoreactive (ir) neurons were increased in the nodose ganglion of diabetic compared to control rats at the 8- and 16-week time points. However, no change was noted in the nNOS mRNA content of the diabetic nodose ganglion at either time point. Moreover, no alterations in the numbers of vagal efferent NOS-containing neurons (labeled with NADPH-diaphorase histochemistry) were noted in the dorsal motor nucleus of the vagus (DMV) or the nucleus ambiguous (NA) of control, diabetic, and diabetic+insulin-treated rats at any time point. Neither the numbers of TH-ir neurons nor the content of TH mRNA was altered in the diabetic rats at the 8- and 16-week time points. However, 24 weeks of diabetes resulted in a reduction in the numbers of TH-ir neurons in the diabetic nodose ganglia when compared to control, an effect not seen in diabetic rats receiving insulin. The number of nodose ganglion neurons labeled for the protooncogene, c-Jun, was small yet slightly increased in the diabetic nodose ganglia at the 8-week time point and was reversed with insulin treatment. The increase in c-Jun-ir neurons was not found at 16 or 24 weeks of diabetes. VIP-ir and CGRP-ir were unchanged at any of the time points. These data show that diabetes affects the content of some, but not all, neuroactive agents in the nodose ganglion and may reflect a modest level of diabetes-induced damage and/or alterations in axonal transport in the vagus nerve.
Collapse
Affiliation(s)
- Jen Regalia
- Department of Pharmacology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | | | | |
Collapse
|
9
|
Lukácová N, Pavel J, Jalc P, Cízková DV, Marsala M, Lukác I, Chalimoniuk M, Strosznajder J, Marsala J. Effect of spinal cord compression on cyclic 3',5'-guanosine monophosphate in the white matter columns of rabbit. Neurochem Int 2001; 39:275-82. [PMID: 11551667 DOI: 10.1016/s0197-0186(01)00036-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Changes in the level of cyclic 3',5'-guanosine monophosphate (cGMP) were studied one day after a surgically induced spinal cord constriction performed at the Th7 segment level in the dorsal, lateral and ventral white matter columns and in the non-compartmentalized white matter of Th5-Th6 segments, i.e., above the site of the spinal cord constriction and in Th8-Th9 segments, located below the spinal cord constriction. The midthoracic spinal cord constriction caused a significant decrease in the level of cGMP in the ventral column of Th5-Th6 segments and a significant increase in the lateral column of Th8-Th9 segments. The level of cGMP in the dorsal column, located either rostrally or caudally to the site of the spinal cord injury, remained unchanged. In addition, no significant changes in the level of cGMP were found in the non-compartmentalized white matter of Th5-Th6 and Th8-Th9 segments in response to constriction of the Th7 segment.
Collapse
Affiliation(s)
- N Lukácová
- Institute of Neurobiology, Slovak Academy of Sciences, Soltésovej 4, 040 01, Kosice, Slovak Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fong AY, Talman WT, Lawrence AJ. Axonal transport of NADPH-diaphorase and [(3)H]nitro-L-arginine binding, but not [(3)H]cGMP binding, by the rat vagus nerve. Brain Res 2000; 878:240-6. [PMID: 10996159 DOI: 10.1016/s0006-8993(00)02789-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies have shown that the NO(ccirf)-cGMP pathway may be functionally relevant in the nodose ganglion and at afferent terminations of the vagus nerve. The technique of unilateral vagal ligations, using double ligatures, was combined with the techniques of NADPH-diaphorase histochemistry, as an index of nitric oxide synthase (NOS) activity, and autoradiography using the radioligands [(3)H]nitro-L-arginine and [(3)H]cGMP, to examine axonal transport of NOS and cGMP-dependent effectors by the rat vagus nerve. A population of perikarya in the nodose ganglia was NADPH-diaphorase positive, and binding of both [(3)H]nitro-L-arginine and [(3)H]cGMP was found on the nodose ganglia. Following vagal ligation, NADPH-diaphorase reactivity accumulated proximal to the proximal ligature and distal to the distal ligature. Vagus nerve transection beyond the distal ligature eliminated NADPH-diaphorase reactivity at the distal ligature. Similarly, [(3)H]nitro-L-arginine binding was found over the nodose ganglion; and after vagal ligation, an accumulation of [(3)H]nitro-L-arginine binding was seen adjacent to the proximal ligature, though little binding was found adjacent to the distal ligature. No accumulation of [3H]cGMP binding was found adjacent to either the proximal or the distal ligatures. These findings suggest that the rat vagus nerve bidirectionally transports NOS, the enzyme involved in biosynthesis of NO(ccirf) by nitroxidergic nerves. As anticipated, [(3)H]nitro-L-arginine, a competitive inhibitor of the amino acid precursor for NO(ccirf), binds only to a centrifugally transported moiety that we conjecture is NOS, while cGMP apparently is not subject to transport. These data further support the use of NO(&z.ccirf;) in transmission at vagal afferent terminals.
Collapse
Affiliation(s)
- A Y Fong
- Department of Pharmacology, Monash University, Wellington Road, Clayton, VIC 3168, Australia
| | | | | |
Collapse
|
11
|
Lukácová N, Cízková D, Marsala M, Pavel J, Jalc P, Sulla I, Kafka J, Marsala J. Effect of midthoracic spinal cord constriction on catalytic nitric oxide synthase activity in the white matter columns of rabbit. Neurochem Res 2000; 25:1139-48. [PMID: 11055753 DOI: 10.1023/a:1007682315257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The distribution and changes of catalytic nitric oxid synthase (cNOS) activity in the dorsal, lateral and ventral white matter columns at midthoracic level of the rabbit's spinal cord were studied in a model of surgically-induced spinal cord constriction performed at Th7 segment level and compared with the occurrence of nicotinamide adenine dinucleotide phosphate diaphorase expressing and neuronal nitric oxide synthase immunoreactive axons in the white matter of the control thoracic segments. Segmental and white-column dependent differences of cNOS activity were found in the dorsal (141.5 +/- 4.2 dpm/microm protein), lateral (87.3 +/- 11.5 dpm/microm protein) and ventral (117.1 +/- 7.6 dpm/microm protein) white matter columns in the Th5-Th6 segments and in the dorsal (103.3 +/- 15.5 dpm/microm protein), lateral (54.9 +/- 4.9 dpm/microm protein), and ventral (86.1 +/- 6.8 dpm/microm protein) white matter columns in the Th8-Th9 segments. A surgically-induced constriction of Th7 segment caused a disproportionate response of cNOS activity in the rostrally (Th5-Th6) and caudally (Th8-Th9) located segments in both lateral and ventral white matter columns. While a statistically significant decrease of cNOS activity was detected above the constriction site in the ventral columns, a considerable, statistically significant increase of cNOS activity was noted in the white lateral columns below the site of constriction. It is reasoned that the changes of cNOS activity may have adverse effects on nitric oxide (NO) production in the white matter close to the site of constriction injury, thus broadening the scope of the secondary mechanisms that play a role in neuronal trauma.
Collapse
Affiliation(s)
- N Lukácová
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Blottner D. Nitric oxide and target-organ control in the autonomic nervous system: Anatomical distribution, spatiotemporal signaling, and neuroeffector maintenance. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19991001)58:1<139::aid-jnr14>3.0.co;2-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
Takai N, Uchihashi K, Higuchi K, Yoshida Y, Yamaguchi M. Localization of neuronal-constitutive nitric oxide synthase and secretory regulation by nitric oxide in the rat submandibular and sublingual glands. Arch Oral Biol 1999; 44:745-50. [PMID: 10471158 DOI: 10.1016/s0003-9969(99)00064-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The distribution of neuronal-constitutive nitric oxide synthase (ncNOs)-positive nerve fibres was compared immunohistochemically, and the effect of NOs inhibitor and NO scavenger on the secretory response was compared functionally, in the two glands. Numerous ncNOs-positive fibres were distributed around acini in the submandibular gland but scarcely any around acini in the sublingual gland. Within the submandibular ganglion (parasympathetic), the nerve-cell bodies were strongly positive. Within the superior cervical ganglion (sympathetic), the nerve-cell bodies were negative, although some positive nerve fibres were observed. The secretory responses to the electrical stimulation of the chorda were significantly reduced by the NOs inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME, 10(-9)-10(-3) M) in a dose-dependent manner. The NO scavenger, 2-(4-carboxyphenyl)4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (carboxy-PTIO) also reduced the chorda-evoked secretion (10(-9)-10(-6) M). The submandibular secretions evoked by stimulation of the superior cervical ganglion were not affected by L-NAME or carboxy-PTIO. In the sublingual gland, neither L-NAME nor carboxy-PTIO affected chorda-evoked salivary secretion. The histochemical and functional results both suggest that NO plays an excitatory role in the regulation of parasympathetic nerve-induced salivary secretion in the rat submandibular gland, but not in the sublingual gland.
Collapse
Affiliation(s)
- N Takai
- Department of Physiology, Osaka Dental University, Hirakata, Japan.
| | | | | | | | | |
Collapse
|
14
|
Gonz�lez-Hern�ndez T, Rustioni A. Nitric oxide synthase and growth-associated protein are coexpressed in primary sensory neurons after peripheral injury. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990201)404:1<64::aid-cne5>3.0.co;2-m] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Guízar-Sahagún G, García-López P, Espitia AL, Grijalva I, Franco-Bourland RE, Madrazo I. Transitory expression of NADPH diaphorase (NOS) in axonal swellings after spinal cord injury. Neuroreport 1998; 9:2899-902. [PMID: 9760142 DOI: 10.1097/00001756-199808240-00040] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To investigate the sites of nitric oxide synthase (NOS) expression after a spinal cord (SC) injury, NADPH-d diaphorase histochemistry was performed in the SC of adult rats sacrificed at different times from 1 h to 90 days after both SC contusion or transection. NOS could first be seen 12 h after injury in axonal swellings (AS) (club shaped structures at the tip of damage axons, associated with tissue destruction). NOS expression reached a maximum 3 days after injury, and gradually disappeared after 7 days. Finally, AS collapsed leaving behind microcysts. NOS expression and the consequent production of nitric oxide could be involved in the pathophysiology of the secondary damage, and/or could reflect a failed attempt for axonal regeneration.
Collapse
|
16
|
Vogel M, Lück G, Bachmann S, Blottner D. NOS type-1 mRNA expression and protein localization in spinal autonomic neurons. Neuroreport 1997; 8:3389-93. [PMID: 9351678 DOI: 10.1097/00001756-199710200-00039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Autonomic neurons of the rat spinal cord show strong NADPH diaphorase activity and immunoreactivity for nitric oxide synthase (NOS). Here we show mRNA expression of NOS type-1 (neuronal or brain NOS) transcripts in cell bodies of sympathetic preganglionic neurons (SPNs) of the intermediolateral (IML) cell column by non-radioactive in situ hybridization using NOS-I riboprobes. Hybridization signals occurred only in neuronal cell bodies and not outside, in what appeared to be fibers and/or terminals. In preganglionic fibers of SPNs, however, dense axoplasmic immunogold labeling was detected with a monoclonal anti-NOS-I antibody. Expression of NOS-I mRNA in SPN cell bodies and axoplasmic immunolocalization of NOS-I protein suggest that protein translocation is involved in NO-mediated preganglionic control of peripheral targets.
Collapse
Affiliation(s)
- M Vogel
- Department of Anatomy and Cell Biology, Humboldt University Hospital (Charité), Berlin-Charlottenburg, Germany
| | | | | | | |
Collapse
|
17
|
Reenilä I, Tuomainen P, Soinila S, Männistö PT. Increase of catechol-O-methyltransferase activity in rat brain microglia after intrastriatal infusion of fluorocitrate, a glial toxin. Neurosci Lett 1997; 230:155-8. [PMID: 9272684 DOI: 10.1016/s0304-3940(97)00502-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Striatal catechol-O-methyltransferase (COMT), monoamine oxidase B (MAO-B; an astroglial enzyme), alkaline phosphodiesterase I (PDE; a microglia/macrophage marker) and tyrosine hydroxylase (TH; catecholaminergic neuron marker) activities were analyzed biochemically 1-3 days after infusion of fluorocitrate, an astrocyte damaging agent. Astrocytes, microglia and neurons were stained immunohistochemically with specific antibodies (against glial fibrillary acidic protein, OX-42 and TH, respectively) and with COMT antiserum. Three days after fluorocitrate infusion the activity of MAO-B was reduced, whereas COMT and PDE activities were increased. The elevation of COMT immunoreactivity co-localized to microglial cells, but not to astrocytes. In conclusion, this is the first report indicating that microglia contains COMT activity which may be increased in pathological conditions.
Collapse
Affiliation(s)
- I Reenilä
- Institute of Biomedicine, Department of Pharmacology and Toxicology, University of Helsinki, Finland.
| | | | | | | |
Collapse
|
18
|
Sander M, Hansen J, Victor RG. The sympathetic nervous system is involved in the maintenance but not initiation of the hypertension induced by N(omega)-nitro-L-arginine methyl ester. Hypertension 1997; 30:64-70. [PMID: 9231822 DOI: 10.1161/01.hyp.30.1.64] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Studies in anesthetized animals have advanced the theory that there is an important neurogenic component to the hypertension caused by pharmacological inhibition of nitric oxide, but studies in conscious animals have produced conflicting evidence for and against this theory. To try to reconcile the seemingly contradictory data, we hypothesized that the neurogenic component of this hypertension is time dependent such that the sympathetic nervous system is involved primarily in the maintenance, rather than the initiation, of the hypertension. We measured intra-arterial pressure in conscious, unrestrained rats with and without guanethidine-induced sympathectomy during varying durations of intravenous N(omega)-nitro-L-arginine methyl ester (L-NAME). The major new finding is that sympathectomy had no effect on the hypertensive response to bolus injections of L-NAME but in the same rats it produced a greater than 50% attenuation in the hypertension seen after 6 days of continuous L-NAME (change in mean arterial pressure, 23+/-4 versus 55+/-4 mm Hg, P<.01, sympathectomy versus control). Using 8-hour infusions of L-NAME, we found that 60 minutes was the minimum time required for detecting a sympathectomy-sensitive component of L-NAME-induced hypertension. Furthermore, we demonstrate that the magnitude of this component increases further between 8 hours to 6 days of continuous L-NAME: it accounted for only 18% of the total hypertensive response at 8 hours but 61% after 6 days. From these experiments, we conclude that the importance of the sympathetic system in the pathogenesis of L-NAME-induced hypertension accrues slowly over hours and days, and thus its importance can be overlooked by focusing on the initial phase of the hypertension.
Collapse
Affiliation(s)
- M Sander
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235-8573, USA
| | | | | |
Collapse
|
19
|
Blottner D. Nitric oxide and fibroblast growth factor in autonomic nervous system: short- and long-term messengers in autonomic pathway and target-organ control. Prog Neurobiol 1997; 51:423-38. [PMID: 9106900 DOI: 10.1016/s0301-0082(96)00062-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The freely diffusible messenger nitric oxide (NO), generated by NO synthase (NOS)-containing "nitroxergic" (NO-ergic) neurons, is unique among classical synaptic chemical transmitters because of its "non-specificity", molecular "NO-receptors" (e.g. guanylyl cyclase, iron complexes, nitrosylated proteins or DNA) in target cells, intracellular targeting, regulated biosynthesis, and growth factor/cytokine-dependence. In the nervous system, expression of NOS is particularly intriguing in central and peripheral autonomic pathways and their targets. Here, anatomical and functional links appear to exist between NOS, its associated catalytic NADPH-diaphorase enzyme activity (NOSaD) and fibroblast growth factor-2 (FGF-2), a pleiotropic cytokine with mitogenic actions, suggesting mutual "short- and long-term" actions. Several recent studies performed in the rat sympathoadrenal system, an anatomically and neurochemically well-defined autonomic pathway with target-specific functional units of sympathetic preganglionic neurons (SPNs) in the spinal cord, provide evidence for this hypothesis. The NO and cytokine signals may interact at the level of gene expression, transcription factors, post-transcriptional control or second messenger cross-talk. Thus, unique biological roles of FGF-2 and the NO system are likely to exist in neuroendocrine actions, vasomotory perfusion control as well as in neurotrophic actions in sympathetic innervation of the adrenal gland. In view of their anatomical co-existence, functional interplay and synchronizing effects on neuronal networks, multiple roles are suggested for both "short- and long-term" signalling molecules in neuroendocrine functions and integrated autonomic target organ control.
Collapse
Affiliation(s)
- D Blottner
- Department of Anatomy, Freie Universität Berlin, Germany.
| |
Collapse
|